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Floquet scattering through a time-periodic potential

Wenjun Li and L. E. Reichl
Center for Studies in Statistical Mechanics and Complex Systems, The University of Texas at Austin, Austin, Texas 7871

~Received 11 June 1999!

Floquet scattering theory is developed to study electron transmission through a harmonically driven poten-
tial. The FloquetS matrix is constructed to calculate transmission probabilities as well as the Wigner delay
times. Transmission resonances result from the interaction of electrons with the oscillating field by means of
photon emission and absorption. Oscillator-induced quasibound states can accumulate electrons and give rise
to electron interchannel transitions at resonances. Due to the oscillating potential, an ac Stark effect is ob-
served. Floquet quasibound states appear as transmission poles in the complex energy plane. Lifetimes ob-
tained from transmission poles are of the same order of magnitude as the corresponding Wigner delay times.
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I. INTRODUCTION

Transport in periodically driven mesoscopic systems i
subject of increasing importance because of a growing n
ber of applications.1–8 Photon-assisted tunneling has be
observed in quantum resonant tunneling structures9 such as
Al xGa12xAs/GaAs quantum dots,10,11 quantum diodes,12 and
superlattices.13 This phenomenon is expected to be used
designing high-speed switching devices and high-freque
~up to THz! radiation sources and detectors.12,14 It is impor-
tant to understand the mechanisms by which the tim
varying external fields affect the transport properties of th
devices. For strongly driven systems, a nonperturbative
proach based on Floquet theory15 can be used.16,17 Using
advanced computing techniques, it is now possible to t
into account the inelastic contributions in which an incide
wave is scattered into many photon sidebands~scattering
channels!.18–20

For systems where bound states exist in the absence
driving field, even a weak driving field can cause propag
ing electrons at appropriate incident Fermi energies to
dergo transitions between the spatially localized bound st
and extended states in the continuum by means of ph
emission and absorption. This process creates unique tr
mission resonances. It is also shown that under the osc
tion, the energy of a bound state has a small yet finite
Stark shift. When the strength of the driving field becom
great enough, quasibound states can be created which
no connection to bound states of the unperturbed system

Quasibound states appear as poles of the transmission
plitude in the complex energy plane. The real part of
complex energy gives the energy level of that quasibo
state, while the imaginary part gives its lifetime. An incide
particle with energy equal to~or near! the energy of a qua
sibound state generally experiences significant delay in
transmission through the scattering region.

An electron wave with a single incident energy transm
ting through an oscillating barrier has been studied by s
eral authors.1–3,6,7In Ref. 3, a transfer matrix technique wa
used to calculate the transmission and reflection coefficie
Our Floquet scattering model consists of an infinite num
of incoming and outgoing waves~channels! with the Floquet
PRB 600163-1829/99/60~23!/15732~10!/$15.00
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energy spacing of\v ~energy of the photon! between two
adjacent channels. The FloquetS matrix can be constructed
and used to derive transmission probabilities as well as
Wigner delay times.

In Sec. II, we solve the time-periodic Schro¨dinger equa-
tion for our system using the Floquet theorem, and we
Floquet states to construct the FloquetS matrix. In Sec. III,
we study the behavior of transmission probabilities for o
one-dimensional~1D! modulated square potential. Transmi
sion resonances due to the interaction between electrons
the oscillating field will be studied numerically for bot
weak and strong oscillation cases. In Sec. IV we examine
oscillator induced quasibound states and the ac Stark en
shift. In Sec. V we discuss quasibound-state-associated tr
mission poles in the complex energy plane. Lifetimes o
tained from transmission poles are compared to the Wig
delay times in Sec. VI. Finally in Sec. VII we make som
concluding remarks.

II. FLOQUET SCATTERING

The Floquet theorem allows us to convert the solution
a time-periodic Schro¨dinger equation into a time
independent eigenvalue problem. Let us consider electr
transmitting through a modulated potential which exten
from 2L/2 to L/2 ~see Fig. 1!. The potential is

V~x,t !5H 0, x,2L/2 andx.L/2

V01V1cos~vt !, 2L/2<x<L/2.
~1!

The Schro¨dinger equation can be written

i\
]

]t
c~x,t !52

\2

2m

]2

]x2
c~x,t !1V~x,t !c~x,t !, ~2!

where m is the electron effective mass. For GaAsm
50.067me , whereme is the mass of the free electron. W
use a single-electronmodel so we neglect the electron
electron interactions, and we assume the temperature is
enough that electron-phonon interactions can be neglecte
well.
15 732 ©1999 The American Physical Society
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FIG. 1. Floquet scattering
model. Incoming and outgoing
waves ~channels! have energy
spacing of \v and are divided
into Floquet zones according t
En5E01n\v @nP@0,̀ )#. Flo-
quet evanescent modes@n
P(2`,21## also exist in the
neighborhood of the oscillating
barrier and do not propagate.
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The Floquet theorem asserts that Eq.~2! has solutions of
the form15–17

cF~x,t !5e2 iEFt/\f~x,t !, ~3!

whereEF is the Floquet eigenenergy andf(x,t) is a periodic
function: f(x,t)5f(x,t1T), with periodT52p/v. If we
substitute Eq.~3! into Eq.~2!, the Schro¨dinger equation takes
the form

EFf~x,t !52
\2

2m

]2

]x2 f~x,t !2 i\
]

]t
f~x,t !

1V~x,t !f~x,t !. ~4!

In order to solve the Schro¨dinger equation above, we wil
treat the three regions,x,2L/2, 2L/2<x<L/2, and x
.L/2 ~which we denote I, II, and III, respectively! separately
and then match their wave functions at the boundaries.1 We
first consider region II.

A. Floquet solution inside the oscillating potential

SinceV(x,t) is space homogeneous inside region II, E
~4! is separable6 and we can writef(x,t)5g(x) f (t). This
leads to the following equations forg(x) and f (t), respec-
tively:

2
\2

2m

]2

]x2 g~x!1V0 g~x!5E g~x!, ~5!

i\
]

]t
f ~ t !2V1 cos~vt ! f ~ t !5~E2EF! f ~ t !, ~6!

whereE is a constant. Integrating Eq.~6! gives

f ~ t !5e2 i (E2EF)t/\expS 2
i

\E0

t

V1cos~vt8!dt8D
5e2 i (E2EF)t/\ (

n52`

`

JnS V1

\v De2 invt, ~7!

where we have takenf (0)51. Sincef (t)5 f (t1T), Eq. ~7!
requires thatE5EF1m\v, wherem is an integer.

The equation forg(x) has a solution

g~x!5 (
m52`

`

~ameiqmx1bme2 iqmx!, ~8!
.

wheream andbm are constant coefficients and

\2qm
2

2m
5EF1m\v2V0 . ~9!

By combining the solutions forf (t) andg(x), we obtain
the following expression for the Floquet state,c II(x,t), in-
side the oscillating region:

c II~x,t !5e2 iEFt/\ (
n52`

`

(
m52`

`

~ameiqmx

1bme2 iqmx!Jn2mS V1

\v De2 invt. ~10!

c II(x,t) resembles the Tien-Gordon wave functions
microwave-driven superconductor films.21 The Floquet en-
ergy EF and coefficientsam and bm will be determined by
the boundary conditions.

B. Floquet solution outside the oscillating potential

Since electrons incident to the oscillating region will b
scattered inelastically into Floquet sidebands, the wave fu
tion outside the barrier must consist of many Floquet si
bands in order to match the boundary conditions atx
56L/2.

Let us assume that the incoming and outgoing part
waves on both sides of the scatterer are superpositions o
infinite number of sidebands with energy spacing of\v, as
shown in Fig. 1. The potential in region I and III is zero. Th
wave function in these free particle regions can be writte

c I~x,t !5 (
n52`

`

~An
i eiknx2 iEnt/\1An

o e2 iknx2 iEnt/\!,

~11!

c III ~x,t !5 (
n52`

`

~Bn
i e2 iknx2 iEnt/\1Bn

o eiknx2 iEnt/\!,

~12!

whereAn
i and Bn

i are the probability amplitudes of the in
coming waves from the left and right, respectively, whileAn

o

andBn
o are those of the outgoing waves. The incoming wav

are divided into different zones with indexn: En5E0
1n\v, where E0P@0,\v) is the Floquet energy of the
propagating modewith the lowest energy.
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It is important to note that Eqs.~11! and~12! also involve
modes with energies belowE0 ~in the sumn can be nega-
tive!. When En,0, kn5A2mEn /\2 is imaginary. Such a
mode will not propagate and is called an evanescent mod19

The current density for an evanescent mode is zero.

C. The Floquet S matrix

The Floquet eigenenergyEF in Eq. ~3! can be determined
up to an arbitrary integer multiplied by\v, since according
to Eq. ~10! shifting EF by n\v does not change the wav
functionc II(x,t). For convenience, we chooseEF within the
lowest zone,EF5E0.

The wave function,c(x,t), and its first derivative must be
continuous at the boundariesx56L/2. At x52L/2 this
leads to

An
i e2 ikn L/21An

oeiknL/2

5 (
m52`

`

~ame2 iqmL/21bmeiqmL/2!Jn2mS V1

\v D
~13!

and

ikn An
i e2 iknL/22 ikn An

oeiknL/2

5 (
m52`

`

~ iqmame2 iqmL/22 iqmbmeiqmL/2!Jn2mS V1

\v D .

~14!

Similarly, atx5L/2 we have

Bn
i e2 iknL/21Bn

oeiknL/25 (
m52`

`

~ameiqmL/2

1bme2 iqmL/2!Jn2mS V1

\v D ,

~15!

and

2 iknBn
i e2 iknL/21 iknBn

oeiknL/2

5 (
m52`

`

~ iqmameiqmL/22 iqmbme2 iqmL/2!Jn2mS V1

\v D .

~16!

Eliminating An
o from Eqs.~13! and ~14! yields

(
m52`

`

@~kn1qm!e2 iqmL/2am1~kn2qm!

3eiqmL/2bm#Jn2mS V1

\v D52An
i kne2 iknL/2. ~17!

Eliminating Bn
o from Eqs.~15! and ~16! gives
.

(
m52`

`

@~kn2qm!eiqmL/2am1~kn1qm!

3e2 iqmL/2bm#Jn2mS V1

\v D52Bn
i kne2 iknL/2.

~18!

If we combine Eqs.~17! and ~18!, we obtain the following
infinite matrix equation:

(
m52`

`

@~kn1qm!e2 iqmL/26~kn2qm!eiqmL/2#Jn2mS V1

\v DCm
6

52~An
i 6Bn

i !kne2 iknL/2, ~19!

whereCm
65am6bm .

If the incoming amplitudesAn
i andBn

i are given, then Eq.
~19! determines the coefficientsCm

6 . All other quantities of
interest can be obtained from these coefficients.@In practice,
we must use a truncated version of Eq.~19!.# The coeffi-
cients am and bm are given byam5(Cm

11Cm
2)/2 and bm

5(Cm
12Cm

2)/2. The probability amplitudes of the outgoin
waves are given by

An
o5 (

m52`

`

~ame2 iqmL/21bmeiqmL/2!Jn2mS V1

\v De2 iknL/2

2An
i e2 iknL ~20!

and

Bn
o5 (

m52`

`

~ameiqmL/21bme2 iqmL/2!Jn2mS V1

\v De2 iknL/2

2Bn
i e2 iknL. ~21!

Equations~20! and~21! can be expressed in matrix form~see
the Appendix!:

S Ao

Bo D 5SS A i

Bi D , ~22!

whereA i ,Bi and Ao,Bo are the incoming and outgoing~in-
cluding the associated evanescent Floquet sidebands! ampli-
tude vectors, respectively. The matrixS consists of all the
probability amplitudes which connect the coefficientsA i ,Bi

to coefficientsAo,Bo.
If we keep only the propagating modes, then we obt

the scatteringS matrix, S̄, which satisfies the equation

S Āo

B̄o D 5S̄S Ā i

B̄i D . ~23!

This unitaryS matrix is determined by the transmission a
reflection amplitudes for the propagating modes,
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S̄5S R̄ T̄8

T̄ R̄8
D 51

r 00 r 01 •• t008 t018 ••

r 10 r 11 •• t108 t118 ••

• • • •

• • • •

t00 t01 •• r 008 r 018 ••

t10 t11 •• r 108 r 118 ••

• • • •

• • • •

2 ,

~24!

wherer nm andtnm are the reflection and transmission amp
tudes, respectively, for modes incident from the left;r nm8 and
tnm8 are similar quantities for modes incident from the rig

Heren,mP@0,̀ ) since matrixS̄ contains only the reflection
and transmission amplitudes of the propagating modes.
ments such ast21,0, r 21,0 in matrix S correspond to prob-
ability amplitudes describing an electron with incident e
ergyE0 being scattered into the evanescent modeE21 ~with
energy\v below E0).

From the scatteringSmatrix we can obtain the total trans
mission coefficient:

T5 (
n50

`

(
m50

`
kn

km
utnmu2. ~25!

Other scattering quantities, such as eigenphases and sc
ing delay times can also be derived from theS matrix. We
will discuss this in later sections.

If we consider a single electron wave incident from o
direction ~say the left! with a fixed Fermi energyE0 and
wave vectork0, there is only one element,A0

i , that is non-
zero in the incoming amplitude vector, and the transmiss
coefficientT calculated from Eq.~25! involves onlytn0 (m
50 andn varies over all the transmitted propagating sid
bands!. If the incident energy belongs to a higher ener
zonem @m\v<Ein,(m11)\v#, we usetnm in the corre-
sponding column in theS matrix. According to the
Landauer-Bu¨ttiker formula,22 the total conductance of ou
oscillating device is

G5
2e2

h
T. ~26!

The conductanceG can be measured in experiments.

III. TRANSMISSION RESONANCES

In this section, we study numerically the scattering o
single incident wave through an oscillating square poten
and we calculate the transmission coefficients.

The interaction of electrons with the oscillating potent
leads to photon-mediated transmission resonances. In F
we plot the transmission coefficientT as a function of the
incident electron energy forV05220 meV,V155 meV, L
510 Å, and\v51 meV. Besides the incident channelE
5E0, five Floquet sidebands both above and belowE0 are
taken into account,En5E01n\v with n50,61, . . . ,6N
andN55. The minimum number of sidebands that need
be included is determined by the strength of the oscillati
.

le-

-

ter-

n

-

l

l
. 2

o
.

We should haveN.V1 /\v.20 The transmission pattern ha
an asymmetric ‘‘Fano’’ resonance23 atE'0.826 meV, where
a sharp dip is followed by a peak. In this case, the de
quantum well (V05220 meV,L510 Å! ensures that there
exists a bound state~when V150, this bound state has en
ergy EB520.173 82 meV!. At the energy level where the
resonance occurs, electrons in the incident channel (E5\v
2uEBu'0.826 meV! can emit photons and drop to th
‘‘bound’’ state. Similarly, electrons in the ‘‘bound’’ state ca
absorb photons and jump to the incident channel~also other
Floquet channels!. A transmission resonance takes pla
when the energy difference between the incident channel
the bound state is equal to the energy of one or more p
tons. Figure 3 shows the transmission amplitudest00 and
t21,0 ~the absolute values squared! as a function of incident
energy.~Hereafter we usetn0 to denote the transmission am
plitude from the incident channel to thenth Floquet side-
band.! We can see clearly the accumulation of electrons
the bound state~which is now also the Floquet sideban
E21). Since electrons in the evanescent mode will not pro

FIG. 2. The transmission coefficientT as a function of incident
energy for system parameters\v51 meV, V05220 meV, V1

55 meV, L510 Å. Sidebandsn50,61, . . . ,65 are taken into
account soT5(n50

5 ut0nu2. A resonance occurs atE'0.826 meV.

FIG. 3. Comparison of the transmission amplitudes of si
bands.~a! ut0,0u2 and ~b! ut21,0u2. ~b! shows the accumulation o
electrons in the bound state. The system parameters are\v51
meV, V05220 meV,V155 meV,L510 Å.
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15 736 PRB 60WENJUN LI AND L. E. REICHL
gate, they make no contribution to the transmission coe
cient.

When several bound states exist as is the case for Fi
we see more than one transmission resonance. For this w
oscillator case we takeV0524 meV,V150.1 meV and 1.0
meV, L51000 Å, and\v54 meV. The three resonance
below E5\v54.0 meV in Fig. 4~a! (E53.0375, 1.4243,
and 0.3637 meV! are due to the three bound states of t
quantum well. By calculating the binding energies of tho
three bound states (EB1520.9625 meV, EB2522.5758
meV, EB3523.6363 meV), we find that they are in goo
agreement with the resonance energy shifts below 4.0 m
Figure 4~b! shows an increase in the oscillation strength, a
we find that the resonances broaden and higher-order r
nances start to appear.

As the strength of the oscillator,V1, becomes greater, new
quasibound states can be created due to the oscillating fi
An example is shown in Fig. 5, whereV050 meV, V1550
meV, L520 Å, and\v52 meV. In this case, the unpe
turbed system has no bound states. However, we see a
nance dip atE51.2 meV, which lies 0.8 meV belowE
5\v52.0 meV. This energy shift is very similar to prev
ous cases and suggests the existence of a quasibound st
will be discussed below.

FIG. 4. The transmission coefficientT for system parameter
\v54 meV, V0524 meV, V150.1 meV ~a! and 1.0 meV~b!,
L51000 Å. Transmission resonances show the existence of t
static bound states. The resonance energy shifts below\v54.0
meV match well the bound state energies. Sidebandsn50,
61, . . . ,640 are taken into account soT5(n50

40 ut0nu2. ~b! shows
the higher-order resonances, which is almost invisible in~a! since
there the oscillation is so weak.
-

4,
ak

e

V.
d
so-

ld.

so-

e, as

IV. OSCILLATOR-INDUCED QUASIBOUND STATES
AND ac STARK SHIFT

The transmission zero in Fig. 5 implies the existence o
long-lived localized state~quasibound state! inside the oscil-
lating potential which can accumulate electrons and prod
a transmission resonance. To show the existence of s
states and find their energies, we follow the same steps
used earlier in deriving the scatteringS matrix, except that
now we set all theAn

i ’s andBn
i ’s to zero. The existence of a

system bound state or quasibound state ensures that ev
there is no incident wave, we can still find a nonvanishi
solution for the wave function.

Let us rewrite Eq.~19! as

(
m52`

`

@~kn1qm!e2 iqmL/26~kn2qm!eiqmL/2#Jn2mS V1

\v DCm
6

[M s
6
•C650, ~27!

ee

FIG. 5. The transmission coefficientT for system parameters
\v52 meV, V050 meV, V1550 meV,L520 Å. The transmis-
sion zero belowE5\v implies the existence of an oscillator in
duced quasibound state. Sidebandsn50,61, . . . ,65 are taken
into account soT5(n50

5 ut0nu2.

FIG. 6. The determinant of the state matrix in the complex
ergy plane for\v52 meV, V050 meV, V1550 meV,L520 Å.
Black dots@corresponding to det(M s

1)50# locate the complex en-
ergies (Er denotes the real part, whileEi denotes the imaginary
part! of Floquet quasibound states. Sidebandsn50,61,62, . . . ,
640 are taken into account.
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PRB 60 15 737FLOQUET SCATTERING THROUGH A TIME-PERIODIC . . .
where C6 is an infinite dimensional vector andM s
6 is an

infinite dimensional square matrix, which will be referred
as the state matrix. To get nonvanishingC6, the matrixM s

6

must be singular and we must have

det~M s
6!50. ~28!

By solving Eq.~28!, we can obtain the energy spectrum
Floquet quasibound states for the oscillating system.

Equation ~28! has solutions for complex values of th
energy, which indicates that the states associated with t
solutions are not real bound states, but rather they are qu
bound states with finite lifetimes. In addition, since shifti
the energy in the infinite matrixM s

6 by anyn\v essentially
does not change its analytic properties, it follows that ifE is
a solution of Eq.~28!, thenE1n\v must be a solution also
It turns out that Eq.~28! always gives a set of quasiboun
states with the Floquet energy spacing of\v.

As an example, the behavior of det(M s
1) as a function of

complex energy is shown in Fig. 6. Hereafter we will useEr
andEi to denote the real and imaginary part of the comp
energy. This figure shows the quasibound state assoc
with the transmission resonance in Fig. 5 atE51.2 meV. A
very dark region@det(M s

1)50# locates the complex energ

FIG. 7. The dark regions locate solutions of det(M s
1)50 for

\v54 meV,V0524 meV,L51000 Å and~a! V150.0 meV,~b!
V150.1 meV, ~c! V150.5 meV, ~d! V151.0 meV, and~e! V1

51.5 meV. By increasing oscillating field strength, a static bou
state becomes a quasibound state with a decreasing lifetime.
bandsn50,61, . . . ,65 are taken into account.
se
si-

x
ted

of a quasibound state. The distance between two adja
dark points is equal to the Floquet energy spacing of\v.
These Floquet quasibound states play a role similar to
static bound states in Figs. 2 and 4. This explains the ene
shift of the resonance belowE5\v in Fig. 5.

In the cases of Figs. 2 and 4, the system bound states
already been driven into the complex energy plane by
oscillating field. The ‘‘bound states’’ we referred to there a
very close to the real energy axis because the oscillations
so weak. If we look at the complex energy plane, as sho
in Fig. 7, we see clearly that as the oscillation strength
creases, the original bound state moves away from the
energy axis. This picture expands the remarks made in
7, where all the discussion was restricted to the real ene
axis. In fact, when an oscillating field is present, there are
longer any true bound states. Furthermore, the real par
the energy of the quasibound state changes slightly from
original bound state energy when it goes into the comp
energy plane. Quantitative analysis shows that for we
oscillation, this ac Stark shift is approximately proportion
to the square of the oscillation strength (V1

2), as shown in
Fig. 8.

V. TRANSMISSION POLES IN THE COMPLEX ENERGY
PLANE

Another way to find quasibound states is to locate
poles of transmission probabilities,utnmu2, in the complex
energy plane. As is well known, for scattering through
static barrier (V150), there is a transmission pole in th
complex energy plane associated with a transmission r
nance (T51), which indicates the existence of a quasibou
state. The real part of the quasibound state energy appr
mately locates the resonance energy, while the imagin
part is inversely proportional to the lifetime.24 At the trans-
mission resonance, an electron will stay in the neighborh

d
de-

FIG. 8. ac Stark energy shift. Parameters are the same as F
except 20V1’s ~oscillation strength! are calculated and sideband
n50,61, . . . ,65 are used.~a! shows the change ofEr when V1

increases and~b! illustrates that the magnitude of the ac Stark sh
is approximately proportional toV1

2 whenV1 is small.
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15 738 PRB 60WENJUN LI AND L. E. REICHL
of the scatterer for a relatively long time because the part
wave undergoes multiple reflections in the region2L/2<x
<L/2. Once the incident wave turns off, it will decay ve
quickly with the rate governed by its lifetime.

For the case of Floquet scattering, the Floquet quasibo
states also give rise to transmission resonances. In the c
plex energy plane, we also see poles of theS matrix associ-
ated with the quasibound states. For example, the trans
sion zero~due to resonance! at E ' 1.2 meV in Fig. 5 is
associated with a transmission pole in the complex ene
plane which is shown in Fig. 9. In Fig. 9, we show th
transmission probabilityut00u2. OtherS-matrix elements will
also have poles. The distance between the two poles in F
is equal to\v. As mentioned earlier, each Floquet qua
bound state is actually a member of a set of quasibo
states. The transmission poles corresponding to these q
bound states line up in the complex energy plane with sp
ing along the real axis of\v between adjacent poles~when
they are from the same set!, they have the same distanc
from the real energy axis.

FIG. 9. Transmission poles in the complex energy plane
\v52 meV,V050 meV,V1550 meV,L520 Å.
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The transmission poles due to static quasibound states
exist in the complex energy plane alongside those induced
the field. Figure 10@same parameters as in Fig. 4~a!# shows
the coexistence of two types of transmission poles. If
compare Fig. 4~a! and Fig. 10, we see that in Fig. 10 th
three poles near the real energy axis correspond to the t
Floquet resonances~they belong to different Floquet quas
bound state sets!, while the pole farther away from the rea
energy axis corresponds to a resonant quasibound state
to the static quantum well@in Fig. 4~a! the resonance is lo
cated atE51.05 meV#. A small part of one more pole with
a higher energy~which corresponds to another static reson
quasibound state! is also visible at the far corner [E54.98
meV in Fig. 4~a!#.

The distance from the real energy axis of each pole de
mines the lifetime of the quasibound state:

tL5
\

g
, ~29!

whereg52Ei andEi is the imaginary part of the transmis
sion pole energy. We will compare this lifetime with th
Wigner delay time derived from theS matrix in the follow-
ing section.

VI. WIGNER DELAY TIMES

The Wigner delay time gives the time delay of the sc
tered electron due to its interaction with the scattering fi
~here the oscillating potential!. At the resonance, the inciden
wave excites a quasibound state in the neighborhood of
scatterer and the electron is delayed. As a result, the Wig
delay time will show a peak. To obtain the Wigner del
time, we use the scatteringSmatrix, S̄, derived in Sec. II. Its
eigenvalues lie on the unit circle and can be written in

r

is
.
e
ll
ic
t

FIG. 10. Static and dynamic
quasibound state poles for\v
54 meV, V0524 meV, V1

50.1 meV,L51000 Å. The three
poles close to the real energy ax
are due to the oscillating field
The remaining pole is due to th
static quasibound state. A sma
part of another pole due to a stat
quasibound state is also visible a
the far corner.
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form eiua, whereeiua is theath eigenvalue of the scatterin
S matrix (ua is the ath eigenphase!. When there areN11
propagating modes (En5E01n\v and n50,1, . . . ,N), a
runs from 1 to 2(N11) since theS matrix is a@2(N11)#
3@2(N11)# square matrix. The Wigner delay time

tw
a5\

dua

dE

is the slope of the eigenphase as a function of the incid
energy. In Fig. 11~with the same parameters as in Fig. 2!,
we show the transmission coefficient, eigenphases,
Wigner delay times, respectively. We see that at the re
nance, there is a Wigner delay time peak which indicates
electrons being delayed in the scattering region. From
12, we see that associated with each resonance~including the
three Floquet dynamic resonances, which are marked aA,
C, and D, respectively, as well as one static resonan
marked asB), there is a Wigner delay time peak.

Table I compares the Wigner delay times and the co
sponding lifetimes obtained from the transmission poles
the complex energy plane.tL is the lifetime defined in the
previous section whiletW is the maximum value of the cor
responding Wigner delay time peak. They are of the sa
order of magnitude for all the cases considered. A sim
comparison was done for an electron waveguide with no
cillating field by Na and Reichl and they obtained simil
results.25

FIG. 11. ~a! Transmission coefficient;~b! eigenphases of theS
matrix; ~c! Wigner delay times for\v51 meV, V05220 meV,
V155 meV, L510 Å. Floquet sidebands includen50,61,
62, . . . ,610.
nt
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VII. CONCLUSIONS

In this paper we have considered 1D scattering through
oscillating square potential and developed the Floquet s
tering theory for this model. The FloquetS matrix was con-
structed and used to calculate transmission probabilities
well as the Wigner delay times.

Transmission resonances result from the interaction
electrons with the oscillating field. A static bound state c
serve as an electron reservoir when an oscillating field
applied and electrons can drop there from the propaga
channels by photon emission. Similarly, electrons in
static bound state can also absorb photons and feed back

FIG. 12. ~a! Transmission coefficient;~b! eigenphases;~c!
Wigner delay times for\v54 meV,V0524 meV,V150.1 meV,
L51000 Å. Floquet sidebandsn50,61 are included so theS ma-
trix has four eigenvalues. Besides three dynamic resonancesA, C,
andD, the inset in the bottom figure also shows the Wigner de
time peak due to the static resonanceB.

TABLE I. Comparison of the Wigner delay times and the lif
times derived from transmission poles.

Resonance tW ~sec! a tL ~sec! b

Figure 11 6.4310210 1.6310210

Figure 12,A 4.331027 1.131027

B 8.4310214 3.7310213

C 2.931028 7.431029

D 7.831029 1.931029

atW : the Wigner delay time derived from theS matrix.
btL : the lifetime obtained from the transmission pole.
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15 740 PRB 60WENJUN LI AND L. E. REICHL
the propagating channels. The location in energy of the re
nance is then governed by the energy of the static bo
state. This suggests a potential technique for detecting m
rial geometric structures by measuring Floquet reson
transmissions. It is also shown that the bound state will h
a slight ac Stark energy shift under the oscillating field.

Even in the absence of a static bound state, a strong
cillating field localized in space can create the Floquet q
sibound states. The energies of these quasibound state
be obtained by locating the singularities of the state matrix
poles of the FloquetS matrix. Floquet quasibound states a
pear as transmission poles which line up in the comp
energy plane with the Floquet energy spacing along the
energy axis of\v. Lifetimes derived from the transmissio
poles have the same order of magnitude as the correspon
Wigner delay times.
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APPENDIX: DERIVATION OF THE FLOQUET S MATRIX

In this Appendix we show how to construct the FloqueS
matrix using matrix format. Let us first introduce some r
evant matrices whose matrix elements are defined in the
lowing way:

~M s
6!nm5@~kn1qm!e2 iqmL/26~kn2qm!eiqmL/2#Jn2mS V1

\v D ,

~A1!

~M r !nm52 kn e2 iknL/2dn,m , ~A2!

~M c
6!nm5e2 i (kn6qm)L/2Jn2mS V1

\v D , ~A3!

~M i !nm5e2 iknLdn,m . ~A4!

Equation~19! can then be written as

M s
6
•C65M r•~A i6Bi !. ~A5!

When the state matrixM s
6 is not singular~Sec. IV discusses

the meaning ofM s
6 when it is singular!, we can take the

inverse ofM s
6 , and the coefficient vectorC6 becomes

C65~M s
6!21

•M r•~A i6Bi !. ~A6!

The Floquet sideband coefficient vectors are given by
o-
d

te-
nt
e

s-
-

can
r

x
al

ing

t
-

t
r

-

-
l-

a5 1
2 ~C11C2!5 1

2 @~M s
1!21

•M r•~A i1Bi !

1~M s
2!21

•M r•~A i2Bi !#

5F ~M s
1!211~M s

2!21

2 G•M r•A i

1F ~M s
1!212~M s

2!21

2 G•M r•Bi ~A7!

and

b5 1
2 ~C12C2!5F ~M s

1!212~M s
2!21

2 G•M r•A i

1F ~M s
1!211~M s

2!21

2 G•M r•Bi . ~A8!

Now rewrite Eqs.~20! and ~21! in matrix form,

Ao5M c
1
•a1M c

2
•b2M i•A i

5„

1
2 $M c

1
•@~M s

1!211~M s
2!21#

1M c
2
•@~M s

1!212~M s
2!21#%•M r2M i…•A i

1„

1
2 $M c

1
•@~M s

1!212~M s
2!21#

1M c
2
•@~M s

1!211~M s
2!21#%•M r…•Bi

[MAA•A i1MAB•Bi ~A9!

and

Bo5M c
2
•a1M c

1
•b2M i•Bi

5„

1
2 $M c

2
•@~M s

1!211~M s
2!21#

1M c
1
•@~M s

1!212~M s
2!21#%•M r…•A i

1„

1
2 $M c

2
•@~M s

1!212~M s
2!21#1M c

1
•@~M s

1!21

1~M s
2!21#%•M r2M i…•Bi

[MBA•A i1MBB•Bi . ~A10!

If we combine Eqs.~A9! and ~A10!, we obtain

S Ao

Bo D 5S MAA MAB

MBA MBB
D S A i

Bi D ~A11!

[SS A i

Bi D . ~A12!

Each elementSnm of matrix S gives the probability ampli-
tude that the electron is scattered from Floquet sidebandm to
sidebandn @n,mP(2`,`)#. If we keep only the propagat
ing modes@n,mP@0,̀ )#, we then extract theS matrix S̄
from the matrixS as discussed in Sec. II:

S Āo

B̄o D 5S̄S Ā i

B̄i D . ~A13!
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