## ARTICLES

# Spectra, energy levels, and transition line strengths for Sm<sup>3+</sup>:Y<sub>3</sub>Al<sub>5</sub>O<sub>12</sub>

John B. Gruber

Department of Physics, San Jose State University, San Jose, California 95192-0106

Bahram Zandi

Army Research Laboratory, Sensors and Electron Devices Directorate, 2800 Powder Mill Road, Adelphi, Maryland 20783-1197

Michael F. Reid

Department of Physics and Astronomy, University of Canterbury, Christchurch, New Zealand

(Received 29 January 1999)

Optical spectra and energy levels of the sextet, quartet, and doublet states of  $\text{Sm}^{3+}$  (4 $f^5$ ) incorporated into single crystals of  $Y_3\text{Al}_5\text{O}_{12}$  ( $\text{Sm}^{3+}$ :YAG), where YAG denotes yttrium aluminum garnet, are reported and analyzed at wavelengths between 560 and 280 nm. The analysis of energy (Stark) levels is based on a model Hamiltonian consisting of Coulombic, spin-orbit, and interconfigurational terms for the  $4f^5$  atomic configuration of  $\text{Sm}^{3+}$  and crystal-field terms in  $D_2$  symmetry (the site symmetry of the  $\text{Sm}^{3+}$  ions in the garnet lattice). The Hamiltonian also includes contributions arising from the spin-correlated crystal field. Because of the strength of the crystal field, the entire energy matrix is diagonalized within the complete  $4f^5$  *SLJM*<sub>J</sub> basis set representing 73 *LS* states, 198  ${}^{2S+I}L_J$  multiplets, and 1001 doubly degenerate crystal-quantum states. In  $D_2$ symmetry, all Stark levels are characterized by the same irreducible representation ( ${}^{2}\Gamma_{5}$ ). Optimization between 314 calculated-to-observed Stark levels was carried out with a final rms deviation of 10 cm<sup>-1</sup>. Eigenvectors obtained from the crystal-field splitting analysis are used to calculate transition line strengths originating from the ground-state Stark level to Stark levels in excited manifolds. The calculated line strengths are compared with experimental line strengths obtained from the absorption spectrum at 3.8 K. The line-strength analysis is useful in identifying individual excited Stark levels associated with sextet, quartet, and doublet states strongly mixed by the crystal field. [S0163-1829(99)09347-9]

#### I. INTRODUCTION

The crystal-field splitting of multiplet manifolds  ${}^{6}H_{J}$  and  ${}^{6}F_{J}$  of Sm<sup>3+</sup> (4 $f^{5}$ ) as a dopant in yttrium aluminum garnet, Y<sub>3</sub>Al<sub>5</sub>O<sub>12</sub> (YAG), has been analyzed by several groups.<sup>1–3</sup> These multiplets are the lowest in energy of 198  ${}^{2S+1}L_{J}$  multiplets associated with the 4 $f^{5}$  electronic configuration of Sm<sup>3+</sup>. The most recent study assessed the potential for stimulated emission from  ${}^{4}G(4)_{5/2}$  to individual energy (Stark) levels within the  ${}^{6}H_{J}$  multiplet manifolds.<sup>2</sup> Stimulated emission involving Sm<sup>3+</sup> has been reported at 618 nm (Sm<sup>3+</sup>: glass).<sup>4</sup> In spite of its relatively weak transition line strengths, Sm<sup>3+</sup> may be of interest as a visible laser ion, at least in the fiber geometry.

The visible and ultraviolet spectra of  $\text{Sm}^{3+}$  (4 $f^5$ ) consist of transitions to numerous excited multiplet manifolds associated with the doublet, quartet, and sextet states of 4 $f^5$ . We report an analysis of individual Stark levels and line strengths representing transitions from the ground-state Stark level in  ${}^{6}H_{5/2}$  to excited-state Stark levels observed in the absorption spectrum obtained at 3.8 K between 560 and 280 nm. The spectrum consists of 314 transitions to 336 predicted Stark levels spanning 42 excited doublet, quartet, and sextet state multiplet manifolds between  ${}^{4}G(4)_{5/2}$  (17 600 cm<sup>-1</sup>) and  ${}^{2}P(4)_{1/2}$  (35 550 cm<sup>-1</sup>). The temperaturedependent (hot band) spectra obtained at 80 and 300 K establish the excited Stark levels of  ${}^{6}H_{5/2}$  at 145 and 247 cm<sup>-1</sup>. The site symmetry of Sm<sup>3+</sup> in YAG is  $D_2$  based on site-selective polarized spectroscopy of oriented crystals.<sup>1,5</sup> The symmetry is consistent with the assumption made in the past that the rare-earth ion ( $R^{3+}$ ) substitutes for the Y<sup>3+</sup> ions in  $D_2$  symmetry sites in the lattice.<sup>5,6</sup>

Spectra representing transitions to many of the excited Stark levels are sufficiently resolved to make a quantitative determination of individual transition line strengths. The experimental levels and line strengths chosen for analysis are denoted by a footnote in Table I. Criteria for measuring line strengths are based on spectral separation between peaks having small or unchanging baselines, and a linewidth that can be measured reliably for a peak with an absorbance of 0.03 or higher. Eigenvectors obtained from the energy-level analysis were used to calculate the transition line strengths, which were then compared with experimental values obtained from the absorption spectrum at 3.8 K. Such an analysis helps to differentiate between transitions to excited doublet, quartet, and sextet states in the absorption spectrum.

The energy-level calculations are based on a model Hamiltonian that consists of Coulombic, spin-orbit, and interconfigurational terms for the  $4f^5$  atomic configuration of Sm<sup>3+</sup> and crystal-field terms in  $D_2$  symmetry, including

15 643



FIG. 1. Absorption spectrum of the lowest-energy Stark level of the  ${}^{4}G(4)_{5/2}$  manifold obtained at 3.8 K showing satellite structure.

spin-correlated crystal-field (CCF) contributions.<sup>7,8</sup> Because of the size of the crystal-field splitting, the total Hamiltonian was diagonalized within the complete  $4f^5 SLJM_J$  basis set representing 73 LS states, 198  ${}^{2S+1}L_J$  multiplets, and 1001 doubly degenerate crystal-quantum states. A single matrix is required to diagonalize all Stark levels simultaneously, since all Stark levels belong to the same irreducible representation. From the spectroscopic analysis of energy levels and line strengths we obtain a detailed description of the complex mixing of doublet, quartet, and sextet states by the crystal field.

#### **II. SPECTROSCOPIC MEASUREMENTS**

Absorption spectra were obtained between 560 and 280 nm with a Cary Model 2390 spectrophotometer by Gruber and Hills on a crystal of  $\text{Sm}^{3+}$ :YAG obtained from Kokta.<sup>9,10</sup> Spectra at wavelengths shorter than 280 nm were not sufficiently resolved to merit an analysis of the detailed crystal-field splitting. A spectral bandwidth of about 0.05 nm was used where sharp peaks were observed having less than a 0.1-nm bandwidth at half-maximum. Calibration tests on the instrument indicated that the wavelength accuracy was better than 0.1 nm.

The absorption spectrum obtained at 3.8 K is given in Table I. The wavelengths (nm), the absorbances, and the energies  $(cm^{-1})$  are given in the first three columns. The experimental line strengths are given in column 6. The  $\text{Sm}^{3+}$ ion concentration and the sample path length are reported in footnotes to Table I. The units of line strength are given in Debye units squared, where one Debye unit equals  $10^{-18}$  esu or  $3.36 \times 10^{-30}$  C m. The observed line strengths in column 6 are weaker than the line strengths reported for the absorption spectra of the  ${}^{6}H_{I}$  and  ${}^{6}F_{I}$  multiplet manifolds.<sup>1,2</sup> This is not surprising given the fact that the visible and ultraviolet spectra primarily represent transitions to the quartet and doublet states of trivalent samarium. The most intense spectra appearing in Table I are found at wavelengths 419, 417, 405, 378, 365, and 348 nm. They are identified through an analysis of calculated-to-experimental energy levels and line strengths as having  ${}^{6}P_{I}, M_{I}$  as the largest component in the



FIG. 2. Absorption spectrum of the  ${}^{4}F(3)_{3/2}$  manifold obtained at 3.8 K.

wave function describing the state.

Emission spectra from the  ${}^{4}G(4)_{5/2}$  to the  ${}^{6}H_{J}$  and  ${}^{6}F_{J}$ multiplet manifolds reported earlier<sup>1,2</sup> support the observation that a few Sm<sup>3+</sup> ions are found in so-called "minority" sites. These sites are due to local site-symmetry modifications arising from impurities or defects that usually develop during crystal growth.<sup>11–13</sup> In Fig. 1 we show the absorption spectrum of the  ${}^{4}G(4)_{5/2}$  observed at 3.8 K. Surrounding the strong central absorption peak, very weak structure is observed and is attributed to Sm<sup>3+</sup> ions in minority sites.<sup>12</sup> We have chosen for line-strength analysis only the central peak that represents more than 90% of the total absorbance of the group. Less than 5% of all absorption peaks investigated show evidence of satellite structure.

The absorption spectrum appearing in Table I is not discernable as falling into groups that can be analyzed easily as the  $J + \frac{1}{2}$  Stark components of an isolated multiplet. Exceptions can be found, however, such as  ${}^{4}G(4)_{5/2}$  observed at 560 nm (Fig. 1) and  ${}^{4}F(3)_{3/2}$  observed at 532 nm (Fig. 2). Two other examples include Fig. 3, the 3.8 K absorption spectrum of  ${}^{4}G(4)_{7/2}$ , and Fig. 4, the 3.8 K absorption spectrum of  ${}^{4}P(2)_{5/2}$ . The crystal field mixes the quartet, doublet, and  ${}^{6}P$  states so thoroughly that a manifold centroid no longer has meaning in describing a single multiplet. Rajnak *et al.*<sup>14</sup> also found strong *J* mixing for similar states of Sm<sup>3+</sup> in LaCl<sub>3</sub>. An analysis of the calculated-to-experimental energy levels for Sm<sup>3+</sup> in YAG requires the diagonalization of the complete energy matrix representing all sextet, quartet, and doublet states of the  $4f^{5}$  electronic configuration.

## **III. THE MODEL HAMILTONIAN**

The complete energy-level structure is analyzed in terms of a model Hamiltonian that assumes the  $\text{Sm}^{3+}$  ions occupy sites of  $D_2$  symmetry in the lattice.<sup>15</sup> The Hamiltonian also includes interconfigurational mixing with other higherenergy configurations of like parity in the form of adjustable parameters, which for the most part remain reasonably fixed when  $\text{Sm}^{3+}$  energy levels are analyzed in different host materials.

The total Hamiltonian is expressed as follows:

TABLE I. Visible and ultraviolet spectra, energy levels, and line strengths in Sm<sup>3+</sup>:YAG.

| $\overline{\lambda} (nm)^a$ | I <sup>b</sup> | $E (\mathrm{cm}^{-1})_{\mathrm{obs}}^{\mathrm{c}}$ | $E (\mathrm{cm}^{-1})_{\mathrm{calc}}^{\mathrm{d}}$ | $\Delta E \ (\mathrm{cm}^{-1})^{\mathrm{e}}$ | $S_{\rm obs}^{\rm f}$    | $S_{\rm calc}^{\ \rm g}$ | ${}^{2S+1}L_J^{\text{h}}$             | $M_J^{i}$               | %          | Level <sup>j</sup> |
|-----------------------------|----------------|----------------------------------------------------|-----------------------------------------------------|----------------------------------------------|--------------------------|--------------------------|---------------------------------------|-------------------------|------------|--------------------|
| 568.12                      | 0.38           | 17597 <sup>k</sup>                                 | 17599                                               | 2                                            | 700 <sup>1</sup>         | 682                      | ${}^{4}G(4)_{5/2}$                    | $\pm 1/2$               | 51%        | 55                 |
| 559.31                      | 0.06           | 17874 <sup>k</sup>                                 | 17876                                               | 2                                            | $410^{1}$                | 611                      | ${}^{4}G(4)_{3/2}$                    | $\pm 3/2$               | 71%        | 56                 |
| 553.10                      | 0.03           | 18076 <sup>k</sup>                                 | 18071                                               | -5                                           | 190 <sup>1</sup>         | 142                      | ${}^{4}G(4)_{5/2}$                    | $\pm 5/2$               | 57%        | 57                 |
| 532.08                      | 0.11           | 18789 <sup>k</sup>                                 | 18809                                               | 20                                           | 620 <sup>1</sup>         | 815                      | ${}^{4}F(3)_{3/2}$                    | $\pm 3/2$               | 73%        | 58                 |
| 531.16                      | 0.05           | 18821 <sup>k</sup>                                 | 18829                                               | 8                                            | 350 <sup>1</sup>         | 340                      | ${}^{4}F(3)_{3/2}$                    | $\pm 1/2$               | 75%        | 59                 |
| 504.32                      | 0.33           | 19823 <sup>k</sup>                                 | 19798                                               | -25                                          | 1560 <sup>1</sup>        | 2629                     | ${}^{4}G(4)_{7/2}$                    | $\pm 3/2$               | 52%        | 60                 |
| 501.40                      | 0.03           | 19934 <sup>k</sup>                                 | 19931                                               | -3                                           | $50^{1}$                 | 54                       | ${}^{4}M_{15/2}$                      | $\pm 11/2$              | 25%        | 61                 |
| 501.20                      | 0.51           | 19947 <sup>k</sup>                                 | 19968                                               | 21                                           | 3120 <sup>1</sup>        | 3310                     | ${}^{4}G(4)_{7/2}$                    | $\pm 5/2$               | 53%        | 62                 |
| 500.50                      | 0.16           | 19967 <sup>k</sup>                                 | 19987                                               | 20                                           | $710^{1}$                | 544                      | ${}^{4}G(4)_{7/2}$                    | $\pm 1/2$               | 40%        | 63                 |
| 499.5                       | 0.17           | 20012 <sup>k</sup>                                 | 20026                                               | 14                                           | $1220^{1}$               | 1859                     | ${}^{4}G(4)_{7/2}$                    | $\pm 1/2$               | 17%        | 64                 |
| 498.0                       | 0.04           | 20075 <sup>k</sup>                                 | 20081                                               | 6                                            | 320 <sup>1</sup>         | 310                      | ${}^{4}G(4)_{7/2}$                    | $\pm 7/2$               | 20%        | 65                 |
| 495.65                      | 0.04           | $20170^{k}$                                        | 20174                                               | 4                                            | 150 <sup>1</sup>         | 155                      | ${}^{4}I(3)_{9/2}$                    | $\pm 1/2$               | 28%        | 66                 |
| 494.62                      | 0.54           | 20212 <sup>k</sup>                                 | 20230                                               | 18                                           | $2640^{1}$               | 2776                     | ${}^{4}M_{15/2}$                      | +15/2                   | 21%        | 67                 |
| 492.61                      | 0.04           | 20295 <sup>k</sup>                                 | 20292                                               | -3                                           | 320 <sup>1</sup>         | 343                      | ${}^{4}I(3)_{0/2}$                    | $\pm 7/2$               | 40%        | 68                 |
| 491.86                      | 0.09           | 20325 <sup>k</sup>                                 | 20330                                               | 5                                            | $670^{1}$                | 688                      | ${}^{4}I(3)_{0/2}$                    | +5/2                    | 33%        | 69                 |
| 489.78                      | 0.11           | 20320<br>20412 <sup>k</sup>                        | 20436                                               | 24                                           | $720^{1}$                | 682                      | ${}^{4}M_{15/2}$                      | +7/2                    | 55%        | 70                 |
| 487.5                       | 0.03           | 20508                                              | 20130                                               | 8                                            | 150                      | 159                      | ${}^{4}M_{15/2}$                      | +5/2                    | 21%        | 71                 |
| 486.5                       | 0.05           | 20549 <sup>k</sup>                                 | 20510                                               | 2                                            | $320^{1}$                | 310                      | 4I(3)                                 | +9/2                    | 15%        | 72                 |
| 485.2                       | 0.00           | 20549<br>20604 <sup>k</sup>                        | 20595                                               | -9                                           | 960 <sup>1</sup>         | 1049                     | $\frac{4I(3)_{11/2}}{4I(3)_{11/2}}$   | +5/2                    | 22%        | 72                 |
| 483.8                       | 0.14           | $20664^{k}$                                        | 20575                                               | 0                                            | 700 <sup>1</sup>         | 651                      | ${}^{4}M_{11/2}$                      | $\frac{-3}{2}$<br>+13/2 | 16%        | 74                 |
| 483.0                       | 0.07           | 20604<br>20690 <sup>k</sup>                        | 20004                                               | 3                                            | 1785 <sup>1</sup>        | 1726                     | 4M                                    | $\frac{-13}{2}$<br>+0/2 | 16%        | 75                 |
| 403.2                       | 0.21           | 20050<br>20750 <sup>k</sup>                        | 20075                                               | _1                                           | 250 <sup>1</sup>         | 280                      | 4I(3)                                 | $\pm 1/2$<br>+ 1/2      | 170/       | 75                 |
| 401.0                       | 0.05           | 20750<br>20784 <sup>k</sup>                        | 20749                                               | 1                                            | 230<br>520 <sup>1</sup>  | 200<br>640               | 4M                                    | $\pm 1/2$<br>+ 11/2     | 1 / 70     | 70                 |
| 401.0                       | 0.10           | 20784                                              | 20784                                               | 24                                           | 1020 <sup>1</sup>        | 1174                     | $\frac{4}{4}$ <b>I</b> (2)            | $\pm 11/2$<br>+ 2/2     | 220/       | 70                 |
| 479.4                       | 0.50           | 20034                                              | 20070                                               | 24                                           | 850 <sup>l</sup>         | 11/4                     | $\frac{1(3)_{11/2}}{4I(2)}$           | $\pm 3/2$<br>$\pm 0/2$  | 25%<br>26% | 70                 |
| 476.1                       | 0.05           | 20910<br>20002 <sup>k</sup>                        | 20910                                               | 19                                           | 030<br>225 <sup>1</sup>  | 207                      | $\frac{1(5)_{11/2}}{4I(2)}$           | $\pm 9/2$<br>$\pm 11/2$ | 20%        | /9<br>80           |
| 470.25                      | 0.00           | 20992                                              | 20974                                               | -18                                          | 223<br>410l              | 507                      | $I(5)_{11/2}$                         | $\pm 11/2$<br>$\pm 2/2$ | 20%<br>22% | 0U<br>01           |
| 4/0.07                      | 0.04           | 21240<br>$21275^{k}$                               | 21239                                               | -1                                           | 410<br>1100 <sup>l</sup> | 1125                     | $I(5)_{13/2}$                         | ± 5/2<br>+7/2           | 22%        | 01                 |
| 409.90                      | 0.40           | 21275<br>21280k                                    | 21278                                               | 3                                            | 1100<br>420l             | 1125<br>551              | $(3)_{13/2}$                          | ± 1/2<br>± 2/2          | 23%        | 82                 |
| 409.0                       | 0.05           | 21289<br>21272k                                    | 21297                                               | 8                                            | 420<br>250l              | 220                      | $\frac{1(3)_{13/2}}{4(2)}$            | $\pm 3/2$               | 54%        | 83                 |
| 467.76                      | 0.05           | 21372"<br>21411k                                   | 21362                                               | -10                                          | 350 <sup>2</sup>         | 329                      | $(3)_{13/2}$                          | $\pm 13/2$              | 42%        | 84                 |
| 466.90                      | 0.14           | 21411 <sup>2</sup>                                 | 21384                                               | -27                                          | 950 <sup>2</sup>         | 1201                     | $(3)_{13/2}$                          | ±5/2                    | 38%        | 85                 |
| 465.75                      | 0.24           | 21465 <sup>m</sup>                                 | 21446                                               | -19                                          | 1020 <sup>4</sup>        | 1050                     | $^{-1}(3)_{13/2}$                     | $\pm 1/2$               | 35%        | 86                 |
| 464.8                       | 0.25           | 21510 <sup>k</sup>                                 | 21499                                               | -11                                          | 1100 <sup>4</sup>        | 1100                     | $-I(3)_{13/2}$                        | ±1/2                    | 23%        | 87                 |
| 464.35                      | 0.34           | 21530 <sup>a</sup>                                 | 21535                                               | 5                                            | 970 <sup>.</sup>         | 1091                     | $^{-1}(3)_{13/2}$                     | $\pm 11/2$              | 14%        | 88                 |
| 462.98                      | 0.10           | 21593 <sup>k</sup>                                 | 21579                                               | -14                                          | 520 <sup>4</sup>         | 470                      | $(3)_{13/2}$                          | ±9/2                    | 24%        | 89                 |
| 455.8                       | 0.10           | 21933 <sup>k</sup>                                 | 21930                                               | -3                                           | 530                      | 640                      | $F(3)_{5/2}$                          | $\pm 5/2$               | 34%        | 90                 |
| 454.8                       | 0.12           | 21980 <sup>k</sup>                                 | 21969                                               | -13                                          | 590 <sup>4</sup>         | 470                      | $F(3)_{5/2}$                          | $\pm 3/2$               | 50%        | 91                 |
| 453.7                       | 0.08           | 22035 <sup>k</sup>                                 | 22053                                               | 18                                           | 160 <sup>4</sup>         | 81                       | <sup>-</sup> <i>M</i> <sub>17/2</sub> | $\pm 13/2$              | 33%        | 92                 |
| 452.8                       | 0.08           | 22082 <sup>k</sup>                                 | 22078                                               | -2                                           | 260 <sup>4</sup>         | 971                      | <sup>-</sup> <i>M</i> <sub>17/2</sub> | $\pm 15/2$              | 18%        | 93                 |
| 451.9                       | 0.04           | 22123 <sup>K</sup>                                 | 22122                                               | -1                                           | 200 <sup>1</sup>         | 240                      | <sup>4</sup> <i>M</i> <sub>17/2</sub> | $\pm 15/2$              | 21%        | 94                 |
| 451.63                      | 0.03           | 22136 <sup>K</sup>                                 | 22133                                               | -3                                           | 120 <sup>1</sup>         | 242                      | ${}^{4}M_{17/2}$                      | $\pm 7/2$               | 37%        | 95                 |
| 451.35                      | 0.05           | 22150 <sup>k</sup>                                 | 22152                                               | 2                                            | 200 <sup>1</sup>         | 231                      | ${}^{4}M_{17/2}$                      | $\pm 9/2$               | 21%        | 96                 |
| 449.9                       | 0.24           | 22221 <sup>k</sup>                                 | 22204                                               | -17                                          | 2520 <sup>1</sup>        | 2460                     | ${}^{4}M_{17/2}$                      | $\pm 5/2$               | 31%        | 97                 |
| 448.08                      | 0.05           | 22311 <sup>K</sup>                                 | 22322                                               | 11                                           | 825                      | 972                      | ${}^{4}M_{17/2}$                      | $\pm 3/2$               | 21%        | 98                 |
| 444.47                      | 0.15           | 22492 <sup>k</sup>                                 | 22482                                               | -10                                          | 430 <sup>1</sup>         | 227                      | ${}^{4}M_{17/2}$                      | $\pm 13/2$              | 18%        | 99                 |
| 443.5                       | 0.10           | 22544 <sup>k</sup>                                 | 22544                                               | 0                                            | 410 <sup>1</sup>         | 498                      | ${}^{4}G(4)_{9/2}$                    | $\pm 7/2$               | 23%        | 100                |
| 442.1                       | 0.04           | 22613 <sup>k</sup>                                 | 22630                                               | 17                                           | 125 <sup>1</sup>         | 130                      | ${}^{4}I(3)_{15/2}$                   | $\pm 15/2$              | 10%        | 101                |
| 441.7                       | 0.03           | 22632                                              | 22642                                               | 10                                           | 140                      | 180                      | ${}^{4}I(3)_{15/2}$                   | $\pm 15/2$              | 25%        | 102                |
| 440.75                      | 0.05           | 22682 <sup>k</sup>                                 | 22693                                               | 11                                           | 130 <sup>1</sup>         | 112                      | ${}^{4}I(3)_{15/2}$                   | $\pm 9/2$               | 24%        | 103                |
| 440.2                       | 0.03           | 22711                                              | 22717                                               | 6                                            | 60                       | 50                       | ${}^{4}I(3)_{15/2}$                   | $\pm 9/2$               | 13%        | 104                |
| 439.42                      | 0.04           | 22751 <sup>k</sup>                                 | 22764                                               | 13                                           | 80 <sup>1</sup>          | 72                       | ${}^{4}G(4)_{9/2}$                    | $\pm 3/2$               | 26%        | 105                |
| 438.8                       | 0.12           | 22783 <sup>k</sup>                                 | 22776                                               | -7                                           | 1285 <sup>1</sup>        | 1379                     | ${}^{4}I(3)_{15/2}$                   | $\pm 7/2$               | 23%        | 106                |
| 438.0                       | 0.03           | 22823                                              | 22834                                               | 11                                           | 400                      | 320                      | ${}^{4}I(3)_{15/2}$                   | $\pm 7/2$               | 30%        | 107                |
| 437.65                      | 0.03           | 22843 <sup>k</sup>                                 | 22843                                               | 0                                            | 400                      | 159                      | ${}^{4}G(4)_{9/2}$                    | $\pm 3/2$               | 25%        | 108                |
| 437.35                      | 0.03           | 22860                                              | 22854                                               | -6                                           | 125                      | 680                      | ${}^{4}G(4)_{9/2}$                    | $\pm 5/2$               | 35%        | 109                |

TABLE I. (Continued).

| $\lambda \ (nm)^a$ | $I^{\mathrm{b}}$ | $E (\mathrm{cm}^{-1})_{\mathrm{obs}}^{\mathrm{c}}$ | $E (\mathrm{cm}^{-1})_{\mathrm{calc}}^{\mathrm{d}}$ | $\Delta E \ (\mathrm{cm}^{-1})^{\mathrm{e}}$ | $S_{\rm obs}^{\rm f}$     | $S_{\rm calc}^{\rm g}$ | $^{2S+1}L_J^{\text{h}}$                   | $M_J^{i}$               | %           | Level <sup>j</sup> |
|--------------------|------------------|----------------------------------------------------|-----------------------------------------------------|----------------------------------------------|---------------------------|------------------------|-------------------------------------------|-------------------------|-------------|--------------------|
| 436.2              | 0.04             | 22918 <sup>k</sup>                                 | 22930                                               | 12                                           | 714 <sup>1</sup>          | 700                    | ${}^{4}G(4)_{9/2}$                        | $\pm 9/2$               | 35%         | 110                |
| 435.3              | 0.04             | 22963 <sup>k</sup>                                 | 22965                                               | 2                                            | $720^{1}$                 | 711                    | ${}^{4}G(4)_{9/2}$                        | $\pm 9/2$               | 14%         | 111                |
| 434.7              | 0.02             | 22996                                              | 22983                                               | -13                                          |                           | 160                    | ${}^{4}I(3)_{15/2}$                       | $\pm 1/2$               | 35%         | 112                |
| 434.0              | 0.02             | 23036                                              | 23034                                               | -2                                           |                           | 111                    | ${}^{4}I(3)_{15/2}$                       | $\pm 13/2$              | 25%         | 113                |
| 433.75             | 0.03             | 23048                                              | 23043                                               | -5                                           | 185                       | 162                    | ${}^{4}I(3)_{15/2}$                       | $\pm 11/2$              | 33%         | 114                |
| 425.06             | 0.04             | 23520 <sup>k</sup>                                 | 23512                                               | -8                                           | $225^{1}$                 | 165                    | ${}^{4}M_{19/2}$                          | $\pm 15/2$              | 38%         | 115                |
| 423.87             | 0.04             | 23586 <sup>k</sup>                                 | 23583                                               | -3                                           | 150 <sup>1</sup>          | 150                    | ${}^{4}M_{19/2}$                          | $\pm 13/2$              | 29%         | 116                |
| 422.06             | 0.02             | 23687                                              | 23681                                               | -6                                           |                           | 15                     | ${}^{4}M_{19/2}$                          | $\pm 1/2$               | 21%         | 117                |
| 421.3              | 0.16             | 23730 <sup>k</sup>                                 | 23728                                               | $^{-2}$                                      | 590 <sup>1</sup>          | 414                    | ${}^{4}M_{19/2}$                          | $\pm 19/2$              | 30%         | 118                |
| 420.96             | 0.18             | 23749 <sup>k</sup>                                 | 23752                                               | 3                                            | 620 <sup>1</sup>          | 62                     | ${}^{4}M_{19/2}$                          | $\pm 9/2$               | 34%         | 119                |
| 420.19             | 0.39             | 23793 <sup>k</sup>                                 | 23803                                               | 10                                           | 956 <sup>1</sup>          | 922                    | ${}^{4}M_{10/2}$                          | $\pm 5/2$               | 23%         | 120                |
| 419.50             | 1.03             | 23831 <sup>k</sup>                                 | 23823                                               | -8                                           | $4200^{1}$                | 4260                   | ${}^{6}P_{5/2}$                           | $\pm 1/2$               | 40%         | 121                |
| 418.96             | 0.65             | 23862 <sup>k</sup>                                 | 23863                                               | 1                                            | $2400^{1}$                | 2333                   | <sup>6</sup> P <sub>5/2</sub>             | +3/2                    | 68%         | 122                |
| 418.62             | 0.63             | 23882 <sup>k</sup>                                 | 23881                                               | -1                                           | $2480^{1}$                | 2183                   | ${}^{4}M_{10/2}$                          | +3/2                    | 38%         | 122                |
| 418.25             | 0.50             | 23902 <sup>k</sup>                                 | 23917                                               | 15                                           | $2220^{1}$                | 5173                   | ${}^{4}M_{10/2}$                          | $\frac{-3}{2}$<br>+1/2  | 38%         | 123                |
| 417.37             | 1.20             | 23962<br>23953 <sup>k</sup>                        | 23917                                               | -10                                          | 7820 <sup>l</sup>         | 7767                   | 6 <b>p</b>                                | $\frac{-1}{2}$<br>+ 5/2 | 15%         | 124                |
| 417.57             | 0.70             | 23955<br>23065 <sup>k</sup>                        | 23943                                               | 10<br>8                                      | 2820 <sup>1</sup>         | 2776                   | <sup>1</sup> 5/2<br><sup>6</sup> <b>D</b> | $\pm 5/2$<br>+ 5/2      | 43 <i>%</i> | 125                |
| 417.15             | 0.70             | 23903<br>24000 <sup>k</sup>                        | 23973                                               | 0                                            | 2820<br>1000 <sup>l</sup> | 2770                   | 4 M                                       | $\pm 3/2$<br>$\pm 11/2$ | 20%         | 120                |
| 410.30             | 0.29             | 24000                                              | 23983                                               | -1/                                          | 720                       | 1040                   | 1VI 19/2<br>4 r                           | $\pm 11/2$              | 19%         | 127                |
| 412.70             | 0.08             | 24224<br>24255k                                    | 24244                                               | 20                                           | 720<br>720                | 044                    | $L_{13/2}$                                | $\pm 3/2$               | 28%         | 128                |
| 412.17             | 0.08             | 24255 <sup>k</sup>                                 | 24256                                               | 1                                            | 720 <sup>-</sup>          | 732                    | $L_{13/2}$                                | ±9/2                    | 37%         | 129                |
| 411.42             | 0.08             | 24300 <sup>k</sup>                                 | 24287                                               | -13                                          | 720                       | 287                    | $^{-}L_{13/2}$                            | $\pm 11/2$              | 29%         | 130                |
| 411.16             | 0.05             | 24315                                              | 24307                                               | -8                                           | 514                       | 354                    | $^{-7}L_{13/2}$                           | $\pm 13/2$              | 51%         | 131                |
| 409.5              | 0.15             | 24413 <sup>k</sup>                                 | 24436                                               | 23                                           | 1620 <sup>4</sup>         | 1852                   | ${}^{4}L_{13/2}$                          | $\pm 3/2$               | 26%         | 132                |
| 408.2              | 0.03             | 24493                                              | 24488                                               | -5                                           | 200                       | 255                    | ${}^{4}L_{13/2}$                          | $\pm 11/2$              | 30%         | 133                |
| 407.03             | 0.32             | 24562 <sup>K</sup>                                 | 24549                                               | -13                                          | 620 <sup>1</sup>          | 657                    | ${}^{4}L_{13/2}$                          | $\pm 5/2$               | 29%         | 134                |
| 405.52             | 1.67             | 24654 <sup>k</sup>                                 | 24643                                               | -11                                          | 33350 <sup>1</sup>        | 30020                  | ${}^{4}M_{21/2}$                          | $\pm 21/2$              | 49%         | 135                |
| 405.0              | 1.50             | 24686 <sup>k</sup>                                 | 24690                                               | 4                                            | 22000 <sup>1</sup>        | 23363                  | <sup>6</sup> P <sub>3/2</sub>             | $\pm 3/2$               | 49%         | 136                |
| 404.6              | 2.00             | 24709 <sup>k</sup>                                 | 24714                                               | 5                                            | $40000^{1}$               | 40370                  | ${}^{6}P_{3/2}$                           | $\pm 1/2$               | 40%         | 137                |
| 404.1              | 1.78             | 24740 <sup>k</sup>                                 | 24739                                               | -1                                           | 28700 <sup>1</sup>        | 28751                  | ${}^{6}P_{3/2}$                           | $\pm 1/2$               | 46%         | 138                |
| 403.69             | 1.01             | 24765 <sup>k</sup>                                 | 24759                                               | -6                                           | $22050^{1}$               | 21893                  | ${}^{4}F(3)_{7/2}$                        | $\pm 5/2$               | 25%         | 139                |
| 403.42             | 1.00             | 24781 <sup>k</sup>                                 | 24793                                               | 12                                           | $21580^{1}$               | 21645                  | ${}^{4}F(3)_{7/2}$                        | $\pm 3/2$               | 30%         | 140                |
| 402.71             | 0.13             | 24825 <sup>k</sup>                                 | 24820                                               | -5                                           | $1675^{1}$                | 1334                   | ${}^{4}M_{21/2}$                          | $\pm 11/2$              | 30%         | 141                |
| 402.37             | 0.05             | 24846 <sup>k</sup>                                 | 24835                                               | -11                                          | $290^{1}$                 | 275                    | ${}^{4}M_{21/2}$                          | $\pm 13/2$              | 17%         | 142                |
| 401.8              | 0.03             | $24880^{k}$                                        | 24877                                               | -3                                           | 120                       | 363                    | ${}^{4}K(1)_{11/2}$                       | $\pm 5/2$               | 28%         | 143                |
| 401.46             | 0.03             | 24900 <sup>k</sup>                                 | 24896                                               | -4                                           | 100 <sup>1</sup>          | 49                     | ${}^{4}K(1)_{11/2}$                       | $\pm 3/2$               | 52%         | 144                |
| 400.7              | 0.03             | 24946 <sup>k</sup>                                 | 24943                                               | -3                                           | 100                       | 103                    | ${}^{4}K(1)_{11/2}$                       | $\pm 5/2$               | 24%         | 145                |
| 400.65             | 0.06             | 24952 <sup>k</sup>                                 | 24957                                               | 5                                            | $250^{1}$                 | 230                    | ${}^{4}M_{21/2}$                          | $\pm 9/2$               | 16%         | 146                |
| 400.34             | 0.03             | 24972 <sup>k</sup>                                 | 24969                                               | -3                                           | 85                        | 12                     | ${}^{4}M_{21/2}$                          | $\pm 11/2$              | 25%         | 147                |
| 399.73             | 0.04             | 25010 <sup>k</sup>                                 | 25012                                               | 2                                            | 185 <sup>1</sup>          | 43                     | ${}^{4}M_{21/2}$                          | $\pm 9/2$               | 20%         | 148                |
| 399.3              | 0.06             | 25036 <sup>k</sup>                                 | 25029                                               | -7                                           | $120^{1}$                 | 36                     | ${}^{4}M_{21/2}$                          | $\pm 5/2$               | 20%         | 149                |
| 398.8              | 0.06             | 25070 <sup>k</sup>                                 | 25082                                               | 12                                           | 250 <sup>1</sup>          | 196                    | ${}^{4}K(1)_{11/2}$                       | $\pm 1/2$               | 14%         | 150                |
| 398.6              | 0.04             | 25085 <sup>k</sup>                                 | 25096                                               | 11                                           | 210                       | 52                     | ${}^{4}K(1)_{11/2}$                       | +7/2                    | 23%         | 151                |
| 397.98             | 0.03             | 25120 <sup>k</sup>                                 | 25130                                               | 10                                           | 320                       | 411                    | ${}^{4}K(1)_{11/2}$                       | +9/2                    | 32%         | 152                |
| 397.04             | 0.03             | 25120<br>25179 <sup>k</sup>                        | 25164                                               | -15                                          | 250                       | 210                    | <sup>4</sup> Luse                         | +7/2                    | 15%         | 152                |
| 305 32             | 0.05             | 25280 <sup>k</sup>                                 | 25789                                               | 0                                            | 820 <sup>1</sup>          | 835                    | 4 I                                       | +5/2                    | 31%         | 153                |
| 305.3              | 0.06             | 25203 <sup>k</sup>                                 | 25201                                               | -2                                           | 1000 <sup>l</sup>         | 071                    | $4_{I}$                                   | $\frac{-3}{2}$          | 3/1%        | 155                |
| 205.0              | 0.00             | 25295                                              | 25291                                               | _2                                           | 1000                      | 120                    | 4I                                        | $\pm 3/2$<br>$\pm 7/2$  | 2204        | 155                |
| 204 67             | 0.02             | 25310<br>25220k                                    | 25306                                               | -2                                           | 250 <sup>1</sup>          | 259                    | $L_{15/2}$                                | $\pm 1/2$               | 23%         | 150                |
| 394.07             | 0.04             | 23330<br>25290k                                    | 23333                                               | 3<br>1                                       | 200                       | 238                    | L 15/2<br>4 r                             | $\pm 9/2$<br>$\pm 15/2$ | 20%         | 157                |
| 393.87             | 0.03             | 25382"<br>25295 <sup>k</sup>                       | 25381                                               | -1                                           | 200                       | 238                    | $L_{15/2}$                                | $\pm 15/2$              | 58%         | 158                |
| 393.82             | 0.17             | 25385 <sup>°</sup>                                 | 25383                                               | -2                                           | 520                       | 382                    | <sup>-</sup> M <sub>21/2</sub>            | $\pm 3/2$               | 51%         | 159                |
| 392.90             | 0.20             | 25445 <sup>×</sup>                                 | 25433                                               | -12                                          | 625                       | 482                    | <sup>-</sup> M <sub>21/2</sub>            | $\pm 1/2$               | 33%         | 160                |
| 392.43             | 0.30             | 25475 <sup>K</sup>                                 | 25501                                               | 26                                           | 825                       | 502                    | $G(4)_{11/2}$                             | $\pm 1/2$               | 14%         | 161                |
| 391.90             | 0.06             | 25510 <sup>K</sup>                                 | 25530                                               | 20                                           | 250                       | 68                     | <sup>4</sup> <i>M</i> <sub>21/2</sub>     | $\pm 17/2$              | 27%         | 162                |
| 391.13             | 0.06             | 25560 <sup>K</sup>                                 | 25550                                               | -10                                          | 225                       | 95                     | <sup>4</sup> <i>M</i> <sub>21/2</sub>     | $\pm 19/2$              | 29%         | 163                |
| 390.68             | 0.14             | 25589 <sup>k</sup>                                 | 25582                                               | -7                                           | 1425 <sup>1</sup>         | 1333                   | ${}^{4}G(4)_{11/2}$                       | $\pm 1/2$               | 39%         | 164                |

TABLE I. (Continued).

| $\lambda \ (nm)^a$ | I <sup>b</sup> | $E (\mathrm{cm}^{-1})_{\mathrm{obs}}^{\mathrm{c}}$ | $E (\mathrm{cm}^{-1})_{\mathrm{calc}}^{\mathrm{d}}$ | $\Delta E (\mathrm{cm}^{-1})^{\mathrm{e}}$ | $S_{\rm obs}^{\rm f}$      | $S_{\rm calc}{}^{\rm g}$ | $^{2S+1}L_J^{\text{h}}$       | $M_J^{i}$               | %           | Level <sup>j</sup> |
|--------------------|----------------|----------------------------------------------------|-----------------------------------------------------|--------------------------------------------|----------------------------|--------------------------|-------------------------------|-------------------------|-------------|--------------------|
| 390.4              | 0.08           | 25610 <sup>k</sup>                                 | 25603                                               | -7                                         | 300 <sup>1</sup>           | 333                      | ${}^{4}G(4)_{11/2}$           | $\pm 7/2$               | 17%         | 165                |
| 390.1              | 0.16           | 25630 <sup>k</sup>                                 | 25622                                               | -8                                         | 1600 <sup>1</sup>          | 1586                     | ${}^{4}G(4)_{11/2}$           | $\pm 9/2$               | 54%         | 166                |
| 389.85             | 0.16           | 25645 <sup>k</sup>                                 | 25649                                               | 4                                          | $750^{1}$                  | 793                      | ${}^{4}L_{15/2}$              | $\pm 13/2$              | 29%         | 167                |
| 389.69             | 0.16           | 25654 <sup>k</sup>                                 | 25652                                               | -2                                         | $760^{1}$                  | 738                      | ${}^{4}L_{15/2}$              | $\pm 1/2$               | 20%         | 168                |
| 388.85             | 0.10           | 25710 <sup>k</sup>                                 | 25715                                               | 5                                          | 725 <sup>1</sup>           | 663                      | ${}^{4}G(4)_{11/2}$           | $\pm 7/2$               | 26%         | 169                |
| 388.24             | 0.06           | 25750 <sup>k</sup>                                 | 25748                                               | -2                                         | $540^{1}$                  | 252                      | ${}^{4}G(4)_{11/2}$           | $\pm 11/2$              | 39%         | 170                |
| 387.7              | 0.03           | 25786 <sup>k</sup>                                 | 25785                                               | -1                                         | 320                        | 240                      | ${}^{4}G(4)_{11/2}$           | $\pm 5/2$               | 48%         | 171                |
| 380.05             | 0.20           | 26305 <sup>k</sup>                                 | 26306                                               | 1                                          | $1810^{1}$                 | 2000                     | ${}^{4}D(3)_{1/2}$            | $\pm 1/2$               | 44%         | 172                |
| 379.69             | 0.03           | 26330 <sup>k</sup>                                 | 26320                                               | -10                                        | 425                        | 342                      | ${}^{4}L_{17/2}$              | $\pm 5/2$               | 30%         | 173                |
| 379.45             | 0.04           | 26347 <sup>k</sup>                                 | 26339                                               | -8                                         | 520 <sup>1</sup>           | 417                      | ${}^{4}L_{17/2}$              | $\pm 9/2$               | 30%         | 174                |
| 378.90             | 0.62           | 26385 <sup>k</sup>                                 | 26366                                               | -19                                        | 2643 <sup>1</sup>          | 2164                     | ${}^{4}D(3)_{1/2}$            | $\pm 1/2$               | 24%         | 175                |
| 378.68             | 0.05           | 26400 <sup>k</sup>                                 | 26395                                               | 15                                         | 252                        | 570                      | ${}^{4}L_{17/2}$              | $\pm 7/2$               | 17%         | 176                |
| 378.52             | 0.05           | 26412 <sup>k</sup>                                 | 26410                                               | -2                                         | 550 <sup>1</sup>           | 693                      | ${}^{4}L_{17/2}$              | $\pm 9/2$               | 23%         | 177                |
| 377.98             | 0.87           | 26449 <sup>k</sup>                                 | 26465                                               | 16                                         | $3700^{1}$                 | 3710                     | ${}^{6}P_{7/2}$               | $\pm 7/2$               | 32%         | 178                |
| 377.8              | 0.24           | 26456 <sup>k</sup>                                 | 26469                                               | 13                                         | $1280^{1}$                 | 1295                     | ${}^{4}L_{17/2}$              | $\pm 17/2$              | 38%         | 179                |
| 377.19             | 1.00           | 26504 <sup>k</sup>                                 | 26497                                               | -7                                         | 13100 <sup>1</sup>         | 13056                    | ${}^{6}P_{7/2}$               | $\pm 5/2$               | 40%         | 180                |
| 377.05             | 0.20           | 26514 <sup>k</sup>                                 | 26513                                               | -1                                         | 6425 <sup>1</sup>          | 6690                     | ${}^{6}P_{7/2}$               | $\pm 3/2$               | 34%         | 181                |
| 376.74             | 1.10           | 26536 <sup>k</sup>                                 | 26536                                               | 0                                          | $27000^{1}$                | 27160                    | ${}^{6}P_{7/2}$               | $\pm 1/2$               | 53%         | 182                |
| 376.2              | 0.57           | 26578 <sup>k</sup>                                 | 26585                                               | 7                                          | 11946 <sup>1</sup>         | 11768                    | ${}^{6}P_{7/2}$               | $\pm 3/2$               | 25%         | 183                |
| 375.58             | 0.39           | 26618 <sup>k</sup>                                 | 26634                                               | 16                                         | $1025^{1}$                 | 466                      | ${}^{4}K(1)_{12/2}$           | $\pm 5/2$               | 30%         | 184                |
| 375.24             | 0.11           | 26642 <sup>k</sup>                                 | 26656                                               | 14                                         | $360^{1}$                  | 186                      | ${}^{4}K(1)_{13/2}$           | $\pm 7/2$               | 25%         | 185                |
| 374.82             | 0.05           | 26672 <sup>k</sup>                                 | 26672                                               | 0                                          | $225^{1}$                  | 200                      | ${}^{4}K(1)_{13/2}$           | +3/2                    | 40%         | 186                |
| 374 56             | 0.02           | 26690                                              | 26687                                               | -3                                         |                            | 40                       | ${}^{4}K(1)_{13/2}$           | +7/2                    | 16%         | 187                |
| 373.90             | 0.02           | 26738 <sup>k</sup>                                 | 26739                                               | 1                                          | $725^{1}$                  | 126                      | ${}^{4}K(1)_{13/2}$           | +9/2                    | 30%         | 188                |
| 373 44             | 0.02           | 26730                                              | 26756                                               | -14                                        | 100                        | 191                      | ${}^{4}K(1)_{13/2}$           | +1/2                    | 15%         | 189                |
| 372 77             | 0.02           | 26819 <sup>k</sup>                                 | 26822                                               | 3                                          | $1025^{1}$                 | 995                      | ${}^{4}K(1)_{13/2}$           | $\frac{-1}{2}$<br>+ 1/2 | 20%         | 190                |
| 371.5              | 0.02           | 26914 <sup>k</sup>                                 | 26921                                               | 7                                          | 1025                       | 150                      | ${}^{4}K(1)_{13/2}$           | +11/2                   | 20%<br>46%  | 191                |
| 370.54             | 0.02           | 26980 <sup>k</sup>                                 | 26921                                               | -10                                        | 180                        | 160                      | ${}^{4}K(1)_{13/2}$           | +13/2                   | 17%         | 192                |
| 368 22             | 0.03           | 27150 <sup>k</sup>                                 | 20110                                               | 2                                          | 100                        | 140                      | ${}^{4}F(3)$                  | $\frac{-13/2}{+5/2}$    | 33%         | 103                |
| 367 55             | 0.02           | 27200 <sup>k</sup>                                 | 27152                                               | 5                                          | 1185 <sup>1</sup>          | 1205                     | ${}^{4}F(3)_{9/2}$            | +3/2                    | 44%         | 194                |
| 367.18             | 0.11           | 27200<br>27227 <sup>k</sup>                        | 27205                                               | 8                                          | 3300 <sup>l</sup>          | 3240                     | ${}^{4}D(2)$                  | $\frac{-3}{2}$<br>+3/2  | 31%         | 105                |
| 365.04             | 0.17           | 27227<br>27317 <sup>k</sup>                        | 27255                                               | -15                                        | 5130 <sup>1</sup>          | 4740                     | $\frac{D(2)_{3/2}}{4E(3)}$    | $\pm 3/2$<br>+ 1/2      | 37%         | 106                |
| 365.40             | 0.23           | 27363 <sup>k</sup>                                 | 27302                                               | 10                                         | $2420^{1}$                 | 3456                     | $6 \mathbf{p}$                | $\pm 1/2$<br>+ 1/2      | 56%         | 190                |
| 364 37             | 0.20           | 27303                                              | 27373                                               | -5                                         | 1400 <sup>l</sup>          | 720                      | <sup>6</sup> <b>D</b>         | $\pm 1/2$<br>+ 5/2      | 24%         | 108                |
| 363.7              | 0.14           | 27437<br>27400 <sup>k</sup>                        | 27432                                               | -5                                         | 5620 <sup>1</sup>          | 5733                     | 6 <b>D</b>                    | $\pm 3/2$<br>+ 3/2      | 2470        | 190                |
| 262.9              | 0.44           | 27490                                              | 27465                                               | 4                                          | 2440                       | 2221                     | 4D(2)                         | $\pm 3/2$<br>$\pm 1/2$  | 220/        | 200                |
| 262.7              | 0.40           | 27550 <sup>k</sup>                                 | 27555                                               | 4                                          | 2440<br>14400 <sup>l</sup> | 14240                    | $D(2)_{3/2}$                  | $\pm 1/2$<br>+ 5/2      | 33%<br>420/ | 200                |
| 262.7              | 0.43           | 27559<br>27579k                                    | 27505                                               | - 4                                        | 14400<br>1400 <sup>l</sup> | 14540                    | $F_{5/2}$                     | $\pm 5/2$<br>$\pm 5/2$  | 43%         | 201                |
| 259.2              | 0.14           | 27578<br>27002k                                    | 27374                                               | -4                                         | 200                        | 201                      | $F(3)_{9/2}$                  | $\pm 3/2$<br>$\pm 2/2$  | 10%<br>620/ | 202                |
| 256.2              | 0.04           | 27902<br>28014k                                    | 27890                                               | -0                                         | 200                        | 201                      | $\Pi(1)_{7/2}$                | - <u> </u>              | 03%         | 205                |
| 255 79             | 0.05           | 28014                                              | 27990                                               | -24                                        | 250<br>200 <sup>1</sup>    | 74<br>206                | $H(1)_{7/2}$                  | $\pm 3/2$<br>$\pm 7/2$  | 38%<br>510/ | 204                |
| 333.78<br>255 5    | 0.00           | 28100                                              | 28089                                               | -11                                        | 500                        | 500                      | $\Pi(1)_{7/2}$                | <u> </u>                | 520         | 205                |
| 355.5              | 0.06           | 28120 <sup>2</sup>                                 | 28108                                               | -18                                        | 450<br>120                 | 965                      | $^{-}H(1)_{7/2}$              | $\pm 1/2$               | 52%         | 206                |
| 352.2              | 0.03           | 28386"                                             | 28387                                               | l                                          | 130                        | 133                      | $K(1)_{15/2}$                 | $\pm 1/2$               | 50%         | 207                |
| 352.1              | 0.02           | 28390 <sup>12</sup>                                | 28398                                               | 8                                          | raal                       | 36                       | $K(1)_{15/2}$                 | $\pm 3/2$               | 44%         | 208                |
| 351.9              | 0.10           | 28410 <sup>k</sup>                                 | 28416                                               | 6                                          | 520 <sup>°</sup>           | 270                      | $K(1)_{15/2}$                 | ± 1/2                   | 54%         | 209                |
| 351.63             | 0.06           | 28431 <sup>k</sup>                                 | 28426                                               | -5                                         | 210 <sup>4</sup>           | 207                      | $K(1)_{15/2}$                 | $\pm 5/2$               | 26%         | 210                |
| 351.4              | 0.25           | 28450 <sup>k</sup>                                 | 28448                                               | -2                                         | 1260 <sup>-</sup>          | 350                      | $K(1)_{15/2}$                 | ±5/2                    | 26%         | 211                |
| 351.13             | 0.07           | 28470 <sup>k</sup>                                 | 28469                                               | -1                                         | 450 <sup>4</sup>           | 184                      | $K(1)_{15/2}$                 | $\pm 15/2$              | 64%         | 212                |
| 350.58             | 0.10           | 28516 <sup>k</sup>                                 | 28511                                               | -5                                         | 500 <sup>4</sup>           | 270                      | $K(1)_{15/2}$                 | $\pm 11/2$              | 26%         | 213                |
| 350.11             | 0.07           | 28554 <sup>×</sup>                                 | 28551                                               | -3                                         | 300                        | 350                      | $K(1)_{15/2}$                 | $\pm 13/2$              | 52%         | 214                |
| 349.39             | 0.16           | 28613 <sup>K</sup>                                 | 28604                                               | -9                                         | 1150 <sup>1</sup>          | 1133                     | <sup>o</sup> P <sub>7/2</sub> | $\pm 3/2$               | 17%         | 215                |
| 348.98             | 0.05           | 28647 <sup>k</sup>                                 | 28638                                               | -9                                         | 500 <sup>1</sup>           | 140                      | $H(1)_{9/2}$                  | $\pm 3/2$               | 44%         | 216                |
| 348.8              | 0.26           | 28664 <sup>ĸ</sup>                                 | 28662                                               | -2                                         | 560 <sup>1</sup>           | 558                      | ${}^{4}H(1)_{9/2}$            | $\pm 5/2$               | 25%         | 217                |
| 348.69             | 0.10           | 28672 <sup>ĸ</sup>                                 | 28672                                               | 0                                          | 340                        | 625                      | $^{+}H(1)_{9/2}$              | $\pm 9/2$               | 10%         | 218                |
| 348.47             | 0.40           | 28689 <sup>k</sup>                                 | 28694                                               | -5                                         | 3200 <sup>1</sup>          | 3380                     | °P <sub>7/2</sub>             | $\pm 5/2$               | 18%         | 219                |

| $\overline{\lambda \ (nm)^a}$ | I <sup>b</sup> | $E (\mathrm{cm}^{-1})_{\mathrm{obs}}^{\mathrm{c}}$ | $E (\mathrm{cm}^{-1})_{\mathrm{calc}}^{\mathrm{d}}$ | $\Delta E \ (\mathrm{cm}^{-1})^{\mathrm{e}}$ | $S_{\rm obs}{}^{\rm f}$ | $S_{\rm calc}^{\rm g}$ | $^{2S+1}L_J^{\text{h}}$             | $M_J^{i}$                | %   | Level <sup>j</sup> |
|-------------------------------|----------------|----------------------------------------------------|-----------------------------------------------------|----------------------------------------------|-------------------------|------------------------|-------------------------------------|--------------------------|-----|--------------------|
| 348.28                        | 0.38           | 28704 <sup>k</sup>                                 | 28705                                               | 1                                            | 3000 <sup>1</sup>       | 3047                   | <sup>6</sup> P <sub>7/2</sub>       | +1/2                     | 18% | 220                |
| 347.98                        | 0.21           | 28729 <sup>k</sup>                                 | 28739                                               | 10                                           | $4820^{1}$              | 4840                   | ${}^{6}P_{7/2}$                     | +1/2                     | 14% | 221                |
| 347.75                        | 0.10           | 28748 <sup>k</sup>                                 | 28746                                               | -2                                           | $1900^{1}$              | 1902                   | <sup>6</sup> P <sub>7/2</sub>       | +7/2                     | 29% | 222                |
| 347.43                        | 0.32           | 28775 <sup>k</sup>                                 | 28766                                               | _9                                           | $4525^{1}$              | 4538                   | ${}^{4}K(1)_{17/2}$                 | +15/2                    | 16% | 223                |
| 347.27                        | 0.17           | 28788 <sup>k</sup>                                 | 28794                                               | 6                                            | $1120^{1}$              | 1125                   | ${}^{4}K(1)_{17/2}$                 | +1/2                     | 21% | 224                |
| 347.0                         | 0.20           | 28810 <sup>k</sup>                                 | 28811                                               | 1                                            | $1240^{1}$              | 1240                   | ${}^{4}K(1)_{17/2}$                 | +15/2                    | 20% | 225                |
| 346.91                        | 0.98           | 28818 <sup>k</sup>                                 | 28831                                               | 13                                           | $10000^{1}$             | 9776                   | ${}^{6}P_{\pi}$                     | +3/2                     | 15% | 226                |
| 346.64                        | 0.14           | $28840^{k}$                                        | 28838                                               | -2                                           | $740^{1}$               | 850                    | ${}^{4}K(1)_{1772}$                 | $\frac{-3}{2}$<br>+1/2   | 19% | 220                |
| 346.48                        | 1.00           | 28853 <sup>k</sup>                                 | 28866                                               | 13                                           | $4840^{1}$              | 4107                   | ${}^{4}K(1)_{17/2}$                 | +17/2                    | 18% | 227                |
| 346.23                        | 0.55           | 28866 <sup>k</sup>                                 | 28877                                               | 11                                           | $1000^{1}$              | 923                    | ${}^{4}K(1)_{17/2}$                 | +17/2                    | 15% | 220                |
| 345.93                        | 0.55           | 28900 <sup>k</sup>                                 | 28895                                               | -5                                           | $1320^{1}$              | 460                    | ${}^{4}K(1)_{17/2}$                 | +13/2                    | 14% | 230                |
| 345.68                        | 0.70           | 28920 <sup>k</sup>                                 | 28919                                               | -1                                           | 140                     | 320                    | ${}^{4}H(1)_{11/2}$                 | +5/2                     | 23% | 231                |
| 345 37                        | 0.14           | 28946 <sup>k</sup>                                 | 28932                                               | -14                                          | 520                     | 360                    | ${}^{4}H(1)_{11/2}$                 | +11/2                    | 22% | 232                |
| 345.2                         | 0.11           | 28960 <sup>k</sup>                                 | 28973                                               | 13                                           | $1625^{1}$              | 1860                   | ${}^{6}P_{7/2}$                     | +1/2                     | 19% | 233                |
| 344.93                        | 0.11           | 28983 <sup>k</sup>                                 | 28982                                               | -1                                           | $620^{1}$               | 346                    | ${}^{4}H(1)_{11/2}$                 | +7/2                     | 15% | 234                |
| 344.6                         | 0.05           | $29011^{k}$                                        | 29022                                               | 11                                           | 310                     | 220                    | <sup>4</sup> <i>L</i> <sub>10</sub> | +13/2                    | 14% | 235                |
| 344.43                        | 0.00           | $29025^{k}$                                        | 29022                                               | -1                                           | $740^{1}$               | 106                    | ${}^{4}H(1)$                        | +9/2                     | 15% | 236                |
| 344.22                        | 0.10           | 29043 <sup>k</sup>                                 | 29048                                               | 5                                            | 300                     | 216                    | ${}^{4}L_{10/2}$                    | +19/2                    | 17% | 237                |
| 344.0                         | 0.03           | 29060 <sup>k</sup>                                 | 29057                                               | -3                                           | 260                     | 340                    | ${}^{4}I_{19/2}$                    | $\pm 19/2$<br>$\pm 19/2$ | 13% | 238                |
| 343.9                         | 0.03           | 29069 <sup>k</sup>                                 | 29066                                               | -3                                           | 240                     | 120                    | ${}^{4}H(1)$                        | +1/2                     | 24% | 239                |
| 343.5                         | 0.02           | 29104                                              | 29116                                               | 12                                           | 210                     | 130                    | ${}^{4}L_{10/2}$                    | +3/2                     | 12% | 240                |
| 343.2                         | 0.02           | 29129 <sup>k</sup>                                 | 29127                                               | -2                                           | $420^{1}$               | 676                    | ${}^{4}K(1)_{17/2}$                 | +5/2                     | 12% | 241                |
| 342.9                         | 0.03           | 29155 <sup>k</sup>                                 | 29163                                               | 8                                            | 320                     | 183                    | ${}^{4}K(1)_{17/2}$                 | +9/2                     | 16% | 241                |
| 342.4                         | 0.02           | 29197 <sup>k</sup>                                 | 29191                                               | -6                                           | 520                     | 68                     | ${}^{4}L_{10/2}$                    | +17/2                    | 28% | 242                |
| 341.78                        | 0.02           | 29250 <sup>k</sup>                                 | 29247                                               | -3                                           |                         | 183                    | ${}^{4}L_{10/2}$                    | +17/2                    | 13% | 244                |
| 341.6                         | 0.01           | 29266                                              | 29251                                               | -15                                          |                         | 47                     | ${}^{4}H(1)_{12/2}$                 | +3/2                     | 24% | 245                |
| 341.21                        | 0.01           | 29299                                              | 29282                                               | -17                                          |                         | 42                     | ${}^{4}H(1)_{13/2}$                 | +5/2                     | 35% | 246                |
| 340.2                         | 0.03           | 29386 <sup>k</sup>                                 | 29388                                               | 2                                            | 85                      | 67                     | ${}^{4}H(1)_{13/2}$                 | +7/2                     | 24% | 247                |
| 340.1                         | 0.03           | 29395 <sup>k</sup>                                 | 29392                                               | -3                                           | 85                      | 63                     | ${}^{4}H(1)_{13/2}$                 | +13/2                    | 44% | 248                |
| 339.7                         | 0.03           | 29429                                              | 29430                                               | 1                                            | 85                      | 122                    | ${}^{4}H(1)_{13/2}$                 | +3/2                     | 36% | 249                |
| 339.4                         | 0.01           | 29455                                              | 29454                                               | -1                                           | 50                      | 15                     | ${}^{4}H(1)_{12/2}$                 | +9/2                     | 26% | 250                |
| 339.02                        | 0.04           | 29488 <sup>k</sup>                                 | 29488                                               | 0                                            | $325^{1}$               | 198                    | ${}^{4}H(1)_{12/2}$                 | $\pm 1/2$                | 30% | 251                |
| 338.9                         | 0.03           | 29500 <sup>k</sup>                                 | 29492                                               | -8                                           | $310^{1}$               | 274                    | ${}^{4}L_{10/2}$                    | $\pm 1/2$                | 16% | 252                |
| 338.4                         | 0.03           | $29542^{k}$                                        | 29540                                               | -2                                           | 150                     | 126                    | ${}^{4}H(1)_{12/2}$                 | $\pm 11/2$               | 21% | 253                |
| 338.29                        | 0.02           | 29552 <sup>k</sup>                                 | 29551                                               | -1                                           |                         | 134                    | ${}^{4}H(1)_{12/2}$                 | $\pm 11/2$               | 26% | 254                |
| 337.83                        | 0.03           | 29592 <sup>k</sup>                                 | 29584                                               | -8                                           | 100                     | 100                    | ${}^{4}L_{19/2}$                    | $\pm 15/2$               | 31% | 255                |
| 337.14                        | 0.04           | 29653 <sup>k</sup>                                 | 29653                                               | 0                                            | 325 <sup>1</sup>        | 337                    | ${}^{4}G(2)_{7/2}$                  | $\pm 7/2$                | 25% | 256                |
| 335.47                        | 0.03           | 29800                                              | 29793                                               | -7                                           | 200                     | 307                    | ${}^{4}G(2)_{7/2}$                  | $\pm 7/2$                | 28% | 257                |
| 335.08                        | 0.02           | 29835                                              | 29839                                               | 4                                            | 200                     | 228                    | ${}^{4}G(2)_{7/2}$                  | $\pm 3/2$                | 55% | 258                |
| 334.8                         | 0.05           | 29860 <sup>k</sup>                                 | 29864                                               | 4                                            | $420^{1}$               | 161                    | ${}^{4}G(2)_{9/2}$                  | $\pm 7/2$                | 29% | 259                |
| 334.58                        | 0.16           | $29880^{k}$                                        | 29886                                               | 6                                            | 195                     | 386                    | ${}^{4}G(2)_{7/2}$                  | $\pm 5/2$                | 22% | 260                |
| 334.15                        | 0.08           | 29918 <sup>k</sup>                                 | 29898                                               | -20                                          | $420^{1}$               | 151                    | ${}^{4}G(2)_{5/2}$                  | $\pm 5/2$                | 20% | 261                |
| 333.68                        | 0.02           | 29960 <sup>k</sup>                                 | 29962                                               | 2                                            |                         | 18                     | ${}^{4}G(2)_{7/2}$                  | $\pm 1/2$                | 25% | 262                |
| 333.24                        | 0.01           | 30000                                              | 30014                                               | 14                                           |                         | 133                    | ${}^{4}G(2)_{9/2}$                  | $\pm 1/2$                | 26% | 263                |
| 333.04                        | 0.01           | 30018                                              | 30030                                               | 12                                           |                         | 6                      | ${}^{4}G(2)_{9/2}$                  | $\pm 5/2$                | 30% | 264                |
| 331.98                        | 0.06           | 30114 <sup>k</sup>                                 | 30089                                               | -25                                          | $225^{1}$               | 236                    | ${}^{4}G(2)_{5/2}$                  | $\pm 1/2$                | 43% | 265                |
| 330.2                         | 0.04           | 30276 <sup>k</sup>                                 | 30272                                               | -4                                           | 150                     | 55                     | ${}^{4}G(2)_{5/2}$                  | $\pm 5/2$                | 31% | 266                |
| 329.4                         | 0.25           | 30350 <sup>k</sup>                                 | 30347                                               | -3                                           | $460^{1}$               | 193                    | ${}^{4}G(2)_{5/2}$                  | $\pm 1/2$                | 37% | 267                |
| 324.22                        | 0.05           | 30834 <sup>k</sup>                                 | 30838                                               | 4                                            | 200                     | 111                    | ${}^{2}L(3)_{15/2}$                 | $\pm 15/2$               | 43% | 268                |
| 323.74                        | 0.03           | 30880 <sup>k</sup>                                 | 30884                                               | 4                                            | 50                      | 100                    | $^{2}L(3)_{15/2}$                   | $\pm 1/2$                | 29% | 269                |
| 323.34                        | 0.01           | 30918                                              | 30921                                               | 3                                            |                         | 5                      | ${}^{2}L(3)_{15/2}$                 | $\pm 9/2$                | 61% | 270                |
| 322.12                        | 0.02           | 31035 <sup>k</sup>                                 | 31029                                               | -6                                           |                         | 45                     | $^{2}L(3)_{15/2}$                   | $\pm 7/2$                | 51% | 271                |
| 321.8                         | 0.03           | 31066 <sup>k</sup>                                 | 31089                                               | 23                                           | 150                     | 161                    | ${}^{4}P(2)_{1/2}$                  | $\pm 1/2$                | 77% | 272                |
| 321.23                        | 0.04           | 31121 <sup>k</sup>                                 | 31122                                               | 1                                            | 260 <sup>1</sup>        | 284                    | ${}^{4}G(2)_{11/2}$                 | $\pm 9/2$                | 28% | 273                |
| 320.94                        | 0.04           | 31149 <sup>k</sup>                                 | 31150                                               | 1                                            | 290 <sup>1</sup>        | 329                    | ${}^{4}_{2}G(2)_{11/2}$             | $\pm 9/2$                | 40% | 274                |
| 320.5                         | 0.15           | 31192 <sup>k</sup>                                 | 31191                                               | -1                                           | 850 <sup>1</sup>        | 724                    | $^{3}L(3)_{15/2}$                   | $\pm 5/2$                | 20% | 275                |
| 320.35                        | 0.02           | 31207 <sup>K</sup>                                 | 31207                                               | 0                                            |                         | 72                     | ${}^{4}G(2)_{11/2}$                 | $\pm 7/2$                | 31% | 276                |
| 319.98                        | 0.02           | 31243 <sup>к</sup>                                 | 31242                                               | -1                                           | a c -1                  | 65                     | $G(2)_{11/2}$                       | $\pm 11/2$               | 45% | 277                |
| 319.83                        | 0.35           | 31258 <sup>k</sup>                                 | 31263                                               | 5                                            | 200                     | 155                    | $^{2}L(3)_{15/2}$                   | $\pm 13/2$               | 20% | 278                |
| 319.45                        | 0.04           | 31295 <sup>k</sup>                                 | 31309                                               | 14                                           | 1600                    | 1536                   | $G(2)_{11/2}$                       | $\pm 1/2$                | 44% | 279                |
| 319.12                        | 0.04           | 31327*                                             | 31334                                               | 7                                            | 175                     | 155                    | $G(2)_{11/2}$                       | $\pm 3/2$                | 28% | 280                |
| 317.74                        | 0.07           | 31464 <sup>k</sup>                                 | 31464                                               | 0                                            | 425                     | 156                    | $L(3)_{15/2}$                       | $\pm 1/2$                | 20% | 281                |
| 317.54                        | 0.04           | 31483                                              | 31475                                               | -8                                           | 250                     | 50                     | $L(3)_{15/1}$                       | $\pm 11/2$               | 23% | 282                |
| 310.8                         | 0.19           | 3155/*                                             | 31545                                               | -12                                          | 1000                    | 935                    | $G(2)_{11/2}$                       | $\pm 1/2$                | 57% | 283                |
| 313.05                        | 0.24           | 31031<br>22525 <sup>k</sup>                        | 31024                                               | - /<br>1 4                                   | 1085                    | 1/45                   | $P(2)_{3/2}$                        | 工 1/2<br>土 1/2           | 48% | 284                |
| 307.07                        | 0.07           | 32525"<br>2250.4k                                  | 32521                                               | -14                                          | 1/5                     | 185                    | $P(2)_{5/2}$                        | ± 1/2                    | 45% | 285                |
| 306.02                        | 0.61           | 52594 <sup>**</sup>                                | 32586                                               | -8                                           | 16/5                    | 1825                   | $P(2)_{5/2}$                        | $\pm 3/2$                | 36% | 286                |

TABLE I. (Continued).

| $\frac{1}{\lambda (nm)^a}$ | I <sup>b</sup> | $E (\mathrm{cm}^{-1})_{\mathrm{obs}}^{\mathrm{c}}$ | $E (\mathrm{cm}^{-1})_{\mathrm{calc}}^{\mathrm{d}}$ | $\Delta E \ (\mathrm{cm}^{-1})^{\mathrm{e}}$ | $S_{\rm obs}{}^{\rm f}$ | $S_{\rm calc}^{\rm g}$ | $^{2S+1}L_J^{\text{h}}$ | $M_J^{i}$  | %   | Level <sup>j</sup> |
|----------------------------|----------------|----------------------------------------------------|-----------------------------------------------------|----------------------------------------------|-------------------------|------------------------|-------------------------|------------|-----|--------------------|
| 305.82                     | 0.31           | 32647 <sup>k</sup>                                 | 32630                                               | -17                                          | 925 <sup>1</sup>        | 972                    | ${}^{4}P(2)_{5/2}$      | $\pm 1/2$  | 44% | 287                |
| 301.92                     | 0.04           | 33112 <sup>k</sup>                                 | 33102                                               | -10                                          | 225                     | 60                     | ${}^{2}F(5)_{5/2}$      | $\pm 1/2$  | 40% | 288                |
| 301.2                      | 0.04           | 33191 <sup>k</sup>                                 | 33217                                               | 26                                           | 240                     | 82                     | $^{2}K(5)_{13/2}$       | $\pm 1/2$  | 22% | 289                |
| 300.75                     | 0.02           | 33241                                              | 33261                                               | 20                                           |                         | 34                     | ${}^{2}K(5)_{13/2}$     | $\pm 13/2$ | 29% | 290                |
| 300.5                      | 0.03           | 33268 <sup>k</sup>                                 | 33268                                               | 0                                            | 100                     | 64                     | ${}^{2}K(5)_{13/2}$     | $\pm 9/2$  | 24% | 291                |
| 298.67                     | 0.03           | 33472 <sup>k</sup>                                 | 33471                                               | -1                                           | 100                     | 45                     | ${}^{4}F(2)_{5/2}$      | $\pm 9/2$  | 61% | 292                |
| 298.42                     | 0.10           | $33500^{k}$                                        | 33509                                               | 9                                            | $280^{1}$               | 265                    | ${}^{2}K(5)_{12/2}$     | $\pm 3/2$  | 22% | 293                |
| 298.33                     | 0.03           | 33510 <sup>k</sup>                                 | 33524                                               | 14                                           | 90                      | 24                     | ${}^{2}K(5)_{13/2}$     | $\pm 3/2$  | 22% | 294                |
| 297.95                     | 0.03           | 33553 <sup>k</sup>                                 | 33566                                               | 13                                           | 90                      | 66                     | ${}^{4}F(2)_{5/2}$      | $\pm 7/2$  | 42% | 295                |
| 297.45                     | 0.02           | 33609 <sup>k</sup>                                 | 33604                                               | -5                                           |                         | 5                      | ${}^{4}F(2)_{5/2}$      | +1/2       | 53% | 296                |
| 297.15                     | 0.02           | 33643 <sup>k</sup>                                 | 33639                                               | $-4^{-2}$                                    |                         | 11                     | ${}^{4}F(2)_{5/2}$      | +7/2       | 29% | 297                |
| 296.95                     | 0.01           | 33666 <sup>k</sup>                                 | 33656                                               | $-10^{-10}$                                  |                         | 52                     | ${}^{4}F(2)_{5/2}$      | +5/2       | 37% | 298                |
| 296.8                      | 0.01           | 33683 <sup>k</sup>                                 | 33670                                               | -13                                          |                         | 34                     | ${}^{2}K(5)_{12/2}$     | +11/2      | 25% | 299                |
| 296.25                     | 0.01           | 33745                                              | 33726                                               | -19                                          |                         | 9                      | ${}^{2}K(5)_{13/2}$     | +11/2      | 35% | 300                |
| 295.88                     | 0.03           | 33788 <sup>k</sup>                                 | 33779                                               | -9                                           | 100                     | 54                     | ${}^{2}F(5)_{5/2}$      | +3/2       | 21% | 301                |
| 295 25                     | 0.03           | 33861 <sup>k</sup>                                 | 33851                                               | -10                                          | 70                      | 37                     | ${}^{2}L(3)_{17/2}$     | +9/2       | 24% | 302                |
| 295.16                     | 0.01           | 33870                                              | 33855                                               | -15                                          | 63                      | 81                     | ${}^{2}L(3)_{17/2}$     | +17/2      | 22% | 303                |
| 294.56                     | 0.03           | 33939 <sup>k</sup>                                 | 33929                                               | -10                                          | 15                      | 22                     | ${}^{2}L(3)_{17/2}$     | $\pm 7/2$  | 22% | 304                |
| 294.58                     | 0.01           | 33936                                              | 33932                                               | -4                                           |                         | 15                     | $\frac{4}{4}I(2)_{0/2}$ | $\pm 9/2$  | 31% | 305                |
| 294.2                      | 0.01           | 33980                                              | 33974                                               | -6                                           |                         | 1                      | ${}^{2}L(3)_{17/2}$     | $\pm 9/2$  | 20% | 306                |
| 294.18                     | 0.02           | 33983 <sup>k</sup>                                 | 33979                                               | -4                                           |                         | 37                     | ${}^{2}L(3)_{17/2}$     | $\pm 11/2$ | 34% | 307                |
| 293.9                      | 0.01           | 34015                                              | 34016                                               | -1                                           |                         | 5                      | ${}^{2}L(3)_{17/2}$     | +9/2       | 22% | 308                |
| 293.7                      | 0.01           | 34038                                              | 34039                                               | 1                                            |                         | 5                      | ${}^{2}L(3)_{17/2}$     | +9/2       | 22% | 309                |
| 293.3                      | 0.03           | $34085^{k}$                                        | 34085                                               | 0                                            | $60^{1}$                | 89                     | ${}^{4}L(2)_{0/2}$      | +3/2       | 29% | 310                |
| 292.83                     | 0.02           | $34140^{k}$                                        | 34144                                               | 4                                            | 00                      | 17                     | ${}^{2}L(3)_{17/2}$     | +13/2      | 27% | 311                |
| 292.7                      | 0.01           | 31455                                              | 34149                                               | -6                                           |                         | 3                      | ${}^{2}L(3)_{17/2}$     | $\pm 3/2$  | 40% | 312                |
| 292.57                     | 0.01           | 34170 <sup>k</sup>                                 | 34170                                               | 0                                            |                         | 2                      | ${}^{2}L(3)_{17/2}$     | $\pm 15/2$ | 58% | 313                |
| 292.4                      | 0.01           | 34190                                              | 34198                                               | 8                                            |                         | 2                      | ${}^{2}L(3)_{17/2}$     | $\pm 1/2$  | 32% | 314                |
| 291.71                     | 0.04           | 34271 <sup>k</sup>                                 | 34287                                               | 7                                            | 100                     | 120                    | ${}^{4}I(2)_{9/2}$      | $\pm 5/2$  | 39% | 315                |
| 291.5                      | 0.04           | 34295 <sup>k</sup>                                 | 34297                                               | 2                                            | 100                     | 79                     | ${}^{4}I(2)_{9/2}$      | $\pm 3/2$  | 39% | 316                |
| 285.63                     | 0.01           | 35000 <sup>k</sup>                                 | 35003                                               | 3                                            |                         | 4                      | $^{2}N_{19/2}$          | $\pm 17/2$ | 86% | 317                |
| 285.55                     | 0.01           | 35010                                              | 35008                                               | -2                                           |                         | 3                      | ${}^{2}N_{19/2}$        | $\pm 19/2$ | 64% | 318                |
| 284.65                     | 0.01           | 35120 <sup>k</sup>                                 | 35111                                               | -9                                           |                         | 10                     | ${}^{2}N_{19/2}$        | $\pm 15/2$ | 60% | 319                |
| 284.5                      | 0.01           | 35139                                              | 35151                                               | 12                                           |                         | 4                      | ${}^{2}N_{19/2}$        | $\pm 13/2$ | 41% | 320                |
| 284.27                     | 0.01           | 35167 <sup>k</sup>                                 | 35165                                               | -2                                           |                         | 31                     | ${}^{2}N_{19/2}$        | $\pm 11/2$ | 32% | 321                |
| 284.1                      | 0.01           | 35188                                              | 35182                                               | -6                                           |                         | 10                     | ${}^{2}N_{19/2}$        | $\pm 9/2$  | 42% | 322                |
| 284.01                     | 0.01           | 35200                                              | 35196                                               | -4                                           |                         | 13                     | ${}^{2}N_{19/2}$        | $\pm 7/2$  | 31% | 323                |
| 283.87                     | 0.06           | 35217 <sup>k</sup>                                 | 35214                                               | -3                                           | 165                     | 103                    | ${}^{4}F(2)_{7/2}$      | $\pm 3/2$  | 34% | 324                |
| 283.81                     | 0.01           | 35225 <sup>k</sup>                                 | 35221                                               | -4                                           |                         | 10                     | $^{2}N_{19/2}$          | $\pm 1/2$  | 21% | 325                |
| 283.52                     | 0.01           | 35260                                              | 35251                                               | -9                                           |                         | 4                      | $^{2}N_{19/2}$          | $\pm 3/2$  | 25% | 326                |
| 283.48                     | 0.06           | 35264 <sup>k</sup>                                 | 35257                                               | -7                                           | $170^{1}$               | 187                    | ${}^{4}F(2)_{7/2}$      | $\pm 3/2$  | 28% | 327                |
| 283.36                     | 0.03           | 35280 <sup>k</sup>                                 | 35274                                               | -6                                           | 23                      | 35                     | ${}^{4}F(2)_{7/2}$      | $\pm 7/2$  | 18% | 328                |
| 282.96                     | 0.03           | 35330 <sup>k</sup>                                 | 35333                                               | 3                                            | 23                      | 59                     | ${}^{4}I(2)_{11/2}$     | $\pm 11/2$ | 44% | 329                |
| 282.52                     | 0.03           | 35385 <sup>k</sup>                                 | 35391                                               | 6                                            | 49                      | 85                     | ${}^{4}I(2)_{11/2}$     | $\pm 9/2$  | 47% | 330                |
| 282.08                     | 0.01           | 35440 <sup>k</sup>                                 | 35432                                               | -8                                           |                         | 20                     | ${}^{4}F(2)_{7/2}$      | $\pm 5/2$  | 64% | 331                |
| 281.93                     | 0.01           | 35459                                              | 35454                                               | -5                                           |                         | 18                     | ${}^{4}F(2)_{7/2}$      | $\pm 1/2$  | 55% | 332                |
| 281.8                      | 0.02           | 35475 <sup>k</sup>                                 | 35473                                               | -2                                           |                         | 59                     | ${}^{4}I(2)_{11/2}$     | $\pm 1/2$  | 34% | 333                |
| 281.21                     | 0.05           | 35550 <sup>k</sup>                                 | 35558                                               | 8                                            | 170 <sup>1</sup>        | 201                    | $^{2}P(4)_{1/2}$        | $\pm 1/2$  | 94% | 334                |
| 281.1                      | 0.10           | 35564 <sup>k</sup>                                 | 35570                                               | 6                                            | 825 <sup>1</sup>        | 1294                   | ${}^{4}I(2)_{11/2}$     | $\pm 7/2$  | 31% | 335                |
| 280.66                     | 0.03           | 35620 <sup>к</sup>                                 | 35622                                               | 2                                            | 123                     | 76                     | $^{4}I(2)_{11/2}$       | $\pm 5/2$  | 48% | 336                |

TABLE I. (Continued).

<sup>a</sup>Wavelength in nanometers; spectrum obtained at sample temperature 3.8 K.

<sup>b</sup>Absorbance units; sample thickness, 0.35 cm;  $\text{Sm}^{3+}$  concentration,  $3.4 \times 10^{18}$  ions/cm<sup>3</sup>.

<sup>c</sup>Experimental energy in vacuum wave numbers.

<sup>d</sup>Calculated energy in vacuum wave numbers using parameters reported in Table III col. 2.

<sup>e</sup>Difference in energy,  $E_{\text{calc}} - E_{\text{obs}}$  in cm<sup>-1</sup>.

<sup>g</sup>Calculated absorption line strength in units of  $10^{-8}D^2$  using parameters reported in Table IV, col. 3.

<sup>h</sup>Multiplet label for which the largest percent  $M_J$  contribution is given in footnote i.

<sup>i</sup>Largest percent  $M_J$  contribution to the wave function for the designated Stark level.

<sup>j</sup>Stark level beginning with the ground-state Stark level in  ${}^{6}H_{5/2}$  as the first (1) level.

<sup>k</sup>Levels used in fitting calculated-to-observed energy levels.

<sup>1</sup>Levels selected for line strength analysis.

<sup>&</sup>lt;sup>f</sup>Observed transition line strength,  $S_{1\to n}$  from level one to excited levels *n*, in units of  $10^{-8}$  debye squared ( $D^2$ , Ref. 25); refractive index correction at wavelength of transition is also given in Ref. 25.



FIG. 3. Absorption spectrum of the  ${}^{4}G(4)_{7/2}$  manifold obtained at 3.8 K.

$$\hat{H} = \hat{H}_a + \hat{H}_{cf} + \hat{H}_{ccf}, \qquad (1)$$

where  $\hat{H}_a$  represents the isotropic terms in the atomic Hamiltonian, including the spherically symmetric parts of the 4f-electron crystal-field interactions,  $\hat{H}_{cf}$  represents the non-spherically symmetric terms of the one-electron crystal-field interactions, and  $\hat{H}_{ccf}$  incorporates two-electron correlation-crystal-field (ccf) interactions into the Hamiltonian.<sup>7,8</sup> The terms in  $\hat{H}_a$  include,

$$\hat{H}_{a} = \langle E \rangle + \sum_{k} F^{k} \hat{f}_{k} + \alpha \hat{L} (\hat{L} + 1) + \beta \hat{G} (G_{2}) + \gamma \hat{G} (R_{7})$$

$$+ \sum_{i} T^{i} \hat{t}_{i} + \zeta_{\text{s.o.}} \hat{A}_{\text{s.o.}} + \sum_{k} P^{k} \hat{p}_{k} + \sum_{j} M^{j} \hat{m}_{j}, \qquad (2)$$

where k=2,4,6; i=2,3,4,6,7,8; j=0,2,4; and the operators  $(\hat{o})$  and their associated parameters are expressed in conventional notation with respect to the interactions they represent.<sup>15–18</sup>

The one-electron crystal-field Hamiltonian is expressed as

$$\hat{H}_{cf} = \sum_{k,q} B_q^k \hat{C}_q^{(k)},$$
 (3)

where k = 2,4,6 (with  $|q| \le k$ ),  $\hat{C}_q^{(k)}$  is an intraconfigurational spherical-tensor operator of rank *k* and order *q*, and the  $B_q^k$  represent one-electron crystal-field-splitting parameters with  $B_{-q}^k = (-1)^q B_q^k$ . In  $D_2$  symmetry there are nine independent  $B_q^k$  parameters which we adjust to give the best overall agreement between the calculated and observed crystal-field splitting.<sup>18</sup>

The third term in Eq. (1) includes contributions attributable to differences in the crystal field as seen by 4f electrons with different spins relative to the direction of the total spin of the electrons in the configuration.<sup>19–22</sup> Called the correlation crystal field (ccf), its Hamiltonian is expressed as

$$\hat{H}_{\rm ccf} = \sum_{k,i,q} G_{iq}^k \hat{g}_{iq}^{(k)}, \qquad (4)$$

where k = 0,2,4,6,8,10,12. The sum over *i* distinguishes different operators and parameters with identical *k*, and q = 0,  $\pm 2, \pm 4, \pm 6$ ,  $|q| \le k$ . The  $G_{iq}^k$  terms are adjustable

parameters.<sup>8,20,21</sup> When Eq. (4) is included in the total Hamiltonian given in Eq. (1), some of the interaction terms disappear as they are already represented in either Eq. (2) or Eq. (3). The Hamiltonian given in Eq. (1) was diagonalized within the complete  $SLJM_J$  basis set of the  $4f^5$  electronic configuration that includes 73 *LS* states, 198  $^{2S+1}L_J$  multiplets, and 1001 Stark levels. Since Sm<sup>3+</sup> is a Kramers ion, each Stark level is twofold degenerate in sites of  $D_2$  symmetry.

#### **IV. ANALYSIS OF ENERGY LEVELS**

To check the results obtained from the diagonalization of the complete energy matrix, we first calculated the splitting of the  ${}^{6}H_{J}$  and  ${}^{6}F_{J}$  multiplet manifolds using the final set of  $B_{q}^{k}$  parameters obtained from Ref. 2. The results were compared with the experimental Stark levels reported by Gruber *et al.*<sup>1</sup> listed as levels 1 through 54 in Table II. Level 55 represents the lowest-energy Stark level of  ${}^{4}G(4)_{5/2}$  (17 597 cm<sup>-1</sup>), which is the first entry in Table I. Without performing any least-squares fitting between the calculated and experimental levels, we obtain a rms deviation within the value quoted in Ref. 2.

The same  $B_q^k$  parameters were then used as a starting set to calculate the splitting of the multiplet manifolds appearing in Table I. The experimental levels given in Table II were also included in this fitting. We chose reasonably isolated multiplet manifolds between 17 600 and 25 000 cm<sup>-1</sup> such as  ${}^4G(4)_{5/2}$ ,  ${}^4F(3)_{3/2}$ ,  ${}^4G(4)_{7/2}$ ,  ${}^4I(3)_{13/2}$ ,  ${}^4M_{17/2}$ ,  ${}^4I(3)_{15/2}$ ,  ${}^4G(4)_{9/2}$ ,  ${}^6P_{5/2}$ ,  ${}^4L(4)_{13/2}$ , and  ${}^6P_{3/2}$  for a leastsquares fitting between calculated-to-experimental Stark levels. This analysis was then extended to include reasonably isolated multiplet manifolds having energies up to 35 000 cm<sup>-1</sup>.

Since the entire energy matrix is diagonalized with adjustable atomic and crystal-field parameters, we avoid arbitrary adjustment of multiplet manifold centers of gravity (centroids). Thus, we avoid the truncation errors present in earlier crystal-field-splitting calculations for Sm<sup>3+</sup> in host crystals.<sup>2,14</sup> We are able to extend the analysis to numerous multiplets where the crystal-field mixing is so large that the



FIG. 4. Absorption spectrum of the  ${}^{4}P(2)_{5/2}$  manifold obtained at 3.8 K.

TABLE II. Energy levels of the sextet states,  ${}^{6}H_{J}$  and  ${}^{6}F_{J}$  in Sm<sup>3+</sup>:YAG.

| Level <sup>a</sup> | $E (\mathrm{cm}^{-1})_{\mathrm{obs}}^{\mathrm{b}}$ | $E (\mathrm{cm}^{-1})_{\mathrm{calc}}^{\mathrm{c}}$ | $^{2S+1}L_J^{d}$ | $M_J$ ,    | % <sup>e</sup> | Level <sup>a</sup> | $E (\mathrm{cm}^{-1})_{\mathrm{obs}}^{\mathbf{b}}$ | $E (\mathrm{cm}^{-1})_{\mathrm{calc}}^{\mathbf{c}}$ | $^{2S+1}L_J^{d}$              | $M_J$ ,    | % <sup>e</sup> |
|--------------------|----------------------------------------------------|-----------------------------------------------------|------------------|------------|----------------|--------------------|----------------------------------------------------|-----------------------------------------------------|-------------------------------|------------|----------------|
| 1                  | 0                                                  | -23                                                 | ${}^{6}H_{5/2}$  | $\pm 1/2$  | 74%            | 28                 | 6343                                               | 6348                                                | ${}^{6}H_{15/2}$              | $\pm 11/2$ | 38%            |
| 2                  | 145                                                | 159                                                 | ${}^{6}H_{5/2}$  | $\pm 3/2$  | 67%            | 29                 | 6561                                               | 6572                                                | ${}^{6}F_{1/2}$               | $\pm 1/2$  | 84%            |
| 3                  | 247                                                | 232                                                 | ${}^{6}H_{5/2}$  | $\pm 5/2$  | 72%            | 30                 | 6699                                               | 6705                                                | ${}^{6}H_{15/2}$              | $\pm 3/2$  | 40%            |
| 4                  | 1017                                               | 998                                                 | ${}^{6}H_{7/2}$  | $\pm 3/2$  | 73%            | 31                 | 6722                                               | 6732                                                | ${}^{6}F_{3/2}$               | $\pm 1/2$  | 57%            |
| 5                  | 1239                                               | 1228                                                | ${}^{6}H_{7/2}$  | $\pm 7/2$  | 30%            | 32                 | 6751                                               | 6782                                                | <sup>6</sup> F <sub>3/2</sub> | $\pm 3/2$  | 53%            |
| 6                  | 1368                                               | 1366                                                | ${}^{6}H_{7/2}$  | $\pm 7/2$  | 52%            | 33                 | 6840                                               | 6842                                                | ${}^{6}H_{15/2}$              | $\pm 13/2$ | 15%            |
| 7                  | 1412                                               | 1412                                                | ${}^{6}H_{7/2}$  | $\pm 5/2$  | 63%            | 34                 | 6904                                               | 6898                                                | ${}^{6}H_{15/2}$              | $\pm 7/2$  | 43%            |
| 8                  | 2248                                               | 2223                                                | ${}^{6}H_{9/2}$  | $\pm 5/2$  | 57%            | 35                 | 6940                                               | 6946                                                | ${}^{6}H_{15/2}$              | $\pm 9/2$  | 44%            |
| 9                  | 2395                                               | 2390                                                | ${}^{6}H_{9/2}$  | $\pm 3/2$  | 38%            | 36                 | 6973                                               | 6986                                                | ${}^{6}H_{15/2}$              | $\pm 15/2$ | 44%            |
| 10                 | 2461                                               | 2449                                                | ${}^{6}H_{9/2}$  | $\pm 9/2$  | 47%            | 37                 | 7268                                               | 7260                                                | <sup>6</sup> F <sub>5/2</sub> | $\pm 1/2$  | 45%            |
| 11                 | 2565                                               | 2559                                                | ${}^{6}H_{9/2}$  | $\pm 1/2$  | 33%            | 38                 | 7378                                               | 7361                                                | <sup>6</sup> F <sub>5/2</sub> | $\pm 3/2$  | 61%            |
| 12                 | 2611                                               | 2619                                                | ${}^{6}H_{9/2}$  | $\pm 7/2$  | 47%            | 39                 | 7416                                               | 7413                                                | <sup>6</sup> F <sub>5/2</sub> | $\pm 1/2$  | 41%            |
| 13                 | 3550                                               | 3548                                                | ${}^{6}H_{11/2}$ | $\pm 5/2$  | 43%            | 40                 | 8104                                               | 8111                                                | ${}^{6}F_{7/2}$               | $\pm 1/2$  | 36%            |
| 14                 | 3641                                               | 3626                                                | ${}^{6}H_{11/2}$ | $\pm 7/2$  | 58%            | 41                 | 8115                                               | 8132                                                | ${}^{6}F_{7/2}$               | $\pm 5/2$  | 44%            |
| 15                 | 3756                                               | 3754                                                | ${}^{6}H_{11/2}$ | $\pm 1/2$  | 39%            | 42                 | 8148                                               | 8139                                                | ${}^{6}F_{7/2}$               | $\pm 1/2$  | 45%            |
| 16                 | 3820                                               | 3821                                                | ${}^{6}H_{11/2}$ | $\pm 1/2$  | 31%            | 43                 | 8262                                               | 8283                                                | ${}^{6}F_{7/2}$               | $\pm 3/2$  | 49%            |
| 17                 | 3870                                               | 3866                                                | ${}^{6}H_{11/2}$ | $\pm 11/2$ | 31%            | 44                 | 9264                                               | 9265                                                | ${}^{6}F_{9/2}$               | $\pm 5/2$  | 62%            |
| 18                 | 3944                                               | 3953                                                | ${}^{6}H_{11/2}$ | $\pm 9/2$  | 56%            | 45                 | 9294                                               | 9289                                                | ${}^{6}F_{9/2}$               | $\pm 3/2$  | 43%            |
| 19                 | 4864                                               | 4868                                                | ${}^{6}H_{13/2}$ | $\pm 1/2$  | 27%            | 46                 | 9317                                               | 9314                                                | ${}^{6}F_{9/2}$               | $\pm 9/2$  | 82%            |
| 20                 | 4981                                               | 4985                                                | ${}^{6}H_{13/2}$ | $\pm 9/2$  | 36%            | 47                 | 9361                                               | 9356                                                | ${}^{6}F_{9/2}$               | $\pm 7/2$  | 68%            |
| 21                 | 5060                                               | 5057                                                | ${}^{6}H_{13/2}$ | $\pm 7/2$  | 30%            | 48                 | 9385                                               | 9389                                                | ${}^{6}F_{9/2}$               | $\pm 1/2$  | 50%            |
| 22                 | 5175                                               | 5179                                                | ${}^{6}H_{13/2}$ | $\pm 3/2$  | 60%            | 49                 | 10602                                              | 10595                                               | ${}^{6}F_{11/2}$              | $\pm 11/2$ | 46%            |
| 23                 | 5224                                               | 5236                                                | ${}^{6}H_{13/2}$ | $\pm 1/2$  | 46%            | 50                 | 10623                                              | 10614                                               | ${}^{6}F_{11/2}$              | $\pm 9/2$  | 57%            |
| 24                 | 5335                                               | 5328                                                | ${}^{6}H_{13/2}$ | $\pm 11/2$ | 73%            | 51                 | 10648                                              | 10650                                               | ${}^{6}F_{11/2}$              | $\pm 1/2$  | 53%            |
| 25                 | 5367                                               | 5379                                                | ${}^{6}H_{13/2}$ | $\pm 13/2$ | 57%            | 52                 | 10744                                              | 10757                                               | ${}^{6}F_{11/2}$              | $\pm 3/2$  | 45%            |
| 26                 | 6140                                               | 6137                                                | ${}^{6}H_{15/2}$ | $\pm 1/2$  | 47%            | 53                 | 10768                                              | 10781                                               | ${}^{6}F_{11/2}$              | $\pm 5/2$  | 54%            |
| 27                 | 6278                                               | 6277                                                | ${}^{6}H_{15/2}$ | $\pm 13/2$ | 42%            | 54                 | 10796                                              | 10795                                               | ${}^{6}F_{11/2}$              | $\pm 7/2$  | 43%            |
|                    |                                                    |                                                     |                  |            |                |                    |                                                    |                                                     |                               |            |                |

<sup>a</sup>Stark level; in  $D_2$  symmetry all Stark levels have the same symmetry label,  ${}^2\Gamma_5$ .

<sup>b</sup>Experimental levels taken from Ref. 1.

<sup>c</sup>Calculated levels using parameters from Table III (col. 2) without ccf.

<sup>d</sup>Multiplet of the sextet state in SLJ coupling nomenclature.

<sup>e</sup>Largest percent  $M_J$  contribution to the calculated Stark level.

crystal-quantum state is represented only by the combination of  $M_J$  states. Examination of column 9 in Table I shows that many of these states are highly mixed with the largest percent  $M_J$  contribution being rather small.

Optimization between a final set of 314 calculated-toobserved Stark levels was carried out for a total of 336 predicted Stark levels between 0 and 35 620 cm<sup>-1</sup>. Spectra observed at higher energy (shorter wavelength) are not sufficiently resolved to merit an analysis. The experimental levels used in the final fitting are designated by a footnote in Table I. By diagonalizing the total energy matrix, we also obtain improved agreement between the experimental and calculated splitting of  ${}^{6}F_{11/2}$  reported in Ref. 2. This comes about by including all contributions from excited states that were eliminated by the truncation schemes used earlier.<sup>2</sup>

The final set of atomic and crystal-field parameters is given in Table III. Since parameters  $\beta$ ,  $\gamma$ ,  $T^n$ ,  $M_T$ , and  $P_T$  vary little for Sm<sup>3+</sup> in different host crystals,<sup>16,17</sup> these parameters were held fixed. Atomic parameters  $F^2$ ,  $F^4$ ,  $F^6$ ,  $\alpha$ , and  $\zeta$  varied less than 1.5% from the initial set chosen from the literature.<sup>17</sup> The final set of  $B_q^k$  parameters (without ccf) does not change much from the starting set when the analysis is expanded to include the splitting of all 314 Stark levels.

As a reference, the starting set of  $B_q^k$  obtained from Ref. 2 is listed following the variance associated with the final set of  $B_q^k$  parameters obtained in the present study (see column 2, Table III). The rms between the final set of 314 calculatedto-observed Stark levels is 10 cm<sup>-1</sup>, and is based on five adjustable atomic parameters and nine adjustable oneelectron crystal-field parameters. Overall agreement is within the precision of the data and the theoretical expectations for the analysis.

Inclusion of the correlation crystal field in our analysis provides only modest improvement between the calculated and experimental levels, and for that reason the results are not included in Tables I and II. We may point out, however, that the overall splitting of the multiplets  ${}^{6}H_{5/2}$ ,  ${}^{6}H_{7/2}$ ,  ${}^{6}H_{11/2}$ ,  ${}^{4}P(2)_{5/2}$ ,  ${}^{2}K(5)_{13/2}$ , and  ${}^{2}F(5)_{5/2}$  is improved by roughly 10%. However, the rms deviation for all 314 levels is reduced by only 2%, which is not sufficient to merit any conclusions based on ccf interactions. The parameters obtained when ccf is included are given in column 3, Table III.

## V. ANALYSIS OF TRANSITION LINE STRENGTHS

The crystal-field parameters reported in Table III (column 2) are used together with a lattice-sum model to determine a

TABLE III. Hamiltonian parameters for Sm<sup>3+</sup>:YAG.

| Parameter <sup>a</sup> | Values excluding corr.<br>crystal field <sup>b</sup> (cm <sup>-1</sup> ) | Values including corr<br>crystal field <sup>c</sup> (cm <sup>-1</sup> ) |
|------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------|
| $\langle E \rangle$    | 46 977(3)                                                                | 46 977(3)                                                               |
| $F^2$                  | 77 619(15)                                                               | 77 618(15)                                                              |
| $F^4$                  | 56 297(22)                                                               | 56 294(22)                                                              |
| $F^6$                  | 39 856(15)                                                               | 39 860(15)                                                              |
| α                      | 17.53(0.04)                                                              | 17.51(0.04)                                                             |
| β                      | -567                                                                     | -567                                                                    |
| γ                      | 1500                                                                     | 1500                                                                    |
| $T^2$                  | 300                                                                      | 300                                                                     |
| $T^3$                  | 36                                                                       | 36                                                                      |
| $T^4$                  | 56                                                                       | 56                                                                      |
| $T^6$                  | -347                                                                     | -347                                                                    |
| $T^7$                  | 373                                                                      | 373                                                                     |
| $T^8$                  | 348                                                                      | 348                                                                     |
| $\zeta_{so}$           | 1167(0.5)                                                                | 1167(0.5)                                                               |
| $M_T$                  | 2.60                                                                     | 2.60                                                                    |
| $P_T$                  | 357                                                                      | 357                                                                     |
| $B_{0}^{2}$            | 438(13) [434]                                                            | 439(13)                                                                 |
| $B_{2}^{2}$            | 107(11) [90]                                                             | 109(11)                                                                 |
| $B_0^4$                | -130(32) [-154]                                                          | -118(31)                                                                |
| $B_2^{4}$              | -1925(13) [-1858]                                                        | -1919(18)                                                               |
| $B_4^4$                | -490(23) [-658]                                                          | -487(23)                                                                |
| $B_{0}^{6}$            | -1589(29) [-1529]                                                        | -1575(30)                                                               |
| $B_2^{\tilde{6}}$      | -687(21) [-712]                                                          | -695(20)                                                                |
| $B_4^{\overline{6}}$   | 945(18) [909]                                                            | 942(18)                                                                 |
| $B_6^6$                | -690(22) [-579]                                                          | -689(22)                                                                |
| G2(4)                  |                                                                          | -78.0(63)                                                               |
| G3(4)                  |                                                                          | -4.93(19)                                                               |
| G10(4)a                |                                                                          | 38.9(70)                                                                |
| G10(4)b                |                                                                          | 151(56)                                                                 |
|                        |                                                                          |                                                                         |

<sup>a</sup>Parameters  $\langle E \rangle$  through  $P_T$  are described as atomic parameters in the text; parameters  $B_0^2$  through  $B_6^6$  are identified with the crystal field, and parameters G2(4) through G10(4)b are associated with the correlation crystal field.

<sup>b</sup>Final set of values used to calculate the Stark-level energies in Table I (col. 4); values for  $\beta$  through  $T^8$  and  $M_T$  and  $P_T$  were not varied; the parameter variance is given in parentheses;  $B_q^k$  parameters from Ref. 2, representing the starting set in the present study, are given in square brackets; the rms deviation for 314 calculated-to-experimental levels is 10 cm<sup>-1</sup>.

<sup>c</sup>Final set of values obtained when the correlation crystal field is included in the calculation; only the  $B_q^k$  and the ccf parameters were varied with the variance given in parentheses; the rms deviation involving the same levels used in the analysis that did not include ccf terms was reduced by only 2% from the rms given in footnote b.

complete set of even and odd crystal-field components that serve as a starting set of parameters for calculating the transition line strengths. From the model developed by Morrison and Leavitt,<sup>17</sup> we obtain the odd-*k* crystal-field components  $A_{32} = -i1593$ ,  $A_{52} = -i2403$ ,  $A_{54} = i1298$ ,  $A_{72} = i33.6$ ,  $A_{74} = i257$ , and  $A_{76} = -i208$  all in (cm<sup>-1</sup>/Å<sup>k</sup>). The even-*k* crystal-field components are given by  $B_{kq} = \rho_k A_{kq}$ , where the radial factors,  $\rho_k$ , for Sm<sup>3+</sup> are given by Morrison and Leavitt.<sup>17</sup>

TABLEIV.Electric-dipoleintensityparameters, $Sm^{3+}$ :YAG.Parameters with statistically insignificant values areindicated by parentheses.The starting set was taken from Ref. 25,Table IV, set 1.Since  $A_{6p}^6$  changed less than 1%, we held thesevalues fixed in the final variation analysis.

| Parameter $(A_{1p}^{\lambda})$ | Starting set $(10^{-12})$ cm | Final set $(10^{-12})$ cm |
|--------------------------------|------------------------------|---------------------------|
| $A_{20}^2$                     | (22)                         | 83                        |
| $A_{22}^{\frac{1}{2}}$         | 222                          | 121                       |
| $A_{32}^2$                     | (-106)                       | -86                       |
| $A_{32}^{4}$                   | -216                         | -120                      |
| $A_{40}^{4}$                   | 334                          | 154                       |
| $A_{42}^4$                     | (-37)                        | (11)                      |
| $A_{44}^{4}$                   | 20                           | 68                        |
| $A_{52}^4$                     | -424                         | -127                      |
| $A_{54}^4$                     | (-12)                        | (36)                      |
| $A_{52}^{6}$                   | 683                          | 652                       |
| $A_{54}^{6}$                   | -265                         | (-0.4)                    |
| $A_{60}^{6}$                   | (-11)                        | (-11)                     |
| $A_{62}^{6}$                   | -110                         | -110                      |
| $A_{64}^{6}$                   | (-23)                        | (-23)                     |
| $A_{66}^{6}$                   | 143                          | 143                       |
| $A_{72}^{6}$                   | (-13)                        | (-13)                     |
| $A_{74}^{6}$                   | (5)                          | (5)                       |
| $A_{76}^{6}$                   | (-73)                        | (-73)                     |

The transition line strength is expressed as

$$S_{i \to f} = |\langle \Psi_i | \hat{P} | \Psi_f \rangle|^2 + |\langle \Psi_i | \hat{M} | \Psi_f \rangle|^2, \tag{5}$$

where  $\hat{P}$  is the "forced" electric-dipole operator,  $\hat{M}$  is the magnetic-dipole operator, and  $\Psi_i$  and  $\Psi_f$  represent state vectors for the initial and final states in the transition. Since electric-dipole transitions must involve states of opposite parity, such transitions within the  $4f^5$  configuration are possible as a result of the crystal-field mixing of opposite-parity states represented by the odd-*k* terms in the crystal-field Hamiltonian.<sup>23,24</sup>

The line strengths are calculated following methods described by Burdick *et al.*<sup>25</sup> and involve the line-strength parameters,  $A_{tp}^{\lambda}$ , as adjustable parameters. The relationship between these parameters and the parameters obtained from methods developed by Leavitt and Morrison, both in terms of normalization and unit factors, are discussed by Burdick *et al.*<sup>25</sup> in the line-strength analysis of the spectra of Nd<sup>3+</sup>:YAG. For Sm<sup>3+</sup> in  $D_2$  sites, there are a possible  $5A_{tp}^2$ ,  $11 A_{tp}^4$ , and  $17 A_{tp}^6$  adjustable parameters. With the relationship that  $(A_{tp}^{\lambda})^* = (-1)^{t+p+1}A_{tp}^{\lambda}$ , the number of independent parameters is reduced from 33 to 18 with  $3(\lambda=2)$ ,  $6(\lambda=4)$ , and  $9(\lambda=6)$ .

Since Sm<sup>3+</sup> and Nd<sup>3+</sup> both occupy similar sites in YAG, reasonable sets of starting  $A_{tp}^{\lambda}$  parameters are available, either from the results of Burdick *et al.*<sup>25</sup> or from the lattice-sum method of Morrison and Leavitt.<sup>17</sup> Beginning with either set, we are able to obtain a final set of parameters listed in Table IV that involves 147 measured-to-calculated line strengths. In the fitting process we found that some of the initial parameters change very little and others become sta-

tistically insignificant. Because the  $A_{6p}^6$  parameters change less than 2%, we held these seven parameters fixed. Parameters  $A_{42}^4$ ,  $A_{54}^4$ , and  $A_{54}^6$  meet the criteria set by Burdick *et al.*n<sup>25</sup> as being statistically insignificant. These parameters along with the  $A_{6p}^6$  parameters that are also statistically insignificant were removed, and the remaining parameters were refit to experiment to generate final line-strength values reported in Table I (column 6). Fitting the line strengths presents problems not encountered in the fitting of the energy levels,<sup>26</sup> but the final set of  $A_{1p}^{\lambda}$  parameters appearing in Table IV represent the best overall agreement between the measured line strengths chosen and footnoted in Table I. Moreover, the calculated line strengths for transitions not used in the fitting are in general agreement with the measured values to within the limits set by Burdick *et al.*<sup>25,26</sup>

In summary, the present study makes use of both an energy-level analysis and a transition line-strength analysis to interpret the visible and ultraviolet spectra of  $\text{Sm}^{3+}$ :YAG. The spectra consist of absorption by sextet, quartet, and dou-

- <sup>1</sup>J. B. Gruber, M. E. Hills, M. P. Nadler, M. R. Kokta, and C. A. Morrison, Chem. Phys. **113**, 175 (1987).
- <sup>2</sup>S. B. Stevens, C. A. Morrison, M. D. Seltzer, M. E. Hills, and J. B. Gruber, J. Appl. Phys. **70**, 948 (1991).
- <sup>3</sup>P. Grünberg, Z. Phys. **225**, 376 (1969).
- <sup>4</sup>M. C. Farries, P. R. Morkel, and J. E. Townsend, Electron. Lett. **24**, 709 (1988).
- <sup>5</sup>A. A. Kaminskii, *Laser Crystals* (Springer, Berlin, 1981).
- <sup>6</sup>B. R. Judd, Phys. Rev. Lett. **39**, 242 (1977).
- <sup>7</sup>D. J. Newman, G. G. Siu, and W. Y. P. Fung, J. Phys. C **15**, 3113 (1982).
- <sup>8</sup>M. F. Reid, J. Chem. Phys. 87, 2875 (1987).
- <sup>9</sup>J. B. Gruber and M. E. Hills (unpublished) (Naval Air Warfare Center Weapons Division, China Lake, CA, 1990).
- <sup>10</sup>M. R. Kokta, Union Carbide Corporation, Electronics Division, Washougal, WA, 1986.
- <sup>11</sup>M. Kokta and M. Grasso, J. Solid State Chem. 8, 357 (1973).
- <sup>12</sup>Yu. K. Voronko and A. A. Sobol, Phys. Status Solidi A 27, 257 (1975).
- <sup>13</sup>M. Kokta, J. Solid State Chem. 8, 39 (1973).
- <sup>14</sup>K. Rajnak, R. Mehlhorn, and N. Edelstein, J. Chem. Phys. 58,

blet states that are strongly mixed by the crystal field. An analysis of the calculated-to-experimental energy levels requires diagonalization of the total energy matrix that includes all states of the  $4f^5$  electronic configuration. The analysis opens the way for further studies into excited-state absorption and fluorescence lifetimes. Such investigations may encourage further consideration of Sm<sup>3+</sup>:YAG as a visible laser, at least in the fiber geometry, despite its relatively weak transition line strengths in comparison to those found by Burdick *et al.*<sup>25</sup> for Nd<sup>3+</sup>:YAG.

### ACKNOWLEDGMENTS

One of us (J.B.G.) wishes to express deep appreciation to Dr. M. E. Hills, retired from the Naval Air Warfare Center Weapons Division, China Lake, CA, who from 1986 to 1992 as mentor and colleague participated in the earlier work on  $Sm^{3+}$ :YAG.<sup>1,2</sup>

609 (1973).

- <sup>15</sup>J. B. Gruber, M. E. Hills, T. H. Allik, C. K. Jayasankar, J. R. Quagliano, and F. S. Richardson, Phys. Rev. B **41**, 7999 (1990).
- <sup>16</sup>W. T. Carnall, H. Crosswhite, and H. M. Crosswhite, Argonne National Laboratory Report, U of C-AUA-USERDA, Argonne, IL, 1977 (unpublished).
- <sup>17</sup>C. A. Morrison and R. P. Leavitt, in *Handbook on the Physics and Chemistry of the Rare Earths*, edited by K. A. Gschneidner, Jr. and L. Eyring (North-Holland, Amsterdam, 1982), Vol. 5.
- <sup>18</sup>C. A. Morrison, Angular Momentum Theory Applied to Interactions in Solids (Springer, Berlin, 1988).
- <sup>19</sup>B. R. Judd, J. Chem. Phys. **66**, 3163 (1977).
- <sup>20</sup>C. L. Li and M. F. Reid, Phys. Rev. B 42, 1903 (1990).
- <sup>21</sup>M. F. Reid and F. S. Richardson, J. Chem. Phys. **79**, 5735 (1983).
- <sup>22</sup>M. F. Reid and F. S. Richardson, J. Chem. Phys. 80, 3579 (1984).
- <sup>23</sup>B. R. Judd, Phys. Rev. **127**, 750 (1962).
- <sup>24</sup>G. S. Ofelt, J. Chem. Phys. **37**, 511 (1962).
- <sup>25</sup>G. W. Burdick, C. K. Jayasankar, F. S. Richardson, and M. F. Reid, Phys. Rev. B **50**, 16 309 (1994).
- <sup>26</sup>G. W. Burdick, S. M. Crooks, and M. F. Reid, Phys. Rev. B 59, 7789 (1999).