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Quantum-mechanical model of Fermi-surface traversal resonance
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We describe a quantum-mechanical model of Fermi-surface traversal resdraifi)ea magneto-optical
resonance that occurs in quasi-one-dimensional metals. We show that the predictions of this model are in
guantitative agreement with earlier semiclassical models of FTR. The agreement between the two approaches,
whose starting assumptions are very different, demonstrates that it is a fundamental property of quasi-one-
dimensional system$S0163-18209)03047-1

Recently, efforts have been made to measure highscales as*. Higher-order transfer integrals cause harmonics
frequency effects, such as cyclotron resonai@®), in low-  in the warping of the Fermi sheet and, hence, harmonics in
dimensional metals, motivated initially by the predictionsthe oscillating velocity and harmonics of FTR; the frequency
that comparisons of the dynamical masseasured in CR  of the nth harmonic isnw;p.
experiments with the “bare” band mass(from band- Our guantum-mechanical model is an extension of the
structure calculationsand the effective masérom analysis method of Yakovenko and Go%rand is mathematically
of the temperature dependence of quantum oscillatjonssimilar to the description of the Wannier-Stark lad8€on-
should yield information about the nature of the inter-carriersider a set of chains, each paralleixdabeled by the index
interactions in these materidié. This work led to the n and separated by a distanbein the y direction; carriers
predictior? and observatichof Fermi-surface traversal reso- move freely along the chains. In the absence of any interac-
nance(FTR), an analogue of CR, which arises from the opentions between the chains, the eigenfunctions of the system
orbits across quasi-one-dimension@1D) Fermi-surface are given by the product of a plane wave along the chain and
(FS sections. Until now, all theoretical models of FTR-  a transverse wave function representing the occupation of a
cluding recent work on weakly incoherent modglbave particular chain,|¢>=eikxx|¢>n). We use the linearized

been derived in the semiclassical limit—0. In this paper  Hamiltonian,=%vk,, since we consider only the carriers

we present a simple quantum-mechanical model that quantjose to the Fermi surface. Since the carriers are confined to

tatively reproduces the properties of FTR'’s predicted by the single chain, the only contribution to the energy is from

semiclassical models. motion along the chain, and the corresponding Fermi surface
We begin by briefly summarizing the semiclassical models formed by the planek,= =k .

and its results. More detailed descriptions can be found in  Adding hopping between the chains, the Hamiltonian be-

Refs. 4 and 6. The real-space structure of a quasi-ongspmes

dimensional metal is characterized by the presence of chains

along which carriers can move freely and between which

they can hop with a probability proportional to the nearest- H=fvek,— > ti(ch. .cotcl_icn), )

neighbor transfer integrdal The momentum-space structure in

is characterized by a Fermi surface comprised of weakly

warped planes. The real-space velocity of a cafmérich is Wherec§+icn|¢n>=|¢n+i) andt; gives the strength of the

in the direction perpendicular to the Fermi surfdée lies  transfer between chairisapart. The presence of a hopping

predominantly in one directiofthe chain directionbut can  term allows carriers to move in the transverse direction, im-

also have componentg,, proportional tot perpendicular to  plying that the corresponding Fermi surface is warped. In-

the chain direction. deed, the; in Eq. (1) are closely related to the transfer inte-
When a magnetic fiel® is applied perpendicular to both grals used in tight-binding calculations of the band

the chain direction and the interchain transfer direction, astructuré®and thet used in the semiclassical theory of FTR.

carrier experiences the Lorentz force and sweeps across ti&nce a carrier is no longer confined to a particular chain, its

Fermi sheet in the direction of the warping. The componentvave function is now distributed across many chains; the

of its real-space velocity parallel to the sheet oscillates at &igenstates become

frequencywp=eBbvg /%, whereeis the carrier's chargdy

is the chain separation in real space, andis the Fermi _ _

velocity*® The carrier can thus absorb energy from an elec- e'kxx|§m>:e'kXX2 Amn| $n).- 2

tric field that is polarized parallel to the oscillatory compo- "

nent of the velocity and is oscillating at the frequengy, .

This effect is exhibited as a resonance, FTR, in the high- We apply a magnetic field, choosing a gauge such that the

frequency conductivityo(w); the amplitude of the reso- vector potential isA=(—By,0,0), by applying the transfor-

nance ina(w) is proportional tov?. The intensity of the mation %k, — 7%k, +qA=%k,—qBy=7%k,+eBnh Thus,

magneto-optical absorption is proportional éfw)?, and the Hamiltonian becomes
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FIG. 1. Results of the diagonalization ®f for t;=100Q. (a) The eigenenergie€,, of |£,). (b) The probability density functions of
states &), |é75), and|&,42). These are given bjay,|2=an.? (because,,, are real.

J
H=v¢ —ih5+eBnb)—2 tich, catrcl_ich). (3 H|¢n>=nﬂ|¢n>_§i: il dnsi) +ldn-i)), (4
i,n
where Q=eBhlvg. If we confine the carriers to only the
chains Xn<N, by imposing the boundary conditions
Operating on the set of transverse basis statgs with H, |,y =0 forn<1 andn>N, the Hamiltonian can be written
we find that as a finite matrix,

QO —t, —t, —tg --- —tno1 —tn
—t; 20 -t -t 2 v
—t, —t;, 30 —t; .-
H= . . . . . . : ©
S L VI Yo R
—ty —tyog e -1y nyQ

2

that can be diagonalized numerically. The components of the ik
mth eigenvector of this matrix are tleg,, in Eq. (2), and the f (pnle” " ye™ x| pp)dx
eigenvalues are the corresponding transverse-motion energy )
levels of the system. ~ f (K —k)x
: . . . = e Xdx| 7
We first consider the case for which there are no inter- (¢nlYldm) @

chain interactionst;=0 for all i. The matrix in Eq.(5) is

already diagonal, and the stat¢é,) are the transverse . ) i
eigenstates. Operating on the full eigenstates of the systerW,here the integral is over the length of the chain. Thus the

|I/,>:eikxx|¢n>, with 7, we find that the eigenenergies are t_ransition strength i_s Zero f(_kxaﬁ k,, and the dipole transi-
tion conserves the intrachain momentum. The change of en-

ergy is therefore simplyn—m){. This is generally true,
and in the discussion that follows, we shall consider only the
En=AvekctnQ. )  transverse part of the wave functions.

In fact, the matrix elemer{tp,|y| ¢ is zero and so when

_ ) ) t;=0, optical transitions between the eigenstates are not pos-
The first term corresponds to the energy associated with thgpie. This is to be expected; semiclassically, this corre-
momentum along the chain. The second term is a ladder afponds to the case where the Fermi sheet is not warped and
energies associated with the transverse motion; the energe carrier's real-space velocity does not oscillate as it
separation of the states in this laddér, matches the energy crosses the sheet. Thus, it cannot cause a resonance in the
of the FTR resonance obtained semiclassicallyy/7. high-frequency conductivity by coupling to an oscillatory
Semiclassically, FTR is excited by an oscillatory electricelectric field.
field polarized alongy; here, the transition strength is given  Sinusoidal warping of the Fermi sheet is introduced by
by makingt; nonzero. Figure (& shows the eigenenergies of
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s crystal edge, and the separation of energies increases. This is
. the reason for the deviation of the energies plotted in Fig.
1(a) from a straight line toward the crystal edges.

10 With interchain hopping in place, dipole transitions are
10 possible between the statps,). Figure 2 shows the first-

1071 7N N order dipole transition matrix glemed(sfm|9|§m+1>|2 plot-
10t} ! ted on a logarithmic scale agaimat(solid line). The second-

{
1 ~
10° ! order matrix elements|(£,|y|éms2)|? are also plotted
|
!

10
10
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i
10 I‘Il (dashed ling The first-order transition matrix elements be-
10* ! tween neighboring bulk states are uniform, with an energy
0 40 60 80 100 120 140 Q). These transitions correspond to the first harmonic of
m FTR’s in the semiclassical model.
Second-order transitions are not allowed between the bulk
FIG. 2. Transition matrix element &y|y|émsi)|? for i=1 states. This is also consistent with the semiclassical descrip-
(solid) andi =2 (dashey, calculated fort;=10(. tion; harmonics of FTR occur when the real-space velocity
of the carrier contains harmonics. It is interesting to note,
. . . however, that second- and higher-order transitions do occur
the new eigenstategy,), En /€2, plotted againstn, obtained o een’edge states: this is tg)]ecause, even in the absence of
by diagonalizingH for the case wheré;=10Q, N=150,  nhigher-ordert;, the real-space velocity of the edge states,
and e=B=Db=1. Again, the eigenenergies form a ladderwhose orbits are skipping orbits, have higher harmonic con-
Emn=m(), except near the edges; the significance of thaent as a result of the skipping. Such skipping orbits have
states near the edges is discussed below. Figimeshows been encountered before; the effects of magnetic-field-
|amnl? plotted againsh for the three eigenstates=8, 75,  induced skipping orbits at the surface of conventional metals
and 142]a,,,|? is the probability that, in thenth eigenstate, were studied experimentally in the 1960s by Koch and ®uo
thenth chain is occupied. The plots in Fig(k} can there- and interpreted in terms of a quantum-mechanical mtidel,
fore be thought of as real-space probability density functionsind in the 1980s, Merkt measured and modeled the band
for the eigenstatels), |£75), and|&ran)- structure and optical properties of carriers at the surface of
|&75) is a state that exists entirely within the bulk of the InSb (a semiconductorin crossed electric and magnetic
material; the probability density is localized within a band fields, including the effects of skipping orbits.
well away from the edges of the crystak., well away from If the ratio )/t; is increased(i.e., the magnetic-field
the chain;i=1 andn=150). Within the band, the probabil- strength is increased for a constant hopping interagtiois
ity density is concentrated toward the edges. Semiclassicallfound that the probability density functions of the stdtgg
the particle is moving along the chain direction with a sinu-become narrower; the effect of the magnetic field is to con-
soidal transverse oscillation. It spends longer near the limit§ine the carriers to narrower orbits. This effect is also ob-
of its excursion than near the center, since the transversserved in the semiclassical model. This one dimensionaliza-
velocity is smallest at the limits of the transverse motion.tion and its consequent effects have been discussed by
The stategég) and|£14,) are edge states; their probability Dupius and MontambauX At large magnetic fields, the car-
density functions do not vanish at the edges. The correspondier is confined to a very few chains; the model presented
ing semiclassical orbits are skipping orbits, with the particlenere breaks down in this limit, where the approximation of a
executing sinusoidal motion between successive reflectiongiscretized wave function is no longer valith this model,
from the crystal edge. The difference between the edge stat@ise wave function is only defined on the chainsyatnb).
and bulk states is also reflected in their eigenenergies. Thehe validity of the semiclassical model also becomes doubt-
energies of the bulk states still form a ladder of energiesul in this limit; it is inappropriate to consider the magnetic-
separated b¥), but the energies of the edge states are modifield-induced confinement of a carrier to just a few unit cells
fied by the extra confinement caused by the proximity of thein the semiclassical limit.
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FIG. 3. Results of the diagonalization ®f for t;=10Q andt,=t,/10. () The eigenenergieE,, of |£.,). (b) The probability density
functions of state$g), |£75), and|&ray).
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10 semiclassical model. Correspondingly, the second-order tran-
10° sition matrix element(&y|Y|éms2)|% shown dashed in Fig.
102 4, is now finite for bulk states. These transitions are between
0! states with an energy difference of)2 Since( is propor-

0 7N tional to the magnetic-field strength, in a swept-field experi-

\ ment these second-order transitions will occur at a magnetic

|(6mG1Em+) 2

!
1
!

L “;' N field that is half as strong as the field for the fundamental
-1 \l[ ! \ resonance; they correspond to the second harmonic of FTR
10° \¥ ] in the semiclassical model, occurring at a frequency of

. L : — ;

10“0 0 4 e s 10 10 140 2w,p. For this case, wherg,/t;=10"1, the ratio of the

second-order transition matrix elements to first-order transi-
tion matrix elements is I0*. Figure 4 also shows the third-

FIG. 4. Transition matrix elements£,|y|émnsi)|2 for i=1  order transition matrix element¢é,|y|ém 3)|? which are
(solid), i=2 (dashey, andi=3 (dotted calculated fort;=100, zero for the bulk states, sindeg is zero(though third-order
t,=t,/10. transitions occur between edge states for the reasons given

above. In general, we find that ift; is nonzero, then

The correspondence with the semiclassical descriptiomnth-order transitions are allowed between bulk states, and the
continues when higher-order transfer integrals are includedransition intensity scale as bt)?1 in agreement with the
Figure 3 shows the eigenenergies and eigenstates obtainggedictions of the semiclassical model.
by diagonalizingH with t;=10Q, t,=t;/10, andN=150. The significance of the agreement between the two mod-
As before, the energies of the bulk states form a ladder witfels lies in the fact that they each predict the effect from quite
a separatiorf), with deviations from the ladder by the edge different initial assumptions. In the semiclassical limit, the
states. The most notable difference between the bulk stateganularity of the lattice is reflected only in the existence of
shown in Figs. &) and Xb) is that the probability density the Brillouin zone and the Fermi surface; particles are con-
function, while still peaked at the limits, is no longer sym- sidered to be pointlike in both real space and momentum
metrical about the central occupied chain. In the semiclassspace and are allowed to move continuously. In the
cal model, the real-space velocity of the orbit now contains gjuantum-mechanical model, the granularity of the lattice ap-
second-harmonic component; thus, the real-space orbit pafiears explicitly; we consider the occupancy of each chain
becomes somewhat sawtooth shaped, and the carrier spenddividually. The prediction of FTR by both models indicates
more time to one side of the orbit. This is reflected in thethat it is a fundamental property of quasi-one-dimensional
asymmetry of the quantum-mechanical probability densitysystems.
function. The asymmetry of the probability density function
depends on the sign of; reversing the sign af mirrors the
probability density function about the central occupied chain. The authors would like to thank V. Yakovenko, F.

The presence of the second harmonic in the real-spadeeeters, and J. Chalker for very helpful discussions. This
velocity gives rise to a second harmonic of the FTR in thework was supported by the EPSRC.
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