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Floquet scattering through a time-periodic potential
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Floquet scattering theory is developed to study electron transmission through a harmonically driven poten-
tial. The FloquetS matrix is constructed to calculate transmission probabilities as well as the Wigner delay
times. Transmission resonances result from the interaction of electrons with the oscillating field by means of
photon emission and absorption. Oscillator-induced quasibound states can accumulate electrons and give rise
to electron interchannel transitions at resonances. Due to the oscillating potential, an ac Stark effect is ob-
served. Floquet quasibound states appear as transmission poles in the complex energy plane. Lifetimes ob-
tained from transmission poles are of the same order of magnitude as the corresponding Wigner delay times.
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[. INTRODUCTION energy spacing ofiw (energy of the photonbetween two
adjacent channels. The Flogu&matrix can be constructed

Transport in periodically driven mesoscopic systems is @nd used to derive transmission probabilities as well as the
subject of increasing importance because of a growing numWigner delay times. )
ber of applicationd™® Photon-assisted tunneling has been In Sec. Il, we solve the time-periodic Schiinger equa-
observed in quantum resonant tunneling structusesh as  tion for our system using the Floquet theorem, and we use
Al Ga,_,As/GaAs quantum dot¥;'* quantum diode¥? and  Floquet states to construct the Flog&amatrix. In Sec. Il
superlatticed® This phenomenon is expected to be used inwe study the behavior of transmission probabilities for our
designing high-speed switching devices and high-frequencgne-dimensional1D) modulated square potential. Transmis-
(up to TH2 radiation sources and detectdfs’ It is impor- ~ Sion resonances due to the interaction between electrons and
tant to understand the mechanisms by which the timethe oscillating field will be studied numerically for both
varying external fields affect the transport properties of thes#eak and strong oscillation cases. In Sec. IV we examine the
devices. For strongly driven systems, a nonperturbative ag?scillator induced quasibound states and the ac Stark energy
proach based on Floquet thebhycan be used®!” Using  shift. In Sec. V we discuss quasibound-state-associated trans-
advanced computing techniques, it is now possible to tak&lission poles in the complex energy plane. Lifetimes ob-
into account the inelastic contributions in which an incidenttained from transmission poles are compared to the Wigner
wave is scattered into many photon sidebafsisattering ~delay times in Sec. VI. Finally in Sec. VIl we make some

channels8-2° concluding remarks.
For systems where bound states exist in the absence of a
driving field, even a weak driving field can cause propagat- IIl. FLOQUET SCATTERING

ing electrons at appropriate incident Fermi energies to un-

dergo transitions between the spatially localized bound states The Floquet theorem allows us to convert the solution of

and extended states in the continuum by means of photod time-periodic Schiiinger equation into a time-

emission and absorption. This process creates unique trangdependent eigenvalue problem. Let us consider electrons

mission resonances. It is also shown that under the oscilldransmitting through a modulated potential which extends

tion, the energy of a bound state has a small yet finite adfom —L/2 to L/2 (see Fig. 1 The potential is

Stark shift. When the strength of the driving field becomes

great enough, quasibound states can be created which have 0, X< —L/2 andx>L/2

no connection to bound states of the unperturbed system. V(xt)= Vot Vicoswt), —L/2<x<L/2. (1)
Quasibound states appear as poles of the transmission am-

plitude in the complex energy plane. The real part of therpe Schidinger equation can be written
complex energy gives the energy level of that quasibound

state, while the imaginary part gives its lifetime. An incident 5
particle with energy equal t@r neaj the energy of a qua- iﬁiw(x t)y=—— &—w(x H+HVXDP(x), (2
sibound state generally experiences significant delay in its ot 2pm gx2 7 ' e

transmission through the scattering region.

An electron wave with a single incident energy transmit-where n is the electron effective mass. For GaAs
ting through an oscillating barrier has been studied by sev=0.067,, wherem, is the mass of the free electron. We
eral authors=>®7In Ref. 3, a transfer matrix technique was use asingle-electronmodel so we neglect the electron-
used to calculate the transmission and reflection coefficientlectron interactions, and we assume the temperature is low
Our Floquet scattering model consists of an infinite numbeenough that electron-phonon interactions can be neglected as
of incoming and outgoing waveéshannels with the Floquet  well.
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I I 11}
_________________ _ FIG. 1. Floquet scattering
s " -' Y, cos0t . . model. Incoming and outgoing
> Eq € > Eq4 € waves (channels have energy
""""""""" P S—— > K < spacing offiw and are divided
--------------------------------------- into Floquet zones according to
> E; < Vo > E; € E,=Ep+tnfhiw [Nne[0>)]. Flo-
""""""""" NI Wit > By < quet evanescent modes[n
________________________________________ B ho N e(—»,—1]] also exist in the
> Eo € II'“’ > Eo¢ € neighborhood of the oscillating
o barrier and do not propagate.

L

The Floquet theorem asserts that E2). has solutions of
the form®>=17

Pe(x,t)=e B g(x 1), €)

whereEg is the Floquet eigenenergy agdx,t) is a periodic
function: ¢(x,t) = ¢(x,t+T), with period T=27/w. If we

substitute Eq(3) into Eq.(2), the Schrdinger equation takes

the form
. R _ﬁ&
PO == 5 T2 d D —iAZd(xD)

+V(X,t) p(X,1). (4)

In order to solve the Schdinger equation above, we will
treat the three regionsx<—L/2, —L/2<x=<L/2, and X
>L/2 (which we denote I, II, and Ill, respectivelgeparately
and then match their wave functions at the bounddria&e
first consider region II.

A. Floquet solution inside the oscillating potential

SinceV(x,t) is space homogeneous inside region I, Eq.

(4) is separabfeand we can writeg(x,t) =g(x)f(t). This
leads to the following equations fay(x) and f(t), respec-
tively:

h? g
—ZWQ(XHVOQ(X):EQ(X), 5
9
|ﬁa—tf(t)—vlcos(wt)f(t):(E—EF)f(t), (6)
whereE is a constant. Integrating E) gives
_ it
f(t):eu(EEF)t/ﬁeXp< _ %f Vlcos(wt’)dt’)
0
o - AT
—e i(E E|:)t/hn:2_oc Jn(% g inet 7)

where we have takef(0)=1. Sincef(t)=f(t+T), Eq. (7)
requires thaE=Eg+ mf w, wherem is an integer.
The equation fog(x) has a solution

©

9= 2 (aneimtbye i),

8

wherea,, andb,, are constant coefficients and
2~2
h0m

2p

By combining the solutions fof(t) andg(x), we obtain
the following expression for the Floquet staig!(x,t), in-
side the oscillating region:

”lel(xyt):efiEFt/h E 2 (ameiqu

n=—o m=-—wx

) \2
+ bme_lqmX)Jn_m %

e—inwt. (10)

"(x,t) resembles the Tien-Gordon wave functions in
microwave-driven superconductor filfisThe Floquet en-
ergy Er and coefficients,, and b, will be determined by
the boundary conditions.

B. Floquet solution outside the oscillating potential

Since electrons incident to the oscillating region will be
scattered inelastically into Floquet sidebands, the wave func-
tion outside the barrier must consist of many Floquet side-
bands in order to match the boundary conditions xat
==*L/2.

Let us assume that the incoming and outgoing particle
waves on both sides of the scatterer are superpositions of an
infinite number of sidebands with energy spacingiaf, as
shown in Fig. 1. The potential in region | and Il is zero. The
wave function in these free particle regions can be written:

0

‘/’l(x’t):n_E | (Ain eiknxfiEnt/ﬁ_’_Ag e Ik~ iEnA)

11

l/f“'(X,t):nE (B e Tknx—iEnt/h 4 BO glknx—iEqtity,

(12

where Al and B! are the probability amplitudes of the in-
coming waves from the left and right, respectively, whilg
andB;, are those of the outgoing waves. The incoming waves
are divided into different zones with inder: E,=E,
+nfiw, where Eje[0/iw) is the Floquet energy of the
propagating modavith the lowest energy.
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It is important to note that Eq$11) and(12) also involve
modes with energies belo, (in the sumn can be nega-
tive). When E, <0, k,=+2uxE,/%? is imaginary. Such a

mode will not propagate and is called an evanescent rtbde.

The current density for an evanescent mode is zero.

C. The Floquet S matrix

The Floquet eigenenerdyr in Eq. (3) can be determined
up to an arbitrary integer multiplied byw, since according
to Eq. (10) shifting Er by niw does not change the wave
function ¢''(x,t). For convenience, we chooBg within the
lowest zoneEr=E,.

The wave functiony(x,t), and its first derivative must be
continuous at the boundaries= =L/2. At x=—L/2 this
leads to

i a—ikgL/2_ pOqikpL/2
Ape e+ Apettn

Vi
ho

13

2 (ame—iqu/2+ bmeiqu/Z)Jn_m(
m=—o

and

ikn Aln e iknl/2_ Ikn AgeiknLIZ

- _ _ v
= 2 (iQmameilqulz_ iqmbmelqmuz)‘]n—m( ﬁ) .

m=—o
14
Similarly, atx=L/2 we have
Bine—iknL/2+ BgeiknL/ZZ 2 (a,e/9mt2
m=—owx
i \Z!

+ bme Iqu/Z)Jnm(%) ,

(15

and

_ iknBine—iknL/2+ iknteiknLIZ

- . . v
= E (iQmamelqu/Z_ imemelqulz)Jn—m( _l> .
m=—w ﬁw

(16)

Eliminating Ay from Egs.(13) and (14) yields

m;m [(kn+ qm)eiiqmuzam"' (kn_ Qm)

v _
ﬁ>=2A'nkne'knL’2. (17

X eiquIme]Jn_m

Eliminating By, from Egs.(15) and(16) gives
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0

2 [(ky=Am)enan+ (Kt a)

ﬁ) = 2B kye *n-2

X efiqu/me]Jn_m —

(18

If we combine Eqs(17) and (18), we obtain the following
infinite matrix equation:

[

_ . Vil .
2 [(kg+am)eInt2x (k- qm)e'qu’z]Jnm(ﬁ—l) Cn
m=—oo w

=2(A, =B} )kne knt72, (19
whereC,=an*b,. . .

If the incoming amplituded\,, andB,, are given, then Eq.
(19) determines the coefficienfsrﬁ. All other quantities of
interest can be obtained from these coefficiefitspractice,
we must use a truncated version of E9).] The coeffi-
cients a,, and b, are given bya,=(C, +C,)/2 and b,
=(C,,—C.)/2. The probability amplitudes of the outgoing
waves are given by

©

n E

AO— ﬁ) e iknL/2
m=—o

—iqmL/2 iqmL/2
(ape”'9m->+p e'dm )‘]”‘m<hw

—Ale kit (20)

Vi

0 2 (ameiqu/2+ bmeiquIZ)Jnm<ﬁw

)eiknle
m=—o

—Bpe it (21)

Equationg20) and(21) can be expressed in matrix forfsee

the Appendix:
AO
[ol=sl&)

whereA',B' and A°,B° are the incoming and outgoirn-
cluding the associated evanescent Floquet sidehamigli-
tude vectors, respectively. The matdkconsists of all the
probability amplitudes which connect the coefficieAtsB'
to coefficientsA®,B°.

If we keep only the propagating modes, then we obtain

the scatterings matrix, S, which satisfies the equation

:

This unitaryS matrix is determined by the transmission and
reflection amplitudes for the propagating modes,

Ai

B (22

N
=

Ko

— . (23
BO
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FIG. 2. The transmission coefficiefitas a function of incident
(24)  energy for system parametefiso=1 meV, Vo= —20 meV, V,
wherer ., andt,,, are the reflection and transmission ampli- => meV, L =10 A. Sideband$1=0,x1, ... =5 are taken into
tudes, respectively, for modes incident from the leff; and ~ 26C0UNt SOT=27_o|ton|". A resonance occurs &~0.826 meV.
t,m are similar quantities for modes incident from the right.

Heren,me [0,) since matrixS contains only the reflection \we should haveN>V, /% w.2° The transmission pattern has
and transmission amplitudes of the propagating modes. Elen asymmetric “Fano” resonanteat E~0.826 meV, where
ments such as_; o, r_10in matrix S correspond to prob- 3 sharp dip is followed by a peak. In this case, the deep
ability amplitudes describing an electron with incident en-quantum well o= —20 meV,L=10 A) ensures that there
ergy E, being scattered into the evanescent mideg (with  exists a bound stat@vhenV,;=0, this bound state has en-

energyfiw below Eo). ergy Eg=—0.17382 meV. At the energy level where the
From the Scatterin@ maitrix we can obtain the total trans- resonance occurs, electrons in the incident chanbed f(w
mission coefficient: —|Eg|~0.826 meV can emit photons and drop to the
w o “bound” state. Similarly, electrons in the “bound” state can
T= 2 2 ﬁ“ 2. (25) absorb photons and jump to the incident char{a&do other
i=o mzo kyy' ™™ Floquet channe)s A transmission resonance takes place

when the energy difference between the incident channel and
tﬁ{é bound state is equal to the energy of one or more pho-
tons. Figure 3 shows the transmission amplitutigsand
t_, o (the absolute values squajeab a function of incident

direction (say the left with a fixed Fermi energyE, and energy.(Hereafter we usg,q to denote the transmission am-

tork.. th : | | i that | plitude from the incident channel to theh Floquet side-
wave VECIOrK,, there IS only one € emenky;, that is non- band) We can see clearly the accumulation of electrons in

"he bound statéwhich is now also the Floquet sideband
E_,). Since electrons in the evanescent mode will not propa-

Other scattering quantities, such as eigenphases and scat
ing delay times can also be derived from tBenatrix. We
will discuss this in later sections.

If we consider a single electron wave incident from one

coefficientT calculated from Eq(25) involves onlyt,, (m
=0 andn varies over all the transmitted propagating side-

bands. If the incident energy belongs to a higher energy 1.0
zonem [Mhw<E;,<(m+1)hw], we uset,, in the corre- k/
sponding column in theS matrix. According to the 08
Landauer-Bttiker formula?? the total conductance of our "< 06
oscillating device is = 0a
2e?
G= TT. (26) 02 (a)
0.0
The conductanc& can be measured in experiments. 0 02 04 06 08 1.0 12 14
350
I1l. TRANSMISSION RESONANCES 300 (b)
In this section, we study numerically the scattering of a °‘—q 250
single incident wave through an oscillating square potential 5200
and we calculate the transmission coefficients. T80
The interaction of electrons with the oscillating potential 100
leads to photon-mediated transmission resonances. In Fig. 2 50 Jk
we plot the transmission coefficiefitas a function of the 02 07 65 08 70 12 13
incident electron energy fov,=—20 meV,V;=5 meV, L R E' v- o
=10 A, and%w=1 meV. Besides the incident chanri! (mev)
=E,, five Floquet sidebands both above and belyvare FIG. 3. Comparison of the transmission amplitudes of side-
taken into accountfE,=Ep+nfiw with n=0,£1,... . =N pands.(a) |tod? and (b) |t_;4?. (b) shows the accumulation of

andN=5. The minimum number of sidebands that need tcelectrons in the bound state. The system parameters: arel
be included is determined by the strength of the oscillationmeV, Vo= —20 meV,V;=5 meV,L=10 A.



15736 WENJUN LI AND L. E. REICHL PRB 60

1 /\_’,/- 10
0.8 \/ 08
o _ e
04
0.4
02 (@)
0.2
0 2 4 8 8 10
0 2 4 6 8 10
E (meV) E (meV)

FIG. 5. The transmission coefficieft for system parameters
hw=2 meV,V,=0 meV,V,;=50 meV,L=20 A. The transmis-

M ) sion zero belowE=7%w implies the existence of an oscillator in-
08 | ) duced quasibound state. SidebanmusO0,+1,...,=5 are taken
into account saT=32_|toq|2.
— 08 1 IV. OSCILLATOR-INDUCED QUASIBOUND STATES
04 - ] AND ac STARK SHIFT
0z | (b) i Thga transmigsion zero in F'ig. 5 implies th.e existencg of a
long-lived localized statéquasibound stajenside the oscil-
0 lating potential which can accumulate electrons and produce
0 2 4 6 8 10 a transmission resonance. To show the existence of such
E (meV) states and find their energies, we follow the same steps we

used earlier in deriving the scatterit®matrix, except that

FIG. 4. The transmission coefficiefit for system parameters now we set all théA,'s andB,’s to zero. The existence of a

ho=4 meV,Vy=—4 meV,V;=0.1 meV(a) and 1.0 meV(b), system bound state or quasibound state ensures that even if

L=1000 A. Transmission resonances show the existence of threere is no incident wave, we can still find a nonvanishing
static bound states. The resonance energy shifts bélew4.0  solution for the wave function.

meV match well the bound state energies. Sidebanes0, Let us rewrite Eq(19) as

+1,...,%40 are taken into account $o=3722 |to,|%. (b) shows

the higher-order resonances, which is almost invisibl€a)nsince w

there the oscillation is so weak. E K —imk2 (| — iamk/2] 3 ﬁ ct
m= [( n+qm)e —( n qm)e ] n—m ﬁw m

gate, they make no contribution to the transmission coeffi- =M -C™=0, (27

cient.

When several bound states exist as is the case for Fig. 4,
we see more than one transmission resonance. For this weak
oscillator case we takéy=—4 meV,V;=0.1 meV and 1.0
meV, L=1000 A, andhw=4 meV. The three resonances
below E=7Zw=4.0 meV in Fig. 43) (E=3.0375,1.4243, =G0
and 0.3637 meYare due to the three bound states of the
quantum well. By calculating the binding energies of those
three bound statesEg,;=—0.9625 meV, Eg,= —2.5758
meV, Egz=—3.6363 meV), we find that they are in good 2.0
agreement with the resonance energy shifts below 4.0 meV.

Figure 4b) shows an increase in the oscillation strength, and 25
we find that the resonances broaden and higher-order reso-
nances start to appear. 3.0

As the strength of the oscillatov,;, becomes greater, new 14 -12 -1.0 08 -06 04 -02 O
guasibound states can be created due to the oscillating field.
An example is shown in Fig. 5, whek,=0 meV, V;=50
meV, L=20 A, andfio=2 meV. In this case, the unper-  [G 6. The determinant of the state matrix in the complex en-
turbed system has no bound states. However, we see a resgy plane forhw=2 meV, V,=0 meV,V,;=50 meV,L=20 A.
nance dip atE=1.2 meV, which lies 0.8 meV beloVe  Bjack dots[corresponding to defi{ ) =0] locate the complex en-
=hw=2.0 meV. This energy shift is very similar to previ- ergies €, denotes the real part, whilg; denotes the imaginary
ous cases and suggests the existence of a quasibound statep@$ of Floquet quasibound states. Sidebamds0,+1,+2, ...,
will be discussed below. +40 are taken into account.

0.0

-0.5

Er (meV)
n

Ei (meV)
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. -0.92 = V2 (meV?3)
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= -0.96 FIG. 8. ac Stark energy shift. Parameters are the same as Fig. 7
5 o @b - 00— except 20V,’s (oscillation strengthare calculated and sidebands

-0.056 -0.04 -0.03 -0.02 -0.01 0 n=0,x1,...,x5 are used(a) shows the change &, whenV,

increases an¢b) illustrates that the magnitude of the ac Stark shift

092 is approximately proportional t¥2 whenV, is small.
— -0.96 of a quasibound state. The distance between two adjacent
d "098 | S dark points is equal to the Floquet energy spacing of

-0.06 -0.04 -0.08 -0.02 -0.01 0 These Floquet quasibound states play a role similar to the
static bound states in Figs. 2 and 4. This explains the energy
shift of the resonance belotv=7%w in Fig. 5.

FIG. 7. The dark regions locate solutions of déf()=0 for In the cases of Figs. 2 and 4, the system bound states have
hw=4 meV,Vo=—4 meV,L=1000 A and(a) V,;=0.0 meV,(b) already been driven into the complex energy plane by the
V;=0.1 meV, (c) V,=0.5 meV, (d) V,=1.0 meV, and(e) vV,  oscillating field. The “bound states” we referred to there are
=1.5 meV. By increasing oscillating field strength, a static boundvery close to the real energy axis because the oscillations are
state becomes a quasibound state with a decreasing lifetime. Sidse weak. If we look at the complex energy plane, as shown
bandsn=0,+1,...,+5 are taken into account. in Fig. 7, we see clearly that as the oscillation strength in-

creases, the original bound state moves away from the real
where C* is an infinite dimensional vector anld_ is an  energy axis. This picture expands the remarks made in Ref.
infinite dimensional square matrix, which will be referred to 7, where all the discussion was restricted to the real energy
as the state matrix. To get nonvanishi@g, the matrixMg axis. In fact, when an oscillating field is present, there are no

Ei (meV)

must be singular and we must have longer any true bound states. Furthermore, the real part of
the energy of the quasibound state changes slightly from its
de(M;)=0. (28)  original bound state energy when it goes into the complex

energy plane. Quantitative analysis shows that for weak
By solving Eq.(28), we can obtain the energy spectrum of oscillation, this ac Stark shift is approximately proportional

Floguet quasibound states for the oscillating system. to the square of the oscillation strengt2}, as shown in
Equation (28) has solutions for complex values of the Fig. 8
energy, which indicates that the states associated with these
solutions are not real bound states, but rather they are quasi-
bound states with finite lifetimes. In addition, since shifting V. TRANSMISSION POLES IN THE COMPLEX ENERGY

the energy in the infinite matrik S by anyn# w essentially PLANE

does not change its analytic properties, it follows thd i Another way to find quasibound states is to locate the
a solution of Eq(28), thenE +n7% w must be a solution also. poles of transmission probabilitieft,, /%, in the complex
It turns out that Eq(28) always gives a set of quasibound energy plane. As is well known, for scattering through a
states with the Floquet energy spacing/ia. static barrier ¥;=0), there is a transmission pole in the
As an example, the behavior of dkt() as a function of  complex energy plane associated with a transmission reso-
complex energy is shown in Fig. 6. Hereafter we will e  nance T=1), which indicates the existence of a quasibound
andE; to denote the real and imaginary part of the complexstate. The real part of the quasibound state energy approxi-
energy. This figure shows the quasibound state associatedately locates the resonance energy, while the imaginary
with the transmission resonance in Fig. 35t 1.2 meV. A part is inversely proportional to the lifetinfé At the trans-
very dark regior{ det(M_)=0] locates the complex energy mission resonance, an electron will stay in the neighborhood
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The transmission poles due to static quasibound states can
exist in the complex energy plane alongside those induced by
the field. Figure 1Qsame parameters as in Figaj shows
the coexistence of two types of transmission poles. If we
compare Fig. &) and Fig. 10, we see that in Fig. 10 the
three poles near the real energy axis correspond to the three
Floquet resonanceshey belong to different Floquet quasi-
bound state sekswhile the pole farther away from the real
energy axis corresponds to a resonant quasibound state due
to the static quantum welin Fig. 4(a) the resonance is lo-
cated atE=1.05 meM. A small part of one more pole with
a higher energywhich corresponds to another static resonant

FIG. 9. Transmission poles in the complex energy plane forquasibound stajds also visible at the far cornefE[=4.98
fhw=2 meV,V,=0 meV,V,;=50 meV,L=20 A meV in Fig. 4a)].

The distance from the real energy axis of each pole deter-

of the scatterer for a relatively long time because the particl&ines the lifetime of the quasibound state:
wave undergoes multiple reflections in the regioh/2<x
=<L/2. Once the incident wave turns off, it will decay very _ﬁ (29
quickly with the rate governed by its lifetime. ey

For the case of Floquet scattering, the Floquet quasibound
states also give rise to transmission resonances. In the comhere y=2E; andE; is the imaginary part of the transmis-
plex energy plane, we also see poles of matrix associ- sion pole energy. We will compare this lifetime with the
ated with the quasibound states. For example, the transmi¥Vigner delay time derived from th& matrix in the follow-
sion zero(due to resonangeat E~ 1.2 meV in Fig. 5 is Ing section.
associated with a transmission pole in the complex energy
plane which is shown in Fig. 9. In Fig. 9, we show the VI. WIGNER DELAY TIMES
transmission probabilitytyg2. Other Smatrix elements will
also have poles. The distance between the two poles in Fig. 9 The Wigner delay time gives the time delay of the scat-
is equal toZiw. As mentioned earlier, each Floquet quasi-tered electron due to its interaction with the scattering field
bound state is actua”y a member of a set of quasibounéhere the oscillating potentDaIAt the resonance, the incident
states. The transmission poles corresponding to these qua¥jave excites a quasibound state in the neighborhood of the
bound states line up in the Comp|ex energy p|ane with Spacscatterer and the electron is delayed. As a reSUlt, the Wigner
ing along the real axis of w between adjacent poléwhen  delay time will show a peak. To obtain the Wigner delay
they are from the same gethey have the same distance time, we use the scatterigmatrix, S, derived in Sec. Il. Its
from the real energy axis. eigenvalues lie on the unit circle and can be written in the

Log. | tool®

FIG. 10. Static and dynamic
quasibound state poles fotw
=4 meV, Vg=—4 meV, V,
=0.1 meV,L=1000 A. The three
poles close to the real energy axis
are due to the oscillating field.
The remaining pole is due to the
static quasibound state. A small
part of another pole due to a static
quasibound state is also visible at
the far corner.
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FIG. 12. (a) Transmission coefficient{b) eigenphasesjc)

FIG. 11. () Transmission coefficientp) eigenphases of th& Wigner delay times fohw=4 meV,Vy,=—4 meV,V;=0.1 meV,
matrix; (c) Wigner delay times fohw=1 meV, Vo=—20 meV, L=1000 A. Floquet sidebands=0,+1 are included so th& ma-
V;=5 meV, L=10 A. Floquet sidebands includa=0,+1, trix has four eigenvalues. Besides three dynamic resonalc€s
+2,...,x10. andD, the inset in the bottom figure also shows the Wigner delay

time peak due to the static resonarize

form e'’%«, wheree'% is the ath eigenvalue of the scattering
S matrix (6, is the ath eigenphase When there ardN+ 1 VII. CONCLUSIONS
propagating modesH,=Ey+nfiw andn=0,1,...N), «
runs from 1 to 2N+1) since theS matrix is a[2(N+1)]
X[2(N+1)] square matrix. The Wigner delay time

In this paper we have considered 1D scattering through an
oscillating square potential and developed the Floquet scat-
tering theory for this model. The Floqu8tmatrix was con-

do structed and used to calculate transmission probabilities as
T;;:ﬁ_“ well as the Wigner delay times.
dE Transmission resonances result from the interaction of

is the slope of the eigenphase as a function of the inciderfilectrons with the oscillating field. A static bo.und. state can
energy. In Fig. 11(with the same parameters as in Fig, 2 S€'vVe as an electron reservoir when an oscillating fleld.|s
we show the transmission coefficient, eigenphases, an@PPlied and electrons can drop there from the propagating
Wigner delay times, respectively. We see that at the resg=h@nnels by photon emission. Similarly, electrons in the
nance, there is a Wigner delay time peak which indicates thatatic bound state can also absorb photons and feed back into
electrons being delayed in the scattering region. From Fig.

12, we see that associated with each resonénckiding the
three Floquet dynamic resonances, which are marke#, as

TABLE I. Comparison of the Wigner delay times and the life-
times derived from transmission poles.

C, and D, respectively, as well as one static resonance, - T (560 @  (se0®
marked asB), there is a Wigner delay time peak. w t

Table | compares the Wigner delay times and the correfigure 11 6.410°1° 1.6x10°1°
sponding lifetimes obtained from the transmission poles in
the complex energy plane is the lifetime defined in the Figure 12,A 4.3x10°7 1.1x10°7
previous section while, is the maximum value of the cor- g 8.4x 10" 4 3.7x10°13
responding Wigner delay time peak. They are of the samg 2. 9x 108 7.4x10°°
order of magnitude for all the cases considered. A similar, 7.8x10°° 1.9 102

comparison was done for an electron waveguide with no os-
cillating field by Na and Reichl and they obtained similar ®r,,: the Wigner delay time derived from tf&matrix.
results?® b7, : the lifetime obtained from the transmission pole.
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the propagating channels. The location in energy of the reso- a=3(C*+C)=3[(MI) 1M, (Al +B')
nance is then governed by the energy of the static bound o
state. This suggests a potential technique for detecting mate- +(Mg) HM,-(A'-B")]
rial geometric structures by measuring Floguet resonant N N
transmissions. It is also shown that the bound state will have (Mg) "+ (Ms)
a slight ac Stark energy shift under the oscillating field. 2
Even in the absence of a static bound state, a strong os- g o
(Mg) "=(Myg)
2

}Mr-Ai

cillating field localized in space can create the Floquet qua-
sibound states. The energies of these quasibound states can
be obtained by locating the singularities of the state matrix or
poles of the Floque matrix. Floquet quasibound states ap- and
pear as transmission poles which line up in the complex

}-Mr~Bi (A7)

energy plane with the Floguet energy spacing along the real 4 v oo (Mg) ™= (My) T MLA
energy axis ofiw. Lifetimes derived from the transmission 2 2 '
poles have the same order of magnitude as the corresponding g -
Wigner delay times. Ms)” +(Ms) 71 (A8)
2 re
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APPENDIX: DERIVATION OF THE FLOQUET SMATRIX =Map A+ M g B (A9)

In this Appendix we show how to construct the Flog8et 5,4
matrix using matrix format. Let us first introduce some rel-
evant matrices whose matrix elements are defined in the fol- - i
o _ B°=M,-a+M;-b—M;-B'
owing way:
=G{M¢ -[MJ) T+ (Mg) 7]

. » . v B o _
(Ms_)nm:[(kn+Qm)e |qu/2i(kn_qm)e|qu/2]Jnm(ﬁ) ’ + Mg[(M;) l_(Ms ) l]} Mr)'AI
(A1) +G3{M; LMD = (M3 T+ M- [(MI)
(M) pm=2k, e kiti25 (A2) +(Mg) M —=M))-B'
E,\/IBA'Ai'i"\/IBB'Bi. (Alo)
+ I Vv
(M) am= e"(kn—qm)“z\]n_m(ﬁ), (A3)  If we combine Eqs(A9) and(A10), we obtain
‘ A° Maan Mag) (A
(M)pm=e""*n"8, . (A4) B°) ~ Mgs Mg/ | B (AL)
Equation(19) can then be written as Al
o ES( B‘)' (A12)
Mg -C*=M,-(A'=B"). (A5)

Each element,,, of matrix S gives the probability ampli-
When the state matrikl is not singularSec. IV discusses tude that the electron is scattered from Floquet sidelbatl
the meaning oM when itis singula), we can take the sidebanch [n,me (—o,)]. If we keep only the propagat-
inverse ofM , and the coefficient vectd€™ becomes ing modes[n,me[0,°)], we then extract the matrix S
from the matrixS as discussed in Sec. Il
C*=(MJ) 1M, - (Al+B'). (AB) _ _
A° A
ol

_ (A13)
BO

The Floguet sideband coefficient vectors are given by
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