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Coupled phonon-ripplon modes in a single wire of electrons on the liquid-helium surface
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The coupled phonon-ripplon modes of the quasi-one-dimensional electron chain on the liquid helium surface
are studied. It is shown that the electron-ripplon coupling leads to the splitting of the collective modes of the
wire with the appearance of low-frequency modes and high-frequency optical modes starting from threshold
frequencies. The effective masses of an electron plus the associated dimple for low-frequency modes are
estimated and the values of the threshold frequencies are calculated. The results obtained can be used in
experimental attempts to observe the phase transition of the electron wire into a quasiordered phase.
[S0163-182699)02144-X

One of the most distinctive features of the quasi-two-ductor heterostructures. The confinement potential can be,
dimensional(Q2D) classical electron system localized on within a good accuracy, approximated by a parabolic poten-
liquid helium surface is that it exhibits liquid-solid-like tial. Figure 1 illustrates an example of the realization of the
phase transition at low-enough temperatifeand high- single electron wire by using a bent foil that provides the
electron densitiesn; when the interaction coupling”  helium surface with a curvature radigs-10"%-10"* cm.?
=e?/mn/T=140. The peculiarities of the transition lead- If the holding electric field E, along the z axis is
ing to the formation of 2D Wigner solidWS) are widely ~10° V/cm, the electron wave function for the motion
discussed both theoretically and experimentally for Q2D suracross the channel becomes oscillatorylike with frequency
face electrond.Due to their interaction with liquid surface w3=eE, /mR It is essential to emphasize that, despite the
oscillations(ripplons, electrons with 2D wave vectde are  additional restriction in the electron motion, the electron-
coupled to ripplons withg=G+k, whereG belongs to the ripplon interaction can still be considered in the same man-
2D reciprocal lattice, and crystallize in a triangular lattice ner as in 2D cas¥.
whose elementary cell contains the electron and the self- The possibility that a linear chain of electrons, with period
induced surface deformatigdimple). As a consequence, the & may undergo a phase transition into an ordered state is not
spectrum of collective modes of the WS on the helium surobvious as in 2D. It is well known that there is no true long
face differs significantly from the collective mode spectrumorder in a strictly 1D infinite system. However, one can ex-
of an ideal 2DWS of electrons decoupled from rippfoasd  pect long-enough regions of a quasiordered electron chain in
splits into low-frequency and high-frequency modéé. these Q1D electrons for very low temperatute8ased on
Low-frequency longitudinal and transverse modes are acoughis assumption, the spectrum of longitudinal and transverse
ticlike and are related to in-phase motion of the electron angPhonons was obtained in the case of the decoupled electron
associated dimple. High-frequency optical modes start fronghain from the solution of equations of motion in the har-
w, at k=0 and correspond to the relative oscillations of monic approximatiod™** The dispersion laws for longitudi-
electrons and dimples. The threshold valugs are deter- nal (w;) and transversed(;) branches are given b
mined by the strength of the electron-ripplon interaction and
are significantly larger than typical frequencies of ripplons Y
involved in electron-ripplon scattering processes. This allows w|2= wﬁ; and wt2= wg— = D
us to average the Hamiltonian of the electron-ripplon inter-
action only over high-frequency modes. Note that the obser-
vation of resonances in the absorption spectrum at peculiar
coupled phonon-ripplon mode frequencies leads, for the first
time, to the evidence of the electron WS over the liquid
helium surface.

Recently there has been an increasing interest in investi-
gating quasi-one-dimension&@Q1D) electron systems over
JH O e . G
liquid helium?>~° In such systems the electrons are confined v%:
not only in the direction normal to the liquid surfagghere §
the 2D electron system takes pladeut also by a lateral
constriction, which is provided by geometric or electrostatic
means, leading to the creation of a classical wire system FIG. 1. Structure of the single classical electron wire over liquid
(low-density regimg similar to quantum wires in semicon- helium.
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where the frequency,, for |k,a|<1, can be written as ~(alp)q®+gg. The helium bulk density and the surface ten-
) ) sion coefficient are denotgsl and «, respectively, and is
e 4e ( 1_C°S”ak><> _ Zikz n 1 _ the gravity acceleration.
¢ ma’ =) n3 ma " [kal The HamiltonianH, describes the electron-ripplon inter-

: ) ) action and can be written as
Herek, is the 1D wave vector along the wire. As it can be

seen from Eq(1), the transverse branch is stable only if the . 1 N e

lateral confinement exists. As it was shown in Ref. 12, theH,, =——= > > &V, exp —qX(u?)/4)e/® ettt ayty),
stability holds forE, >7¢(3)eRi2a3, where(x) is the Ri- VS =1 %

emann’s zeta-function. Fora=10*cm and R=5 (6)

74 i . - . .
>x10°* cm, one hag, >300 V/cm. The spectrum of longi- \yhereSis the surface area/, is the electron-ripplon inter-
tudinal oscillations of the classical Q1D itinerant electronyction averaged over the ground state electron wave function
system was also studied by Sokolov and Stuidarsing the along the z direction’* The Debye-Waller factor
rgnt_:iom-phase_ approxmat!on. The results show quahtatlvel)éxp(_q2<u%>/4)' which appears in Ed6), comes from taking
similar dispersion laws as in EGL) whenain the argument i, account the “smearing” of the electron positions due to

of 'ghe .Iogarithm is replgced by the scalg of the eleqtron IOhigh-frequency modes and corresponds to the contribution
calization across the wire. No electron-ripplon coupling was, 2> in the electron root-mean-squai@MS) displacements
taken into accounted in Refs. 10-12, even though, as statéﬁgm the fast modes. Say, anduy, in Eq. (6) should be
i i i H i . xl yl .
\?vr:VI?fl:(il};;]osdu:Z aecifuurg“g?ts:gzl%\'/gguence’ na Cruc'alconsidered as the electron displacements at low enough ve-
Y, P ' locities. Expanding the exponential function in Ef) up to

In this Brief Report, we discuss the possibility of Obser'quadratic terms and making the Fourier transform of the
Zi‘;?%igl?etéﬁgﬂtg;tgf gvg?ﬁ(jﬁ:jdﬁ;elﬂ ;t%ti f;glﬁagﬁgsélectron displacements one can finally arrive to the following

the coupled phonon-ripplon modes. We show that the formas < Pression for the total Hamiltonian:

tion of an ordered state in the single electron wire should be 1 .

accompanied by drastic changes in the mode spectrum inHZE {_ E (B>(|§q|2+w§|§q|2)5q g4k

comparison with that of the decoupled WS wijigg. (1)]. K (27 \9 o

New unusual branches appear which can be checked experi-

menta”y. + — : 2+ ; 2+ w2+w2 ) 2
The Hamiltonian of the electron wire is given by 2| 16l 1y (0ot 0| b

H=H+H,+Hq, () +

2
we
wi+ wgy— ?> |§ka| 2

+ivng 2 Vq
q9

where theN-electron Hamiltonian for small displacements
from the equilibrium positiongx(*);0;0}, 1=1,2,... N,

_~2/1,2
can be written as XEX[Z( q <uf>/4)(qx§x,ka+qygy,ka)fqéqx;g+kx .

(7)

m N
A " 2 " 2 2.2
He=% Zl (U +ug+ wouy) Here, 5,5 is the Kronecker symboly=(2w/a)n is the 1D
reciprocal-chain vector witm=0,+1,=2, ... ,=N/2. As it
e? (Uy—Uy)?  (uy—uy))? is seen in Eq.(7), the phonon displacements . are
2_a3 < |x,(°)—xj(°)|3_ 2|x,(°)—x](°)|3 ) coupled to ripplons withg=\/(g+ky)*+ qyz. The frequen-

cieswgy and wgyy, are
gilereL.M anduy, are th(la ellectron dis;f)Ia;]ceEent.s alomgn;jy ] 5
irections, respectively. In terms of the Fourier-transforme 2 _ 2 2 _ Gy\~ »
phonon displacements, and ., the Hamiltonian can be wdx_gz(;‘y ngngqy and - wgy gqu ngy( g) “gay
expressed as (8)

Qy

2
)

.m O
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. . 2 where the coefficients
|§xk|2+|§yk|2+wg|§xk|2+ )Myklz}

(g*+ap)(up)
(4) nSVqug2 exr{ - Tyf

The Hamiltonian for free ripplons is given in the standard 99

m{ a(g%+aj) + pGlwg,
form
are dimensionless parameters related to the strength of the
~ 1 Pl 2.2 electron-ripplon coupling. The double index, in Eq. (8)
Hr:i % (a)(|§q| +“’q|§q| ), ) means thag substitutesg, in the quantities depending on
) ) ) - g= \/qx+qy-

where £, is Fourier-transformed displacement of the liquid  The dispersion laws of coupled phonon-ripplon oscilla-
surface from the equilibrium position a=0, and wé tions can be obtained by solving the equations of motion for
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the Hamiltonian given in Eq(7). In the long wave limit, cated than its 2D counterpart, and we consider here
ke< g2+ qyz, the dispersion equations can be written as  ~n; '~1/Jn;=10"% cm and the high-field limit ofE,

2 =3000 V/cm, because we neglected the contribution of the
» L ; o
2 2_ 2_ 2, Me_ polarization interaction between the electron and the liquid
—wg= —wht 5 = i S
Ziw"~we=0 and Ziw"~wp 2 0, © helium in Egs.(11). The RMS contribution from the fast

modes(u?) can be treated as a fitting parameter as in Ref. 3
or can be calculated rigorously in a self-consistent
proceduré’. Unfortunately there is no experimental data up to
=1+, Coo, 2 and now and a self-consistent calculation(of) in the Q1D case

w

where

9% ga,” ¢ is cumbersome. On the grounds of the results of Ref. 4, we
choose(u?)=#/(2mMawqy) cothfiwg/2T) and considering the
ay 2 wéqy regime where Z<fiwgy,, We find best self-consistency by
Z=1+2, Cyq, 9] o2 g2 taking y(uf)=10 *a<a. Furthermore, this value also sat-
gqy wgqy— w

isfies well the condition,(u?)<R=5x10"* cm.
One can easily see that the above equations have solutions For  realistic values of a=10"*cm and E,
that differ substantially from the phonon modes given by Eq.= 3000 V/cm,M,;=2.3x10* m, which is near two orders of
(1). We consider both low and high-frequency regions of themagnitude larger than the effective mass in the low-
spectrum. In the limit ofs’<w?, , the phononlike solutions  frequency mode in the 2DWS far= 1621 M, is signifi-
of Eq. (9) can be given by Y cantly larger thanM, due to the large contr|bL_1t|on og_
=0. Note thex .-dependent argument of Tricomi’s function
- m | 12 172 in the first term in square brackets of Eq0b). This contri-
wF(m) o and wt:(M—t) ¢, (109 bution is formally related with transverse oscillations as the
whole electron-dimple chain wheln,—0 and the interpar-
which are formally equivalent to the modes expressed in Egicle distance becomes very largg-60). Such uniform os-
(1), but depend on the effective masses of the electron plusillations yield largeM,, andM,— for k,=0. However,
dimple instead on the free electron mass as it follows: k.#0 leads to very large, even though finite, valueNdf
when the conditiorkgl>a plays the role of an effective

2
M;=m 1+2 Cyq and M,=m 1+E Cyq (ﬂ) ) cutoff in the divergent contribution of thg=0 term in Eq.
gdy y gdy "\ g (11b). On the other hand, all electron positions are equivalent
( under longitudinal displacements of the whole electron chain

Note that the longitudinal mode is gapless and the spectru@nd, because of this, the term wigh=0 does not contribute
is similar to that of |OW_frequency modes in the Coup|edt0 the IOngitudinal oscillations of the chain at very Srﬂq“

2DWS over liquid helium at samg However, in contrast to S0, M is significantly smaller thaM,. For the same values
the 2D case, the dispersion of longitudinal and transverséf @ and E, , we obtainM;=1.1x10" m such that the
modes shows different effective masses. For large holdinghreshold frequencywy=(m/M,)*?w, of the transverse

fields, whereVyq =eE, , and summing oveq,, analytical  modew, is strongly softened and decreases more than 5 or-

expressions for the effective masses are obtained as ders of magnitude in comparison withy=10'*s ! for E;
, =3000 V/cm andR=5x10"* cm.’® From these estimates,
Mo—ml 14 ne’EZ p(uf)? . one can conclude that the electron-ripplon coupling in the
[ 4Jma’m o WS wire is stronger than in the 2DWS.2

In the limit of high frequenciesp?> w the solutions

ga,’

5 g¥u? of Eq. (9) are two optical branches
xexm—gz<u%>/2>\v(§;3;¥) . (13 4O b ,
2 2 2 d oo~ w? 2 e 12
Oy ()= @dx T We  ANA 0y (= gy T 05T S (12)
ne’Elp(uf)| 1 [ w(uf) . .
Mi=m 1+# \/——‘1’ 22— where the frequenciesy, andwgy, given by Eq.(8), can be
Ama'm 77 expressed, in the strong-field limit 8fyq ~€E, , as
5 _ gXuf) 22
+ > exp(—g¥u? /2)\If<—;2;— . (11b neE
s A= g u) 2 2 W= ggo o[1—-erf(VgX(uf)/2)], (133

Here, k.= (pg/a)*? is the helium capillary constanty,
=N/L, is the linear electron density along the wire with ) ne’E? ) 2 )
the system length, and (a;b;x) is the degenerated hyper- wdyzm % exp(—g(Us)/2) — wiy-
geometric Tricomi's function. Equatiord1) were obtained f (13b)
under the conditiork.<g;.

In order to estimate the magnitudes of the effectivewe remind that in the Q2DWS both optical branches start
masses we need characteristic values,0E | , and(u?). from the same threshold frequeney, at q=0. For a
The relationship between, andE, is much more compli- =104 cm andE, =3000 V/cm, the threshold frequencies
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of the Q1D electron chain ar@q=7.1x10° s™* and wq,  tionable with increasind, because in this case the mode
~75x10° s 1. We observe thaib gy, is significantly smaller ~ frequency can be of the same order of magnitudegcafy. In
than w, for the sameE, and the threshold frequency of g, 5 conditionm, should be calculated from a numerical
ﬁt(f)(c?e Irl;raEr?éh(liz) ;::gggfigaf?gggﬁebsy Vtvr:t:weol.ec?roo,nﬂr}lsplo solution of the first of Egs(9). One can also point out that
coupling[see Eq(1)]. he spllttmg of low- and hlgh-frequency modagrm and_
wy(r) is rather well-pronounced supporting the introduction

Besides phononlike modes given by E¢&1) and (12), . .
Eq. (9) also has solutions which represent optical modesofaDebye-WaIIerfactor to take into account the smearing of

whose dispersion laws starting from frequencies which arglectron pc|>S|t_|ons frorfr: fast mlodtlas. dth led el
only rather lower thanwgq atk,=0. By increasing, the In conclusion, we have calculated the coupled electron-

. . phonon mode spectrum of the single quasicrystalline wire on
frequencies of these modes practically reagay. So these the liquid helium surface. We have shown interesting fea-

modes should be considered as quasi-ripplonic oscillationg,res of the spectrum, which makes it particularly different
which do not contribute to the electron dynamics and, ingqm its 2D counterpart. Because the strong coupling of the
particular, to the eIectrqn RMS displacement. phonons of the WS wire with the oscillations of the helium
(_)ne Sho'“.'ld emphasize that the valuesgodmd_qy that surface, the spectrum of collective modes changes drastically
g@mly contélbut<e to gheﬁrle/és l:jlts showhn above sat|_sf?/ the (;foni'n comparison with the decoupled wire electron system. The
elr:It?err]ingg ?r?to ?ﬁ;éﬁ*i )in qu;;)e_ (tlol)t \?Veeﬁgsgeg;gg s(r:]lét/(\)/n qu_v—frequency(high—frequenc)/ modes hqvg frequencie.s sig-
that L.<RY  For L.—104 c'm () i =271 n_|f|cantly smaller(larger) than characterlstlc; frequenues.of
~10¢ cmy*1 énd taking intcy) account t,hath y m:g of thé ripplons, which contribute to the electro'n—rlpp'lon scattering.
same order of magnitude, we obtainmmfor(ub)l/z Low-frequency modes have same dlspe.r5|on as that' of
=10-5 cm and for a=10-4 <,:m the valules<u 10 modes of the decoupled electron wire but with large effective
1 ] ' Coeay ¢ masses different for longitudinal and transverse oscillations.
—10° s™* for the frequencies of ripplons participating in the The yajues of these effective masses are much larger than the
electron-ripplon coupling, which are significantly smaller oo tive mass in the Q2DWS that means that the electron-
than the values of the threshoIderequencies. Furthermore;iplolon coupling in Q1D case should be stronger. High-
the low-frequency transverse modg given by the second  frequency longitudinal and transverse modes start from dif-
of Egs.(10a, reaches a value much lower tharf ¥0*. The  ferent threshold frequencies. The value of the threshold
maximum value of the longitudinal mode, can be esti- frequency for the transverse mode is slightly affected by the
mated by extrapolating Eq103a for k,=g,=2n/a with the  electron-ripplon coupling and is close to that of decoupled
value ofw, given by Eq(1). The resultis 3.08 10 s *and  electron wire. In our opinion, experimental observation of
becomes smaller fde,— 0, where Eqs(10) are valid. These the predicted modes should give strong evidence of the phase
results justify thea priori assumption for taking the transition of the classical electron wire to a quasiordered

asymptotic limitsw?< wéqy andw?> wéqy, in the long wave-  state.

|ength ||m|t, for the calculation of the diSperSion laws of Eqs This work was part|a||y Sponsored by the Conselho Na-
(108 and (12). However one should note that using  cional de Desenvolvimento Cientifico e Techgim
<w§qy for calculating mode spectrum, may become ques- (CNPg), Brazil.
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