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Calculation of the ground state of the one-dimensional two-impurity Anderson model
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By means of the method of fermion coherent state, a one-dimensional two-impurity Anderson model is
studied systematically. In the framework of Fermi-liquid theory, we analytically obtain the expression of the
ground-state energy and quantitatively calculate the ground-state energy of the two-impurity system when the
energy band is in the half-filling or under half-filling case. When the average number of electrons pés site
well away from half filling, a quick dropping of the binding energy per electron is obtained as a function of the
couplingV. Also, the beneficial conditions for the two impurities to enter the metallic host are given.
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[. INTRODUCTION prises two orbitals representing two impurities, positioned at
X1=x/2 andx,= —x/2, coupled to noninteracting conduc-
In a many-body system, the properties of the magnetition electrons representing the metallic host. Its Hamiltonian
impurities embedded in an electron gas have been a subjeist
of considerable interedt? This is largely because the under-
standing of two such impurities is a starting point to under-
stand the magnetic properties of the heavy fermiony— eclr o + e.d” d:
materials> To attack these many-body problems, there are 2 Kok ks % FinTin
some widely used techniques: numerical renormalization
method®  well-controlled  quantum  Monte  Carlo v (ar ikx + ot
! ’ I e, e i+H.c)+UR, didd; di,, (1)
stimulations’ and the coupled cluster metfodCCM) as j%( Ik ) EJ: A iieiael
well as a Lanczos finite-matrix truncation schetnehich
have been applied to the single-impurity periodic one-yhere the Fermi operatar,,, creates a conduction electron
dimensional(1D) Anderson model. Some other theoretical \yith momentumk spin o, and energye,, the operator
work on heavy f‘?fmi‘?” materials are mainly focused on PEry*(j=1,2) creates an electron at the impurity orbital at po-
turbative approximations, such as random phase appromm:,;).;l',[ion x; with the localized energy level;, V is the coupling

tion. between the conduction states and each impuritylhrgithe

Ir?edTa!n putr_po?e ogl'tjhENpr_ezsent_tpapert IS th> F;rOFt’O;]’? Eoulomb repulsion energy between opposite-spin electrons
method 1o Investigate a o-impurity system. In fact, ISoccupying the same impurity which is set to zero for sim-
method may also be used on a broad class of many-bo licity

fermion systems by constructing the fermion coherent state. Before we generalize the phonon coherent state m&thod
We generalize the phonon coherent state method put forwartg fermion system, the validity of the concept of Landau

0 11 i
by Davydov*® and d_eveloped by Wanet al._ to a fermion Fermi liquid is needed. It is well known that the clean Q1D
system and analytically get the expression of the groundé stems shows the Luttinger liquid behavior, but that even
state energy of such a system. The key advantage of O%Yfe slightest amount of impurities restores the Fermi

method is that we can quantitatively calculate the ground-surfacel_z This means that the 1D two-impurity Anderson

state energy of a two-impurity fermion system, the energy, . L S )
band of which is in the half-filling or under half-filing case. YoM We now are discussing is Fermi liquid. We believe,

The effectiven f h a method proves th i biIittherefore, the important concept of Fermi liquid is still valid

€ etiectiveness ol stch a metnod proves the appicablity,o o - Now, we introduce the hole operatbrg, and hy, .
of Fermi-liquid theory to such important problems with clow the Eermi leveE-  we set s
strong interaction and forms the basis for understandin53 P
more general cases about strong-correlation systems.

Cou=Nk, Cxu=hg,, (kskg), 2
Il. THE MODEL Ko o F

We consider the 1D two-impurity Anderson model in the wherekr is Fermi vector. The preceding simplified Hamil-

absence of direct hopping between impurities, which comionian then becomes
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H=2 0(k—kg) e+ > 0(k—Kg)eccy,Cuy
ku k
—kE# 0(k,:—k)ekhk+ﬂhk#+% €qd;,di,

+V X {e N[ 0(k—ke)d], Ch,+ O(ke— k)] Ny, ]
jku

+H.c}. )

In the inspiration of phonon coherent st&teye introduce

the fermion coherent state

|>=exp[ >

kyuikomp

@y ,(K1,K2) O(Ky —Ke) 6(ko —ke)

+ +
Xel, b+ >
ey kou
1#1 R2M2 kll”'lkZI"Z

B;Ll,uz( kl ' k2)

X 0(ke—ky) O(ke—ko)hy,

P

jimiioma

+ 2>

kymgkomo

+ >

SYTPYS

df df

YigsgionoDigugYion,

(Ky,k2) (ks —ke) O(ke—k2)Cy Ny,

77"*1:“2
+ +
)\Mlj 2/’-2( kl) 0( kl o kF) Cklﬂldj 2M2

+ 2 Euripmy(KD) O(ke—k) Dy, i Doy (4)

Kypalomo

where a,ul,u.z(kl ) k2) 1:8,11.1,u2(k1 ’ k2) 1Y 141)oko? 77,41.1#2('(1 ’ kZ) '
)\Mljzﬂz(kl)’gﬂljzﬂz(kl) are variational functions with

alp,ly,z( kl 1k2) == a,uz,ul( k2 ’ kl)

ﬂy,l;l,z( kl 1k2): _B,uz,u,l( k2!kl) (5)

Yigwaions = = Yigmpiing
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_ +
dJM|>_ 2 Zyiﬂjz,uzdjznz
Jom2

- Z 6( kl_ kF))\,u,lJp,( kl)cl-('—l,ul

Kymy

= 2 0=k &, kb, 1) (D)

SV

D) =1 2 20(ke—ko) Bup, (KK,

Koo

- 2 0( kl_ kF) 77,u1,L( kl ’ k)cljlp,l

Kymg

Inserting Eq.(3) into the Schrdinger equatiorH|)=E|) in
terms of the propertie6)—(8), and equating the coefficients
of the terms  of [),c"c’|),ctd*|),cTh*]),
h™h*|),h*d™|),d*d™|) on both sides of the Schimger
equation under the approximation to neglect terms of higher
rank more than two operators operating |pnwe have the
following seven coupled equations

E=Eo—V X O(ke—ke Mg, , (k) (9

Jikamy
2eklaﬂm(kl,|<2)+v122 e 25N, i (Ky)
+V e i i ua(Ko) 7, (Ke Kg) =0,

Jgkanms

(ki>ke, ko>kg)  (10)

€k Buyu,(Ki.Ka) =V 2 O(ke—ka)e " iag,, ; , (Ky)

13K3m3

X Brugu,(Ka.K2) =0, (ki<kg, Kp<kg) 11

26dyj1M1j2M2+szl 0(k1— kF)eiklle)\Mlszz(kl)

and will be determined consistently from the itinerant equa-

tions below.|)o=1IIy, 6(ks—k)c,,|0) is the ground state of

noninteracting fermion system. Hell®) is the true vacuum

state. (12
The fermion coherent state has the properties of

—2V > O(Ke— k)@ isY) i s Epni o, (Ka) =0

i3kaus

(e, — €,) 77M1M2(k1,k2)—Vj21 e*iklxngﬂzjlﬂl(kz)
Cul)={ 2 20(ka—ke) e, (K Ko)Ci

k .
+2V 3 O(ke—kg)e KFian, L, (KD) B, (Ks ko)

N izkaus
+ 2 0ke = ka) DK kNG,
)2 —j .
e +V D O(ke—kg)e g, i (Ko7, . (KiKs)

2 . iakamg
+ N, k)d: 6
2 Naiznr (G 1) © L0 (kkeko<ke) (13
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_'k . . -1
(€k1+ ed)}\/’tljl/"Z(kl)_‘_ZVjEz e! lXJZ’ij'u’ljl/J‘Z 0.000
-0.001 +
+2Vk2 H(kZ_kF)eikzleaﬂll’«z(klakZ) o002
2 ’
Z
L
e <4 0.003
v 2 O(ke—ka)eT TN (k) €y (Ka)
3433 -0.004 ]
_2Vi k2 Ok = k3)eiiksxj37/jgﬂsi v Mugg(K1,Ks) e
3t3ks 0.005 0.(;10 0.0I15 0.(;20 0.(;25 0.(3:30 0.035
=0, (ki>kg) (14
iK1 0.000 4
(ed—ekl)fﬂljlﬂz(kl)—Ve' 1X115”1M2
-0.001
_ iKoX;
—vk22 0(ky—ke)€*2iim,, , (Kz,Kq)
-0.002
=
— . m - -
+4V4 E 6(ke—ks)e Iksx]37j3ﬂsjlﬂzﬂﬂsﬂl(k3’kl) 0o (b) v,
iskaus
-0.004 \\'
+v13%3 O(ke—Ka)e s, 1 (Ke) iy (Ka) ™
0.(;05 ' 0.(.‘:10 l 0.(;15 ' 0.(}:20 l 0.0256
=0, (ki<kg) (19 v
where EO:EI_W n2k?/2m (k<kg) is Fermi level of free- FIG. 1. The binding energy per electra&rE/N as a function of
electron gas in the normal state. the couplingV between orbital electrons and conduction ones. They
are given for several different values of average number of elec-
11l. NUMERICAL CALCULATION trons per siten (a) N=16, L=4 nm. Solid squaresy=1; open

] ) ) circles, n=7/8; solid up trianglesn=3/4; open diamondsn
Theoretical work on the 1D two-impurity Anderson =s5/8: solid down trianglesn=3/8. (b) N=24, L=10.08 nm.

model has either considered half—fllllng case, or Concerne@ond squaresn=1; open circlesn=5/6; solid up trianglesn

the situations well away from half filling. However, very =2/3; open diamonds)=1/2; solid down trianglesn=1/3. We

little work concerned the close vicinity of half filling, a situ- take the distance between two impuritiesas mw/2ks , which is

ation of considerable interest, in particular in view of theused in this paper.

physics of impurities in Anderson model. If we defineas ] )

the average number of fermions per site, the three cases mgQim a stable system. The coupling between the conduction

tioned above mean~1,n<1, andn—1 butn=1. With our  €lectrons andl electrons reflects mainly the stability of such

model, it is very convenient to consider preceding three dif-System. The stronger the coupling, the lower ground-state

ferent cases and discuss the different behaviors. energy will be. In Figs. (&) and 1b), we show the calculated
For an 1D two-impurity electron gas, infinite length of Pinding energy per electroAE/N as a function of coupling

system will lead to ineffectiveness of impurity. As a result, constantV due to differentn. From the figures, we notice

in order to observe the comparatively apparent effects in 1hat, (i) The 1D two-impurity system is more stable with the

two-impourity electron gas system, we just study the finitecoUplingV increasing. That is, the increasing of couplivig

1D lattice case. By taking the periodic boundary condition, iS benefit for the impurities entering the 1D metallic hes).
The average number of electrons per siteeans the height

27mn of Fermi surface and the amount of filling electrons in en-
k=—— (n=12,...N), (1) ergy band, which reflects many physical properties of alloys.
All the electrons in a 1D-ordered lattigeve call it metallic
wherelL is the length of quantum wire\ is the number of hos) move communally, which has the characteristic of ex-
lattice, we calculate the ground-state energy at half filling otended state. When ordered lattice is doped by few impuri-
under half-filling case. Now, we demonstrate our numericaties, the periodicity of lattice is destroyed locally and some
results and give the explanations. electrons or holes will be trapped in the impurities. The elec-
(a) At first, we define the binding energyE as the dif- trons moving locally near the impurities have the character-
ference between the ground-state endegef impurity sys- istic of localized state. When a 1D-ordered lattice has the
tem and that of free electron gas in the normal statdHBf average number of electrons per site 1, the electrons will
<0, it means that it is possible theoretically for impurities to have high momentum. Then they will have less opportunities
form a stable system in which the ground-state energy ofo be trapped by the localized state associated with the im-
two-impurity system is lower than that of free-electron gaspurities thann<<1 in which electrons have low momentum.
and is a benefit for impurities to mix with the electron gas inThat is, the binding energy as<1 is lower than that in the
the lattice. In the opposite situation it will be impossible to case ofn~1. As is well illustrated by Figs. (&) and ib).
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FIG. 2. The binding energy per electrarE/N with the param- g,
etersN=16, L=4 nm as a function of the energy of localized o
energy levele, for different average number of electrons per site FIG. 3. The binding energy per electrarE/N shown as a func-
Solid squares,n=1; open circles,n=7/8; open diamondsn tion of the energy of localized orbitalg, for differentV in the case
=3/4; solid up trianglesn=5/8. of half filling. We take N=24, L=12.48 nm. SquaresV

=0.0015; circlesy=0.005; down trianglesy=0.01.

From the figures, we also can see that, at the case of h
filling or close vicinity of half filling, the binding energy per
electron decreases linearly and slowly with But such pro-
cess will become more remarkable as the situations we
away from half filling is satisfied. Such as in Figb], when
n=1/3, the quickly dropping oAE/N with V manifests the
binding energy per electron is more sensitive thanl.

(b) Now let us discuss the influence of the localized en-
ergy level e4 on the ground-state energy. Wh&his set,
there are two competition effects. On the one hand, as th
energy of the localized energy leve}>0, the state of the
orbital electrons induced by the impurities will be partially
localized, which will increase the energy of system and is
harmful for the impurities to be stable. On the other hand, the To summarize, in this paper we have studied the problem
interaction of the orbital electrons and conduction ones willof the 1D two-impurity Anderson model by means of the
decrease the energy of system, which is helpful for the imfermion coherent state. Through calculating the binding en-
purity system to be stable. The mutual competition of theergy per electron, we can judge what conditions will be fa-
above two effects makes the situation more complex. Fronyorable for the impurities mixing with the metallic host.
the Fig. 2, we can see, in some regions, suchegs Generally speaking, the increasing of the coupling between
€[0.01,0.05, [0.08,0.14, and[0.22,0.29, that it is impos-  the orbital electrons and the conduction electrons is benefi-
sible for two impurities to mix with the metallic host to form cial for the impurity and the metallic host to mix together.
a stable system. In the stable region, we can see clearly thefde binding energy per electron decreases linearly and
is also the feature mentioned above that the binding energsiowly with V in the case of half filling or in the vicinity of
per electron decreases with the decliningnoWith the in-  half filling. To the system whose energy band is well away
creasing ofey, the region suitable for the two impurities to from half filling, our numerical calculations show that, its
enter the metallic host is larger companying witfE/N binding energy per site decreases more quickly.

acllrrops heavily. Particularly, whegy=0.29, theAE/N drops
abruptly from—1x10 % to —8x10 2 and then increases
Httle by little with €4. In Fig. 3, we plot the binding energy
per electron versusy with differentV. A very typical fea-

ture is thatAE/N varies more precipitously with the increas-
ing of V for the coupling between the orbital electrons and
conduction ones is helpful for the system’s stability. The
other feature same as Fig. 2 is that there also exist some
regions impossible for the 1D two-impurity Anderson system
f be steady.

IV. CONCLUSION
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