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Filling dependence of the Mott transition in the degenerate Hubbard model
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Describing the doped Fullerenes using a generalized Hubbard model, we study the Mott transition for
different integer fillings of thet;, band. We use the opening of the energy-@apas a criterion for the
transition.Eg is calculated as a function of the on-site Coulomb interadtlarsing fixed-node diffusion Monte
Carlo. We find that for systems with doping away from half filling the Mott transitions occurs at sroatien
for the half-filled system. We give a simple model for the doping dependence of the Mott transition.
[S0163-182609)01047-4

[. INTRODUCTION half. We contrast these findings with the results from
Hartree-Fock calculations, which predict a much too small
The Hubbard Hamiltonian is a simple model for studyingU, and show almost no doping dependence. We give an
strongly interacting systems. In particular it is used to invesinterpretation of the results of the quantum Monte Carlo cal-
tigate the Mott-Hubbard metal-insulator transition in half- culations extending the hopping argument introduced in Ref.
filled systems. It is clear that for strong correlations such a 3 to arbitrary integer fillings. Despite the crudeness of the
system should be insulating, since in the atomic limit thedrgument it explains the doping dependence found in quan-
states with exactly one electron per lattice site are energetfm Monte Carlo. We, therefore, believe that our simple
cally favored, while all other states are separated from thosBOPping argument captures the basic physics of the doping
by a Coulomb gap. For a generalized Hubbard model witHlependence of the Mott transition in degenerate systems.
degenerate orbitals the same argument implies that for strong In Sec. II, we introduce the model Hamiltonian for doped
correlations not only the half filled, but all integer filled sys- Fullerenes with a threefold degenerafg band. We discuss
tems will become Mott-Hubbard insulators. It is then naturalthe fixed-node approximation used in the diffusion Monte
to ask how the location of the transition depends on théCarlo calculations, present the results of our quantum Monte
filling. Carlo calculations, and contrast them to the results of
As an examp]e we consider a Hamiltonian describing thé—|artree-Fock calculations. Section Il gives an interpretation
alkali doped Fullerided.It comprises the threefold degener- Of the results of our calculations in terms of intuitive hopping
atet,, orbital and the Coulomb interactiod between the —arguments. We introduce the many-body enhancement of the
electrons on the same molecule. Using this Hamiltonian, wé0pping matrix elements, which explains how orbital degen-
have recently shown that, althoughis substantially larger €racyN helps to increase the critica) at which the Mott
than the band widtiW, KsCg is not a Mott insulator but a  transition takes place and we analyze how frustration leads to
(strongly correlatedmetal® Prompted by the synthesis of an an asymmetry of the critical for fillings n and 2N—n. In
isostructural family of doped Fullerenes @, with different ~ Sec. IV, we briefly compare our results to those obtained
fillings n,* we now address the question of the Mott transi-Previously. A summary in Sec. V closes the presentation.
tion in integer doped Fullerides. For these systems we have
the interesting situation that for fillings= 1, 2, 3, 4, and 5 Il. MODEL CALCULATIONS
calculations in the local density approximation predict them
all to be metallic while in Hartree-Fock they all are insula-
tors. Performing quantum Monte Carlo calculations for the Solid Gy is characterized by a very weak intermolecular
degenerate Hubbard model at different fillings and for valuesnteraction. Therefore the molecular levels merely broaden
of U typical for the Fullerides, we find that all the systemsinto narrow, well separated bantsThe conduction band
are close to a Mott transition, with the critical correlation originates from the lowest unoccupied molecular orbital, the
strengthU . at which the transition takes place strongly de-threefold degeneratg,, orbital. To get a realistic, yet simple
pending on the fillingn. More generally, our results show description of the electrons in thg, band, we use a
how, for an otherwise identical Hamiltonian, the location of Hubbard-like model that describes the interplay between the
the Mott transitionU . depends on the fillingJ.. is largest at  hopping of the electrons and their mutual Coulomb
half-filling and decreases for fillings smaller or larger thanrepulsion®

A. Model Hamiltonian
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TABLE I. Total energy(in eV) for a cluster of four Gy mol-

H=Z E tim,jm,c;rmgcjm,a ecules with 66 electrons(filling 3) for different values of the
) mm'o on-site Coulomb interactio). The difference between the fixed-
node diffusion Monte Carlo results and the exact ground-state en-
+UY, 2 NimeNimror - (1)  ergy is shown in the last column. Note tHtypyc is always above
I (me)<(m’'o') the exact energy, as expected for a variational method.
The sunxij) is over nearest-neighbor sites of an fcc lattice. U E £ AE
The hopping-matrix elements, ;' between orbitaim on exact FNDMCE
moleculei and orbitalm’ on moleculg are obtained from a 0.25 0.8457 0.8458) 0.000
tight-binding parameterizatichThe molecules are orienta- 0.50 4.1999 4.2004) 0.001
tionally disordered, and the hopping integrals are chosen .75 7.4746 7.4758) 0.001
such that this orientational disorder is include@ihe band 1.00 10.6994 10.7002) 0.001
width for the infinite system i3¥=0.63 eV. The on-site 1.25 13.8860 13.8879) 0.002
Coulomb interaction i$¢)~ 1.2 eV. The model neglects mul- 1.50 17.0408 17.0422) 0.002
tiplet effects, but we remark that these tend to be counter- 4 75 20.1684 20.171%) 0.003
acted by the Jahn-Teller effect, which is also not included in 5 g 23.2732 23.27%70) 0.003
the modeP
We will investigate the above Hamiltonian for different
integer fillingsn of thet,, band. The corresponding Hamil-  For the trial function we make the Gutzwiller Ansatz
tonians describe a hypothetical family of doped Fullerides
A,Ceo With space group Fm8, i.e. an fcc lattice with ori- |¥(Up,9))=g" [®(Uy)), (4)

entationally disordered g molecules. In the calculations we
use the on-site Coulomb interactidh as a parameter to
drive the system across the Mott transition.

where the Gutzwiller factor reflects the Coulomb tethD
=UZNjmeNim' o iN the Hamiltonian(1). |®(Uy)) is a Slater
determinant that is constructed by solving the Hamiltonian in
the Hartree-Fock approximation, replaciddy a variational
parametet,. Details on the character of such trial functions
As the criterion for determining the metal-insulator tran- and the optimization of Gutzwiller parameters can be found

B. Quantum Monte Carlo method

sition we use the opening of the gap in Ref. 11.
To check the accuracy of the fixed-node approximation,
Eg=E(N+1)—2E(N)+E(N—-1), (2 we have determined the exact ground-state energies for a

(smal) cluster of four Gy molecules using the Lanczos
method. For systems with different on-site Coulomb interac-
tion (Table ) and varying number of electrori$able Il), we
consistently find that the results of fixed-node diffusion
Monte Carlo are only a few meV above the exact energies.
This is a remarkably good accuracy when compared to typi-
cal results for the simple Hubbard model in two
dimensions? Thus, the fixed-node approximation seems to
My n work surprisingly well for our generalized Hubbard model.
(W) =[1—7(H-w)]" [¥7), @ This might be due to the fact that the orientational disorder,
where w is an estimate of the ground-state energy. The'eflected in the hopping matrix elements, helps to avoid de-
|w™) are guaranteed to converge to the ground gtétg generacies in the noninteracting system, and thus always pro-
Of H, if T is Sufﬁcienﬂy sma” and\PT> is not orthogona' to V!qes us with closed-shell situations. Since at the MOtt tran-
|W,). Since we are dealing with Fermions, the Monte Carlosition we expect the gaRy to open roughly proportional to
realization of the projection(3) suffers from the sign- )
problem. To avoid the exponential decay of the signal-to- TABLE II. Total energy(in eV) for a cluster of four G mol-
noise ratio we use the fixed-node approximatidRor lattice ~ €cules with on-site Coulomb interactiod=1 eV for different
models this involves defining an effective Hamiltoniglg; ~ "UMPer of electrondV; +N, . The difference between the fixed-
by deleting fromH all nondiagonal terms that would intro- node_dlffusmn_Monte Carlo results an(_JI the exact ground-state en-
duce a sign flip. Thus, by constructidi is free of the sign ergy is shown in the last columEypyc IS always above the exact
problem. To ensure that the ground-state energyt &fis an energy, as expected for a variational method.

where E(N) denotes the total energy of a cluster N,
molecules withN electrons in thet;, band. Since we are
interested in integer-filled system$=n N,,,;, h an integer.
For calculating the energy gd@) we then have to determine
ground-state energies for the Hamiltonig). This is done
using quantum Monte Carf§. Starting from a trial function
| W) we calculate

upper bound of the ground state of the original Hamiltonian N E E AE
H, for each deleted hopping term, an on-site energy is added ! oxad Frbme

in the diagonal oH;. Since| V) is used for importance 6 5 8.4649 8.467(2) 0.003
sampling Hq¢ depends on the trial function. Thus, in a fixed- 6 6 10.6994 10.7002) 0.001
node diffusion Monte Carlo calculation for a lattice Hamil- 6 7 13.3973 13.3973) 0.001
tonian, we choose a trial function and construct the corre- 8 7 19.5094 19.5109) 0.002
sponding effective Hamiltonian, for which the ground-state g 8 22.9515 22.95308) 0.002
energyErypmc can then be determined by diffusion Monte 8 9 26.6590 26.6613) 0.002

Carlo without a sign problem.




15716

ERIK KOCH, OLLE GUNNARSSON, AND RICHARD M. MARTIN

filling n=1
~— Us125
0.6 I\ == Ux1.00 7
N e U=0.75
AN --- U=0.50
b Ny =025 ]
3 %4 . — U=0.00
LI.IO L\ T~ ~-
0.2} ‘ - 4
| R e
0.0 joasdsm——. ——
0.00 0.05 0.10 0.15 0.20 0.25
N,
filling n=2
0.61 == U150
----- Us125
--= Uat00
~o0al. + e U=0.75 ]
2 041 }...\ — U=0.00
P s
02 0 = -} ............................ .
O A
0.0 —F==Frrnas POPEPLECELES L 8
0.00 0.058 0.10 0.15 020 025
1/Nmol
filling n=3
0.6}
S 04
°
m(."
0.2
0.0 =
000 005 010 015 020 025
1/Nm°'
filling n=4
0.6} == Unl.75 ]
L == Un1.50
., -=- Ust25
= L i O U=1.00 ]
2 0.4 1 e vy
S
wo L T~
0.2 e SR “
o 1_________“_;“_' """"
0.0 }ii——-?".’. ........... I -
0.00 0.05 0.10 0.15 0.20 0.25
1/NmI
filling n=5
- = Ua1.50 1
08F g == U126
N =i=rs Un1.00 ]
N --~ U075 ]
N U0.50 ]
3 %4 t-——- 1N — U=0.00 ]
VO \\
i ~o
0.2}
0 0 “ L _ b -
R Y ---+,....n.... T 'P"“"""""‘*':?-'-N;-J
0.00 0.05

010 015 020 025
N

mol

PRB 60

- . \
estimate of U/W

for Fm3m Fullerides

1.0

| -
1 2 3 4 5 n

FIG. 2. Estimate of the critical ratitJ./W for a multiband
Hubbard model describing the doped Fm3-ullerides(fcc lattice
with orientational disorderat integer fillingsn. The error bars give
the estimates folJ./W from the quantum Monte Carlo calcula-
tions. The shaded region indicates thAN-range in which the real
materials are believed to fall.

U, the accuracy of the fixed-node approximation should be
more than enough to locate the metal-insulator transition to
within 1/4 eV, as we will do below.

C. Quantum Monte Carlo results

Since the quantum Monte Carlo calculations are for finite
clusters(of up to N,,;/=64 molecules we have to extrapo-
late the calculated energy gaps to infinite system size. An
obvious finite-size effect is the fact that the one-particle
spectrum is discrete, hence there can be a gap, eved for
=0. Furthermore, in evaluating E), we add and subtract
one electron to a finite system. Even if we distribute the extra
charge uniformly over all molecules, there will be an elec-
trostatic contribution ofU/N, to the gap. We, therefore,
introduce

Ee=E4—E4(U=0)— N (5)

These corrections are expected to improve the finite-size ex-
trapolation. In practice they turn out to be quite small. For a
cluster of 32 @, molecules, e.g.E4,(U=0) is typically al-
ready less than 10 meV. In the thermodynamic limit both
correction terms vanish, as they should.

The results of the quantum Monte Carlo calculations are
shown in Fig. 1. Plotting the finite-size corrected dap for
different values of the Coulomb interactidhversus the in-
verse system size Ny, we read off where the gap starts to
open. For the system with one electron per molecule the gap
opens aroundJ.~0.75...1.00 eV. At filling 2 the transi-
tion takes place later, dtJ).~1.25...1.50 eV. For both,
filing 3 and 4 we find the largest criticald: U,
~1.50...1.75 eV. For the system with 5 electrons per mol-
ecule the gap opens aroumt~1.00...1.25 eV. The re-

FIG. 1. Finite-size corrected gdp) as a function of the inverse Sults are summarized in Fig. 2. Thus we find that for an

number of moleculedl,,,, for different values of the Coulomb in-

otherwise identical Hamiltonian the criticél for the Mott

teractionU. The error bars give the results of the quantum Montetransition depends strongly on the fillingl. is largest at
Carlo calculations for systems with,,,=4, 8, 16, 32, and, where half-filling and decreases away from half filing. The de-
necessary, 64 molecules. The lines are merely to guide the eye amtiease inJ. is, however, not symmetric around half filling.

identify the value ofU in the corresponding calculations.

It is more pronounced for fillings<3 than for fillings>3.
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FIG. 4. lllustration of how(a) an extra electron ofb) an extra
. S . le can hop against an integer-filled backgrodmete: degeneracy
cluster of 32 molecules in Hartree-Fock approximation for inte EIho . LS :
u wes | pproximati integ N=3, filling n=2). For simplicity (Ref. 14 we consider the case

filings n=1...5. Thecalculations were done for the same cluster h lect v hop bet bitals with th
of 32 molecules that was used in the quantum Monte Carlo calcy!/"'€r€ €lectrons can only hop between orbitals wi € same quan-

lations. The dashed line shows the finite-size contributighl,,, wm number, i.€.im,jm =0 for m=m’.
to the gap(cf. Eq. (5)]. The Mott transition occurs arourd~0.4
eV (U/W=0.65).U depends only weakly on the filling increas-
ing slightly with increasing.

FIG. 3. GapEg as a function of the Hubbard interactithfor a

tively wrong, doping dependence in Hartree-Fock can be un-
derstood as an effect of the small variation in the density of
states of the non-interacting system.

We note that the opening of the gap is accompanied by a
change in the character of that trial function which yields the
lowest energy in the fixed-node approximation. For sriaall A. Hopping enhancement
where the system is still in the metallic regime, paramagnetic
trial functions with smallU, [see the discussion after Eq.
(4)] are best. When the gap starts to open, trial functions wit
larger Uy, which have antiferromagnetic character, give
lower energies. The corresponding Slater determinant
|P(Ug)) describe a Mott insulator in Hartree-Fock approxi-
mation.

IIl. INTERPRETATION

To find a simple interpretation for the doping dependence
of the Mott transition we consider the limit of large Coulomb
interactionU. In that limit the Coulomb energy dominates
and we can estimate the energies entering the gag2EQy
8onsidering electron configurations in real space. According
to the Hamiltonian(1) the contribution to the Coulomb en-
ergy from a molecule that is occupied Iy electrons isU
m(m—1)/2. Thus, the Coulomb energy of a system of many
D. Hartree-Fock calculations molecules with fillingn is minimized for configurations with
L ) exactlyn electrons per molecule. The hopping of an electron
It is instructive to compare the resul_ts. of the quantum, 5 neighboring molecule would cost the Coulomb eneigy
Monte Carlo c_alcula‘uons with the predictions of Hartree-44 is therefore, strongly suppressed in the ldigénit.
Fock_the(_)ry. Flgu_re _3 shows the the gﬁ@calculat_ed f(_)r the  The energy for a cluster dfi,,,; molecules withN=n Ny
Hamiltonian (1) within the Hartree-Fock approximation for electrons(filling n) is then given by
the different integer fillings. Compared with quantum Monte
Carlo, the gap opens much too early, aroune-0.4 eV n(n—1)
(U/W=~0.65). Furthermore, there is only a very weak- E(N)ZTNmmUJrO(tZ/U), (6)
doping dependencelU, somewhat increases with the
filling—in qualitative disagreement with the quantum Monte wheret is a typical hopping-matrix element. Adding an extra
Carlo results. This failure is a direct consequence of theslectron increases the Coulomb energynby, removing an
mean-field approximation. In Hartree-Fock the only way toelectron reduces it byn(—1) U. But there will also be a
avoid multiple occupancies of the molecules, in order to rekinetic contribution to the energig(N=+1), since the extra
duce the Coulomb repulsion, is to renormalize the on-sitezharge can hop without any additional cost in Coulomb en-
energy for the orbitals, thereby localizing the electrons inergy. To estimate the kinetic energy we calculate the matrix
certain orbitals. For the Hamiltoniafi) this on-site energy element for the hopping of the extra charge to a neighboring
is, apart from a trivial offset, given by e, molecule. This matrix element will of course depend on the
=U(Z o/ Nim' o' — Nime) - LOWering the Coulomb energy in arrangement of the otheé\ electrons. It is well known that
this way will, however, increase the kinetic energy. Forfor the nondegenerate Hubbard model a ferromagnetic ar-
small changes in the on-site energies this increase will scalngement of the spins is energetically favofdthgaoka’'s
like the inverse of the density of states at the Fermi leveltheorent®), allowing the extra charge to hop without disturb-
This suggests that the criticd) should be the larger, the ing the background spins. For a degenerate Hubbard model,
smaller the density of states at the Fermi level. Inspecting thlowever, the hopping-matrix element is larger, e.g., for an
density of stateN(e) for the noninteracting Hamiltonian antiferromagnetic arrangement of the background sffins.
(see, e.g., Fig. 3 of Ref. 12we find that this is indeed the This is illustrated in Fig. &) for an extra electron in a sys-
caseN(e) slightly decreases with filling, explaining the cor- tem with filling 2. Now, instead of only the extra electron,
responding increase ibJ.. Hence, the weak, but qualita- any one out of the three equivalent electrons can hop to the



15718 ERIK KOCH, OLLE GUNNARSSON, AND RICHARD M. MARTIN PRB 60

TABLE lll. Hopping enhancement for different fillings of a results obtained in the limit of largé to intermediate values

threefold degenerate band. of the Coulomb interaction, where the Mott transition takes
— place. Finally, considering only one nearest neighbor in the
Filling Enhancementi/k hopping argumen(cf. Fig. 4) implicitly assumes that we are

dealing with a bipartite lattice, where all nearest neighbors

n=1 k =1 k,=2 _
n=2 K =2 k.—3 are equivalent.

n=3 k_=3 k.=3 -

n=4 K =3 k,=2 B. Origin of the asymmetry

n=>5 k=2 k.=1 To analyze the asymmetry in the gaps around half filling,

we use the following relation for the kinetic energy, which is
exact in the limit of infiniteU, and follows from an electron-
neighboring molecule. Denoting the state with the extra elechole transformation

tron on moleculé by |i), we find that the second moment of _

the Hamiltonian(i|H?|i) is given by the number of hopping TO (NN = 1) = =TI (ZN=n)Np+ 1] (9)
channelsk (in the present cask=3) times the number of ) ) . )
(equivalent nearest neighborg times the single-electron (NOte how this symmetry is reflected in the hopping en-
hopping-matrix element squared. Thus by inserting the hfancements shown in Table )ISince the gap for filling is
identity in the form=;|j)(j|, where|j) denotes the state 9'V€N by

where any one of the electrons has hopped form moldcule

to the neiéhboring moleculg we find PP Eg(n)=U+Tnin(NNmoi= 1) + Tyin(NNmei+1),

o the asymmetryA =Ey(n) —E4(2N—n) in the gaps can be
(iHlj)=kt, (7)  written entirely in terms of energies for systems with an extra

i.e., the hopping matrix element is enhanced by a factor of!€ctron

Jk over the one-particle hopping matrix elemenin a simi-
) . . - - + 1]+ T +
lar way we find for the system with an extra hgkg. 4(b)] _[ Tmad (ZN—=N)Npyo i+ 1]+ Trnin(NNmoi+ 1)
a hopping enhancement gk with k=2. The hopping en- = Tmin((ZN=1N)Npoit 1) + Trya(MNmg +1).
hancements for other fillings are listed in Table ll, where 4 5 bipartite system the spectrum for a given filling will be
denotes the enhancement for a system with an extra hole, aRd,, metric. in particulal i+ Tray=0, and thus, there wil
. . 1 min max ' !
K+ is for a system with an extra electron. be no asymmetry in the gap&:=0. Frustration breaks this
For a single el_ectron the kinetic energy is pf the order Ofsymmetry. To study the effect of frustration we perform a
—Wi/2, whereW is_the one-electron band width. The en- | 5nc05 calculation in the largg-limit, starting from a con-
hancement faptox/E in the many-body case then suggestSiguration |v,) with the extra electron or hole localized on
Fhat the kinetic energy for the extra charge is correspondgne molecule in an otherwise integer-filled systéh Fig.
ingly enhanced, implying 4). The leading effect of frustration is given by the third
moment, which already enters after the first Lanczos step.
E(N+1)~E(N)+n U=k, Wi2 Diagonalizing the Lanczos matrix and expressing everything
in terms of the moments of the Hamiltonian, the extreme
eigenvalues are given by

/4A32+ A3z
max— -
smm—Agi 2A, (10

where A= (vo|H¥v,) denotes thekth moment ofH, and
i.e., the hopping enhancement leads to a reduction of the ga®, =(v|H|vo)=0 for a state like in Fig. 4. From this ex-
described by the factar= (k. +k_)/2. This reduction is  pression it is clear that the “band width& ,,,x— min iS €S-
largest 1.73) forn=3, and becomes smaller away from sentially given by the second moment, and that an enhance-
half-filling: c~1.57 forn=2, 4, andc~1.21 for filings 1  ment of A, by a factor ofk leads to an increase in the band
and 5. Extrapolating Eq8) to intermediateU we find that  width by a factor of\k, as already described above. The
the gap opens for U larger thdd.=c W. Therefore, the main effect of the third moment.e., of frustration is to
above argument predicts that the critithfor the Mott tran-  shift the extremal eigenvalues, where the shift is determined
sition depends strongly on the filling, wili. being largest by the third moment.
at half filling and decreasing away from half filling. This is  To get a contribution to the third moment the initial state
qualitatively the same behavior as we have found in thev,) must be recovered after three hops. This is only possible
Monte Carlo calculations. We note, however, that the arguif the extra charge hops around a triangle, without changing
ment we have presented is not exact. First, the hopping of aspins along its path. For a state with an extra electron this
extra charge against an antiferromagnetically ordered backneans thabne and the samelectron has to perform the
ground will leave behind a trace of flipped spins. Thereforetriangular hop. Therefore, even in the many-body case, for
the analogy with the one-electron case for determining theach such electron we get the same contribution to the third
kinetic energy in the largé} limit is not exact. Second, us- moment as in the single-electron case. It, therefore, makes
ing Eq. (8) for determiningU.. involves extrapolating the sense to write the third momert;(n) for a system with

E(N—1)~E(N)—(n—1) U—k_ W/2.

Combining these results, we find

Vi ke
W

Eg~U (8)
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-— .ﬂ. .ﬂ. _ﬂ_ angle can be easily adapted to the situation in an fcc lattice,
where the third moment involves hopping to the nearest
+ — + -— + .ﬂ. + .ﬂ. neighbor sites, which form connected triangles.
From the noninteracting density of states for our model of
n=1 n=2N-1 the doped Fullerenggf. e.g., Fig. 3 of Ref. 1Pwe see that
k.=2,h.=2 k.=1,h.=0 both &n,in and e,,ay are shifted upwards, compared to the

center of the band, hence, looking at Et0) we find that for
FIG. 5. Typical states for a triangle with orbital degeneraty @ single electron the third moment is positiv&;>0. To-

=2 and hopping only between like orbitals. For filling=1 there is  gether with the reduction of the frustration for larger filling,

no reduction of frustration(; =k. ). For filling larger tharN the ~ we therefore expect from Eq11) that for the alkali doped

“background electrons” block the triangular moves, suppressingFullerenes Eg(n)>Eg(2N—n); i.e., Us(n)<U(2N—n),

frustration. which amounts to the asymmetry found in the Monte Carlo

calculations shown in Fig. 2.

NNpo+1 electrons in terms of the third momef§ of the

single-electron problemAsz(n)=h. (n) A3, where h,(n) IV. COMPARISON TO PREVIOUS RESULTS

describes the many-body effects, just like we introduced o _ ) _

k. (n) to describe the many-body enhancement of the second !t is interesting to compare our results with those obtained

moment. Using these definitions, we find that the size of th@reviously. The Gutzwiller approximation for a paramag-

asymmetryA in the gaps can be estimated by the dopingnefic state also predicts a degeneracy enhancethéi: a

dependence of thgositive enhancement factots, (n) of ~ half-filled system, the predicted enhancement is, however,

the third moment, while the overall sign is determined by thdinear in the degeneracyN(+ 1) instead ofyN as suggested

single-electron moments: _by_ t_he hppping argument of Sec. Ill and as also founo_l in
infinite dimensiong. The results of the Gutzwiller approxi-

ho(n) h (2N—n)] A3 mation are reproduced by a slave-boson calculation in the
~lkm) k.(2N=n) AS (1) saddle-point approximatiolf. In dynamical mean-field

theory a degeneracy enhancement and a reductiob .of

To understand the doping dependencdofk, we pro- away from half filling, similar to our result, is fourid:*°

ceed in two steps. First we observe that the upper limit for
the number of different electrons that can perform a triangu- V. SUMMARY
lar hop is given by the numbée, of electrons that can hop

to a nearest neighbor. Hence, if frustration is not suppressegf alkali-doped Fullerenes and found that the Mott transition

h, /k,=1. For filing n=1, N=2 this upper limit can al- . o :
. - - : strongly depends on th@ntegey filling n. U, is largest for
\r/]vc?ysillqoe gct:;rer\;d ivx't?ﬁgteﬁggfgg?;s'Qgclﬁragivgexetl:sngg:vbo(?%=3 and decreases away from half filling. This result is
pping by gng y ualitatively different from both, the results of density-

f.ﬁl.Ch c;tf[llei.lﬂ':;]s 1S ISh?Wn n Fig. S. IFor thebcorrespoln;jquunctional calculations in the local density approximation,
1ing . € electrons can no longer beé COMPIEtE o4 the results of Hartree-Fock calculations. The doping de-
sgparated in that way. Thus the gha.nnel for tr|.angular hOpBendence of the Mott transition can be understood in terms
will be blocked by the the .P?‘“" prmmplg, re_ducmg Ky of a simple hopping argument. The key observation is that,
In that way for the larger fillings frustration is reduced. due to the orbital degeneracy, there are more hopping chan-
This reduction of frustration can already be seen in theneIS in the many-body than ,in the single-body case, thus

simple model of a triangle with orbital degenerady: 2 (cf. leadi .

. . . : eading to the degeneracy enhanceméntliscussed above.
'.:'g' 5. (;hoosmg _matrlx el_e.mentfl for hopping between In addition, due to frustration, the gaps are not symmetric
like orbitals we find for fillingn=1 a strong asymmetry around half filling

Thin(3n+1)=—2 andT,,,{(3n+1)=+4, while at filling
n’=2N-n=3 there is no asymmetry in the extremal eigen-
values:Tmay3n’+1)=+2. We note that flipping one spin
in the configuration for fillingn=3 would allow for a trian- This work has been supported by the Alexander-von-
gular hop. In a Lanczos calculation this spin-polarized conHumboldt-Stiftung under the Feodor-Lynen-Program and the
figuration gives, however, only extremal eigenvaldgs,,  Max-Planck-Forschungspreis, and by the Department of En-
=—2 andT,,= +1. The states described here for a tri- ergy, Grant No. DEFG 02-96ER45439.

Using quantum Monte Carlo, we have analyzed a model
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