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Local-density-approximation prediction of electronic properties of GaN, Si, C, and RuO2

G. L. Zhao, D. Bagayoko, and T. D. Williams
Department of Physics, Southern University and A & M College, Baton Rouge, Louisiana 70813

~Received 10 July 1998; revised manuscript received 26 October 1998!

We present calculated electronic properties of gallium nitride~GaN!, silicon ~Si!, diamond~C!, and ruthe-
nium dioxide (RuO2). We implemented a simple computational procedure that avoids a recently identified
basis set and variational effect. This effect, inherent to the use of basis sets in variational calculations, is
believed to have affectedab initio calculations of electronic properties of semiconductors since their inception.
We employedab initio, density-functional calculations using a local-density-approximation potential and the
linear combination of atomic orbital formalism. There is an excellent agreement between our findings and
experimental results. In particular, the calculated, direct, minimum band gap of GaN, for low temperatures, is
3.2 eV, while the practical band gap, as per the calculated density of states, is 3.40 eV. Band gaps and
excitation energies for silicon and diamond compare favorably with experimental results.
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I. INTRODUCTION

Local-density approximation~LDA ! calculations for
semiconductors, until very recently,1,2 often led to band gaps
that are typically 30–50 % smaller than the experimen
values.3,4 The discrepancies between LDA and experimen
results have been mostly ascribed to limitations of the loc
density approximation. The quasiparticle calculations of R
bio et al.3 provide energy bands and a band gap for wurtz
GaN that agree with experiment. The dressed Green func
(G) and screened Coulomb interaction (W) approach of
these authors, i.e., theGW method, used nonlocal, energ
dependent, non-Hermitian operators, which are bey
density-functional theory. The essential differences betw
the GW results and those of previous LDA calculations a
mainly between the conduction~unoccupied! energy bands
obtained by the two approaches. There is a reported, sur
ing agreement, however, between LDA andGW results for
the wave functions of the valence~occupied! bands. A recent
attempt to remedy the reported failure of LDA for the co
duction bands of semiconductors consists of the work of V
gel et al.4 These authors employed pseudopotentials that
cluded self-interaction corrections~SIC! and self-interaction
and relaxation corrections~SIRC! in an otherwise local-
density potential calculation. They obtained wurtzite G
band gaps of 1.7 and 4.0 eV with a standard LDA pseu
potential calculation and a new pseudopotential, LDA cal
lation with self-interaction and relaxation corrections, r
spectively. Vogelet al. utilized the Ceperley and Alder form
of local-density approximation as parametrized by Perd
and Zunger.5

Recently, Bagayoko and co-workers identified1,2,6 a basis
set and variational effect inherently associated with the
of the linear combination of atomic orbital~LCAO! or linear
combination of Gaussian orbital~LCGO! formalism in varia-
tional calculations of the Rayleigh-Ritz type. Essentially, t
effect consists of a possible lowering of some unoccup
energy levels or bands for molecules, clusters, or solids
account of a mathematical fact.7,8 This fact is stated in the
theorem7 that describes the lowering or unchanged feature
PRB 600163-1829/99/60~3!/1563~10!/$15.00
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any variational eigenvalue as the size of the basis set, i.e.
dimension of the matrices in the eigenvalue equation,
creases. The theorem simply asserts that a given variati
eigenvalue upon an increase of the size of the basis s
never increased, and that it remains either unchanged~i.e., if
it is equal to the corresponding exact eigenvalue of the m
trix! or it is lowered to approach the exact eigenvalue fro
above. The extent to which such exact eigenvalues are c
to their corresponding eigenenergies of the physical sys
under study depends on the basic theory and the approx
tions utilized in the process of generating the matr
Bagayoko and co-workers1,2 identified the basis set an
variational effect that consists of any lowering of unoccup
energy levels or bands beyond that which occurred be
the ‘‘convergence’’ of the occupied levels with respect to t
size of the applicable basis set. The possible, unphysical
ture of such a lowering, they stated, stems from the use of
wave functions—of occupied states only—in constructi
the charge density and the potential from one iteration to
next.

Bagayoko et al.2 successfully applied the Bagayoko
Zhao, and Williams~BZW! procedure,1 described below, to
circumvent methodically the above basis set and variatio
effect while avoiding any possible ‘‘incomplete’’ nature o
the basis set. Their calculated electronic and optical prop
ties of BaTiO3 agree very well with experimental result
The universal nature of the above mathematical theo
naturally raised the question whether or not the repor
limitations of LDA, particularly as they pertain to the de
scription of unoccupied energy levels or bands, are due
LDA or to the manifestation of the above basis set and va
tional effect.

To partly answer this question, we applied the BZW pr
cedure to study the electronic properties of GaN, Si, diam
~C!, and RuO2. In what follows, we first describe ou
method, with emphasis on the BZW procedure. We sub
quently present the electronic energy bands, density of sta
charge transfer, and related physical properties for galli
nitride. This is followed by our findings for silicon, diamond
and RuO2. These results are obtained with the optimal ba
1563 ©1999 The American Physical Society
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sets as determined by the BZW procedure. We compare
results to experimental and previous theoretical findings
discussion of the implications of our work follows. The la
section provides a brief conclusion.

II. METHOD

A. General approach: LDA potential and LCAO

The calculations discussed below are nonrelativistic. T
are performed at zero temperature. The only effect of te
perature that is considered is that obtained by using the
plicable lattice parameters. Our calculations utilized an
panded version of the electronic structure calculat
program package from the Ames Laboratory of DOE
Iowa.9–14 Details of the computational method are availab
in several previous publications.9–13,2 We employed the
Ceperley-Alder type15 of local-density potentials as param
etrized by Vosko, Wilk, and Nusair.16 The above reference
publications describe the general features of our method,
the LDA potential and the standard implementation of
LCAO. We discuss below our distinctive implementation
the LCGO or LCAO method in a fashion that circumven
the basis set and variational effect noted above.

B. The BZW procedure

In a typicalab initio, self-consistent calculation that em
ploys the LCAO method, electronic eigenfunctions are
panded using basis sets derived from atomic calculations17,18

Charge densities and potentials are constructed. The Ha
tonian matrix is generated and diagonalized. Key out
quantities are energy levels or bands and related wave f
tions. The resulting output wave functions—for the occup
states—are employed to generate a new charge density
the computations are repeated. The process of using the
put of iteration (n)—for occupied states—to construct th
input for iteration (n11) continues until self-consistency
reached. Various measures are utilized to define s
consistency, i.e., when basic quantities, including cha
densities, potentials, eigenenergies, etc. are, respectively
changed from one iteration to the next.

The trial basis sets are found by various authors by a
menting the atomic orbitals with polarization and diffu
orbitals17,18 whose numbers, until the work of Bagayok
Zhao, and Williams1 and Bagayokoet al.,2 had no particular
limit. In fact, from a completeness standpoint, the larg
these numbers the better, provided no ‘‘catastrophic sink
of energy levels’’ or negative Millican population numbe
occur for occupied states.17

The BZW procedure suggests a minimum of three s
consistent calculations that utilize basis sets of differ
sizes. It generally begins with the minimum basis set, i.e.,
basis set needed to account for all the electrons of the ato
or ionic species that are present in a molecule, a cluster,
solid. In the case of GaN, we chose these species to be G11

and N12. Completely self-consistent calculations are carr
out. For the second calculation, the minimal basis set is a
mented with one or more atomic orbitals that belong to
next and lowest-lying energy levels in the atomic or ion
species. The self-consistent bands from calculations I an
are compared, graphically and numerically. In general, th
ur
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will be qualitative ~shape and branching! and quantitative
~numerical values! differences between the occupied ban
from calculations I and II. A third calculation is performe
using the basis set for calculation II as augmented with
bitals representing the next lowest-lying atomic energy l
els. This process is continued until the comparison of
occupied energy levels leads to no qualitative or quantita
difference. When the results from calculationN and those
from calculation (N11) agree within the computational e
ror, then the optimum basis set is that of calculationN. This
selection rests on the fact that a lowering of unoccupied l
els, as in calculation (N11), after the occupied levels con
verged with respect to the size of the basis set, as in ca
lation N, could be a mathematical artifact. Such a loweri
may not be the manifestation of any fundamental interacti
but rather the expression of the basis set and variationa
fect identified above. This assertion is partly verified
computational experiments reported in Sec. III A. In mul
species systems like GaN, two or more orbitals may
added at a time if the affected atomic levels are close
energy. While we utilized the occupied energy bands for
determination of convergence with respect to the size of
basis set, we suspect that other parameters could be
ployed. They may include the charge density for occup
states and particularly the potential.

C. Computational details

The wurtzite GaN belongs to theC6v
4 group. We consid-

ered two sets of lattice parameters for GaN. The lo
temperature values we selected area53.16 Å, c55.125 Å,
andu50.377,3 whereu is the distance between the Ga pla
and its nearest-neighborN plane in the unit ofc. Even
though our calculations are for zero temperature, we a
performed calculations for experimentally measured latt
constants for room temperature, wherea53.1878 Å, c
55.1850 Å, andu50.375.19 In theC6v

4 group, the Ga and N
atoms are in (2b) positions as follows: Ga,~0, 0, 0!, (1/3,
2/3, 1/2); N,~0, 0, u), (1/3, 2/3, 1/21u).

The atomic wave functions of the ionic states of Ga11 and
N12 were constructed from the self-consistent,ab initio
atomic calculations. The radial parts of the atomic wa
functions were expanded in terms of Gaussian functions
set of even tempered Gaussian exponents was employed
a minimum of 0.166 and a maximum of 0.55853105 in
atomic unit. We used 19 Gaussian functions for thes andp
states and 16 for thed states. A mesh of 24k points, with
proper weights in the irreducible Brillouin zone, was used
the self-consistent iteration calculations. The computatio
error for the valence charge was about 0.000 22 for 52 e
trons. The self-consistent potentials converged to a dif
ence around 1025 after about 35 iterations. The total numb
of iterations varies with the input potentials.

In the self-consistent LCAO calculations for Si in the di
mond structure, we used the experimental lattice constan
a55.43 Å in the calculations. The atomic wave functio
were constructed from results of self-consistent,ab initio
atomic calculations. The radial parts of the atomic wa
functions were expanded in terms of Gaussian functions
set of even-tempered Gaussian exponents was empl
with a minimum exponent of 0.099 and a maximum
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0.653106 in atomic units. We included 19 Gaussian orbita
in the basis set for the expansion of the atomic wave fu
tions of Si. For the extra atomic wave function of Si(3d0),
we used 15 Gaussian orbitals. In the self-consistent calc
tions, we included 60 generalk points in the irreducible Bril-
louin zone with proper weights. The computational error
the valence charge was about 0.000 95 for 24 electrons.
self-consistent potential converged to about 1025.

Diamond ~C! has a lattice constant ofa53.567 Å. The
bond length of the C-C nearest neighbor is 1.545 Å, which
much shorter than the Si-Si bond length of 2.351 Å. T
Gaussian functions we used to expand the carbon ato
wave functions have a minimum exponent of 0.12 and
maximum of 0.13106. Sixty k points were used in the self
consistent electronic structure calculations.

Ruthenium dioxide (RuO2) is a member of the transition
metal oxide family. RuO2 has a rutile structure and exhibi
metallic conductivity. Tetragonal RuO2 has the symmetry o
the P42

/mnm(D2h
14) space group.20 RuO2 has six atoms pe

unit cell, two ruthenium and four oxygen. The rutheniu
atoms are located at the Wycoff 2(a) sites: ~0,0,0! and

( 1
2 , 1

2 , 1
2 ). The oxygen atoms occupy the Wycoff 4(f ) sites:

6(u1 1
2 , 1

2 2u, 1
2 ) and6(u,u,0). The lattice constants of ru

thenium dioxide area54.492 Å, c53.106 Å, and u
50.306.21 The basis sets for each of the five self-consist
calculations used in the BZW procedure are indicated
Table I. The optimal basis set for the RuO2 calculation is
basis set II in Table I. A total of 25–37 iterations were ne
essary for convergence. The convergence of the poten
was up to 1025. We considered 60k points in the irreducible
wedge of the Brillouin zone.

III. RESULTS

A. Electronic energy bands of wurtzite GaN

We have calculated the electronic properties of wurtz
GaN ~a-GaN! using the recently introduced procedure.1,2

Succinctly stated, the implementation of this calculation p
cedure first consisted of carrying out completely se
consistent calculations for GaN using a minimal LCAO ba
set. Namely, the initial charge density fora-GaN was calcu-
lated using the atomic orbitals of Ga(1s2s3s4s, 2p3p4p,
3d) and N(1s2s, 2p).

We then repeated the self-consistent calculation using
above basis set as augmented by the orbitals describing
first excited state~i.e., the lowest in energy! of Ga. Hence,
Ga(4d0) orbitals were added to the basis set. The supersc

TABLE I. The atomic orbitals used in calculations I to V fo
RuO2. Superscript zeros indicate added orbitals representing u
cupied atomic levels.

Basis set 0: core-state orbitals in calculations I to V
Ru(1s,2s,3s,2p,3p), O(1s)
Basis set I: Set 0 plus Ru(4s,5s,4p,3d,4d), O(2s,2p)
Basis set II: Set I plus Ru(5p0), O(3s0,3p0)
Basis set III: Set II plus Ru(6s0)
Basis set IV: Set III plus Ru(6p0)
Basis Set V: Set IV plus O(4s0)
-
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index of zero indicates that these states are unoccupied in
free atoms~ions!. We then plotted the energy bands obtain
from these two distinct self-consistent calculations. In Fig
the solid and dashed lines represent the calculated re
from the first and second calculations, respectively. Figur
shows that the occupied bands from the two calculati
differ slightly. In particular, the difference is not a rigid shi
of one set of bands with respect to the other. Hence, as n
above, the larger basis set, for the second self-consistent
culation, is preferred to that for the first. This preference
based on physical considerations, i.e., actual, physical in
actions are responsible for the difference between the
sets of bands. Completeness requirements, partly to des
the redistribution of the electronic cloud in the solid enviro
ment, dictate this preference. The next natural step wa
repeat our procedure, for a third time, with a new basis
that includes a N(3s0) orbital. The results of this third cal
culation ~dashed lines! and of the second calculation~solid
lines! are shown in Fig. 2. Unlike in the case of Fig. 1, th
calculated bands for occupied states are fully converged
particular, the changes in occupied energies, from calcula
II to III, are in the range of computational errors that are d
to other factors, including rounding errors and possible lim
tations of LDA. In contrast to the unchanged nature of t
occupied states, the lowest unoccupied states at theG andA
symmetry points are shifted downward by approximately
eV.

c-

FIG. 1. The calculated, electronic band structure of GaN. T
solid lines represent the results of calculation I; the dashed l
show the bands of calculation II. The lattice constants area
53.16 Å, c55.125 Å, andu50.377.

FIG. 2. Comparison of the results of calculation II and III. Th
solid lines represent the GaN electron bands from calculation II;
dashed lines show the bands from calculation III. The lattice c
stants area53.16 Å, c55.125 Å, andu50.377.
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TABLE II. The calculated electronic energy levels~in eV! for wurtzite GaN using two sets of lattice
constants. Calculation A~LDA A !: a53.160 Å, c55.125 Å, andu50.377. Calculation B~LDA B !: a
53.1878 Å, c55.1850 Å, andu50.375. The lattice constants in theGW calculations of Rubioet al. are
those for calculation A. The minimum band gaps are the energies atG1c . See our theoretical DOS for th
calculated, low-temperature, ‘‘practical’’ band gap of 3.4 eV.

GaN
LDA

A
LDA

B
Rubio
LDA

Rubio
GW

LDA
A

LDA
B

Rubio
LDA

Rubio
GW

G3v 27.1 27.0 27.4 28.0 M1v 26.5 26.3 26.8 27.4
G5v 21.1 21.0 21.1 21.2 M3v 25.3 25.1 25.6 26.1
G5v 21.1 21.0 21.1 21.2 M1v 24.3 24.2 24.4 24.9
G1v 0.0 0.0 0.0 0.0 M2v 22.8 22.7 22.8 23.1
G6v 0.0 0.0 0.0 0.0 M3v 22.3 22.2 22.4 22.6
G6v 0.0 0.0 0.0 0.0 M4v 21.1 21.0 21.0 21.1
G1c 3.2 3.0 2.3 3.5 M1c 5.3 5.3 5.1 6.5
G3c 5.1 4.9 4.6 5.9 M3c 5.9 5.8 5.7 7.4
G6c 10.2 10.1 10.1 11.9 M3c 7.0 6.7 6.2 8.1
G1c 10.3 10.1 9.5 12.1 M1c 9.3 9.1 9.1 11.5
A1,3v 23.8 23.8 24.1 24.6 L1,3v 26.7 26.5 27.0 27.6
A5,6v 20.6 20.5 20.5 20.6 L2,4v 22.0 21.9 22.0 22.2
A5,6v 20.6 20.5 20.5 20.6 L1,3v 21.9 21.9 22.0 22.2
A1,3c 5.4 5.2 4.6 6.1 L1,3c 4.7 4.6 4.4 6.0
A5,6c 9.2 9.0 8.7 10.8 L1,3c 8.3 8.1 8.0 9.9
K1v 25.4 25.2 25.6 26.1 H3v 26.2 26.1 26.4 27.1
K3v 25.3 25.2 25.5 26.1 H1,2v 24.3 24.1 24.6 24.9
K3v 23.1 23.0 23.2 23.5 H3v 21.5 21.5 21.5 21.6
K2v 22.8 22.6 23.0 23.2 H3c 6.8 6.7 6.6 8.3
K2c 5.3 5.3 4.9 6.6 H1,2c 7.5 7.4 7.4 9.4
K3c 8.6 8.4 8.3 10.6
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In light of the iteration procedure described above, a
that only includes the wave functions of occupied states
the reconstruction of the charge density, potential, a
Hamiltonian, the preferred basis set is that in calculation
The drastic changes in the unoccupied states, in going f
calculation II to III, are believed to be simple consequen
of the variational theorem noted above. Namely, this low
ing may not be due to a physical interaction, but rather t
mathematical artifact stemming from the variational the
rem. While no other graphs are shown here, we continue
add orbitals of higher and higher excited states to the b
set for calculation four and five. As expected, these calc
tions did not lead to changes in the occupied states. They
expectedly, to drastic changes in higher and higher, uno
pied bands.

Our claim relative to the use of the wave functions of t
occupied states in the self-consistent procedure as a bas
preferring the optimum basis set to larger ones is verified
the following computational experiments. These compu
tional tests, on GaN, addressed the self-consistency of
potential and the effect of the size of the basis set separa
We diagonalized the Hamiltonian matrix, using the larg
basis set of calculation III, while utilizing only the sel
consistent potential obtained with the optimum basis set.
bands resulting from this diagonalization—for both the o
cupied and unoccupied states—are the same as the da
lines in Fig. 2. We also utilized the self-consistent poten
obtained with the optimum basis set and diagonalized
Hamiltonian using the minimum basis set. The bands fr
d
n
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this calculation closely follow those of calculation II for th
occupied states and those of calculation I for the unoccup
states. These tests verified that the potential obtained
the optimum basis is practically identical to that genera
with the larger basis set of calculation III and that it is d
ferent from the potential obtained with a basis set sma
than the optimum one. A comparison of the results of
diagonalization tests noted above to the self-consistent ba
obtained with the optimum basis set is revealing. It cons
of a comparison of the effects of the size of the basis
given that all three calculations employed the self-consis
potential obtained in calculation II. A plot of the results
the diagonalization, using the basis set of calculation III a
the self-consistent potential from calculation II, and of t
bands from calculations II practically reproduces Fig.
Similarly, Fig. 1 is practically obtained by graphing the r
sults of calculation II and those of the diagonalization us
the basis set in calculation I and the self-consistent poten
from calculation II. These computational experiments ve
fied our contention that due to the variational theorem a
the use of the wave functions of the occupied states onl
the iterative procedure, the optimum basis set as defi
above should be selected instead smaller or larger basis

The electronic band structure ofa-GaN, obtained with the
optimum basis set of calculation II, is shown in Fig. 2
solid lines. The zero of the energy is set at the top of
valence band. In our nonrelativistic calculations, the effec
spin-orbit interaction is not considered.

Table II lists the energy levels at high symmetry points
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the Brillouin zone for both sets of lattice constants. It a
shows, for the same points, the LDA andGW results of
Rubioet al.3 Our results in columns two and seven~calcula-
tion A! are the ones to compare with theGW findings of
Rubio et al., as they are obtained with the same lo
temperature lattice constants specified in Table II. The L
results of Rubioet al. were obtained at slightly different lat
tice constants representing their theoretical LDA valuesa
53.126 Å, c55.119 Å, u50.377). Our results in column
three and eight were obtained for room-temperature value
the lattice parameters~calculation B!.

Our LDA results from calculation A are different from th
LDA findings of Rubioet al., particularly for the conduction
bands. Some of these differences are due to that betwee
sets of lattice constants. Upon superposing the tops of
valence bands, their LDA bands are systematically low
than or the same as ours in energy, except atM4v andA5,6v .
Their GW results are systematically lower and higher th
ours for the occupied and unoccupied states, respectivel
all cases, our calculated conduction bands for low temp
ture lie between their corresponding LDA andGW results.
As expected from the band structure in Fig. 2, the differen
between their LDA results and ours are the smallest at thH
and L symmetry points. The least lowering of unoccupi
levels occurs at these points, when basis sets larger tha
optimal one are utilized.

The largest difference between corresponding LDA en
gies for the occupied states is 0.3 eV. This is also the lar
difference between occupied or unoccupied LDA energie
theH andL points. In contrast to the case of occupied sta
some LDA conduction-band energies, from the work of R
bio et al., are up to 0.9 eV~at G1c) lower than that of our
corresponding values. Except atG1c where the difference is
just 0.3 eV in magnitude, theGW results for the conduction
bands are generally 0.7 to 2.2 eV higher in energy than
found in calculation A~LDA with low-temperature lattice
constants!. For the lowest valence states in Table II, theGW
results are 0.7~at K1v) to 1.1 eV ~at L1,3v) lower than our
LDA findings.

The effective mass is a measure of the quality of the c
culated bands. Specially, the agreement between calcu
and measured effective masses indicates an accurate d
mination of the shape of the bands. Our calculated effec
mass for then-type carriers ofa-GaN near theG point is
0.2260.03m0 . This result is in a good agreement with th
experimental data of 0.260.02m0 .22,23

B. Density of states, band gap, and charge distribution
for GaN

Figures 3 and 4, respectively, show the total and par
density of states~DOS! for wurtzite GaN, as obtained from
calculation A. While much difference is not expected b
tween our DOS and those obtained from previous LDA c
culations, for the occupied states, significant discrepan
are obvious for the unoccupied levels. In particular, previo
LDA calculations, on account of results in Fig. 2 and Tab
II, have conduction-band DOS that are shifted toward low
energies as compared to ours. This shift, as per Fig. 2, is
of
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rigid. On the other hand, theGW results of Rubioet al., for
the conduction bands, are shifted toward much higher e
gies as compared to ours.

The band gap, until now, has been generally calculate
the difference between the energies for the minimum of
conduction band and the maximum of the valence band.
refer to this band gap, calculated in this fashion, as the
oretical, ‘‘minimum’’ band gap. Our calculation A, with
low-temperature lattice parameters, found a minimum gap
3.2 eV, while the LDA andGW works of Rubioet al., re-
spectively, reported 2.3 and 3.5 eV. These minimum ba
gaps are the energies atG1c in Table II. These gaps, as pe
Table II or Fig. 2, are direct gaps found at theG point. Our
total DOS curve in Fig. 3, particularly the inset, shows th
the calculated, ‘‘practical,’’ and measurable band gap
low-temperature GaN is 3.4 eV–in excellent agreement w
experiment.23–26 Indeed, the specially parabolic feature
the bands aroundG1c leads to the very small tail structur
that is likely to be difficult to measure. The reported expe

FIG. 3. The calculated density of states for wurtzite GaN,
obtained from the bands in solid lines in Fig. 2. The inset sho
that the practically measurable band gap is 3.4 eV.

FIG. 4. The PDOS for wurtzite GaN from the contribution
thes, p, andd states of Ga atoms and from thes andp states of N
atoms. These PDOS are derived from the bands~solid lines in Fig.
2! obtained with the BZW optimal basis set.
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mental optical-absorption spectrum25 actually shows the
need to define a ‘‘practical’’ band gap, distinct from th
minimum band gap. The GW minimum gap of 3.5 eV
therefore expected to lead to a measurable band gap o
proximately 3.7 eV or higher, assuming that theGW bands
preserved the parabolic structure aroundG1c . Our calcula-
tion B, with room-temperature lattice constants specified
Table II, found a minimum band gap of 3.0 eV and a pra
tical band gap of 3.2 eV, in excellent agreement with roo
temperature experiment.23,26

We also calculated the effective charge and charge tr
fer for wurtzite GaN using the obtained electron wave fun
tions. The calculated charge transfer led to an effective io
formula of Ga1.51N1.52 for wurtzite gallium nitride.

Figures 5 and 6 show the contour plots of the cha
distribution, for room-temperature lattice constants~calcula-
tion B!, in different symmetry planes, i.e., a~010! plane con-
taining Ga and N atoms, and a~001! plane containing Ga
atoms. The unit of the labeled charge density values
1022 electrons/a0

3, where a050.529 177 Å. The high
charge-density region around the nuclear sites has been
off in these diagrams at a value of 0.5 electrons/a0

3, leaving
hollow spheres to represent the atomic cores. There are s
portions of empty space in the wurtzite structure of GaN,
seen from the charge distribution in Figs. 5 and 6. The em
tubes are distributed in a hexagonal structure along thc
direction. The calculated electron charge distribution of F
5 indicates that there is a quite strong covalent characte
the Ga-N bonds. This can be seen from the noticeable ch
distribution at the middle of the Ga-N bond. The size of t
nitrogen ions appears larger than that of gallium ions in F
5. The radii of the Ga and N ions in wurtzite GaN are es
mated asr (Ga)50.92 Å andr (N)51.01 Å.

C. Electronic properties and optical transitions in silicon

Silicon is probably the best known semiconductor. It h
been studied for more than 40 years. We found that theop-

FIG. 5. The charge density distribution on a~010! plane passing
through Ga and N atoms. The lattice constants~room temperature!
area53.1878 Å,c55.1850 Å, andu50.375.
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timum basis setfor the LCAO calculation consists of th
atomic orbitals of Si(1s2s3s4s 2p3p 3d). Here, the
Si(4s 3d) are empty shells and are used to augment the b
set to account for charge redistributions in the solid envir
ment. The electron band structure of Si, calculated with
optimum basis set, is shown in Fig. 7 without spin-orbit i
teraction. Figure 7 shows that the top of the valence ban
at theG point. The minimum of the conduction band is at
general point betweenG andX. The calculated indirect band
gap is about 1.02 eV, which is very close to the experimen
value of about 1.14–1.17 eV.27,28 The calculated conduction
band minima are at (2p/a)(0.79,0,0) and at the equivalen
points, one along each cube edge. The effective mass o
n-type carriers at the conduction-band minimum is very a
isotropic. The calculated transverse and longitudinal eff
tive masses are, from the band dispersions in Fig. 7,mnt
50.2060.03m0 and mnl50.9360.03m0 , respectively.

FIG. 6. The charge density distribution on a~001! plane of Ga
atoms. The lattice constants~room temperature! are a53.1878 Å,
c55.1850 Å, andu50.375.

FIG. 7. The calculated electron band structure of Si along
symmetry directionsL andD, as obtained with the optimal basis s
of the BZW procedure.
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These calculated effective masses are very close to the
perimental values ofmnt50.19m0 andmnl50.98m0 .28 The
good agreements between the calculated effective mass
the band gap, with corresponding experimental results, i
cate that the lowest conduction band in Fig. 7 is reasona
reliable.

Table III shows the calculated interband-transition en
gies, along with experimental results, at selected crit
points in the optical spectrum. In this table the indicesv and
c refer to the valence and conduction bands, respectiv
The calculated optical transitions agree well with experim
tal results. This agreement is particularly significant in lig
of difficulties in analyzing experimental data, including th
effect of lifetime corrections. These corrections are expec
to be significant for larger transition energies. In the expe
mental optical spectrum, each of the structures includes
possible optical transitions. The assignment of one struc
to a particular transition from the experimentally measu
optical spectrum has been a difficult problem in solid-st
spectroscopy.36 The reported experimentalG25v8 ˜G2c8 transi-
tion energy of 4.2 eV from the low-field electron-reflectan
measurement,36 disagree with the calculated value of 3.1
eV. Our calculated data suggest that the 4.2 eV transitio
rather theX4v˜X1c transition energy. This conjecture
based on the following reasons.~1! The small phase-spac
volume around theG2c8 point only contribute a tail-like struc
ture to the density of states and to the optical spectrum.~2!
The D5 and D1 bands are nearly parallel for a substant
portion of the phase-space volume, increasing the possib
for mistaken assignment of structures, and the calcula
transition energies fromX4v to X1c states are about 4.2 eV
~3! The doubly degenerateD5 bands have a spin-orbit split

TABLE III. Comparison of the calculated interband-transitio
energies~in eV! for silicon ~Si! with experimental results.

Si This calculation Measurements

Eg 1.02 1.14,a 1.17b

G1v˜G25v8 12.1 12.560.6b

G25v8 ˜G15c 2.68 3.0,c 3.4d

G25v8 ˜G2c8 3.19
X4v˜G25v8 2.93 2.9,e 3.360.2f

G25v8 ˜X1c 1.26 1.3b

L2v8 ˜G25v8 9.80 9.360.4b

L1v˜G25v8 7.04 6.860.2b

L3v8 ˜G25v8 1.36 1.260.2b

G25v8 ˜L1c 1.66 1.65,g 2.1h

G25v8 ˜L3c 3.78 3.960.1,b 4.1560.01i

L3v8 ˜L1c 3.0 3.260.2,b 3.45d

L3v8 ˜L3c 5.14 5.160.2,b 5.5d

aReference 27.
bReference 28.
cReference 29.
dReference 30.
eReference 31.
fReference 32.
gReference 33.
hReference 34.
iReference 35.
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ting from theG258 to the X4 points, consistent with the ex
perimental observations of the peak structures.

The G1v˜G25v8 transition is a measure of the valenc
band width. Our calculated valence-band width of 12.1 eV
in an excellent agreement with the experimentally measu
value of 12.560.6 eV.

D. Electronic properties and optical transitions of diamond

The BZW procedure leads to an optimum basis set
C(1s2s3s 2p) for the LCAO calculation for diamond. Here
the C(3s) orbital is empty. The calculated electronic ban
structure of diamond is shown in Fig. 8. The top of t
valence band~band edge! is at theG point. The bottom of the
conduction band is near (2p/a)(0.81,0,0). The calculated
indirect band gap (Eg) is about 5.05 eV, which is close to th
experimental value of about 5.3–5.48 eV.27,28 There are
some experimental complications in determining the ex
band gap, including the tails of the optical spectra that c
extend to several tenths of an eV.37,38 The calculated effec-
tive masses for then-type carriers around the conduction
band edge aremni51.160.2m0 and mn'50.3060.03m0 .
Here, the notationsi and' refer to the directions parallel an
perpendicular to theD1 band, respectively. Our calculate
effective masses are very close to the reported experime
results ofmni51.4m0 andmn'50.36m0 .28 There is a strong
nonparabolic dispersion of theD1 band around the
conduction-band minimum. This leads to a relatively larg
uncertainty in obtaining the effective mass and is also par
the reason for the differences in calculations of the effect
masses formni , using different methods.

We listed in Table IV some calculated interban
transition energies at selected critical points. The calcula
valence-band width of 21.35 eV is in an excellent agreem
with the experimental value of 2161 eV. The calculated
transition energies agree very well with experimental resu

E. Electronic properties of RuO2: Negligible BZW corrections
for metals

Our results for the calculated electronic band and rela
wave functions are characterized by the following two ma
points: ~a! our calculations II through V gave exactly th
same results for the valence and low-lying conduction ba

FIG. 8. The calculated electron band structure of diamond~C!
along the symmetry directionsL andD, as obtained with the opti-
mal basis set of the BZW procedure.
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in Fig. 9, and~b! these results almost perfectly reprodu
those of Ref. 40. The significance of these points stems f
the fact that they clearly indicate that corrections expec
from the application of the BZW procedure are negligible
metallic RuO2, unlike in the case of semiconductors. Cons
quently, our calculated total density of states~DOS! in Fig.
10 are the same as those of Glassford a
Chelikowsky40—in qualitative and quantitative terms. The
authors did not provide the partial density of states~PDOS!
we show in Fig. 11. These PDOS qualitatively agree w
some results of Schwarz.41 Our PDOS are different from
those obtained by Schwarz for energies between25 and
210 eV. The differences are both qualitative and quant
tive. For instance, our calculated PDOS for Ru 4d and O 2p
clearly show a double-peak structure not discernible from
augmented spherical wave~ASW! results of Schwarz. The
magnitudes of the peaks in Fig. 11, between25 and
210 eV, are more than double the corresponding ones
obtained by Schwarz. We ascribe these discrepancies to
ferences between ourab initio calculations and the ASW
method.

The negligible nature of the BZW corrections for metal
RuO2, as illustrated above, pertains only to descriptive c
culations. Namely, computations of properties of a mate
known to be a metal at a given stoichiometric composit
and under specified conditions of temperature and press

FIG. 9. The electronic band structure of RuO2 obtained with the
BZW optimal basis set. All results here were obtained with basis
II. The shown bands are the same for calculations III–V.

TABLE IV. The calculated interband-transition energies~in eV!
for diamond~C!.

Diamond This calculation Measurements

Eg 5.05 5.3,a 5.48b

G1v˜G25v8 21.35 2161,c 24.261d

G25v8 ˜G15c 6.36 6.060.2,b 7.3e

G25v8 ˜G2c8 13.87 15.360.5f

L2v8 ˜G25v8 15.49 15.260.3f

L1v˜G25v8 13.18 12.860.3f

aReference 27.
bReference 28.
cReference 37.
dReference 39.
eReference 38.
fReference 37.
m
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The BZW procedure is expected to be necessary for pre
tive calculations, i.e., those for materials whose metallic s
is not known or for which elemental composition and relat
concentrations, pressure, or temperature are changed. W
no discrepancies were found between our calculations I
V, for the valence and low-energy conduction bands,
variational theorem necessarily leads to differences for
highest conduction bands. For instance, the fundame
theorem of algebra dictates that the number of calcula
eigenenergies increase as the size of the Hamiltonian
creases.

IV. DISCUSSION

A. Choices of basis sets and of lattice parameters

It is important to note that the optimal size of the basis
for a given calculation varies with the nature and quality
the trial orbitals. Two computations for the same mater
using Gaussian orbitals, are expected to lead to differ
sizes of the optimal basis set if the Gaussian exponents in
two calculations are different. The essential point is that b
calculations must properly implement the procedure to arr
at the optimal size that applies, given the input orbitals. F

et

FIG. 10. The DOS for RuO2.

FIG. 11. The PDOS for RuO2.
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ther, Bagayoko showed18 that the use of contraction of orbit
als leads to a rigid shift of the bands. This rigid shift does
affect the physics of the problem. It is a simple manifestat
of the referenced variational theorem. The bands obtai
with contracted orbitals are shifted upwards as compare
those obtained with uncontracted orbitals—where the dim
sion of the matrices in the eigenvalue problem is larger.

The above points apply irrespective of the nature of
trial orbitals, i.e., Gaussian, exponential, or others, provid
the increases in the size of the basis set progressively acc
for higher and higher energy orbitals of the input spec
~atoms or ions!. In the case of plane waves, and in light
the relatively large number of orbitals, the implementation
the BZW procedure is expected to be more time consum
if plane waves are added or subtracted one at a time. A
tionally, complications arise if higher and higher expone
plane waves are added, as done in some plane-wave c
lations, as opposed to beginning with the highest expon
~representing lower, occupied states!. The difficulties could
be reduced by using augmented plane waves. The adeq
of the trial basis set directly affects the number of additio
or subtractions of orbitals for the purpose of determining
optimal basis set for molecules, clusters, or solids. As in
case of Gaussian orbitals, a set of the trial functions desc
ing the ground states of the affected atomic or ionic spe
is expected to be a good start.

Our choices for the lattice constants were dictated by
considerations. The first one stems from the fact that
program package does not yet include accurate codes fo
calculation of the total energy. The search for equilibriu
lattice parameters requires high accuracy. The second
sideration, equally important, actually dictates that we util
experimental lattice constants for some comparisons w
measurements to be meaningful. Specifically, in the cas
GaN, we considered two sets of lattice parameters to en
general comparison with experimental findings and spec
comparison with the low-temperature results of Rubioet al.
In the case of silicon and diamond, matters are complica
further by the fact that some experiments reported sligh
different lattice constants. While the use of experimental
tice parameters, as opposed to those for the minimum of
total energy curve versus the lattice parameter, is tantam
to applying pressure to a solid, the results discussed here
best fit for comparison with actual measurements.

B. LDA prediction of properties of semiconductors

The comparison of our results for GaN with those of t
GW work of Rubio et al.3 should be placed in contex
Namely, theirGW results were obtained by utilizing the va
lence state eigenfunctions of their LDA calculation
Specifically, their Eq. ~3! ~Ref. 3! is Enk5enk

LDA

1^nkuS(Enk)2Vxc
LDAunk&, whereEnk is the GW quasipar-

ticle energy,enk
LDA is the corresponding LDA eigenvalue, an

S(Enk) is the energy-dependent self-energy.Vxc
LDA is the

LDA exchange-correlation potential, andunk& is the LDA
wave function atk for band n. In the above equation,enk

LDA is
increased or decreased by the many-body correction.
differences between our results and the non-ground-s
quasiparticle eigenenergies from theGW calculations are
due not only to the difference between the states of the
t
n
d

to
n-

e
d
unt
s

f
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e
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tem under considerations, but also to the difference betw
our LDA results and those of Rubioet al.3 TheGW eigenen-
ergies are not for the ground state of GaN, as in the case
LDA. They rather belong to a GaN many-body system to
from which an electron is added or removed,42 respectively.
We conjecture that the above corrections could be sma
LDA results do not include the basis set and variational
fect for some unoccupied bands.

Our results, as presented above, clearly established
some limitations previously ascribed to local-density a
proximation are not necessarily due to LDA. In particula
and as far as GaN is concerned, a basis set and variat
effect was confounded with limitations, if any, of LDA
Bagayokoet al. showed the above assertion to hold for th
LDA description of BaTiO3.

2

The possible overestimate of the band gap by quasip
cle calculations is not unique for GaN. The results of Hybe
sen and Louie42 for Si and those of Rohlfing, Kru¨ger, and
Pollmann43 for Si and C are consistently above the expe
mental numbers. Scho¨ne and Eguiluz44 recently performed
self-consistentGW calculations for silicon. They reported
minimum ~or absolute! self-consistent band gap of 1.91 e
for silicon. The non-self-consistent gap was 1.34 eV. Th
authors assert that the self-consistentGW overestimates the
band gap by as much as ‘‘previous’’ LDA underestimated
The point of our work, we hope, is to show that the BZ
procedure, by avoiding the basis set and variational ef
noted above, clearly predict the low, unoccupied energy l
els or bands and the band gap—within a local-density
proximation.

These results raise questions about other disagreem
between LDA and experimental findings. Specifically, t
universality of the basis set and variational effect indica
that the BZW procedure should give improved LDA resu
for molecules, clusters, semiconductors, and insulators.
work of Williams6 suggests that in the case of metals, t
basis set and variational effect should generally be v
small. This situation is intuitively understandable in light
the crossing of the Fermi level by some bands. The occup
bands and several low-lying conduction bands converge
multaneously, with respect to the size of the basis set. T
situation partly explains the relative success of previo
LDA calculations in describing metals45 as compared to
semiconductors or insulators.

This work and related ones2,6 noted above established th
predictive capability of LDA—provided the BZW procedur
is utilized. This procedure avoids the basis set and va
tional effect on unoccupied eigenstate energies in molecu
clusters, semiconductors, and insulators, while ensuring
equate completeness of the basis set as measured by the
vergence of the physical quantities with respect to the siz
the basis set. Future calculations with the BZW procedu
we contend, are expected to show a similar predictive ca
bility for other computations based on density-function
theory,46,47 including investigations using fully relativistic,48

nonlocal,49 or temperature-dependent48 potentials. The appli-
cations of the procedure are not limited to density-functio
calculations. The BZW procedure is expected to be nee
in many self-consistent calculations that utilize basis sets
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reconstruct intermediate quantities~i.e., charge density!, us-
ing only some attributes~i.e., wave functions! of the occu-
pied states.

V. CONCLUSION

Our calculated LDA valence-band structures of GaN,
and diamond~C! generally agree with those from previou
first-principle calculations. Moreover, our calculated, lo
energy conduction bands, band gaps, and effective mass
n-type carriers also agree well with experimental resu
This work and the related ones noted above establishe
predictive capability for the local-density approximation
describing properties of materials. Further, the BZW pro
dure is expected to be needed by most self-consistent ca
s.
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lations utilizing basis sets in a variational method of t
Rayleigh-Ritz type—as long as intermediate steps utilize
wave functions of the occupied states only.
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43M. Rohlfing, P. Krüger, and J. Pollmann, Phys. Rev. B48, 17 791

~1993!.
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