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Quantum-mechanical model of Fermi-surface traversal resonance
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~Received 7 July 1999!

We describe a quantum-mechanical model of Fermi-surface traversal resonance~FTR!, a magneto-optical
resonance that occurs in quasi-one-dimensional metals. We show that the predictions of this model are in
quantitative agreement with earlier semiclassical models of FTR. The agreement between the two approaches,
whose starting assumptions are very different, demonstrates that it is a fundamental property of quasi-one-
dimensional systems.@S0163-1829~99!03047-7#
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Recently, efforts have been made to measure h
frequency effects, such as cyclotron resonance~CR!, in low-
dimensional metals, motivated initially by the predictio
that comparisons of the dynamical mass~measured in CR
experiments! with the ‘‘bare’’ band mass~from band-
structure calculations! and the effective mass~from analysis
of the temperature dependence of quantum oscillatio!,
should yield information about the nature of the inter-carr
interactions in these materials.1,2 This work led to the
prediction3 and observation4 of Fermi-surface traversal reso
nance~FTR!, an analogue of CR, which arises from the op
orbits across quasi-one-dimensional~Q1D! Fermi-surface
~FS! sections. Until now, all theoretical models of FTR~in-
cluding recent work on weakly incoherent models5! have
been derived in the semiclassical limit,\→0. In this paper
we present a simple quantum-mechanical model that qua
tatively reproduces the properties of FTR’s predicted by
semiclassical models.

We begin by briefly summarizing the semiclassical mo
and its results. More detailed descriptions can be found
Refs. 4 and 6. The real-space structure of a quasi-o
dimensional metal is characterized by the presence of ch
along which carriers can move freely and between wh
they can hop with a probability proportional to the neare
neighbor transfer integralt. The momentum-space structu
is characterized by a Fermi surface comprised of wea
warped planes. The real-space velocity of a carrier~which is
in the direction perpendicular to the Fermi surface!3,4,7 lies
predominantly in one direction~the chain direction! but can
also have components,v t , proportional tot perpendicular to
the chain direction.

When a magnetic fieldB is applied perpendicular to bot
the chain direction and the interchain transfer direction
carrier experiences the Lorentz force and sweeps acros
Fermi sheet in the direction of the warping. The compon
of its real-space velocity parallel to the sheet oscillates a
frequencyv1D5eBbvF /\, wheree is the carrier’s charge,b
is the chain separation in real space, andvF is the Fermi
velocity.4,6 The carrier can thus absorb energy from an el
tric field that is polarized parallel to the oscillatory comp
nent of the velocity and is oscillating at the frequencyv1D .
This effect is exhibited as a resonance, FTR, in the hi
frequency conductivitys(v); the amplitude of the reso
nance ins(v) is proportional tov t

2 . The intensity of the
magneto-optical absorption is proportional tos(v)2, and
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scales ast4. Higher-order transfer integrals cause harmon
in the warping of the Fermi sheet and, hence, harmonic
the oscillating velocity and harmonics of FTR; the frequen
of the nth harmonic isnv1D .

Our quantum-mechanical model is an extension of
method of Yakovenko and Goan8 and is mathematically
similar to the description of the Wannier-Stark ladder.9 Con-
sider a set of chains, each parallel tox, labeled by the index
n and separated by a distanceb in the y direction; carriers
move freely along the chains. In the absence of any inte
tions between the chains, the eigenfunctions of the sys
are given by the product of a plane wave along the chain
a transverse wave function representing the occupation
particular chain, uc&5eikxxufn&. We use the linearized
Hamiltonian,H5\vFk̂x , since we consider only the carrier
close to the Fermi surface. Since the carriers are confine
a single chain, the only contribution to the energy is fro
motion along the chain, and the corresponding Fermi surf
is formed by the planeskx56kF .

Adding hopping between the chains, the Hamiltonian b
comes

H5\vFk̂x2(
i ,n

t i~cn1 i
† cn1cn2 i

† cn!, ~1!

wherecn1 i
† cnufn&5ufn1 i& and t i gives the strength of the

transfer between chainsi apart. The presence of a hoppin
term allows carriers to move in the transverse direction,
plying that the corresponding Fermi surface is warped.
deed, thet i in Eq. ~1! are closely related to the transfer int
grals used in tight-binding calculations of the ba
structure10 and thet used in the semiclassical theory of FTR
Since a carrier is no longer confined to a particular chain,
wave function is now distributed across many chains;
eigenstates become

eikxxujm&5eikxx(
n

amnufn&. ~2!

We apply a magnetic field, choosing a gauge such that
vector potential isA5(2By,0,0), by applying the transfor
mation \ k̂x→\ k̂x1qAx5\ k̂x2qBy5\ k̂x1eBnb. Thus,
the Hamiltonian becomes
15 500 ©1999 The American Physical Society
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FIG. 1. Results of the diagonalization ofH for t1510V. ~a! The eigenenergies,Em of ujm&. ~b! The probability density functions o
statesuj8&, uj75&, anduj142&. These are given byuamnu25amn

2 ~becauseamn are real!.
s

H5vFS 2 i\
]

]x
1eBnbD2(

i ,n
t i~cn1 i

† cn1cn2 i
† cn!. ~3!

Operating on the set of transverse basis statesufn& with H,
we find that
th
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Hufn&5nVufn&2(
i

t i~ ufn1 i&1ufn2 i&), ~4!

where V5eBbvF . If we confine the carriers to only the
chains 1,n,N, by imposing the boundary condition
ufn&50 for n,1 andn.N, the Hamiltonian can be written
as a finite matrix,
H5S V 2t1 2t2 2t3 ••• 2tN21 2tN

2t1 2V 2t1 2t2 ••• 2tN22 2tN21

2t2 2t1 3V 2t1 ••• ••• •••

A A � � � A A

2tN21 2tN22 ••• ••• ••• ~nN21!V 2t1

2tN 2tN21 ••• ••• ••• 2t1 nNV

D ~5!
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that can be diagonalized numerically. The components of
mth eigenvector of this matrix are theamn in Eq. ~2!, and the
eigenvalues are the corresponding transverse-motion en
levels of the system.

We first consider the case for which there are no int
chain interactions,t i50 for all i. The matrix in Eq.~5! is
already diagonal, and the statesufn& are the transverse
eigenstates. Operating on the full eigenstates of the sys
uc&5eikxxufn&, with H, we find that the eigenenergies ar

En5\vFkx1nV. ~6!

The first term corresponds to the energy associated with
momentum along the chain. The second term is a ladde
energies associated with the transverse motion; the en
separation of the states in this ladder,V, matches the energ
of the FTR resonance obtained semiclassically,v1D /\.
Semiclassically, FTR is excited by an oscillatory elect
field polarized alongy; here, the transition strength is give
by
e

rgy

-

m,
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gy

U E ^fnue2 ikxxŷeikx8xufm&dxU2

5U^fnu ŷufm&E ei (kx82kx)xdxU2

, ~7!

where the integral is over the length of the chain. Thus
transition strength is zero forkxÞkx8 , and the dipole transi-
tion conserves the intrachain momentum. The change of
ergy is therefore simply (n2m)V. This is generally true,
and in the discussion that follows, we shall consider only
transverse part of the wave functions.

In fact, the matrix element̂fnu ŷufm& is zero and so when
t i50, optical transitions between the eigenstates are not
sible. This is to be expected; semiclassically, this cor
sponds to the case where the Fermi sheet is not warped
the carrier’s real-space velocity does not oscillate as
crosses the sheet. Thus, it cannot cause a resonance i
high-frequency conductivity by coupling to an oscillato
electric field.

Sinusoidal warping of the Fermi sheet is introduced
making t1 nonzero. Figure 1~a! shows the eigenenergies o



er
th

on

e
nd

l-
al
u
i

er
n

ty
on
cl
io
ta
T
ie
d

th

his is
ig.

re

e-
rgy
of

ulk
rip-
ity
te,
cur
ce of

es,
on-
ve
ld-

tals
o
l,
and

of
ic

on-
b-
iza-

by
-
ted
f a

bt-
c-
lls

15 502 PRB 60BRIEF REPORTS
the new eigenstatesujm&, Em /V, plotted againstm, obtained
by diagonalizingH for the case wheret1510V, N5150,
and e5B5b51. Again, the eigenenergies form a ladd
Em5mV, except near the edges; the significance of
states near the edges is discussed below. Figure 1~b! shows
uamnu2 plotted againstn for the three eigenstatesm58, 75,
and 142.uamnu2 is the probability that, in themth eigenstate,
the nth chain is occupied. The plots in Fig. 1~b! can there-
fore be thought of as real-space probability density functi
for the eigenstatesuj8&, uj75&, anduj142&.

uj75& is a state that exists entirely within the bulk of th
material; the probability density is localized within a ba
well away from the edges of the crystal~i.e., well away from
the chainsn51 andn5150). Within the band, the probabi
ity density is concentrated toward the edges. Semiclassic
the particle is moving along the chain direction with a sin
soidal transverse oscillation. It spends longer near the lim
of its excursion than near the center, since the transv
velocity is smallest at the limits of the transverse motio
The statesuj8& and uj142& are edge states; their probabili
density functions do not vanish at the edges. The corresp
ing semiclassical orbits are skipping orbits, with the parti
executing sinusoidal motion between successive reflect
from the crystal edge. The difference between the edge s
and bulk states is also reflected in their eigenenergies.
energies of the bulk states still form a ladder of energ
separated byV, but the energies of the edge states are mo
fied by the extra confinement caused by the proximity of

FIG. 2. Transition matrix elementsu^jmu ŷujm1 i&u2 for i 51
~solid! and i 52 ~dashed!, calculated fort1510V.
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crystal edge, and the separation of energies increases. T
the reason for the deviation of the energies plotted in F
1~a! from a straight line toward the crystal edges.

With interchain hopping in place, dipole transitions a
possible between the statesujm&. Figure 2 shows the first-
order dipole transition matrix elementsu^jmu ŷujm11&u2 plot-
ted on a logarithmic scale againstm ~solid line!. The second-
order matrix elementsu^jmu ŷujm12&u2 are also plotted
~dashed line!. The first-order transition matrix elements b
tween neighboring bulk states are uniform, with an ene
V. These transitions correspond to the first harmonic
FTR’s in the semiclassical model.

Second-order transitions are not allowed between the b
states. This is also consistent with the semiclassical desc
tion; harmonics of FTR occur when the real-space veloc
of the carrier contains harmonics. It is interesting to no
however, that second- and higher-order transitions do oc
between edge states; this is because, even in the absen
higher-ordert i , the real-space velocity of the edge stat
whose orbits are skipping orbits, have higher harmonic c
tent as a result of the skipping. Such skipping orbits ha
been encountered before; the effects of magnetic-fie
induced skipping orbits at the surface of conventional me
were studied experimentally in the 1960s by Koch and Ku11

and interpreted in terms of a quantum-mechanical mode12

and in the 1980s, Merkt measured and modeled the b
structure and optical properties of carriers at the surface
InSb ~a semiconductor! in crossed electric and magnet
fields, including the effects of skipping orbits.13

If the ratio V/t1 is increased~i.e., the magnetic-field
strength is increased for a constant hopping interaction!, it is
found that the probability density functions of the statesujm&
become narrower; the effect of the magnetic field is to c
fine the carriers to narrower orbits. This effect is also o
served in the semiclassical model. This one dimensional
tion and its consequent effects have been discussed
Dupius and Montambaux.14 At large magnetic fields, the car
rier is confined to a very few chains; the model presen
here breaks down in this limit, where the approximation o
discretized wave function is no longer valid~in this model,
the wave function is only defined on the chains, aty5nb).
The validity of the semiclassical model also becomes dou
ful in this limit; it is inappropriate to consider the magneti
field-induced confinement of a carrier to just a few unit ce
in the semiclassical limit.
FIG. 3. Results of the diagonalization ofH for t1510V and t25t1/10. ~a! The eigenenergies,Em of ujm&. ~b! The probability density
functions of statesuj8&, uj75&, anduj142&.
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The correspondence with the semiclassical descrip
continues when higher-order transfer integrals are includ
Figure 3 shows the eigenenergies and eigenstates obta
by diagonalizingH with t1510V, t25t1/10, andN5150.
As before, the energies of the bulk states form a ladder w
a separationV, with deviations from the ladder by the edg
states. The most notable difference between the bulk st
shown in Figs. 3~b! and 1~b! is that the probability density
function, while still peaked at the limits, is no longer sym
metrical about the central occupied chain. In the semicla
cal model, the real-space velocity of the orbit now contain
second-harmonic component; thus, the real-space orbit
becomes somewhat sawtooth shaped, and the carrier sp
more time to one side of the orbit. This is reflected in t
asymmetry of the quantum-mechanical probability dens
function. The asymmetry of the probability density functio
depends on the sign oft2; reversing the sign oft2 mirrors the
probability density function about the central occupied cha

The presence of the second harmonic in the real-sp
velocity gives rise to a second harmonic of the FTR in

FIG. 4. Transition matrix elementsu^jmu ŷujm1 i&u2 for i 51
~solid!, i 52 ~dashed!, and i 53 ~dotted! calculated fort1510V,
t25t1/10.
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semiclassical model. Correspondingly, the second-order t

sition matrix elementu^jmu ŷujm12&u2, shown dashed in Fig
4, is now finite for bulk states. These transitions are betw
states with an energy difference of 2V. SinceV is propor-
tional to the magnetic-field strength, in a swept-field expe
ment these second-order transitions will occur at a magn
field that is half as strong as the field for the fundamen
resonance; they correspond to the second harmonic of
in the semiclassical model, occurring at a frequency
2v1D . For this case, wheret2 /t151021, the ratio of the
second-order transition matrix elements to first-order tran
tion matrix elements is 1024. Figure 4 also shows the third
order transition matrix elementsu^jmu ŷujm13&u2, which are
zero for the bulk states, sincet3 is zero~though third-order
transitions occur between edge states for the reasons g
above!. In general, we find that ift i is nonzero, then
i th-order transitions are allowed between bulk states, and
transition intensity scale as byt i

4 , in agreement with the
predictions of the semiclassical model.

The significance of the agreement between the two m
els lies in the fact that they each predict the effect from qu
different initial assumptions. In the semiclassical limit, t
granularity of the lattice is reflected only in the existence
the Brillouin zone and the Fermi surface; particles are c
sidered to be pointlike in both real space and moment
space and are allowed to move continuously. In
quantum-mechanical model, the granularity of the lattice
pears explicitly; we consider the occupancy of each ch
individually. The prediction of FTR by both models indicate
that it is a fundamental property of quasi-one-dimensio
systems.
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