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Local-density-approximation prediction of electronic properties of GaN, Si, C, and RuQ
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We present calculated electronic properties of gallium nitti@aN), silicon (Si), diamond(C), and ruthe-
nium dioxide (Ru@). We implemented a simple computational procedure that avoids a recently identified
basis set and variational effect. This effect, inherent to the use of basis sets in variational calculations, is
believed to have affecteab initio calculations of electronic properties of semiconductors since their inception.
We employedab initio, density-functional calculations using a local-density-approximation potential and the
linear combination of atomic orbital formalism. There is an excellent agreement between our findings and
experimental results. In particular, the calculated, direct, minimum band gap of GaN, for low temperatures, is
3.2 eV, while the practical band gap, as per the calculated density of states, is 3.40 eV. Band gaps and
excitation energies for silicon and diamond compare favorably with experimental results.
[S0163-18209)11727-2

[. INTRODUCTION any variational eigenvalue as the size of the basis set, i.e., the
dimension of the matrices in the eigenvalue equation, in-
Local-density approximation(LDA) calculations for creases. The theorem simply asserts that a given variational
semiconductors, until very recently,often led to band gaps eigenvalue upon an increase of the size of the basis set is
that are typically 30—50% smaller than the experimentahever increased, and that it remains either unchafiged if
values®* The discrepancies between LDA and experimentait is equal to the corresponding exact eigenvalue of the ma-
results have been mostly ascribed to limitations of the localirix) or it is lowered to approach the exact eigenvalue from
density approximation. The quasiparticle calculations of Ruabove. The extent to which such exact eigenvalues are close
bio et al® provide energy bands and a band gap for wurtziteto their corresponding eigenenergies of the physical system
GaN that agree with experiment. The dressed Green functionnder study depends on the basic theory and the approxima-
(G) and screened Coulomb interactiollV approach of tions utilized in the process of generating the matrix.
these authors, i.e., th® W method, used nonlocal, energy- Bagayoko and co-worker$ identified the basis set and
dependent, non-Hermitian operators, which are beyondariational effect that consists of any lowering of unoccupied
density-functional theory. The essential differences betweernergy levels or bands beyond that which occurred before
the GW results and those of previous LDA calculations arethe “convergence” of the occupied levels with respect to the
mainly between the conductiofunoccupiedl energy bands size of the applicable basis set. The possible, unphysical na-
obtained by the two approaches. There is a reported, surpritdre of such a lowering, they stated, stems from the use of the
ing agreement, however, between LDA a@dV results for wave functions—of occupied states only—in constructing
the wave functions of the valen¢eccupied bands. A recent the charge density and the potential from one iteration to the
attempt to remedy the reported failure of LDA for the con- next.
duction bands of semiconductors consists of the work of Vo- Bagayoko et al? successfully applied the Bagayoko,
gel et al* These authors employed pseudopotentials that inZhao, and WilliamgBZW) proceduré, described below, to
cluded self-interaction correctioSIC) and self-interaction circumvent methodically the above basis set and variational
and relaxation correction$SIRC) in an otherwise local- effect while avoiding any possible “incomplete” nature of
density potential calculation. They obtained wurtzite GaNthe basis set. Their calculated electronic and optical proper-
band gaps of 1.7 and 4.0 eV with a standard LDA pseudoties of BaTiQ agree very well with experimental results.
potential calculation and a new pseudopotential, LDA calcu-The universal nature of the above mathematical theorem
lation with self-interaction and relaxation corrections, re-naturally raised the question whether or not the reported
spectively. Vogekt al. utilized the Ceperley and Alder form limitations of LDA, particularly as they pertain to the de-
of local-density approximation as parametrized by Perdevecription of unoccupied energy levels or bands, are due to
and Zunger. LDA or to the manifestation of the above basis set and varia-
Recently, Bagayoko and co-workers identifiéda basis tional effect.
set and variational effect inherently associated with the use To partly answer this question, we applied the BZW pro-
of the linear combination of atomic orbitdL.CAO) or linear  cedure to study the electronic properties of GaN, Si, diamond
combination of Gaussian orbitdlCGO) formalism in varia- (C), and RuQ. In what follows, we first describe our
tional calculations of the Rayleigh-Ritz type. Essentially, themethod, with emphasis on the BZW procedure. We subse-
effect consists of a possible lowering of some unoccupiedjuently present the electronic energy bands, density of states,
energy levels or bands for molecules, clusters, or solids, onharge transfer, and related physical properties for gallium
account of a mathematical fact. This fact is stated in the nitride. This is followed by our findings for silicon, diamond,
theorend that describes the lowering or unchanged feature oind RuQ. These results are obtained with the optimal basis
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sets as determined by the BZW procedure. We compare owvill be qualitative (shape and branchingand quantitative
results to experimental and previous theoretical findings. Anumerical valuesdifferences between the occupied bands
discussion of the implications of our work follows. The last from calculations | and II. A third calculation is performed,
section provides a brief conclusion. using the basis set for calculation Il as augmented with or-
bitals representing the next lowest-lying atomic energy lev-
els. This process is continued until the comparison of the
occupied energy levels leads to no qualitative or quantitative
A. General approach: LDA potential and LCAO difference. When the results from calculatibhand those

The calculations discussed below are nonrelativistic. The]c om calculat|on_(\l+ 1) agree w!thm the computgtlona! er
or, then the optimum basis set is that of calculafanThis

are performed at zero temperature. The only effect of tem- ) . :
perature that is considered is that obtained by using the aﬁ_elecno_n rests on.the fact that a lowering Of. unoccupied lev-
plicable lattice parameters. Our calculations utilized an ex—els' as |n_chalculat|onN+#), gfter ;hﬁ OCCUP'Ed Ievels_ conl—
panded version of the electronic structure calculatior]ve_rged with respect to the sizé o t e basis set, as in calcu-
program package from the Ames Laboratory of DOE in ation N, could be a matht_amancal artifact. Such a Iowerllng
lowa 2 Details of the computational method are available™aY Not be the manifestation of any fundamental interaction,
but rather the expression of the basis set and variational ef-

in several previous publicatiois®? We employed the anet . oS -
Ceperley-Alder typ¥ of local-density potentials as param- fect |den'§|fled above_. This assertion is partly verified by
computational experiments reported in Sec. lll A. In multi-

etrized by Vosko, Wilk, and Nusatf. The above referenced : ike GaN bital b
publications describe the general features of our method, jgSpecies systems like GaN, two or more orbitals may be

the LDA potential and the standard implementation of theadded at a time if the affected atomic levels are close in

LCAO. We discuss below our distinctive implementation of energy. While we utilized the occupied energy bands for the

the LCGO or LCAO method in a fashion that circumventsgetermInatlon of conv?r?ﬁntcet\;lwth respect to the Sllf:{ek;)f the
the basis set and variational effect noted above. asls set, we suspect that other parameters cou e em-

ployed. They may include the charge density for occupied
states and particularly the potential.

IIl. METHOD

B. The BZW procedure

In a typicalab initio, self—consist_ent .caIcuIatio_n that em- C. Computational details
ploys the LCAO method, electronic eigenfunctions are ex- ) 4 )
panded using basis sets derived from atomic calculatibs. The wurtzite GaN belongs to theg, group. We consid-

Charge densities and potentials are constructed. The Hamigred two sets of lattice parameters for GaN. The low-
tonian matrix is generated and diagonalized. Key outputemperature values we selected are3.16 A, c=5.125A,
quantities are energy levels or bands and related wave fun@ndu=0.377} whereu is the distance between the Ga plane
tions. The resulting output wave functions—for the occupiedand its nearest-neighbdd plane in the unit ofc. Even
states—are employed to generate a new charge density afftpugh our calculations are for zero temperature, we also
the Computations are repeated_ The process of using the mnerformed calculations for experimentally measured lattice
put of iteration 1)—for occupied states—to construct the constants for room temperature, wheae=3.18784A, ¢
input for iteration o+ 1) continues until self-consistency is =5.1850A, andi=0.375* In the C¢, group, the Ga and N
reached. Various measures are utilized to define selfatoms are in (B) positions as follows: Ga0, 0, 0, (1/3,
consistency, i.e., when basic quantities, including charge/3, 1/2); N,(0, O, u), (1/3, 2/3, 1/2-u).
densities, potentials, eigenenergies, etc. are, respectively, un- The atomic wave functions of the ionic states of-Gand
changed from one iteration to the next. N~ were constructed from the self-consisteab initio
The trial basis sets are found by various authors by augatomic calculations. The radial parts of the atomic wave
menting the atomic orbitals with polarization and diffuse functions were expanded in terms of Gaussian functions. A
orbitals-"*® whose numbers, until the work of Bagayoko, set of even tempered Gaussian exponents was employed with
Zhao, and William$and Bagayoket al.? had no particular a minimum of 0.166 and a maximum of 0.558%C° in
limit. In fact, from a completeness standpoint, the largeratomic unit. We used 19 Gaussian functions for shend p
these numbers the better, provided no “catastrophic sinkingtates and 16 for thd states. A mesh of 2& points, with
of energy levels” or negative Millican population numbers proper weights in the irreducible Brillouin zone, was used in
occur for occupied statés. the self-consistent iteration calculations. The computational
The BZW procedure suggests a minimum of three selferror for the valence charge was about 0.000 22 for 52 elec-
consistent calculations that utilize basis sets of differentrons. The self-consistent potentials converged to a differ-
sizes. It generally begins with the minimum basis set, i.e., thence around 1 after about 35 iterations. The total number
basis set needed to account for all the electrons of the atomigf iterations varies with the input potentials.
or ionic species that are present in a molecule, a cluster, or a In the self-consistent LCAO calculations for Si in the dia-
solid. In the case of GaN, we chose these species to b& Gamond structure, we used the experimental lattice constant of
and N~ Completely self-consistent calculations are carrieda=5.43 A in the calculations. The atomic wave functions
out. For the second calculation, the minimal basis set is augwvere constructed from results of self-consisteatt, initio
mented with one or more atomic orbitals that belong to theatomic calculations. The radial parts of the atomic wave
next and lowest-lying energy levels in the atomic or ionicfunctions were expanded in terms of Gaussian functions. A
species. The self-consistent bands from calculations | and Bet of even-tempered Gaussian exponents was employed
are compared, graphically and numerically. In general, thergvith a minimum exponent of 0.099 and a maximum of
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TABLE I. The atomic orbitals used in calculations | to V for
RuO,. Superscript zeros indicate added orbitals representing unoc-
cupied atomic levels.

Basis set 0: core-state orbitals in calculations | to V
Ru(1s,2s,3s,2p,3p), O(1s)

Basis set |: Set 0 plus Ruébs,4p,3d,4d), O(2s,2p)
Basis set II: Set | plus Ru(®), O(3s°,3p%)

Basis set lII: Set Il plus Ru(&)

Basis set IV: Set Ill plus Ru(6°)

Basis Set V: Set IV plus O@)

Energy (eV)

N

A L M r

FIG. 1. The calculated, electronic band structure of GaN. The
solid lines represent the results of calculation I; the dashed lines
show the bands of calculation 1l. The lattice constants are

0.65x 10° in atomic units. We included 19 Gaussian orbitals
in the basis set for the expansion of the atomic wave func

tions of Si. For the extra atomic wave function of Si(3, —316A c=5125A andu=0.377.
we used 15 Gaussian orbitals. In the self-consistent calcula-
tions, we included 60 generlpoints in the irreducible Bril-  index of zero indicates that these states are unoccupied in the

louin zone with proper weights. The computational error forfree atomgions). We then plotted the energy bands obtained
the valence charge was about 0.000 95 for 24 electrons. Theom these two distinct self-consistent calculations. In Fig. 1
self-consistent potential converged to about 310 the solid and dashed lines represent the calculated results
Diamond (C) has a lattice constant af=3.567A. The  from the first and second calculations, respectively. Figure 1
bond length of the C-C nearest neighbor is 1.545 A, which isshows that the occupied bands from the two calculations
much shorter than the Si-Si bond length of 2.351 A. Thegiffer slightly. In particular, the difference is not a rigid shift
Gaussian functions we used to expand the carbon atomisf one set of bands with respect to the other. Hence, as noted
wave functions have a minimum exponent of 0.12 and above, the larger basis set, for the second self-consistent cal-
maximum of 0.1 10°. Sixty k points were used in the self- culation, is preferred to that for the first. This preference is
consistent electronic structure calculations. based on physical considerations, i.e., actual, physical inter-
Ruthenium dioxide (Rug) is a member of the transition- actions are responsible for the difference between the two
metal oxide family. Ru@has a rutile structure and exhibits sets of bands. Completeness requirements, partly to describe
metallic conductivity. Tetragonal Ruas the symmetry of the redistribution of the electronic cloud in the solid environ-
the P42/mnn*(D§ﬁ) space group’ RuG, has six atoms per ment, dictate this preference. The next natural step was to

unit cell, two ruthenium and four oxygen. The ruthenium repeat our procedure, for a third time, with a new basis set
atoms are located at the Wycoff &( sites: (0,0,0 and that includes a N(8°) orbital. The results of this third cal-

111y T t the Wvcoff fA sites: qulation (dashed !ine);and of the ;econd calculatiqsolid
(2.2 2)1 . e oxygen atoms occupy the Wycofff(sites lines) are shown in Fig. 2. Unlike in the case of Fig. 1, the

*+(u+3,3—u,3) and+(u,u,0). The lattice constants of ru- cajcylated bands for occupied states are fully converged. In
thenium dioxide area=4.492 A, ¢=3.106 A, andu  particular, the changes in occupied energies, from calculation
=0.306%! The basis sets for each of the five self-consistent to |1, are in the range of computational errors that are due

calculations used in the BZW procedure are indicated ino other factors, including rounding errors and possible limi-

Table I. The optimal basis set for the Ru@alculation is  tations of LDA. In contrast to the unchanged nature of the

basis set Il in Table I. A total of 25—37 iterations were neC'Occupied states, the lowest unoccupied states aff thied A

essary for convergence. The convergence of the potentialymmetry points are shifted downward by approximately 0.8
was up to 10°. We considered 6R points in the irreducible g\,
wedge of the Brillouin zone.

Ill. RESULTS
A. Electronic energy bands of wurtzite GaN

We have calculated the electronic properties of wurtzite
GaN (a-GaN) using the recently introduced proceddre.
Succinctly stated, the implementation of this calculation pro- k
cedure first consisted of carrying out completely self-
consistent calculations for GaN using a minimal LCAO basis \
set. Namely, the initial charge density farGaN was calcu- -6F 4/\
lated using the atomic orbitals of Geg2s3s4s, 2p3p4p, -8
3d) and N(1s2s, 2p).

We then repeated the self-consistent calculation using the F|G. 2. Comparison of the results of calculation Il and Ill. The
above basis set as augmented by the orbitals describing tlglid lines represent the GaN electron bands from calculation II; the
first excited statdi.e., the lowest in energyof Ga. Hence, dashed lines show the bands from calculation Ill. The lattice con-
Ga(4d) orbitals were added to the basis set. The superscripitants are=3.16 A, c=5.125 A, andu=0.377.

Energy (eV)

A L M r A H K r
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TABLE II. The calculated electronic energy leveis eV) for wurtzite GaN using two sets of lattice
constants. Calculation ALDA A): a=3.160A, c=5.125A, andu=0.377. Calculation B(LDA B): a
=3.1878 A,c=5.1850 A, andu=0.375. The lattice constants in ti@W calculations of Rubicet al. are
those for calculation A. The minimum band gaps are the energi€s.atSee our theoretical DOS for the
calculated, low-temperature, “practical” band gap of 3.4 eV.

LDA LDA Rubio Rubio LDA LDA Rubio Rubio
GaN A B LDA GW A B LDA GW
T3, -71  -70 -74 -8.0 M, -65 —-63 —68 -7.4
Ty, -11  -10 -11 -1.2 Ms, -53 -51  -56 -6.1
Ty, -1 -10 -11 -1.2 My, -43 —-42 44 -4.9
ry, 0.0 0.0 0.0 0.0 Mo, —-2.8 —-2.7 —-2.8 -3.1
Te, 0.0 0.0 0.0 00 My, -23  -22 -24 -2.6
Tey 0.0 0.0 0.0 00 M, -11 -10 -10 -11
Iy 3.2 3.0 2.3 35 My 5.3 5.3 5.1 6.5
[ 5.1 4.9 46 59 My, 5.9 5.8 5.7 7.4
Tee 10.2 10.1 10.1 11.9 Mg, 7.0 6.7 6.2 8.1
Ty 10.3 10.1 9.5 121 My, 9.3 9.1 9.1 11.5
Ala -38 —-38 —41 -4.6 Ly -67 —-65 —70 -76
As o -0.6 -0.5 -0.5 -0.6 Loa -2.0 -19 -2.0 —-2.2
As e -06 -05 -05 -0.6 Lisg -19 -19 -20 -22
Arx 5.4 5.2 4.6 6.1 Lig 4.7 4.6 4.4 6.0
As g 9.2 9.0 8.7 10.8 Liax 8.3 8.1 8.0 9.9
K1y -5.4 —-5.2 —-5.6 —-6.1 Hay —-6.2 —-6.1 —-6.4 —-7.1
Kay -53 -52 55 -6.1  Hpyn -43 —41 46 -4.9
Kay -31 -30 32 -35 Ha, -15 —-15 -15 -16
Koy -28 —-26 —30 -32 Hae 6.8 6.7 6.6 8.3
Kooe 5.3 5.3 4.9 6.6 Hiax 75 7.4 7.4 9.4
Kse 8.6 8.4 8.3 10.6

In light of the iteration procedure described above, andhis calculation closely follow those of calculation Il for the
that only includes the wave functions of occupied states iroccupied states and those of calculation | for the unoccupied
the reconstruction of the charge density, potential, andtates. These tests verified that the potential obtained with
Hamiltonian, the preferred basis set is that in calculation Ilthe optimum basis is practically identical to that generated
The drastic changes in the unoccupied states, in going frowith the larger basis set of calculation 11l and that it is dif-
calculation 11 to Ill, are believed to be simple consequencegerent from the potential obtained with a basis set smaller
of the variational theorem noted above. Namely, this lowerthan the optimum one. A comparison of the results of the
ing may not be due to a physical interaction, but rather to aliagonalization tests noted above to the self-consistent bands
mathematical artifact stemming from the variational theo-obtained with the optimum basis set is revealing. It consists
rem. While no other graphs are shown here, we continued tof a comparison of the effects of the size of the basis set,
add orbitals of higher and higher excited states to the basigiven that all three calculations employed the self-consistent
set for calculation four and five. As expected, these calculapotential obtained in calculation Il. A plot of the results of
tions did not lead to changes in the occupied states. They lethe diagonalization, using the basis set of calculation 11l and
expectedly, to drastic changes in higher and higher, unoccuhe self-consistent potential from calculation I, and of the
pied bands. bands from calculations Il practically reproduces Fig. 2.

Our claim relative to the use of the wave functions of theSimilarly, Fig. 1 is practically obtained by graphing the re-
occupied states in the self-consistent procedure as a basis faults of calculation Il and those of the diagonalization using
preferring the optimum basis set to larger ones is verified byhe basis set in calculation | and the self-consistent potential
the following computational experiments. These computafrom calculation 1. These computational experiments veri-
tional tests, on GaN, addressed the self-consistency of thigied our contention that due to the variational theorem and
potential and the effect of the size of the basis set separatelthe use of the wave functions of the occupied states only in
We diagonalized the Hamiltonian matrix, using the largerthe iterative procedure, the optimum basis set as defined
basis set of calculation 1lI, while utilizing only the self- above should be selected instead smaller or larger basis sets.
consistent potential obtained with the optimum basis set. The The electronic band structure afGaN, obtained with the
bands resulting from this diagonalization—for both the oc-optimum basis set of calculation II, is shown in Fig. 2 in
cupied and unoccupied states—are the same as the dashslid lines. The zero of the energy is set at the top of the
lines in Fig. 2. We also utilized the self-consistent potentialvalence band. In our nonrelativistic calculations, the effect of
obtained with the optimum basis set and diagonalized thepin-orbit interaction is not considered.

Hamiltonian using the minimum basis set. The bands from Table Il lists the energy levels at high symmetry points in
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the Brillouin zone for both sets of lattice constants. It also 1 DR B A LR
shows, for the same points, the LDA af@W results of
Rubioet al2 Our results in columns two and sevémalcula-

tion A) are the ones to compare with ti&W findings of
Rubio et al, as they are obtained with the same low-
temperature lattice constants specified in Table Il. The LDA
results of Rubicet al. were obtained at slightly different lat-
tice constants representing their theoretical LDA valugs (
=3.126 A, c=5.119A, u=0.377). Our results in columns
three and eight were obtained for room-temperature values of
the lattice parameter&alculation B.

Our LDA results from calculation A are different from the
LDA findings of Rubioet al., particularly for the conduction
bands. Some of these differences are due to that between the
sets of lattice constants. Upon superposing the tops of the
valence bands, their LDA bands are systematically lower FiG. 3. The calculated density of states for wurtzite GaN, as
than or the same as ours in energy, excepdl gf andAs g, . obtained from the bands in solid lines in Fig. 2. The inset shows
Their GW results are systematically lower and higher thanthat the practically measurable band gap is 3.4 eV.
ours for the occupied and unoccupied states, respectively. In

all cases, our calculated conduction bands for low temperaﬁgid_ On the other hand. th& W results of Rubicet al. for

ture lie between their correspondmg. LD.A amiv re_sults. the conduction bands, are shifted toward much higher ener-
As expected from the band structure in Fig. 2, the d|fference§]ies as compared to ours.

between their LDA r_esults and ours are the smallest ache The band gap, until now, has been generally calculated as
and L symmetry points. The least lowering of unoccupiedihe difference between the energies for the minimum of the
levels occurs at these points, when basis sets larger than thgnduction band and the maximum of the valence band. We
optimal one are utilized. refer to this band gap, calculated in this fashion, as the the-
The largest difference between corresponding LDA eneroretical, “minimum” band gap. Our calculation A, with
gies for the occupied states is 0.3 eV. This is also the largeséw-temperature lattice parameters, found a minimum gap of
difference between occupied or unoccupied LDA energies &8.2 eV, while the LDA andGW works of Rubioet al, re-
theH andL points. In contrast to the case of occupied statesspectively, reported 2.3 and 3.5 eV. These minimum band
some LDA conduction-band energies, from the work of Ru-gaps are the energies Bi. in Table Il. These gaps, as per
bio et al., are up to 0.9 eMat I';.) lower than that of our Table Il or Fig. 2, are direct gaps found at thepoint. Our
corresponding values. Except B, where the difference is total DOS curve in Fig. 3, particularly the inset, shows that
just 0.3 eV in magnitude, th& W results for the conduction the calculated, “practical,” and measurable band gap for
bands are generally 0.7 to 2.2 eV higher in energy than wéoW-temperature GaN is 3.4 eV—in excellent agreement with
found in calculation A(LDA with low-temperature lattice €XPeriment®*® indeed, the specially parabolic feature of

constants For the lowest valence states in Table I, agv  the bands aroundly leads to the very small tail structure
results are 0.7at Ky,) to 1.1 eV (atL, ) lower than our that is likely to be difficult to measure. The reported experi-
. y . ,

LDA findings.

(o)
—TT
|

2
Ensrgy (eV)

0S (states/eV cell)
IS
)

N
—r——

]

-8 —4 0 4 8
Energy (eV)

The effective mass is a measure of the quality of the cal- T
culated bands. Specially, the agreement between calculated 2r Ga=s E
and measured effective masses indicates an accurate deter- O feemmtuestrertoditsn ; J'W\J“‘!\i
mination of the shape of the bands. Our calculated effective Py Ga—p ]
mass for then-type carriers ofa-GaN near thd point is -
0.22£0.03ny. This result is in a good agreement with the L 0 e Sansisastons M
experimental data of 0:20.02m,.%%% @ 5k LMGa—d E

S ofb. i, BTV,
n
B. Density of states, band gap, and charge distribution v 2F N-s 3
for GaN 8 0 J M e ettt i

Figures 3 and 4, respectively, show the total and partial 2k N-p J

density of statesDOS) for wurtzite GaN, as obtained from 0 A D

calculation A. While much difference is not expected be- 16 —12 -8 -4 0 4 8
tween our DOS and those obtained from previous LDA cal-
culations, for the occupied states, significant discrepancies
are obvious for the unoccupied levels. In particular, previous FIG. 4. The PDOS for wurtzite GaN from the contribution of
LDA calculations, on account of results in Fig. 2 and Tablethes, p, andd states of Ga atoms and from teendp states of N
II, have conduction-band DOS that are shifted toward loweratoms. These PDOS are derived from the basd$d lines in Fig.
energies as compared to ours. This shift, as per Fig. 2, is n@ obtained with the BZW optimal basis set.

Energy (eV)
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FIG. 5. The charge density distribution or{GiL0) plane passing FIG. 6. The charge density distribution on@1) plane of Ga
through Ga and N atoms. The lattice constant®m temperatuje  atoms. The lattice constantsoom temperatudeare a=3.1878 A,
area=3.1878 A,¢c=5.1850 A, andu=0.375. ¢=5.1850 A, andu=0.375.

mental optical-absorption spectrémactually shows the . . .
need to define a “practical” band gap, distinct from the timum basis sefor the LCAO calculation consists of the

minimum band gap. The GW minimum gap of 3.5 eV isatomic orbitals of Si($2s3s4s2p3p3d). Here, the
therefore expected to lead to a measurable band gap of afi(4s3d) are empty shells and are used to augment the basis
proximately 3.7 eV or higher, assuming that &V bands  Set to account for charge redistributions in the solid environ-
preserved the parabolic structure aroung . Our calcula- ment. The electron band structure of Si, calculated with the
tion B, with room-temperature lattice constants specified inoptimum basis set, is shown in Fig. 7 without spin-orbit in-
Table II, found a minimum band gap of 3.0 eV and a prac-teraction. Figure 7 shows that the top of the valence band is
tical band gap of 3.2 eV, in excellent agreement with room-at theT" point. The minimum of the conduction band is at a
temperature experimefit?® general point betweeh andX. The calculated indirect band
We also calculated the effective charge and charge trangap is about 1.02 eV, which is very close to the experimental

fer for wurtzite GaN using the obtained electron wave func-ygjue of about 1.14—1.17 e¥/:28 The calculated conduction
tions. The calculated charge transfer I.ed to an effective ioni¢gnd minima are at (2/2)(0.79,0,0) and at the equivalent
formula of G&°'N"*" for wurtzite gallium nitride. points, one along each cube edge. The effective mass of the

_Figures 5 and 6 show the contour plots of the chargg, ype carriers at the conduction-band minimum is very an-
d_|str|but_|on,_ for room-temperature 'a“_'ce constafusicula- isotropic. The calculated transverse and longitudinal effec-
tion B), in different symmetry planes, i.e.,(@10) plane con- tive masses are, from the band dispersions in Figm7,

taining Ga and N atoms, and (801 plane containing Ga _ - -
atoms. The unit of the labeled charge density values i 0-2000.0an, and my=0.93%0.03m,, respectively.

10 2electronsd’, where a,=0.529177A. The high
charge-density region around the nuclear sites has been cut
off in these diagrams at a value of 0.5 electrads/leaving
hollow spheres to represent the atomic cores. There are some
portions of empty space in the wurtzite structure of GaN, as
seen from the charge distribution in Figs. 5 and 6. The empty
tubes are distributed in a hexagonal structure alongcthe
direction. The calculated electron charge distribution of Fig.
5 indicates that there is a quite strong covalent character of
the Ga-N bonds. This can be seen from the noticeable charge
distribution at the middle of the Ga-N bond. The size of the
nitrogen ions appears larger than that of gallium ions in Fig.
5. The radii of the Ga and N ions in wurtzite GaN are esti-
mated ag (Ga)=0.92 A andr(N)=1.01A.

Energy (eV)

C. Electronic properties and opical transitions in silicon FIG. 7. The calculated electron band structure of Si along the

Silicon is probably the best known semiconductor. It hassymmetry directions andA, as obtained with the optimal basis set
been studied for more than 40 years. We found thabgive of the BZW procedure.
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TABLE IIl. Comparison of the calculated interband-transition 20E
energiegin eV) for silicon (Si) with experimental results. 16F-
Si This calculation Measurements 12 3
Eq 1.02 1148117 > 4
Ty—T, 12.1 12.5-0.6° T ot
e, —T s 2.68 3.0¢3.4  _4F
[he,—The 3.19 S _st
Xay—T s, 2.93 2.93.3+0.7 _12F
s, — X1c 1.26 1.3 ]
Ly, —T s, 9.80 9.3-0.4 -leg
Lyy—Ths, 7.04 6.8:0.2 -20
Ly, —Ts, 1.36 1.200.2
I'35,— L1 1.66 1.65 2.1" ' FIG. 8. The calculated electron band structure of diam@®d
I, —Lac 3.78 3.9:0.1° 4.15+0.01 along the symmetry directions and A, as obtained with the opti-
Lg,—Lic 3.0 3.2£0.2P 3.49 mal basis set of the BZW procedure.
Ly, —Lae 5.14 5.1-0.2P 5.5

ting from theI ;5 to the X, points, consistent with the ex-

°Reference 27. perimental observations of the peak structures.
:Reference 28. The I'y,—T 4, transition is a measure of the valence-
dReference 29. band width. Our calculated valence-band width of 12.1 eV is
eReference 30. in an excellent agreement with the experimentally measured
Reference 31. value of 12.5-0.6 eV.

fReference 32.
9Reference 33.

"Reference 34. . .
iReference 35. The BZW procedure leads to an optimum basis set of

C(1s2s3s2p) for the LCAO calculation for diamond. Here,
Qw_e C(3) orbital is empty. The calculated electronic band
structure of diamond is shown in Fig. 8. The top of the

D. Electronic properties and optical transitions of diamond

These calculated effective masses are very close to the e

perimental values ofn,=0.19m, andm,;=0.98m,.% The ; .
. lence bandband edggis at thel” point. The bottom of the
good agreements between the calculated effective mass aﬁgnduction band is near ¢2a)(0.81,0,0). The calculated

the band gap, with corresponding experimental results, indi=" . . .
cate that the lowest conduction band in Fig. 7 is reasonabl d|rept band gapk,) is about 5.05 eV, Wh'Cth close to the
xperimental value of about 5.3-5.48 &% There are

re“?gﬁé Il shows the calculated interband-transition ener>°™M¢€ expe'rimen.tal compli.cations in dgtermining the exact
gies, along with experimental results, at selected critica and gap, including the tails Ofé%]g% optical spectra that can
points in the optical spectrum. In this table the indigesnd gxtend to several tenths of an ev. The calculated effe_c-

c refer to the valence and conduction bands, respectivel)}.'ve masses for the-type carriers around the conduction-

The calculated optical transitions agree well with experimen-band edge areny =1.1+0.2m, and m,, =0.30=0.03n,.

tal results. This agreement is particularly significant in IightHere‘ tf&g n?tat;onﬁ]aegdt refgr to the c:!recl:tlogs paralllell atn(é
of difficulties in analyzing experimental data, including the perpendicuiar to 1 band, respectively. Lur caiculate

effect of lifetime corrections. These corrections are expecte&ﬁce‘mve masses are very close to the reported experimental

— _ 28 H
to be significant for larger transition energies. In the experi—resuns ofmy, =1.4m, andm,, =0.36m,."" There is a strong

mental optical spectrum, each of the structures includes affonParabolic dispersion of thed, band around the

possible optical transitions. The assignment of one structurgonduct'on'pang nj|n|murr]11. th's .Ieads to a rglgtlwlaly Iargerf
to a particular transition from the experimentally measured!Ncertainty in obtaining the effective mass and Is also part o
optical spectrum has been a difficult problem in solid-statethe reason for the differences in calculations of the effective

spectroscopy® The reported experimenthl,s,— 15, transi- masses _fomn” » using different methods. .

tion energy of 4.2 eV from the low-field electron-reflectance W?. listed In Table IV some calgulated interband-
measuremert disagree with the calculated value of 3.19 transition energies at selected c_rm_cal points. The calculated
eV. Our calculated data suggest that the 4.2 eV transition iga_llence—band W'dth 0f 21.35 eV is in an excellent agreement
rather theX,,— Xy, transition energy. This conjecture is with _the expen_mental value of 211 ev. Th‘? calculated
based on the following reasond) The small phase-space transition energies agree very well with experimental results.
volume around thé&/ point only contribute a tail-like struc-
ture to the density of states and to the optical specti(@n.
The A; and A; bands are nearly parallel for a substantial
portion of the phase-space volume, increasing the possibility Our results for the calculated electronic band and related
for mistaken assignment of structures, and the calculatediave functions are characterized by the following two major
transition energies fronX,, to X, states are about 4.2 eV. points: (a) our calculations Il through V gave exactly the
(3) The doubly degenerat&s bands have a spin-orbit split- same results for the valence and low-lying conduction bands

E. Electronic properties of RuO,: Negligible BZW corrections
for metals
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TABLE IV. The calculated interband-transition energigseV) 20[ T T
for diamond(C). — [ :
T 16[ .
Diamond This calculation Measurements : [
Eq 5.05 5.315.48 S 12F : ]
Iy—Ths, 21.35 21-1°24.2+ 11 o i
e, —T 15 6.36 6.0:0.2P 7.3 2 8r
e, —The 13.87 15.30.5 ~ |
Ly, —T e, 15.49 15.2-0.3 8 4l
Lyy—Ts, 13.18 12.80.3 e | /
0l . i

ZReference 27. —-20 —10 0 10
Reference 28.

°Reference 37. Energy (eV)

YReference 39. FIG. 10. The DOS for Ru®

®Reference 38.

; . .
Reference 37. The BZW procedure is expected to be necessary for predic-

tive calculations, i.e., those for materials whose metallic state
in Fig. 9, and(b) these results almost perfectly reproduceis not known or for which elemental composition and related
those of Ref. 40. The significance of these points stems frorgoncentrations, pressure, or temperature are changed. While
the fact that they clearly indicate that corrections expectegho discrepancies were found between our calculations Il to
from the application of the BZW procedure are negligible forV, for the valence and low-energy conduction bands, the
metallic RuQ, unlike in the case of semiconductors. Conse-variational theorem necessarily leads to differences for the
quently, our calculated total density of stat€09) in Fig.  highest conduction bands. For instance, the fundamental
10 are the same as those of Glassford andheorem of algebra dictates that the number of calculated
Chelikowsky’—in qualitative and quantitative terms. These eigenenergies increase as the size of the Hamiltonian in-
authors did not provide the partial density of stae®O9 creases.
we show in Fig. 11. These PDOS qualitatively agree with
some results of Schwaf2.Our PDOS are different from
those obtained by Schwarz for energies betweéehn and
—10eV. The differences are both qualitative and quantita- A. Choices of basis sets and of lattice parameters
tive. For instance, our calculated PDOS for Riiand O 2
clearly show a double-peak structure not discernible from th
augmented spherical wa&SW) results of Schwarz. The

IV. DISCUSSION

It is important to note that the optimal size of the basis set
for a given calculation varies with the nature and quality of
) ) . the trial orbitals. Two computations for the same material,
mzi%mt\L/Jdes of the r[]Jeakds 'gl F'%‘ 11, betwezl_rs and using Gaussian orbitals, are expected to lead to different
_b © d gresmhore ¢ E:Ir\]/ ou %t ﬁ corr:.spon ng onesd. zes of the optimal basis set if the Gaussian exponents in the
obtained by Schwarz. We ascribe these discrepancies to dif,, caiculations are different. The essential point is that both

ferences between owb initio calculations and the ASW .0 jations must properly implement the procedure to arrive

method. . ; . . X ;
. . . at the optimal size that applies, given the input orbitals. Fur-
The negligible nature of the BZW corrections for metallic P PP g P
RuO,, as illustrated above, pertains only to descriptive cal- 10
culations. Namely, computations of properties of a material [ ]
known to be a metal at a given stoichiometric composition = .
and under specified conditions of temperature and pressure. [ Ru-p 1
A -
10
10 i :
5 [ Ru—d ]
< F <10 o4
% 0 % |
p— 3 2 B ]
> “OF 3 0-s
_ - ~—
[ ] [ J——
S —10F . 8 10 1 ]
-15F ] - 7
| ] 0-p
_20 P} . A
r X R Z r M A z
=20 -14 -8 -2 4 10
FIG. 9. The electronic band structure of Ru@btained with the Energy (eV)

BZW optimal basis set. All results here were obtained with basis set
Il. The shown bands are the same for calculations Il1-V. FIG. 11. The PDOS for Rup
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ther, Bagayoko showétithat the use of contraction of orbit- tem under considerations, but also to the difference between
als leads to a rigid shift of the bands. This rigid shift does notour LDA results and those of Rubit al® The GW eigenen-
affect the physics of the problem. It is a simple manifestatiorergies are not for the ground state of GaN, as in the case for
of the referenced variational theorem. The bands obtainedDA. They rather belong to a GaN many-body system to or
with contracted orbitals are shifted upwards as compared tfom which an electron is added or removV€despectively.
those obtained with uncontracted orbitals—where the dimenyye conjecture that the above corrections could be small if
sion of the matrices in the eigenvalue problem is larger. | pA results do not include the basis set and variational ef-
The above points apply irrespective of the nature of th&gct for some unoccupied bands.

trial orbitals, i.e., Gaussian, exponential, or others, provided . results, as presented above, clearly established that
the increases in the size of the basis set progressively accoutfme limitations previously ascribed to local-density ap-

for higher and higher energy orbitals of the input SpeCiesproximation are not necessarily due to LDA. In particular,

(atoms or ions In the case of plane waves, and in light of d f . d. a basi d o |
the relatively large number of orbitals, the implementation of2hd as far as GaN is concered, a aS'S.SEI and variationa
' ffect was confounded with limitations, if any, of LDA.

the BZW procedure is expected to be more time consumin ! :
if plane waves are added or subtracted one at a time. Add Bagayokoet al. showed the above assertion to hold for their
LDA description of BaTiQ.?

tionally, complications arise if higher and higher exponent , : .
plane waves are added, as done in some plane-wave calcu- 1 N€ POssible overestimate of the band gap by quasiparti-

lations, as opposed to beginning with the highest exponenl%'e calculanons is not. unique for GaN. The_ resulllts of Hybert-

(representing lower, occupied stateZhe difficulties could Sen and Loui€ for Si and those of Rohlfing, Kger, and

be reduced by using augmented plane waves. The adequaBglimanii® for Si and C are consistently above the experi-

of the trial basis set directly affects the number of additiongnental numbers. Sche and Eguilu? recently performed

or subtractions of orbitals for the purpose of determining theself-consistenGW calculations for silicon. They reported a

optimal basis set for molecules, clusters, or solids. As in theninimum (or absolutg self-consistent band gap of 1.91 eV

case of Gaussian orbitals, a set of the trial functions descritfor silicon. The non-self-consistent gap was 1.34 eV. These

ing the ground states of the affected atomic or ionic specieauthors assert that the self-consist&\W overestimates the

is expected to be a good start. band gap by as much as “previous” LDA underestimated it.
Our choices for the lattice constants were dictated by tworhe point of our work, we hope, is to show that the BZW

considerations. The first one stems from the fact that ouprocedure, by avoiding the basis set and variational effect

program package does not yet include accurate codes for thgyted above, clearly predict the low, unoccupied energy lev-

calculation of the total energy. The search for equilibriumg|s or pands and the band gap—uwithin a local-density ap-

lattice parameters requires high accuracy. The second COoBtoximation.

sideration, equally important, actually dictates that we utilize' 11056 results raise questions about other disagreements

experimental lattice constants for some comparisons wit etween LDA and experimental findings. Specifically, the

measurements to be meaningful. Specifically, in the case niversality of the basis set and variational effect indicates

GaN, we considlered two sets O.f lattice parameters to ena_tt; Rat the BZW procedure should give improved LDA results
general comparison with experimental findings and Speclfl(f\or molecules, clusters, semiconductors, and insulators. The

comparison with the low-temperature results of Ruéial. o ;
P P ork of Williams® suggests that in the case of metals, the

In the case of silicon and diamond, matters are complicategd ™" q tional eff hould v b
further by the fact that some experiments reported slightlyP2S!S Set and variational effect should generally be very

different lattice constants. While the use of experimental latSmall- This situation is intuitively understandable in light of
tice parameters, as opposed to those for the minimum of th§® crossing of the Fermi level by some bands. The occupied
total energy curve versus the lattice parameter, is tantamouR@nds and several low-lying conduction bands converge, si-
to applying pressure to a solid, the results discussed here afaultaneously, with respect to the size of the basis set. This
best fit for comparison with actual measurements. situation partly explains the relative success of previous
LDA calculations in describing metdfs as compared to
semiconductors or insulators.

This work and related on&8 noted above established the
The comparison of our results for GaN with those of thepredictive capability of LDA—provided the BZW procedure
GW work of Rubio etal?® should be placed in context. is utilized. This procedure avoids the basis set and varia-
Namely, theirGW results were obtained by utilizing the va- tional effect on unoccupied eigenstate energies in molecules,
lence state eigenfunctions of their LDA calculations. clysters, semiconductors, and insulators, while ensuring ad-
Specifically, their Eq. (3) (Ref. 3 is En=e€g"  equate completeness of the basis set as measured by the con-

+(nk|S (Eq) = Vi AInk), whereE, is the GW quasipar-  vergence of the physical quantities with respect to the size of
ticle energyene” is the corresponding LDA eigenvalue, and the basis set. Future calculations with the BZW procedure,
3 (En) is the energy-dependent self-energ&!;CDA is the  we contend, are expected to show a similar predictive capa-
LDA exchange-correlation potential, andk) is the LDA  bility for other computations based on density-functional
wave function ak for band n. In the above equatioef,Y” is  theory*®*” including investigations using fully relativistf€,
increased or decreased by the many-body correction. Theonlocal*® or temperature-dependéhpotentials. The appli-
differences between our results and the non-ground-stateations of the procedure are not limited to density-functional
quasiparticle eigenenergies from ti@&W calculations are calculations. The BZW procedure is expected to be needed
due not only to the difference between the states of the sysn many self-consistent calculations that utilize basis sets and

B. LDA prediction of properties of semiconductors
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reconstruct intermediate quantitiése., charge densifyus- lations utilizing basis sets in a variational method of the
ing only some attributesi.e., wave functionsof the occu- Rayleigh-Ritz type—as long as intermediate steps utilize the
pied states. wave functions of the occupied states only.

V. CONCLUSION
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