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Coupled phonon-ripplon modes in a single wire of electrons on the liquid-helium surface
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The coupled phonon-ripplon modes of the quasi-one-dimensional electron chain on the liquid helium surface
are studied. It is shown that the electron-ripplon coupling leads to the splitting of the collective modes of the
wire with the appearance of low-frequency modes and high-frequency optical modes starting from threshold
frequencies. The effective masses of an electron plus the associated dimple for low-frequency modes are
estimated and the values of the threshold frequencies are calculated. The results obtained can be used in
experimental attempts to observe the phase transition of the electron wire into a quasiordered phase.
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One of the most distinctive features of the quasi-tw
dimensional~Q2D! classical electron system localized o
liquid helium surface is that it exhibits liquid-solid-lik
phase transition at low-enough temperatureT and high-
electron densitiesns when the interaction couplingG
5e2Apns/T.140. The peculiarities of the transition lea
ing to the formation of 2D Wigner solid~WS! are widely
discussed both theoretically and experimentally for Q2D s
face electrons.1 Due to their interaction with liquid surfac
oscillations~ripplons!, electrons with 2D wave vectork are
coupled to ripplons withq5G1k, whereG belongs to the
2D reciprocal lattice, and crystallize in a triangular latti
whose elementary cell contains the electron and the s
induced surface deformation~dimple!. As a consequence, th
spectrum of collective modes of the WS on the helium s
face differs significantly from the collective mode spectru
of an ideal 2DWS of electrons decoupled from ripplons2 and
splits into low-frequency and high-frequency modes.1,3,4

Low-frequency longitudinal and transverse modes are ac
ticlike and are related to in-phase motion of the electron
associated dimple. High-frequency optical modes start fr
va at k50 and correspond to the relative oscillations
electrons and dimples. The threshold valuesva are deter-
mined by the strength of the electron-ripplon interaction a
are significantly larger than typical frequencies of ripplo
involved in electron-ripplon scattering processes. This allo
us to average the Hamiltonian of the electron-ripplon int
action only over high-frequency modes. Note that the obs
vation of resonances in the absorption spectrum at pec
coupled phonon-ripplon mode frequencies leads, for the
time, to the evidence of the electron WS over the liqu
helium surface.5

Recently there has been an increasing interest in inve
gating quasi-one-dimensional~Q1D! electron systems ove
liquid helium.6–8 In such systems the electrons are confin
not only in the direction normal to the liquid surface~where
the 2D electron system takes place! but also by a latera
constriction, which is provided by geometric or electrosta
means, leading to the creation of a classical wire sys
~low-density regime! similar to quantum wires in semicon
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ductor heterostructures. The confinement potential can
within a good accuracy, approximated by a parabolic pot
tial. Figure 1 illustrates an example of the realization of t
single electron wire by using a bent foil that provides t
helium surface with a curvature radiusR;102321024 cm.9

If the holding electric field E' along the z axis is
;103 V/cm, the electron wave function for the motio
across the channel becomes oscillatorylike with freque
v0

25eE' /mR. It is essential to emphasize that, despite
additional restriction in the electron motion, the electro
ripplon interaction can still be considered in the same m
ner as in 2D case.10

The possibility that a linear chain of electrons, with peri
a, may undergo a phase transition into an ordered state is
obvious as in 2D. It is well known that there is no true lon
order in a strictly 1D infinite system. However, one can e
pect long-enough regions of a quasiordered electron cha
these Q1D electrons for very low temperatures.11 Based on
this assumption, the spectrum of longitudinal and transve
phonons was obtained in the case of the decoupled elec
chain from the solution of equations of motion in the ha
monic approximation.11,12 The dispersion laws for longitudi
nal (v l) and transverse (v t) branches are given by12

v l
25ve

2 ; and v t
25v0

22
ve

2

2
, ~1!

FIG. 1. Structure of the single classical electron wire over liqu
helium.
15 562 ©1999 The American Physical Society



e
he
th

-
on

e

lo
a
at
ia

r
la
ng

b

pe

ts

e

rd

id

n-

r-

tion

to
tion

ve-

the
ing

f the

n

la-
for

PRB 60 15 563BRIEF REPORTS
where the frequencyve , for ukxau!1, can be written as

ve
25

4e2

ma3 (
n>1

S 12cosnakx

n3 D .
2e2

ma
kx

2 lnS 1

ukxau D .

Herekx is the 1D wave vector along the wire. As it can b
seen from Eq.~1!, the transverse branch is stable only if t
lateral confinement exists. As it was shown in Ref. 12,
stability holds forE'.7z(3)eR/2a3, wherez(x) is the Ri-
emann’s zeta-function. Fora51024 cm and R55
31024 cm, one hasE'.300 V/cm. The spectrum of longi
tudinal oscillations of the classical Q1D itinerant electr
system was also studied by Sokolov and Studart13 using the
random-phase approximation. The results show qualitativ
similar dispersion laws as in Eq.~1! whena in the argument
of the logarithm is replaced by the scale of the electron
calization across the wire. No electron-ripplon coupling w
taken into accounted in Refs. 10–12, even though, as st
previously, such a coupling should influence, in a cruc
way, the mode spectrum of the Q2DWS.5

In this Brief Report, we discuss the possibility of obse
vation of the transition into a quasiordered state of the c
sical Q1D electron system over liquid helium by calculati
the coupled phonon-ripplon modes. We show that the form
tion of an ordered state in the single electron wire should
accompanied by drastic changes in the mode spectrum
comparison with that of the decoupled WS wire@Eq. ~1!#.
New unusual branches appear which can be checked ex
mentally.

The Hamiltonian of the electron wire is given by

Ĥ5Ĥe1Ĥr1Ĥer , ~2!

where theN-electron Hamiltonian for small displacemen
from the equilibrium positions$xl

(0) ;0;0%, l 51,2, . . . ,N,
can be written as

Ĥe5
m

2 (
l 51

N

~ u̇xl
2 1u̇yl

2 1v0
2uyl

2 !

1
e2

2a3 (
lÞ j

F ~uxl2ux j!
2

uxl
(0)2xj

(0)u3
2

~uyl2uy j!
2

2uxl
(0)2xj

(0)u3G . ~3!

Hereuxl anduyl are the electron displacements alongx andy
directions, respectively. In terms of the Fourier-transform
phonon displacementszxk and zyk , the Hamiltonian can be
expressed as

Ĥe5
m

2 (
k

F u żxku21u żyku21ve
2uzxku21S v0

22
ve

2

2 D uzyku2G .
~4!

The Hamiltonian for free ripplons is given in the standa
form

Ĥr5
1

2 (
q

S r

qD ~ u j̇qu21vq
2ujqu2!, ~5!

wherejq is Fourier-transformed displacement of the liqu
surface from the equilibrium position atz50, and vq

2
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d

.(a/r)q31g̃q. The helium bulk density and the surface te
sion coefficient are denotedr anda, respectively, andg̃ is
the gravity acceleration.

The HamiltonianĤer describes the electron-ripplon inte
action and can be written as

Ĥer5
1

AS
(
l 51

N

(
q

jqVq exp~2q2^uf
2&/4!eiqxxl

(0)
e(qxuxl1qyuyl),

~6!

whereS is the surface area,Vq is the electron-ripplon inter-
action averaged over the ground state electron wave func
along the z direction.14 The Debye-Waller factor
exp(2q2^uf

2&/4), which appears in Eq.~6!, comes from taking
into account the ‘‘smearing’’ of the electron positions due
high-frequency modes and corresponds to the contribu
^uf

2& in the electron root-mean-square~RMS! displacements
from the fast modes. So,uxl and uyl in Eq. ~6! should be
considered as the electron displacements at low enough
locities. Expanding the exponential function in Eq.~6! up to
quadratic terms and making the Fourier transform of
electron displacements one can finally arrive to the follow
expression for the total Hamiltonian:

H5(
k

H 1

2 (
qg

S r

qD ~ u j̇qu21vq
2ujqu2!dqx ;g1kx

1
m

2 F u żxkx
u21u żykx

u21~ve
21vdx

2 !uzxkx
u2

1S v0
21vdy

2 2
ve

2

2 D uzykx
u2G1 iAns (

qg
Vq

3exp~2q2^uf
2&/4!~qxzx,2kx

1qyzy,2kx
!jqdqx ;g1kxJ .

~7!

Here,dab is the Kronecker symbol,g5(2p/a)n is the 1D
reciprocal-chain vector withn50,61,62, . . . ,6N/2. As it
is seen in Eq.~7!, the phonon displacementszx(y)kx

are

coupled to ripplons withq5A(g1kx)
21qy

2. The frequen-
ciesvdx andvdy are

vdx
2 5(

gqy

Cgqy
vgqy

2 and vdy
2 5(

gqy

CgqyS qy

g D 2

vgqy

2 ,

~8!

where the coefficients

Cgqy
5

nsVgqy

2 g2 expF2
~g21qy

2!^uf
2&

4 G
m@a~g21qy

2!1rg̃#vgqy

2

are dimensionless parameters related to the strength o
electron-ripplon coupling. The double indexgqy in Eq. ~8!
means thatg substitutesqx in the quantities depending o
q5Aqx

21qy
2.

The dispersion laws of coupled phonon-ripplon oscil
tions can be obtained by solving the equations of motion



tio
q

th

E
pl

ru
ed

rs
in

r-

ive

the
uid
t
f. 3
nt
to

we

y
t-

f
w-

n

the

ent
ain

or-

,
the

tart

s

15 564 PRB 60BRIEF REPORTS
the Hamiltonian given in Eq.~7!. In the long wave limit,
kx!Ag21qy

2, the dispersion equations can be written as

Zlv
22ve

250 and Ztv
22v0

21
ve

2

2
50, ~9!

where

Zl511(
gqy

Cgqy

vgqy

2

vgqy

2 2v2
and

Zt511(
gqy

CgqyS qy

g D 2 vgqy

2

vgqy

2 2v2
.

One can easily see that the above equations have solu
that differ substantially from the phonon modes given by E
~1!. We consider both low and high-frequency regions of
spectrum. In the limit ofv2!vgqy

2 , the phononlike solutions

of Eq. ~9! can be given by

ṽ l.S m

Ml
D 1/2

v l and v t.S m

Mt
D 1/2

v t , ~10a!

which are formally equivalent to the modes expressed in
~1!, but depend on the effective masses of the electron
dimple instead on the free electron mass as it follows:

Ml5mF11(
gqy

CgqyG and Mt5mF11(
gqy

CgqyS qy

g D 2G .
~10b!

Note that the longitudinal mode is gapless and the spect
is similar to that of low-frequency modes in the coupl
2DWS over liquid helium at sameq. However, in contrast to
the 2D case, the dispersion of longitudinal and transve
modes shows different effective masses. For large hold
fields, whereVgqy

.eE' , and summing overqy , analytical
expressions for the effective masses are obtained as

Ml.mF11
nle

2E'
2 r^uf

2&2

4Apa2m
(
g.0

g2

3exp~2g2^uf
2&/2!CS 5

2
;3;

g2^uf
2&

2 D G , ~11a!

Mt.mH 11
nle

2E'
2 r^uf

2&

4Apa2m
F 1

Ap
CS 2;2;

kc
2^uf

2&
2 D

1 (
ġ.0

exp~2g2^uf
2&/2!CS 5

2
;2;

g2^uf
2&

2 D G J . ~11b!

Here, kc5(rg̃/a)1/2 is the helium capillary constant,nl
5N/Lx is the linear electron density along the wire withLx
the system length, andC(a;b;x) is the degenerated hype
geometric Tricomi’s function. Equations~11! were obtained
under the conditionkc!g1.

In order to estimate the magnitudes of the effect
masses we need characteristic values ofa, E' , and ^uf

2&.
The relationship betweennl and E' is much more compli-
ns
.
e

q.
us

m

e
g

cated than its 2D counterpart, and we consider herea
;nl

21;1/Ans51024 cm and the high-field limit ofE'

53000 V/cm, because we neglected the contribution of
polarization interaction between the electron and the liq
helium in Eqs.~11!. The RMS contribution from the fas
modeŝ uf

2& can be treated as a fitting parameter as in Re
or can be calculated rigorously in a self-consiste
procedure.4 Unfortunately there is no experimental data up
now and a self-consistent calculation of^uf

2& in the Q1D case
is cumbersome. On the grounds of the results of Ref. 4,
choosê uf

2&5\/(2mvdx)coth(\vdx/2T) and considering the
regime where 2T!\vdx , we find best self-consistency b
taking A^uf

2&.1021a!a. Furthermore, this value also sa
isfies well the conditionA^uf

2&!R5531024 cm.
For realistic values of a51024 cm and E'

53000 V/cm,Ml52.33104 m, which is near two orders o
magnitude larger than the effective mass in the lo
frequency mode in the 2DWS forns*108.1 Mt is signifi-
cantly larger thanMl due to the large contribution ofg
50. Note thekc-dependent argument of Tricomi’s functio
in the first term in square brackets of Eq.~10b!. This contri-
bution is formally related with transverse oscillations as
whole electron-dimple chain whenkx→0 and the interpar-
ticle distance becomes very large (g→0). Such uniform os-
cillations yield largeMt , andMt→` for kc50. However,
kcÞ0 leads to very large, even though finite, value ofMt

when the conditionkc
21@a plays the role of an effective

cutoff in the divergent contribution of theg50 term in Eq.
~11b!. On the other hand, all electron positions are equival
under longitudinal displacements of the whole electron ch
and, because of this, the term withg50 does not contribute
to the longitudinal oscillations of the chain at very smallkx .
So,Ml is significantly smaller thanMt . For the same values
of a and E' , we obtain Mt.1.131011 m such that the
threshold frequencyṽ05(m/Mt)

1/2v0 of the transverse
modeṽ t is strongly softened and decreases more than 5
ders of magnitude in comparison withv0.1011 s21 for E'

53000 V/cm andR5531024 cm.15 From these estimates
one can conclude that the electron-ripplon coupling in
WS wire is stronger than in the 2DWS.

In the limit of high frequencies,v2@vgqy

2 , the solutions

of Eq. ~9! are two optical branches

v tr ( l )
2 .vdx

2 1ve
2 and v tr (t)

2 .vdy
2 1v0

22
ve

2

2
, ~12!

where the frequenciesvdx andvdy , given by Eq.~8!, can be
expressed, in the strong-field limit ofVgqy

.eE' , as

vdx
2 .

nle
2E'

2

am (
g.0

g@12erf~Ag2^uf
2&/2!#, ~13a!

vdy
2 .

nle
2E'

2

amA2p^uf
2&

(
g

exp~2g2^uf
2&/2!2vdx

2 .

~13b!

We remind that in the Q2DWS both optical branches s
from the same threshold frequencyva at q50. For a
51024 cm andE'53000 V/cm, the threshold frequencie
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of the Q1D electron chain arevdx.7.13109 s21 and vdy
.7.53109 s21. We observe thatvdy is significantly smaller
than v0 for the sameE' and the threshold frequency o
v tr (t) in Eq. ~12! practically coincides withv0. So, this
mode branch is almost unaffected by the electron-ripp
coupling @see Eq.~1!#.

Besides phononlike modes given by Eqs.~11! and ~12!,
Eq. ~9! also has solutions which represent optical mod
whose dispersion laws starting from frequencies which
only rather lower thanvgqy

at kx50. By increasingkx , the

frequencies of these modes practically reachvgqy
. So these

modes should be considered as quasi-ripplonic oscillat
which do not contribute to the electron dynamics and,
particular, to the electron RMS displacement.

One should emphasize that the values ofg and qy that
mainly contribute to the results shown above satisfy the c
dition g and qy&(^uf

2&)21/2 due to the exponential cutof
entering into the sums in Eqs.~8!–~11!. We have also shown
that Ly,R.15 For Ly51024 cm, (qy)min52p/Ly
.104 cm21 and taking into account that (g)min is of the
same order of magnitude, we obtain, for (^uf

2&)1/2

&1025 cm and for a51024 cm, the valuesvgqy
;107

2108 s21 for the frequencies of ripplons participating in th
electron-ripplon coupling, which are significantly small
than the values of the threshold frequencies. Furtherm
the low-frequency transverse modeṽ t given by the second
of Eqs.~10a!, reaches a value much lower than 108 s21. The
maximum value of the longitudinal modeṽ l can be esti-
mated by extrapolating Eq.~10a! for kx5g152p/a with the
value ofve given by Eq.~1!. The result is 3.063108 s21 and
becomes smaller forkx→0, where Eqs.~10! are valid. These
results justify the a priori assumption for taking the
asymptotic limitsv2!vgqy

2 andv2@vgqy

2 , in the long wave-

length limit, for the calculation of the dispersion laws of Eq
~10a! and ~12!. However one should note that usingv2

!vgq
2 for calculating mode spectrumṽ l may become ques
y

et

z.

S

.
C

n

s
e

s
n

-

e,

.

tionable with increasingkx because in this case the mod
frequency can be of the same order of magnitude ofvgqy

. In

such a condition,ṽ l should be calculated from a numeric
solution of the first of Eqs.~9!. One can also point out tha
the splitting of low- and high-frequency modesv tr ( l ) and
v tr (t) is rather well-pronounced supporting the introducti
of a Debye-Waller factor to take into account the smearing
electron positions from fast modes.

In conclusion, we have calculated the coupled electr
phonon mode spectrum of the single quasicrystalline wire
the liquid helium surface. We have shown interesting fe
tures of the spectrum, which makes it particularly differe
from its 2D counterpart. Because the strong coupling of
phonons of the WS wire with the oscillations of the heliu
surface, the spectrum of collective modes changes drastic
in comparison with the decoupled wire electron system. T
low-frequency~high-frequency! modes have frequencies sig
nificantly smaller~larger! than characteristic frequencies o
ripplons, which contribute to the electron-ripplon scatterin
Low-frequency modes have same dispersion as that
modes of the decoupled electron wire but with large effect
masses different for longitudinal and transverse oscillatio
The values of these effective masses are much larger tha
effective mass in the Q2DWS that means that the electr
ripplon coupling in Q1D case should be stronger. Hig
frequency longitudinal and transverse modes start from
ferent threshold frequencies. The value of the thresh
frequency for the transverse mode is slightly affected by
electron-ripplon coupling and is close to that of decoup
electron wire. In our opinion, experimental observation
the predicted modes should give strong evidence of the ph
transition of the classical electron wire to a quasiorde
state.

This work was partially sponsored by the Conselho N
cional de Desenvolvimento Cientifico e Tecnolo´gico
~CNPq!, Brazil.
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