
PHYSICAL REVIEW B 15 DECEMBER 1999-IVOLUME 60, NUMBER 23
Giant spin relaxation anisotropy in zinc-blende heterostructures

N. S. Averkiev and L. E. Golub
A.F. Ioffe Physico-Technical Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia

~Received 15 July 1999!

Spin relaxation in-plane anisotropy is predicted for heterostructures based on zinc-blende semiconductors. It
is shown that it manifests itself especially brightly if the two spin relaxation mechanisms~Dyakonov-Perel and
Rashba! are comparable in efficiency. It is demonstrated that for the quantum well grown along the@001#

direction, the main axes of spin relaxation rate tensor are@110# and @11̄0#. @S0163-1829~99!09643-5#
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I. INTRODUCTION

Spin relaxation processes have significant effect in opt
and kinetic properties of semiconductors. They play an
portant role in optical orientation of electrons and nuclei1 and
in anomalous magnetoresistance caused by w
localization.2 Both theoretical calculations and experimen
data analysis have been carried out assuming that one
relaxation mechanism dominates only. Therewith in spite
the strong anisotropy of spin-orbit scattering, the relaxat
times of spin lying in the plane of a heterostructure w
zinc-blende lattice turn out to be independent on orienta
with respect to crystallographic axes.

Real heterostructures differ from investigated ideal o
jects in that several spin relaxation mechanisms exist.3,4 A
spin relaxation mechanism due to only cubic in wave-vec
terms of the bulk Hamiltonian was investigated for rectan
lar quantum wells~QW’s! in Ref. 5. It was noted that even i
an asymmetrical GaAs QW, the efficiency of another mec
nism due to linear in two-dimensional wave-vector terms
negligibly small. The authors of Ref. 4 analyzing experime
tal data on anomalous magnetoresistance in InxGa12xAs
QW’s demonstrated that the both mechanisms may be c
parable in efficiency. But in Refs. 3 and 4, it was mention
that the both mechanisms are additive in spin relaxation

This communication is devoted to an investigation of s
relaxation processes when several mechanisms of spin-
scattering exist. We show that contributions of these mec
nisms interfere and their simultaneous action leads to
strong anisotropy of spin relaxation even in the plane o
QW.

II. THEORY

In zinc-blende semiconductors, spin relaxation of el
trons is well known to be due to spin-orbit splitting of co
duction band. In a bulk crystal, the splitting is cubic in wa
vector. In a QW structure, the corresponding Hamilton
has to be averaged over the motion along the growth a
We consider the QW grown alongz direction parallel to
@001# and choosex andy directions coinciding with crystal-
lographic axes. At relatively small carrier concentratio
one can neglect cubic in 2D wave-vector terms and
Hamiltonian has the form

H15a1~sxkx2syky!. ~1!
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Here,s i ( i 5x,y) is the Pauli matrix,ki is the wave vector
component in the plane of the QW anda1 is a constant.

In asymmetrical heterostructures, there is a contribution
the Hamiltonian, which is absent in the bulk:6

H25a2~sxky2sykx!, ~2!

wherea2 is the constant determined by heterointerface pr
erties.

To calculate spin relaxation times, one has to consider
dynamics of spin-density matrix,r:

]r

]t
52

i

\
@H,r#, ~3!

where the total two-dimensional Hamiltonian is

H5
\2k2

2m
1V1H8. ~4!

Herem is an effective electron mass,V(x,y) is a scattering
potential and

H85H11H2 .

We assume that the scattering is elastic and independen
spin indices.

SinceH8 is a small perturbation, the spin relaxation tim
turn out to be much longer than isotropisation times of m
mentum distribution of electrons. For this reason it is con
nient to represent the density matrix as a sum7

r5 r̄1r8, r̄850,

where the bar means averaging over the directions ok.
Here,r̄ depends on«5\2k2/2m and the anisotropic part o
the density matrix is due toH8 only. Hence,r8 is propor-
tional to H8, i.e., r8 is small in comparison tor̄.

Then in the first order inH8, Eq. ~3! has the form

]r8

]t
52

i

\
@H8,r̄ #2(

k8
Wkk8@r8~k!2r8~k8!#, ~5!

]r̄

]t
52

i

\
@H8,r8#. ~6!

Here,Wkk8 is the probability for scattering from the potenti
V from the state withk to the state withk8.
15 582 ©1999 The American Physical Society



ry

it

in
n
ic
r

n

it

of

-
e
t if

e
al
wo

n

ot-

ate-
an-

n

pin

PRB 60 15 583BRIEF REPORTS
One can see from Eq.~5! that r8 relaxes in the time,
which is of order of momentum relaxation time, butr̄ re-
laxes in the longer time, which is determined byH8—see Eq.
~6!. At these long times, Eq.~5! reduces to a quasistationa
one

(
k8

Wkk8@r8~k!2r8~k8!#52
i

\
@H8,r̄ #. ~7!

Findingr8(k) from here and substituting it to Eq.~6!, one
can obtain the closed equation forr̄

]r̄

]t
52

1

\2(
n

tn†H2n8 ,@Hn8 ,r̄ #‡. ~8!

Here,

Hn85 R dwk

2p
H8~k!exp~2 inwk!, ~9!

wherewk is the angle betweenk andx axis, and

1

tn
5 R duWkk8~12cosnu!, ~10!

whereu5wk2wk8 . Equation~8! clearly demonstrates that
is spin-orbit interaction, which causesr̄ relaxation.

After substitutingr̄ in a form

r̄5 f 01
1

2
s•æ,

Eq. ~8! reduces to following equations:

f 0̇~«,t !50, ~11!

æ̇i~«,t !52G i j ~«!æj~«,t !, ~12!

where

G i j 52
1

\2 SpH(
n

tn†H2n8 ,@Hn8 ,s j #‡s i J . ~13!

An initial condition may be derived considering the sp
dynamics after the timetn , but before the spin relaxatio
time. In the timetn , the density matrix becomes isotrop
but the spin relaxation processes do not start yet. Therefo8

f 0~«!5 1
2 @F1~«!1F2~«!#, ~14!

æ~«!5s@F1~«!2F2~«!#, ~15!

where s is the unit vector along the spin andF6(«) are
distribution functions of particles with the spin projection o
s equal to61/2.

Taking into account that the spin density,S(t), is the av-
erage ofæ over «, one can obtain the kinetic equation for
at the time longer thantn :

Ṡi52
Sj

t i j
, ~16!

where the tensor of reciprocal spin relaxation times is:
e,

1

t i j
5

E d«@F1~«!2F2~«!#G i j ~«!

E d«@F1~«!2F2~«!#

. ~17!

Equation ~17! represents the extension of the results
Ref. 5 to the case of an arbitrary spin-orbit interactionH8
and takes into account the anisotropy of scattering.

SubstitutingH85H11H2 into Eq. ~13! and thenG i j into
Eq. ~17! we have

1

tzz
5C~a1

21a2
2!,

1

tzx
5

1

tzy
50, ~18!

1

txx
5

1

tyy
5

C

2
~a1

21a2
2!,

1

txy
52Ca1a2 , ~19!

where

C5
m

\4

E d«@F1~«!2F2~«!#t1~«!«

E d«@F1~«!2F2~«!#

. ~20!

Equations~18!–~20! generalize the results3–5 for the case
of two spin relaxation mechanisms.

III. DISCUSSION

It follows from Eq. ~19! that because of the two mecha
nisms (a1•a2Þ0), the spin relaxation in the plane of th
QW becomes anisotropic. It should be emphasized tha
there is only one mechanism (a1•a250), then the spin re-
laxation is isotropic in spite of the cubic symmetry of th
HamiltonianH1 or H2. Thus, the cubic anisotropy of the re
QW structure manifests itself due to the interference of t
spin relaxation mechanisms.

The system~16! may be rewritten as follows:

Ṡx6Ṡy52
Sx6Sy

t6
, ~21!

where

1

t6
5

C

2
~a16a2!2. ~22!

The timest1 and t2 describe the relaxation of the spi
oriented along the directions@110# and @11̄0#, respectively.

The most bright manifestation of spin relaxation anis
ropy occurs ifa156a2. In this case, one of the timest1 or
t2 becomes infinite. Therewith the other is equal totzz.

Efficiency of the mechanisms depends on both the m
rial and the shape of the QW. It was shown that in a rect
gular GaAs/AlxGa12xAs QW, the mechanism ~1!
dominates,9 and in an asymmetrical InxGa12xAs/AlAs QW’s
the mechanism~2! is the most important10 or they are
comparable.4

It is clear that if botha1 anda2 are not equal to zero, the
the spin sublevels split. In the work11 it is shown thata1 and
a2 may be comparable in magnitude and, hence, the s
splitting is strongly anisotropic.
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The spin relaxation anisotropy results from the initialTd
symmetry of the zinc-blende semiconductor. For this reas
the similar effect can take place in a strained bulk crys
The corresponding Hamiltonian linear in 3D wave vector,k,
and components of an elastic strain tensor,ui j , has the form:

H8~u!5A1uii ~s i 11ki 112s i 12ki 12!1A2ui j ~s ikj2s j ki !.
~23!

Here, i , j 5x,y,z, i 13→ i , A1 andA2 are constants. Doing
calculations for 1/t i j in a way similar to Eq.~17!, one can
obtain three different spin relaxation times. It can be sho
that the maximum anisotropy may be achieved if

A1uxx5A1uyy52A1uzz/25A2uxy /3 ~24!

with the rest ofui j 50. Therewith two spin relaxation time
are equal to each other and the third is infinite. Note that
tensorui j determined by Eq.~24! may be obtained by apply
ing two uniaxial strains along the axes@001# and @110# and
they are not restricted to uniaxial strain along any axes.
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IV. CONCLUSION

The possibility for spin relaxation suppression was no
in Ref. 5 for a QW grown along@110# direction when the
spin is oriented along the same axis. The present work sh
that the spin relaxation rate also decreases for@110# direc-
tion, but in a QW grown in the symmetrical direction@001#.
Therefore, this decrease takes place for the spin lying in
plane of the QW.

Analyzing weak localization effect, the authors of Refs
and 4 showed that the mechanisms~1! and~2! suppress each
other in anomalous magnetoresistance, but they are add
in spin relaxation. The present analysis shows that the s
pression occurs in the spin relaxation also. Besides, we h
found that spin relaxation is anisotropic even in the plane
the QW.
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