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Calculation of the ground state of the one-dimensional two-impurity Anderson model
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By means of the method of fermion coherent state, a one-dimensional two-impurity Anderson model is
studied systematically. In the framework of Fermi-liquid theory, we analytically obtain the expression of the
ground-state energy and quantitatively calculate the ground-state energy of the two-impurity system when the
energy band is in the half-filling or under half-filling case. When the average number of electrons per siten is
well away from half filling, a quick dropping of the binding energy per electron is obtained as a function of the
couplingV. Also, the beneficial conditions for the two impurities to enter the metallic host are given.
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I. INTRODUCTION

In a many-body system, the properties of the magn
impurities embedded in an electron gas have been a su
of considerable interest.1–4 This is largely because the unde
standing of two such impurities is a starting point to und
stand the magnetic properties of the heavy ferm
materials.5 To attack these many-body problems, there
some widely used techniques: numerical renormaliza
method,6 well-controlled quantum Monte Carlo
stimulations,7 and the coupled cluster method8 ~CCM! as
well as a Lanczos finite-matrix truncation scheme,9 which
have been applied to the single-impurity periodic on
dimensional~1D! Anderson model. Some other theoretic
work on heavy fermion materials are mainly focused on p
turbative approximations, such as random phase approx
tion.

The main purpose of the present paper is to propos
method to investigate a 1D two-impurity system. In fact, t
method may also be used on a broad class of many-b
fermion systems by constructing the fermion coherent st
We generalize the phonon coherent state method put forw
by Davydov10 and developed by Wanget al.11 to a fermion
system and analytically get the expression of the grou
state energy of such a system. The key advantage of
method is that we can quantitatively calculate the grou
state energy of a two-impurity fermion system, the ene
band of which is in the half-filling or under half-filling case
The effectiveness of such a method proves the applicab
of Fermi-liquid theory to such important problems wi
strong interaction and forms the basis for understand
more general cases about strong-correlation systems.

II. THE MODEL

We consider the 1D two-impurity Anderson model in t
absence of direct hopping between impurities, which co
PRB 600163-1829/99/60~23!/15492~4!/$15.00
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prises two orbitals representing two impurities, positioned
x15x/2 and x252x/2, coupled to noninteracting conduc
tion electrons representing the metallic host. Its Hamilton
is

H5(
km

ekckm
1 ckm1(

j m
eddj m

1 dj m

1V(
jkm

~dj m
1 ckmeikxj1H.c.!1U(

j
dj↑

1 dj↓
1 dj↓dj↑ , ~1!

where the Fermi operatorckm
1 creates a conduction electro

with momentumk, spin s, and energyek , the operator
dj

1( j 51,2) creates an electron at the impurity orbital at p
sition xj with the localized energy leveled , V is the coupling
between the conduction states and each impurity andU is the
Coulomb repulsion energy between opposite-spin electr
occupying the same impurity which is set to zero for si
plicity.

Before we generalize the phonon coherent state meth10

to fermion system, the validity of the concept of Land
Fermi liquid is needed. It is well known that the clean Q1
systems shows the Luttinger liquid behavior, but that ev
the slightest amount of impurities restores the Fer
surface.12 This means that the 1D two-impurity Anderso
system we now are discussing is Fermi liquid. We belie
therefore, the important concept of Fermi liquid is still val
here. Now, we introduce the hole operatorshkm and hkm

1 .
Below the Fermi levelEF , we set

ckm
1 [hkm ckm[hkm

1 , ~k<kF! , ~2!

wherekF is Fermi vector. The preceding simplified Hami
tonian then becomes
15 492 ©1999 The American Physical Society
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H5(
km

u~k2kF!ek1(
km

u~k2kF!ekckm
1 ckm

2(
km

u~kF2k!ekhkm
1 hkm1(

j m
eddj m

1 dj m

1V(
jkm

$eikxj@u~k2kF!dj m
1 ckm1u~kF2k!dj m

1 hkm
1 #

1H.c.% . ~3!

In the inspiration of phonon coherent state,10 we introduce
the fermion coherent state

u &5expF (
k1m1k2m2

am1m2
~k1 ,k2!u~k12kF!u~k22kF!

3ck1m1

1 ck2m2

1 1 (
k1m1k2m2

bm1m2
~k1 ,k2!

3u~kF2k1!u~kF2k2!hk1m1

1 hk2m2

1

1 (
j 1m1 j 2m2

g j 1m1 j 2m2
dj 1m1

1 dj 2m2

1

1 (
k1m1k2m2

hm1m2
~k1 ,k2!u~k12kF!u~kF2k2!ck1m1

1 hk2m2

1

1 (
k1m1 j 2m2

lm1 j 2m2
~k1!u~k12kF!ck1m1

1 dj 2m2

1

1 (
k1m1 j 2m2

jm1 j 2m2
~k1!u~kF2k1!hk1m1

1 dj 2m2

1 G u&0 , ~4!

where am1m2
(k1 ,k2),bm1m2

(k1 ,k2),g j 1m1 j 2m2
,hm1m2

(k1 ,k2),

lm1 j 2m2
(k1),jm1 j 2m2

(k1) are variational functions with

am1m2
~k1 ,k2!52am2m1

~k2 ,k1!

bm1m2
~k1 ,k2!52bm2m1

~k2 ,k1! ~5!

g j 1m1 j 2m2
52g j 2m2 j 1m1

and will be determined consistently from the itinerant eq
tions below.u&05)kmu(kF2k)ckm

1 u0& is the ground state o
noninteracting fermion system. Here,u0& is the true vacuum
state.

The fermion coherent state has the properties of

ckmu&5H (
k2m2

2u~k22kF!amm2
~k,k2!ck2m2

1

1 (
k2m2

u~kF2k2!hmm2
~k,k2!hk2m2

1

1 (
j 2m2

lm j 2m2
~k!dj 2m2

1 J u& ~6!
-

dj mu&5H (
j 2m2

2g j m j 2m2
dj 2m2

1

2 (
k1m1

u~k12kF!lm1 j m~k1!ck1m1

1

2 (
k1m1

u~kF2k1!jm1 j m~k1!hk1m1

1 J u& ~7!

hkmu&5H (
k2m2

2u~kF2k2!bmm2
~k,k2!hk2m2

1

2 (
k1m1

u~k12kF!hm1m~k1 ,k!ck1m1

1

1 (
j 2m2

jm j 2m2
~k!dj 2m2

1 J u& ~8!

Inserting Eq.~3! into the Schro¨dinger equationHu&5Eu& in
terms of the properties~6!–~8!, and equating the coefficient
of the terms of u&,c1c1u&,c1d1u&,c1h1u&,
h1h1u&,h1d1u&,d1d1u& on both sides of the Schro¨dinger
equation under the approximation to neglect terms of hig
rank more than two operators operating onu&, we have the
following seven coupled equations

E5E02V (
j 1k1m1

u~kF2k1!e2 ik1xj 1jm1 j 1m1
~k1! ~9!

2ek1
am1m2

~k1 ,k2!1V(
j 2

e2 ik2xj 2lm1 j 2m2
~k1!

1V (
j 3k3m3

e2 ik3xj 3lm2 j 3m3
~k2!hm1m3

~k1 ,k3!50,

~k1.kF , k2.kF! ~10!

ek1
bm1m2

~k1 ,k2!2V (
j 3k3m3

u~kF2k3!e2 ik3xj 3jm1 j 3m3
~k1!

3bm3m2
~k3 ,k2!50, ~k1,kF , k2,kF! ~11!

2edg j 1m1 j 2m2
1V(

k1

u~k12kF!eik1xj 1lm1 j 2m2
~k1!

22V (
j 3k3m3

u~kF2k3!e2 ik3xj 3g j 3m3 j 1m1
jm3 j 2m2

~k3!50

~12!

~ek1
2ek2

!hm1m2
~k1 ,k2!2V(

j 1

e2 ik1xj 1jm2 j 1m1
~k2!

12V (
j 3k3m3

u~kF2k3!e2 ik3xj 3lm1 j 3m3
~k1!bm3m2

~k3 ,k2!

1V (
j 3k3m3

u~kF2k3!e2 ik3xj 3jm2 j 3m3
~k2!hm1m3

~k1 ,k3!

50, ~k1.kF ,k2,kF! ~13!
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~ek1
1ed!lm1 j 1m2

~k1!12V(
j 2

e2 ik1xj 2g j 2m1 j 1m2

12V(
k2

u~k22kF!eik2xj 1am1m2
~k1 ,k2!

1V (
j 3k3m3

u~kF2k3!e2 ik3xj 3lm1 j 3m3
~k1!jm3 j 1m2

~k3!

22V (
j 3k3m3

u~kF2k3!e2 ik3xj 3g j 3m3 j 1m2
hm1m3

~k1 ,k3!

50, ~k1.kF! ~14!

~ed2ek1
!jm1 j 1m2

~k1!2Veik1xj 1dm1m2

2V(
k2

u~k22kF!eik2xj 1hm2m1
~k2 ,k1!

14V (
j 3k3m3

u~kF2k3!e2 ik3xj 3g j 3m3 j 1m2
bm3m1

~k3 ,k1!

1V (
j 3k3m3

u~kF2k3!e2 ik3xj 3jm1 j 3m3
~k1!jm3 j 1m2

~k3!

50, ~k1,kF! ~15!

where E05(km \2k2/2m (k,kF) is Fermi level of free-
electron gas in the normal state.

III. NUMERICAL CALCULATION

Theoretical work on the 1D two-impurity Anderso
model has either considered half-filling case, or concer
the situations well away from half filling. However, ver
little work concerned the close vicinity of half filling, a situ
ation of considerable interest, in particular in view of t
physics of impurities in Anderson model. If we definen as
the average number of fermions per site, the three cases
tioned above meann'1, n,1, andn→1 butnÞ1. With our
model, it is very convenient to consider preceding three
ferent cases and discuss the different behaviors.

For an 1D two-impurity electron gas, infinite length
system will lead to ineffectiveness of impurity. As a resu
in order to observe the comparatively apparent effects in
two-impourity electron gas system, we just study the fin
1D lattice case. By taking the periodic boundary conditio

k5
2pn

L
, ~n51,2, . . . ,N! , ~16!

whereL is the length of quantum wire,N is the number of
lattice, we calculate the ground-state energy at half filling
under half-filling case. Now, we demonstrate our numeri
results and give the explanations.

~a! At first, we define the binding energyDE as the dif-
ference between the ground-state energyE of impurity sys-
tem and that of free electron gas in the normal state. IfDE
,0, it means that it is possible theoretically for impurities
form a stable system in which the ground-state energy
two-impurity system is lower than that of free-electron g
and is a benefit for impurities to mix with the electron gas
the lattice. In the opposite situation it will be impossible
d

en-

f-

,
D
e

r
l

f
s

form a stable system. The coupling between the conduc
electrons andd electrons reflects mainly the stability of suc
system. The stronger the coupling, the lower ground-s
energy will be. In Figs. 1~a! and 1~b!, we show the calculated
binding energy per electronDE/N as a function of coupling
constantV due to differentn. From the figures, we notice
that, ~i! The 1D two-impurity system is more stable with th
couplingV increasing. That is, the increasing of couplingV
is benefit for the impurities entering the 1D metallic host.~ii !
The average number of electrons per siten means the heigh
of Fermi surface and the amount of filling electrons in e
ergy band, which reflects many physical properties of allo
All the electrons in a 1D-ordered lattice~we call it metallic
host! move communally, which has the characteristic of e
tended state. When ordered lattice is doped by few imp
ties, the periodicity of lattice is destroyed locally and som
electrons or holes will be trapped in the impurities. The el
trons moving locally near the impurities have the charac
istic of localized state. When a 1D-ordered lattice has
average number of electrons per siten'1, the electrons will
have high momentum. Then they will have less opportunit
to be trapped by the localized state associated with the
purities thann,1 in which electrons have low momentum
That is, the binding energy asn,1 is lower than that in the
case ofn'1. As is well illustrated by Figs. 1~a! and 1~b!.

FIG. 1. The binding energy per electronDE/N as a function of
the couplingV between orbital electrons and conduction ones. Th
are given for several different values of average number of e
trons per siten ~a! N516, L54 nm. Solid squares,n51; open
circles, n57/8; solid up triangles,n53/4; open diamonds,n
55/8; solid down triangles,n53/8. ~b! N524, L510.08 nm.
Solid squares,n51; open circles,n55/6; solid up triangles,n
52/3; open diamonds,n51/2; solid down triangles,n51/3. We
take the distance between two impurities asx5p/2kF , which is
used in this paper.
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From the figures, we also can see that, at the case of
filling or close vicinity of half filling, the binding energy pe
electron decreases linearly and slowly withV. But such pro-
cess will become more remarkable as the situations w
away from half filling is satisfied. Such as in Fig. 1~b!, when
n51/3, the quickly dropping ofDE/N with V manifests the
binding energy per electron is more sensitive thann'1.

~b! Now let us discuss the influence of the localized e
ergy level ed on the ground-state energy. WhenV is set,
there are two competition effects. On the one hand, as
energy of the localized energy leveled.0, the state of the
orbital electrons induced by the impurities will be partia
localized, which will increase the energy of system and
harmful for the impurities to be stable. On the other hand,
interaction of the orbital electrons and conduction ones w
decrease the energy of system, which is helpful for the
purity system to be stable. The mutual competition of
above two effects makes the situation more complex. Fr
the Fig. 2, we can see, in some regions, such ased
P@0.01,0.05#, @0.08,0.14#, and@0.22,0.29#, that it is impos-
sible for two impurities to mix with the metallic host to form
a stable system. In the stable region, we can see clearly t
is also the feature mentioned above that the binding ene
per electron decreases with the declining ofn. With the in-
creasing ofed , the region suitable for the two impurities t
enter the metallic host is larger companying withDE/N

FIG. 2. The binding energy per electronDE/N with the param-
eters N516, L54 nm as a function of the energy of localize
energy leveled for different average number of electrons per siten.
Solid squares,n51; open circles,n57/8; open diamonds,n
53/4; solid up triangles,n55/8.
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drops heavily. Particularly, whened50.29, theDE/N drops
abruptly from2131024 to 2831023 and then increase
little by little with ed . In Fig. 3, we plot the binding energy
per electron versused with different V. A very typical fea-
ture is thatDE/N varies more precipitously with the increa
ing of V for the coupling between the orbital electrons a
conduction ones is helpful for the system’s stability. T
other feature same as Fig. 2 is that there also exist s
regions impossible for the 1D two-impurity Anderson syste
to be steady.

IV. CONCLUSION

To summarize, in this paper we have studied the prob
of the 1D two-impurity Anderson model by means of th
fermion coherent state. Through calculating the binding
ergy per electron, we can judge what conditions will be
vorable for the impurities mixing with the metallic hos
Generally speaking, the increasing of the coupling betw
the orbital electrons and the conduction electrons is ben
cial for the impurity and the metallic host to mix togethe
The binding energy per electron decreases linearly
slowly with V in the case of half filling or in the vicinity of
half filling. To the system whose energy band is well aw
from half filling, our numerical calculations show that, i
binding energy per site decreases more quickly.

FIG. 3. The binding energy per electronDE/N shown as a func-
tion of the energy of localized orbitalsed for differentV in the case
of half filling. We take N524, L512.48 nm. Squares,V
50.0015; circles,V50.005; down triangles,V50.01.
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