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Giant spin relaxation anisotropy in zinc-blende heterostructures

N. S. Averkiev and L. E. Golub
A.F. loffe Physico-Technical Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia
(Received 15 July 1999

Spin relaxation in-plane anisotropy is predicted for heterostructures based on zinc-blende semiconductors. It
is shown that it manifests itself especially brightly if the two spin relaxation mechariByakonov-Perel and
Rashba are comparable in efficiency. It is demonstrated that for the quantum well grown alori@Qhle
direction, the main axes of spin relaxation rate tensof &t€] and[110]. [S0163-182699)09643-5

I. INTRODUCTION Here, o, (i =x,y) is the Pauli matrixk; is the wave vector
component in the plane of the QW agg is a constant.
Spin relaxation processes have significant effect in optical In asymmetrical heterostructures, there is a contribution to
and kinetic properties of semiconductors. They play an imthe Hamiltonian, which is absent in the biflk:
portant role in optical orientation of electrons and nuceid
in anomalous magnetoresistance caused by weak Ho=a5(0oky— o yky), @)

localization? Both theoretical calculations and experimental\yherea, is the constant determined by heterointerface prop-
data analysis have been carried out assuming that one spifies.

relaxation mechanism dominates only. Therewith in spite of 1 calculate spin relaxation times, one has to consider the
the strong anisotropy of spin-orbit scattering, the relaxatioryynamics of spin-density matriy;
times of spin lying in the plane of a heterostructure with
zinc-blende lattice turn out to be independent on orientation ap [
with respect to crystallographic axes. 2= " nHeL )
Real heterostructures differ from investigated ideal ob- _ . o
jects in that several spin relaxation mechanisms éxigk. ~ where the total two-dimensional Hamiltonian is
spin relaxation mechanism due to only cubic in wave-vector o2
e ; ; fick
terms of the bulk Hamiltonian was investigated for rectangu- H= +V+H @)
lar quantum well§QW'’s) in Ref. 5. It was noted that even in 2m '
an asymmetrical GaAs QW, the efficiency of another mecha; , . , .
, . : ; . ."Herem is an effective electron mas¥(x,y) is a scattering
nism due to linear in two-dimensional wave-vector terms is .
. . . potential and
negligibly small. The authors of Ref. 4 analyzing experimen-
tal data on anomalous magnetoresistance iG# ,As H' =H,+H,.
QW'’s demonstrated that the both mechanisms may be com- o _ .
parable in efficiency. But in Refs. 3 and 4, it was mentioned/Ve assume that the scattering is elastic and independent on
that the both mechanisms are additive in spin relaxation. spln.lnd|ces_. _ _ o
This communication is devoted to an investigation of spin ~ SinceH" is a small perturbation, the spin relaxation times
relaxation processes when several mechanisms of spin-ortlirn out to be much longer than isotropisation times of mo-
scattering exist. We show that contributions of these mechamentum distribution of electrons. For this reason it is conve-
nisms interfere and their simultaneous action leads to thgient to represent the density matrix as a sum
strong anisotropy of spin relaxation even in the plane of a _ _
QW. p=ptp’, p'=0,
where the bar means averaging over the directionk.of
Il. THEORY Here, p depends or =#2k?/2m and the anisotropic part of

In zinc-blende semiconductors, spin relaxation of elecN€ density matrix is due téi” only. Hence,p" is propor-
trons is well known to be due to spin-orbit splitting of con- tional toH', i.e., p" is small in comparison tp.
duction band. In a bulk crystal, the splitting is cubic in wave  Then in the first order itH’, Eq. (3) has the form
vector. In a QW structure, the corresponding Hamiltonian 50 )
has to be averaged over the motion along the growth axis. P __ %[Hr,p]_z W [p' (K—p'(K)],  (5)
k/

We consider the QW grown along direction parallel to at

[001] and choose andy directions coinciding with crystal-

lographic axes. At relatively small carrier concentrations, (9; i

one can neglect cubic in 2D wave-vector terms and the E=—%[H’,p’]. (6)

Hamiltonian has the form
Here, W,y is the probability for scattering from the potential
Hi=a(oke—ayky). (1)  Vfrom the state withk to the state withk’.
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One can see from Eq5) that p’ relaxes in the time,
which is of order of momentum relaxation time, hutre- 1 f de[F(e)=F()]Tj(e)
laxes in the longer time, which is determined#{—see Eq. P : 7
(6). At these long times, Ed5) reduces to a quasistationary . f de[F,(e)—F_(e)]
one

i Equation(17) represents the extension of the results of
> Wylp' (K)—p'(K')]=— %[Hf,;]_ (7) ~ Ref. 5 to the case of an arbitrary spin-orbit interacttéh
K’ and takes into account the anisotropy of scattering.
o o SubstitutingH’=H;+H, into Eq.(13) and thenl;; into
Findingp’ (k) from here and substituting it to E(6), one Eq. (17) we have
can obtain the closed equation fer

1 , L, 11
p 1 - —=Cla+ay), —=—=0, (18)
7= 722 mlHLn e ®) ZZ oo Ty
1 _ 1 _C 5 1 _ ¢ 19
Here, T—)O(—T—W—E(aﬁaz), T_xy_ a,a,, (19
, dey . where
Ho= ¢ S5 —H'(Kexp(—ingy), 9
where ¢, is the angle betweek andx axis, and m f de[F. (e)—F_(e)]mi(e)e
C=>23 (20)
1 _
- fﬁdﬁwkkr(l—cosna), (10 fds[ﬁ(‘?) F_(e)]

Equations(18)—(20) generalize the resufts’ for the case

wheref= ¢, — ¢\ . Equation(8) clearly demonstrates that it : ‘ ‘
of two spin relaxation mechanisms.

is spin-orbit interaction, which causgsrelaxation.

After substitutingp in a form Il DISCUSSION
It follows from Eg. (19) that because of the two mecha-
nisms @,-a,#0), the spin relaxation in the plane of the
QW becomes anisotropic. It should be emphasized that if
there is only one mechanisna{-a,=0), then the spin re-
laxation is isotropic in spite of the cubic symmetry of the

— 1

Eq. (8) reduces to following equations:

fo(e,1)=0, (12) HamiltonianH, or H,. Thus, the cubic anisotropy of the real
) QW structure manifests itself due to the interference of two
&(e,t)=—Tjj(e)ag(s,1), (12 spin relaxation mechanisms.
where The system16) may be rewritten as follows:
1 . SzS,
Fij:_ﬁSszn: mwHq [Hy,olloi. (19 SES= T D
where
An initial condition may be derived considering the spin
dynamics after the time,,, but before the spin relaxation 1 C 5
time. In the timer,, the density matrix becomes isotropic Ty (@ta)” (22

but the spin relaxation processes do not start yet. Ther&fore, ) ) ) )
The timesr, and r_ describe the relaxation of the spin

fo(e)=3[F (e)+F_(e)], (14 oriented along the directiof410] and[110], respectively.
The most bright manifestation of spin relaxation anisot-
&He)=9F . (e)—F _(e)], (15  ropy occurs ifa;= *+a,. In this case, one of the times. or

7_ becomes infinite. Therewith the other is equalro.
Efficiency of the mechanisms depends on both the mate-

rial and the shape of the QW. It was shown that in a rectan-

gular GaAs/AlGa_,As QW, the mechanism (1)

dominates,and in an asymmetrical §Ga, _, As/AIAs QW’s

the mechanism(2) is the most importaf? or they are

where s is the unit vector along the spin arfel-(¢) are
distribution functions of particles with the spin projection on
s equal to+1/2.

Taking into account that the spin densig(t), is the av-
erage ofae over &, one can obtain the kinetic equation for it
at the time longer tham,:

comparablé.
) S Itis clear that if botha; anda, are not equal to zero, then
S=-_", (16)  the spin sublevels split. In the wdrkit is shown thaia, and
ij

a, may be comparable in magnitude and, hence, the spin
where the tensor of reciprocal spin relaxation times is: splitting is strongly anisotropic.
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The spin relaxation anisotropy results from the inifigl
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IV. CONCLUSION

symmetry of the zinc-blende semiconductor. For this reason, the nossibility for spin relaxation suppression was noted
the similar effect can take place in a strained bulk crystal;y, Ref. 5 for a QW grown along110] direction when the

The corresponding Hamiltonian linear in 3D wave veckor,
and components of an elastic strain tensgQr, has the form:

H’(U)ZAluii(Ui+1ki+l_Ui+2ki+2)+A2uij(Uikj_O'jk(iz)é)

Here,i,j=x,y,z, i+3—i, A; andA, are constants. Doing
calculations for 1#; in a way similar to Eq(17), one can
obtain three different spin relaxation times. It can be show
that the maximum anisotropy may be achieved if

Aluxszluyy: _A1U22/2:A2UXy/3 (24)

with the rest ofu;; =0. Therewith two spin relaxation times

spin is oriented along the same axis. The present work shows
that the spin relaxation rate also decreased d0] direc-

tion, but in a QW grown in the symmetrical directip®01].
Therefore, this decrease takes place for the spin lying in the
plane of the QW.

Analyzing weak localization effect, the authors of Refs. 3
and 4 showed that the mechanis(sand(2) suppress each
other in anomalous magnetoresistance, but they are additive
in spin relaxation. The present analysis shows that the sup-

ression occurs in the spin relaxation also. Besides, we have
found that spin relaxation is anisotropic even in the plane of
the QW.
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