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Filling dependence of the Mott transition in the degenerate Hubbard model
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Describing the doped Fullerenes using a generalized Hubbard model, we study the Mott transition for
different integer fillings of thet1u band. We use the opening of the energy-gapEg as a criterion for the
transition.Eg is calculated as a function of the on-site Coulomb interactionU using fixed-node diffusion Monte
Carlo. We find that for systems with doping away from half filling the Mott transitions occurs at smallerU than
for the half-filled system. We give a simple model for the doping dependence of the Mott transition.
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I. INTRODUCTION

The Hubbard Hamiltonian is a simple model for studyi
strongly interacting systems. In particular it is used to inv
tigate the Mott-Hubbard metal-insulator transition in ha
filled systems.1 It is clear that for strong correlations such
system should be insulating, since in the atomic limit t
states with exactly one electron per lattice site are energ
cally favored, while all other states are separated from th
by a Coulomb gap. For a generalized Hubbard model w
degenerate orbitals the same argument implies that for st
correlations not only the half filled, but all integer filled sy
tems will become Mott-Hubbard insulators. It is then natu
to ask how the location of the transition depends on
filling.

As an example we consider a Hamiltonian describing
alkali doped Fullerides.2 It comprises the threefold degene
ate t1u orbital and the Coulomb interactionU between the
electrons on the same molecule. Using this Hamiltonian,
have recently shown that, althoughU is substantially larger
than the band widthW, K3C60 is not a Mott insulator but a
~strongly correlated! metal.3 Prompted by the synthesis of a
isostructural family of doped Fullerenes AnC60 with different
fillings n,4 we now address the question of the Mott tran
tion in integer doped Fullerides. For these systems we h
the interesting situation that for fillingsn5 1, 2, 3, 4, and 5
calculations in the local density approximation predict th
all to be metallic,5 while in Hartree-Fock they all are insula
tors. Performing quantum Monte Carlo calculations for t
degenerate Hubbard model at different fillings and for val
of U typical for the Fullerides, we find that all the system
are close to a Mott transition, with the critical correlatio
strengthUc at which the transition takes place strongly d
pending on the fillingn. More generally, our results show
how, for an otherwise identical Hamiltonian, the location
the Mott transitionUc depends on the filling.Uc is largest at
half-filling and decreases for fillings smaller or larger th
PRB 600163-1829/99/60~23!/15714~7!/$15.00
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half. We contrast these findings with the results fro
Hartree-Fock calculations, which predict a much too sm
Uc and show almost no doping dependence. We give
interpretation of the results of the quantum Monte Carlo c
culations extending the hopping argument introduced in R
3 to arbitrary integer fillings. Despite the crudeness of
argument it explains the doping dependence found in qu
tum Monte Carlo. We, therefore, believe that our simp
hopping argument captures the basic physics of the dop
dependence of the Mott transition in degenerate systems

In Sec. II, we introduce the model Hamiltonian for dop
Fullerenes with a threefold degeneratet1u band. We discuss
the fixed-node approximation used in the diffusion Mon
Carlo calculations, present the results of our quantum Mo
Carlo calculations, and contrast them to the results
Hartree-Fock calculations. Section III gives an interpretat
of the results of our calculations in terms of intuitive hoppi
arguments. We introduce the many-body enhancement o
hopping matrix elements, which explains how orbital dege
eracyN helps to increase the criticalU at which the Mott
transition takes place and we analyze how frustration lead
an asymmetry of the criticalU for fillings n and 2N2n. In
Sec. IV, we briefly compare our results to those obtain
previously. A summary in Sec. V closes the presentation

II. MODEL CALCULATIONS

A. Model Hamiltonian

Solid C60 is characterized by a very weak intermolecu
interaction. Therefore the molecular levels merely broad
into narrow, well separated bands.5 The conduction band
originates from the lowest unoccupied molecular orbital,
threefold degeneratet1u orbital. To get a realistic, yet simple
description of the electrons in thet1u band, we use a
Hubbard-like model that describes the interplay between
hopping of the electrons and their mutual Coulom
repulsion:3
15 714 ©1999 The American Physical Society
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H5(̂
i j &

(
mm8s

t im, jm8cims
† cjm8s

1U(
i

(
(ms),(m8s8)

nimsnim8s8 . ~1!

The sum^ i j & is over nearest-neighbor sites of an fcc lattic
The hopping-matrix elementst im, jm8 between orbitalm on
moleculei and orbitalm8 on moleculej are obtained from a
tight-binding parameterization.6 The molecules are orienta
tionally disordered,7 and the hopping integrals are chos
such that this orientational disorder is included.8 The band
width for the infinite system isW50.63 eV. The on-site
Coulomb interaction isU'1.2 eV. The model neglects mu
tiplet effects, but we remark that these tend to be coun
acted by the Jahn-Teller effect, which is also not included
the model.9

We will investigate the above Hamiltonian for differe
integer fillingsn of the t1u band. The corresponding Hami
tonians describe a hypothetical family of doped Fullerid
AnC60 with space group Fm3m̄, i.e. an fcc lattice with ori-
entationally disordered C60 molecules. In the calculations w
use the on-site Coulomb interactionU as a parameter to
drive the system across the Mott transition.

B. Quantum Monte Carlo method

As the criterion for determining the metal-insulator tra
sition we use the opening of the gap

Eg5E~N11!22E~N!1E~N21!, ~2!

where E(N) denotes the total energy of a cluster ofNmol
molecules withN electrons in thet1u band. Since we are
interested in integer-filled systems,N5n Nmol , n an integer.
For calculating the energy gap~2! we then have to determin
ground-state energies for the Hamiltonian~1!. This is done
using quantum Monte Carlo.10 Starting from a trial function
uCT& we calculate

uC (n)&5@12t~H2w!#n uCT&, ~3!

where w is an estimate of the ground-state energy. T
uC (n)& are guaranteed to converge to the ground stateuC0&
of H, if t is sufficiently small anduCT& is not orthogonal to
uC0&. Since we are dealing with Fermions, the Monte Ca
realization of the projection~3! suffers from the sign-
problem. To avoid the exponential decay of the signal-
noise ratio we use the fixed-node approximation.10 For lattice
models this involves defining an effective HamiltonianHeff
by deleting fromH all nondiagonal terms that would intro
duce a sign flip. Thus, by construction,Heff is free of the sign
problem. To ensure that the ground-state energy ofHeff is an
upper bound of the ground state of the original Hamilton
H, for each deleted hopping term, an on-site energy is ad
in the diagonal ofHeff . SinceuCT& is used for importance
sampling,Heff depends on the trial function. Thus, in a fixe
node diffusion Monte Carlo calculation for a lattice Ham
tonian, we choose a trial function and construct the co
sponding effective Hamiltonian, for which the ground-sta
energyEFNDMC can then be determined by diffusion Mon
Carlo without a sign problem.
.
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For the trial function we make the Gutzwiller Ansatz

uC~U0 ,g!&5gD uF~U0!&, ~4!

where the Gutzwiller factor reflects the Coulomb termU D
5U(nimsnim8s8 in the Hamiltonian~1!. uF(U0)& is a Slater
determinant that is constructed by solving the Hamiltonian
the Hartree-Fock approximation, replacingU by a variational
parameterU0. Details on the character of such trial function
and the optimization of Gutzwiller parameters can be fou
in Ref. 11.

To check the accuracy of the fixed-node approximati
we have determined the exact ground-state energies f
~small! cluster of four C60 molecules using the Lanczo
method. For systems with different on-site Coulomb inter
tion ~Table I! and varying number of electrons~Table II!, we
consistently find that the results of fixed-node diffusi
Monte Carlo are only a few meV above the exact energ
This is a remarkably good accuracy when compared to ty
cal results for the simple Hubbard model in tw
dimensions.10 Thus, the fixed-node approximation seems
work surprisingly well for our generalized Hubbard mode
This might be due to the fact that the orientational disord
reflected in the hopping matrix elements, helps to avoid
generacies in the noninteracting system, and thus always
vides us with closed-shell situations. Since at the Mott tr
sition we expect the gapEg to open roughly proportional to

TABLE I. Total energy~in eV! for a cluster of four C60 mol-
ecules with 616 electrons~filling 3! for different values of the
on-site Coulomb interactionU. The difference between the fixed
node diffusion Monte Carlo results and the exact ground-state
ergy is shown in the last column. Note thatEFNDMC is always above
the exact energy, as expected for a variational method.

U Eexact EFNDMC DE

0.25 0.8457 0.8458~1! 0.000
0.50 4.1999 4.2004~1! 0.001
0.75 7.4746 7.4756~2! 0.001
1.00 10.6994 10.7004~2! 0.001
1.25 13.8860 13.8875~3! 0.002
1.50 17.0408 17.0427~4! 0.002
1.75 20.1684 20.1711~5! 0.003
2.00 23.2732 23.2757~10! 0.003

TABLE II. Total energy~in eV! for a cluster of four C60 mol-
ecules with on-site Coulomb interactionU51 eV for different
number of electronsN↑1N↓ . The difference between the fixed
node diffusion Monte Carlo results and the exact ground-state
ergy is shown in the last column.EFNDMC is always above the exac
energy, as expected for a variational method.

N↑ N↓ Eexact EFNDMC DE

6 5 8.4649 8.4677~2! 0.003
6 6 10.6994 10.7004~2! 0.001
6 7 13.3973 13.3973~2! 0.001
8 7 19.5094 19.5109~3! 0.002
8 8 22.9515 22.9530~3! 0.002
8 9 26.6590 26.6613~3! 0.002
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FIG. 1. Finite-size corrected gap~5! as a function of the inverse
number of moleculesNmol for different values of the Coulomb in
teractionU. The error bars give the results of the quantum Mo
Carlo calculations for systems withNmol54, 8, 16, 32, and, where
necessary, 64 molecules. The lines are merely to guide the eye
identify the value ofU in the corresponding calculations.
U, the accuracy of the fixed-node approximation should
more than enough to locate the metal-insulator transition
within 1/4 eV, as we will do below.

C. Quantum Monte Carlo results

Since the quantum Monte Carlo calculations are for fin
clusters~of up to Nmol564 molecules!, we have to extrapo-
late the calculated energy gaps to infinite system size.
obvious finite-size effect is the fact that the one-parti
spectrum is discrete, hence there can be a gap, even foU
50. Furthermore, in evaluating Eq.~2!, we add and subtrac
one electron to a finite system. Even if we distribute the ex
charge uniformly over all molecules, there will be an ele
trostatic contribution ofU/Nmol to the gap. We, therefore
introduce

EG5Eg2Eg~U50!2
U

Nmol
. ~5!

These corrections are expected to improve the finite-size
trapolation. In practice they turn out to be quite small. Fo
cluster of 32 C60 molecules, e.g.,Eg(U50) is typically al-
ready less than 10 meV. In the thermodynamic limit bo
correction terms vanish, as they should.

The results of the quantum Monte Carlo calculations
shown in Fig. 1. Plotting the finite-size corrected gapEG for
different values of the Coulomb interactionU versus the in-
verse system size 1/Nmol , we read off where the gap starts
open. For the system with one electron per molecule the
opens aroundUc'0.75 . . .1.00 eV. At filling 2 the transi-
tion takes place later, atUc'1.25 . . .1.50 eV. For both,
filling 3 and 4 we find the largest criticalU: Uc
'1.50 . . .1.75 eV. For the system with 5 electrons per m
ecule the gap opens aroundUc'1.00 . . .1.25 eV. The re-
sults are summarized in Fig. 2. Thus we find that for
otherwise identical Hamiltonian the criticalU for the Mott
transition depends strongly on the filling.Uc is largest at
half-filling and decreases away from half filling. The d
crease inUc is, however, not symmetric around half filling
It is more pronounced for fillings,3 than for fillings.3.
nd

FIG. 2. Estimate of the critical ratioUc /W for a multiband

Hubbard model describing the doped Fm3m̄ Fullerides~fcc lattice
with orientational disorder! at integer fillingsn. The error bars give
the estimates forUc /W from the quantum Monte Carlo calcula
tions. The shaded region indicates theU/W-range in which the real
materials are believed to fall.



y
th

et
.
it

ve
n

xi-

m
e

r
te

k-
e
te
th
to
re
sit

i

o
ca
e

th

r-
-

un-
of

ce
b
s

ing
-

ny

on

ra

en-
trix
ing
he

ar-

b-
del,
an
s.
-
n,
the

ge
te
lc uan-

PRB 60 15 717FILLING DEPENDENCE OF THE MOTT TRANSITION . . .
We note that the opening of the gap is accompanied b
change in the character of that trial function which yields
lowest energy in the fixed-node approximation. For smallU,
where the system is still in the metallic regime, paramagn
trial functions with smallU0 @see the discussion after Eq
~4!# are best. When the gap starts to open, trial functions w
larger U0, which have antiferromagnetic character, gi
lower energies. The corresponding Slater determina
uF(U0)& describe a Mott insulator in Hartree-Fock appro
mation.

D. Hartree-Fock calculations

It is instructive to compare the results of the quantu
Monte Carlo calculations with the predictions of Hartre
Fock theory. Figure 3 shows the the gapEg calculated for the
Hamiltonian ~1! within the Hartree-Fock approximation fo
the different integer fillings. Compared with quantum Mon
Carlo, the gap opens much too early, aroundU'0.4 eV
(U/W'0.65). Furthermore, there is only a very wea
doping dependence:Uc somewhat increases with th
filling—in qualitative disagreement with the quantum Mon
Carlo results. This failure is a direct consequence of
mean-field approximation. In Hartree-Fock the only way
avoid multiple occupancies of the molecules, in order to
duce the Coulomb repulsion, is to renormalize the on-
energy for the orbitals, thereby localizing the electrons
certain orbitals. For the Hamiltonian~1! this on-site energy
is, apart from a trivial offset, given by « ims

5U^(m8s8nim8s82nims&. Lowering the Coulomb energy in
this way will, however, increase the kinetic energy. F
small changes in the on-site energies this increase will s
like the inverse of the density of states at the Fermi lev
This suggests that the criticalU should be the larger, the
smaller the density of states at the Fermi level. Inspecting
density of statesN(«) for the noninteracting Hamiltonian
~see, e.g., Fig. 3 of Ref. 12!, we find that this is indeed the
case:N(«) slightly decreases with filling, explaining the co
responding increase inUc . Hence, the weak, but qualita

FIG. 3. GapEg as a function of the Hubbard interactionU for a
cluster of 32 molecules in Hartree-Fock approximation for inte
fillings n51 . . . 5. Thecalculations were done for the same clus
of 32 molecules that was used in the quantum Monte Carlo ca
lations. The dashed line shows the finite-size contributionU/Nmol

to the gap@cf. Eq. ~5!#. The Mott transition occurs aroundU'0.4
eV (U/W'0.65).Uc depends only weakly on the fillingn, increas-
ing slightly with increasingn.
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tively wrong, doping dependence in Hartree-Fock can be
derstood as an effect of the small variation in the density
states of the non-interacting system.

III. INTERPRETATION

A. Hopping enhancement

To find a simple interpretation for the doping dependen
of the Mott transition we consider the limit of large Coulom
interactionU. In that limit the Coulomb energy dominate
and we can estimate the energies entering the gap Eq.~2! by
considering electron configurations in real space. Accord
to the Hamiltonian~1! the contribution to the Coulomb en
ergy from a molecule that is occupied bym electrons isU
m(m21)/2. Thus, the Coulomb energy of a system of ma
molecules with fillingn is minimized for configurations with
exactlyn electrons per molecule. The hopping of an electr
to a neighboring molecule would cost the Coulomb energyU
and is therefore, strongly suppressed in the large-U limit.
The energy for a cluster ofNmol molecules withN5n Nmol
electrons~filling n) is then given by

E~N!5
n~n21!

2
Nmol U1O~ t2/U !, ~6!

wheret is a typical hopping-matrix element. Adding an ext
electron increases the Coulomb energy byn U, removing an
electron reduces it by (n21) U. But there will also be a
kinetic contribution to the energyE(N61), since the extra
charge can hop without any additional cost in Coulomb
ergy. To estimate the kinetic energy we calculate the ma
element for the hopping of the extra charge to a neighbor
molecule. This matrix element will of course depend on t
arrangement of the otherN electrons. It is well known that
for the nondegenerate Hubbard model a ferromagnetic
rangement of the spins is energetically favored~Nagaoka’s
theorem13!, allowing the extra charge to hop without distur
ing the background spins. For a degenerate Hubbard mo
however, the hopping-matrix element is larger, e.g., for
antiferromagnetic arrangement of the background spin14

This is illustrated in Fig. 4~a! for an extra electron in a sys
tem with filling 2. Now, instead of only the extra electro
any one out of the three equivalent electrons can hop to

r
r
u-

FIG. 4. Illustration of how~a! an extra electron or~b! an extra
hole can hop against an integer-filled background~here: degeneracy
N53, filling n52). For simplicity~Ref. 14! we consider the case
where electrons can only hop between orbitals with the same q
tum number, i.e.,t im, jm850 for mÞm8.
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neighboring molecule. Denoting the state with the extra e
tron on moleculei by u i &, we find that the second moment o
the Hamiltonian̂ i uH2u i & is given by the number of hoppin
channelsk ~in the present casek53) times the number o
~equivalent! nearest neighborsZ times the single-electron
hopping-matrix elementt squared. Thus by inserting th
identity in the form ( j u j &^ j u, where u j & denotes the state
where any one of the electrons has hopped form molecui
to the neighboring moleculej, we find

^ i uHu j &5Ak t, ~7!

i.e., the hopping matrix element is enhanced by a facto
Ak over the one-particle hopping matrix elementt. In a simi-
lar way we find for the system with an extra hole@Fig. 4~b!#
a hopping enhancement ofAk with k52. The hopping en-
hancements for other fillings are listed in Table III, wherek2

denotes the enhancement for a system with an extra hole
k1 is for a system with an extra electron.

For a single electron the kinetic energy is of the order
2W/2, whereW is the one-electron band width. The e
hancement factorAk in the many-body case then sugge
that the kinetic energy for the extra charge is correspo
ingly enhanced, implying

E~N11!'E~N!1n U2Ak1 W/2

E~N21!'E~N!2~n21! U2Ak2 W/2.

Combining these results, we find

Eg'U2
Ak11Ak2

2
W, ~8!

i.e., the hopping enhancement leads to a reduction of the
described by the factorc5(Ak11Ak2)/2. This reduction is
largest ('1.73) for n53, and becomes smaller away fro
half-filling: c'1.57 for n52, 4, andc'1.21 for fillings 1
and 5. Extrapolating Eq.~8! to intermediateU we find that
the gap opens for U larger thanUc5c W. Therefore, the
above argument predicts that the criticalU for the Mott tran-
sition depends strongly on the filling, withUc being largest
at half filling and decreasing away from half filling. This
qualitatively the same behavior as we have found in
Monte Carlo calculations. We note, however, that the ar
ment we have presented is not exact. First, the hopping o
extra charge against an antiferromagnetically ordered b
ground will leave behind a trace of flipped spins. Therefo
the analogy with the one-electron case for determining
kinetic energy in the large-U limit is not exact. Second, us
ing Eq. ~8! for determiningUc involves extrapolating the

TABLE III. Hopping enhancement for different fillings of a
threefold degenerate band.

Filling Enhancement:Ak

n51 k251 k152
n52 k252 k153
n53 k253 k153
n54 k253 k152
n55 k252 k151
c-

f

nd

f

-

ap

e
-

an
k-
,
e

results obtained in the limit of largeU to intermediate values
of the Coulomb interaction, where the Mott transition tak
place. Finally, considering only one nearest neighbor in
hopping argument~cf. Fig. 4! implicitly assumes that we are
dealing with a bipartite lattice, where all nearest neighb
are equivalent.

B. Origin of the asymmetry

To analyze the asymmetry in the gaps around half fillin
we use the following relation for the kinetic energy, which
exact in the limit of infiniteU, and follows from an electron-
hole transformation

Tmin
max

~nNmol61!52Tmax
min

@~2N2n!Nmol71#. ~9!

~Note how this symmetry is reflected in the hopping e
hancements shown in Table III.! Since the gap for fillingn is
given by

Eg~n!5U1Tmin~nNmol21!1Tmin~nNmol11!,

the asymmetryD5Eg(n)2Eg(2N2n) in the gaps can be
written entirely in terms of energies for systems with an ex
electron

D5H 2Tmax@~2N2n!Nmol11#1Tmin~nNmol11!

2Tmin~~2N2n!Nmol11!1Tmax~nNmol11!.

For a bipartite system the spectrum for a given filling will b
symmetric, in particularTmin1Tmax50, and thus, there will
be no asymmetry in the gaps:D50. Frustration breaks this
symmetry. To study the effect of frustration we perform
Lanczos calculation in the large-U limit, starting from a con-
figuration uv0& with the extra electron or hole localized o
one molecule in an otherwise integer-filled system~cf. Fig.
4!. The leading effect of frustration is given by the thir
moment, which already enters after the first Lanczos s
Diagonalizing the Lanczos matrix and expressing everyth
in terms of the moments of the Hamiltonian, the extrem
eigenvalues are given by15

«max
min

5A36A4A2
31A3

2

2A2
, ~10!

where Ak5^v0uHkuv0& denotes thekth moment ofH, and
A15^v0uHuv0&50 for a state like in Fig. 4. From this ex
pression it is clear that the ‘‘band width’’«max2«min is es-
sentially given by the second moment, and that an enha
ment ofA2 by a factor ofk leads to an increase in the ban
width by a factor ofAk, as already described above. Th
main effect of the third moment~i.e., of frustration! is to
shift the extremal eigenvalues, where the shift is determi
by the third moment.

To get a contribution to the third moment the initial sta
uv0& must be recovered after three hops. This is only poss
if the extra charge hops around a triangle, without chang
spins along its path. For a state with an extra electron
means thatone and the sameelectron has to perform the
triangular hop. Therefore, even in the many-body case,
each such electron we get the same contribution to the t
moment as in the single-electron case. It, therefore, ma
sense to write the third momentA3(n) for a system with
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nNmol11 electrons in terms of the third momentA3
s of the

single-electron problem:A3(n)5h1(n) A3
s , where h1(n)

describes the many-body effects, just like we introduc
k1(n) to describe the many-body enhancement of the sec
moment. Using these definitions, we find that the size of
asymmetryD in the gaps can be estimated by the dop
dependence of the~positive! enhancement factorsh1(n) of
the third moment, while the overall sign is determined by
single-electron moments:

D'Fh1~n!

k1~n!
2

h1~2N2n!

k1~2N2n! G A3
s

A2
s . ~11!

To understand the doping dependence ofh1 /k1 we pro-
ceed in two steps. First we observe that the upper limit
the number of different electrons that can perform a trian
lar hop is given by the numberk1 of electrons that can hop
to a nearest neighbor. Hence, if frustration is not suppres
h1 /k151. For filling n51, N>2 this upper limit can al-
ways be achieved without compromising large next-neigh
hopping by arranging the electrons in such a way as to av
each other. This is shown in Fig. 5. For the correspond
filling 2N21 the electrons can no longer be complete
separated in that way. Thus the channel for triangular h
will be blocked by the the Pauli principle, reducingh1 /k1 .
In that way for the larger fillings frustration is reduced.

This reduction of frustration can already be seen in
simple model of a triangle with orbital degeneracyN52 ~cf.
Fig. 5!. Choosing matrix elementst51 for hopping between
like orbitals we find for filling n51 a strong asymmetry
Tmin(3n11)522 andTmax(3n11)514, while at filling
n852N2n53 there is no asymmetry in the extremal eige
values:Tmax

min
(3n811)562. We note that flipping one spin

in the configuration for fillingn53 would allow for a trian-
gular hop. In a Lanczos calculation this spin-polarized c
figuration gives, however, only extremal eigenvaluesTmin
522 and Tmax511. The states described here for a t

FIG. 5. Typical states for a triangle with orbital degeneracyN
52 and hopping only between like orbitals. For fillingn51 there is
no reduction of frustration (h15k1). For filling larger thanN the
‘‘background electrons’’ block the triangular moves, suppress
frustration.
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angle can be easily adapted to the situation in an fcc latt
where the third moment involves hopping to the near
neighbor sites, which form connected triangles.

From the noninteracting density of states for our mode
the doped Fullerenes~cf. e.g., Fig. 3 of Ref. 12! we see that
both «min and «max are shifted upwards, compared to th
center of the band, hence, looking at Eq.~10! we find that for
a single electron the third moment is positive:A3

s.0. To-
gether with the reduction of the frustration for larger fillin
we therefore expect from Eq.~11! that for the alkali doped
FullerenesEg(n).Eg(2N2n); i.e., Uc(n),Uc(2N2n),
which amounts to the asymmetry found in the Monte Ca
calculations shown in Fig. 2.

IV. COMPARISON TO PREVIOUS RESULTS

It is interesting to compare our results with those obtain
previously. The Gutzwiller approximation for a parama
netic state also predicts a degeneracy enhancement.16 For a
half-filled system, the predicted enhancement is, howe
linear in the degeneracy (N11) instead ofAN as suggested
by the hopping argument of Sec. III and as also found
infinite dimensions.17 The results of the Gutzwiller approxi
mation are reproduced by a slave-boson calculation in
saddle-point approximation.18 In dynamical mean-field
theory a degeneracy enhancement and a reduction ofUc
away from half filling, similar to our result, is found.17,19

V. SUMMARY

Using quantum Monte Carlo, we have analyzed a mo
of alkali-doped Fullerenes and found that the Mott transit
strongly depends on the~integer! filling n. Uc is largest for
n53 and decreases away from half filling. This result
qualitatively different from both, the results of densit
functional calculations in the local density approximatio
and the results of Hartree-Fock calculations. The doping
pendence of the Mott transition can be understood in te
of a simple hopping argument. The key observation is th
due to the orbital degeneracy, there are more hopping ch
nels in the many-body than in the single-body case, t
leading to the degeneracy enhancementAk discussed above
In addition, due to frustration, the gaps are not symme
around half filling.
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