
PHYSICAL REVIEW B 15 DECEMBER 1999-IVOLUME 60, NUMBER 23
Exact numerical calculation of the density of states of the fluctuating gap model

Lorenz Bartosch and Peter Kopietz
Institut für Theoretische Physik, Universita¨t Göttingen, Bunsenstrasse 9, D-37073 Go¨ttingen, Germany

~Received 4 August 1999!

We develop a powerful numerical algorithm for calculating the density of statesr(v) of the fluctuating gap
model, which describes the low-energy physics of disordered Peierls and spin-Peierls chains. We obtainr(v)
with unprecedented accuracy from the solution of a simpleinitial value problemfor a single Riccati equation.
Generating Gaussian disorder with large correlation lengthj by means of a simple Markov process, we present
a quantitative study of the behavior ofr(v) in the pseudogap regime. In particular, we show that in the
commensurate case and in the absence of forward scattering the pseudogap is overshadowed by a Dyson
singularity below a certain energy scalev* , which we explicitly calculate as a function ofj.
@S0163-1829~99!02948-3#
at
h

r-

,

if
ct
na
m
r
is

au
s
th
u

n
i

or
ed
m
s

dy

la

e

ly

ct.
en

g.,
e of

al-

ase
be-
-
-
be

he
d

u-
a

il-
The fluctuating gap model~FGM! describes the low-
energy physics of one-dimensional fermions subject to st
disorder potentials. The first quantized Hamiltonian of t
FGM can be written as1

Ĥ52 ivF]xs31V~x!s01D~x!s11D* ~x!s2, ~1!

whereV(x) andD(x) are random potentials describing fo
ward and backward scattering,vF is the Fermi velocity
~henceforth we setvF51), s i are the usual Pauli matrices
s0 is the 232 unit matrix, ands65 1

2 (s16 is2). Equation
~1! emerges as the effective low-energy Hamiltonian in d
ferent physical contexts. For example, fluctuation effe
close to the Peierls transition in quasi-one-dimensio
charge-density wave systems can be described by this Ha
tonian. In this caseD(x) describes the time-independent pa
of the fluctuating Peierls order parameter, the probability d
tribution of which can be obtained from a Ginzburg-Land
expansion of the free energy.2 For commensurate chain
D(x) can be chosen to be real, whereas it is complex in
incommensurate case.1–3 Truncating the Ginzburg-Landa
expansion at the second order,D(x) is approximated by a
Gaussian random process, with finite average^D(x)&5Dav
below the Peierls transition andDav50 in the disordered
phase. For commensurate chains the correlator ofD̃(x)
5D(x)2Dav is ^D̃(x)D̃(x8)&5Ds

2e2ux2x8u/j, whereas in the

incommensurate casê D̃(x)D̃* (x8)&5Ds
2e2ux2x8u/j and

^D̃(x)D̃(x8)&50. Here,j is the order parameter correlatio
length, which diverges at the Peierls transition. The Ham
tonian ~1! describes also the low-energy physics of dis
dered spin chains,1,4 which can be mapped onto disorder
fermions by means of the usual Jordan-Wigner transfor
tion. In many cases the filling of the effective fermionic sy
tem is then commensurate with the lattice, so thatD(x) is
real.

The fundamental quantity that determines the thermo
namics of the model~1! is the density of states~DOS! r(v).
In general, one has to rely on approximations to calcu
r(v) or its disorder averagêr(v)&, but in special limits
exact results are available. Besides the trivial case wh
V(x) and D(x) are constant, the exact^r(v)& can be ob-
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tained by various methods5–7 in the white-noise limitj
→0, Ds→`, with Ds

2j→const. For realD(x) and V(x)
50 the average DOS is known to exhibit, for sufficient
small Dav, a Dyson singularity8 at v50. In Ref. 9 we have
shown that this singularity survives for arbitraryj,`. A
recursive algorithm due to Sadovskii10 does not reproduce
the Dyson singularity, so that this algorithm cannot be exa
In fact, a subtle flaw in this algorithm has recently be
found by Tchernyshyov.3 Because Sadovskii’s algorithm~or
generalizations of it! has been used in different contexts, e.
to explain the pseudogap phenomenon in the normal stat
the cuprate superconductors,11,12it is also important to inves-
tigate its validity for complexD(x) with quasi-long-range
correlations.

In this paper, we develop an accurate algorithm that
lows us to investigate the regimeDsj*1 where no exact
solution is available. We find that in the commensurate c
the pseudogap is overshadowed by a Dyson singularity
low a cross-over energyv* , which we determine as a func
tion of the correlation lengthj. We also consider the incom
mensurate case for which Sadovskii’s solution turns out to
qualitatively correct but leads to a wrongj-dependence of
the depth of the pseudogap.

RICCATI EQUATION

In the following, we use the special symmetries of t
continuum model~1! to show that the DOS can be obtaine
without ever calculating the eigenvalues of Hˆ .13 Instead, we
obtain the DOS from the solution of a simpleinitial value
problemfor a Riccati equation. This will enable us to calc
late r(v) with unprecedented numerical accuracy. For
given realization of the disorder the local DOS of the Ham
tonian ~1! can be defined by9,14

r~x,v!52p21Im Tr@s3G R~x,x,v!#, ~2!

where the retarded 232 matrix Green functionG R(x,x8,v)
satisfies

@ i ]x2M ~x,v1 i01!#G R~x,x8,v!5d~x2x8!s0, ~3!
15 488 ©1999 The American Physical Society
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M ~x,v!5@V~x!2v1D~x!s11D* ~x!s2#s3 . ~4!

We now make the non-Abelian Schwinger-ansatz9,15

G R~x,x8,v!5U~x,v!G 0
R~x2x8!U21~x8,v!, ~5!

whereU(x,v) is an invertible 232 matrix andG 0
R(x) is the

Green function to the operatori ]x1 i01s3, i.e.,

G 0
R~x!52 i S u~x! 0

0 2u~2x!
D . ~6!

In the following, thev-dependence is suppressed. The ans
~5! indeed solves Eq.~3! if U(x) satisfies

@ i ]x2M ~x!#U~x!50 ~7!

with the boundary conditions

U12~2`!5U21~`!50. ~8!

Two different solutions of Eq.~7! are given by

U1~x!5T expF2 i E
2`

x

M ~y!dyG , ~9!

U2~x!5T21expF i E
x

`

M ~y!dyG , ~10!

whereT exp is the path ordered andT21exp is the anti-path-
ordered exponential function. BecauseM†5s3Ms3 and
TrM50, the matrices Ua satisfy Ua

†5s3Ua
21s3 and

detUa51, which means that they belong to the noncomp
group SU(1,1). Thus, the elements of theUa satisfy Ua22

5Ua11* , Ua125Ua21* , anduUa11u22uUa21u251. While each
Ua(x) only obeys one of the two conditions~8!, the combi-
nation

U~x![
1

Au
S U211~x! U112~x!

U221~x! U122~x!
D , ~11!

satisfies both boundary conditions. Here,u5U211(2`)
5U122(`), so that detU(x)51. Denoting the first column
of the matrixUa by ua and the second column byva ~so that
va5s1ua* ), we obtain from Eqs.~5! and ~11!

G R~x,x8,v!52 i H u~x2x8!
u2~x!u1

† ~x8!

u

1u~x82x!
v1~x!v2

† ~x8!

u J s3 . ~12!

Here,u1
† constitutes adjungation ofu1 , so thatu2u1

† is a
232 matrix. Equivalent but more complicated forms of E
~12! were first derived by Abrikosov and Ryzhkin.16 Com-
bining Eqs.~2! and ~12!, we get

r~x,v!5
1

p
Re

U211U111* 1U221U121*

U211U111* 2U221U121*
. ~13!

Since this expression only depends on the ratiosFa(x)
[2 iU a21* (x)/Ua11* (x), we may also write
tz

t

.

r~x,v!5
1

p
Re

11F1~x!F2* ~x!

12F1~x!F2* ~x!
. ~14!

Using Eq.~7!, we find that theFa(x) are both solutions of
the same Riccati equation,

]xFa~x!52i ṽ~x!Fa~x!1D~x!2D* ~x!Fa
2~x!, ~15!

where we have introducedṽ(x)5v2V(x). Similar Riccati
equations have recently been obtained by Schopohl17 from
the Eilenberger equations of superconductivity. To spec
the initial conditions, let us assume that outside the inter
@0,L# the potentialsV(x) and D(x) are real constants,V`

and D` . From the definition ofFa we find that Eq.~15!
should then be integrated with the initial conditions

F1~0!5F2~L !5A12
~v2V`!2

D`
2

1 i
v2V`

D`
, ~16!

where the square root has to be taken such that forD`→0
the right-hand side of Eq.~16! vanishes. Note that the initia
values are simply given by the stable stationary solution
the Riccati equation~15! with V(x)5V` andD(x)5D` .

THE CASE OF A DISCRETE SPECTRUM

For (v2V`)2,D`
2 the spectrum turns out to b

discrete:18 Introducingwa(x) via Fa(x)[eiwa(x) the phases
satisfy

]xwa~x!52ṽ~x!22uD~x!usin@wa~x!2q~x!#, ~17!

where we have written D(x)5uD(x)ueiq(x). Because
uF1(0)u5uF2(L)u51 for (v2V`)2,D`

2 , the initial val-
uesw1(0) andw2(L) are real. Hence, the solutions of E
~17! remain real, which implies thatuFa(x)u51 for all x.
From Eq.~16!, we obtain for the initial values

tanw1~0!5tanw2~L !5
v2V`

AD`
2 2~v2V`!2

. ~18!

Note that thewa(x) are unreduced phases, which are n
limited to take values between 0 and 2p. In terms of the
wa(x) the local DOS can be written as

r~x,v!52
1

p
Im cotFw1~x!2w2~x!

2
1 i0G

52Sm52`
` d„w1~x!2w2~x!22pm…. ~19!

We now make thev dependence ofwa(x) explicit again.
Since the right-hand side of Eq.~17! is a 2p-periodic func-
tion of wa(x) it follows that if w1(x,v)2w2(x,v)52pm
for onex, this must also be true for allx. This implies that
only for discrete values ofv does Eq.~19! yield a contribu-
tion to the local DOS. We get a delta-peak contribution
the total DOS if w1(L,v)52pm1w1(0,v), where
w1(0,v)5w2(L,v) is given by Eq. ~18!. Since
]vw1(x,v).0, the integrated total DOS is given by

N~v!5
1

L Fw1~L,v!2w1~L,0!

2p
2C~v!G

int

, ~20!
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where @z# int gives the integer value ofz, and C(v)
5@w1(0,v)2w1(0,0)#/2p is a finite size correction of or
der unity that depends on the initial condition. Forreal D(x),
a similar equation has been derived by Lifshits, Gredes
and Pastur6 within the phase formalism. While these autho
use a rather unphysical boundary condition, we can c
with arbitrary D` and V` . In the thermodynamic limit the
integrated DOS is independent of the boundary conditi
given by

N~v!5 lim
L→`

@w1~L,v!2w1~L,0!#/2pL. ~21!

For large frequencies we recover the classical hi
frequency limit N0(v)5v/p, so that the DOSr(v)
5]vN(v) is given byr051/p. The white noise limit is also
easily recovered: in this case Eq.~17! implies that the prob-
ability distribution ofw1(x) satisfies a Fokker-Planck equ
tion, which was first solved by Ovchinnikov and Erikhma5

for the commensurate case. For the most general case
complexD(x) see Ref. 7.

NUMERICAL ALGORITHM

In the following, we present an exact algorithm that
lows to numerically calculate the~integrated! DOS for step-
wise constant potentials. By choosing the step size su
ciently small, arbitrarily given potentials may b
approximated in this way. Assuming that in the open int
vals ]xn ,xn11@ the potentialsD(x) and V(x) are given by
the constantsDn andVn , the matrixU1(x) can be written as
a finite product of matrices of the form

e2 iM ndn[S tn ir n*

2 ir n tn*
D 5cosh@AuDnu22ṽn

2dn#s0

1 i sinh@AuDnu22ṽn
2dn#

Dns12Dn* s21ṽns3

AuDnu22ṽn
2

,

~22!

whereṽn5v2Vn anddn5xn112xn . For the Riccati vari-
able F1(x) satisfying Eq.~15! this implies the recurrence
relation

F1~xn11!5
r n* 1tnF1~xn!

tn* 1r nF1~xn!
. ~23!

We found that for a given realization ofDn andVn it is easier
to calculate the dynamics ofF1(x) and to keep track of its
phase than to directly solve Eq.~17!. Whenever ReF1(x)
.0 and there is a sign change in ImF1(x), the winding
number@w1(x)/2p# int is changed by one. To detect all suc
changes we demand that the lengthdn of all intervals satis-
fies 2(uṽnu1uDnu)dn,p/2. Since very long chains show
self-averaging effect, we only need to simulate one typi
chain to obtain the average DOS.

To generate Gaussian disorder with correlation lengtj
we have found the following realization of an Ornstei
Uhlenbeck process,19 which is much simpler than the algo
rithm proposed in Ref. 3. Using the Box-Muller algorithm,20

we generate independent Gaussian random numbersgn with
l,

e

s

-

ith

-

fi-

-

l

^gn&50 and ^gn
2&51. For realD(x) we setDn5Dav1D̃n

and generate theD̃n recursively according to

D̃05Dsg0 , D̃n115anD̃n1A12an
2Dsgn11 , ~24!

where an5e2udnu/j. It is straightforward to show that this
Markov process indeed leads to a Gaussian random pro
with the desired properties. Obvious advantages of our a
rithm are that the random variablesDn can be generated
simultaneously with the iteration of the recurrence relat
~23!, and thatDn11 depends only on the previousDn , so that
the implementation of this algorithm requires practically
memory space. Of course, our algorithm can also be use
generateVn , and in the complex case ReDn and ImDn can
be generated by replacingDs by Ds /A2.

RESULTS

In Fig. 1 we show our numerical results forr(v)/r0 for
V(x)5Dav50 and realD(x). Except forDsj51000,0.2 we
have chosen the same values of the dimensionless param
Dsj as in Fig. 7 of Ref. 10. One clearly sees the Dys
singularity, which exists for any finite value ofj and over-
shadows the pseudogap at sufficiently small energies. T
Dyson singularity is missed by Sadovskii’s algorithm.10 On
the other hand, for complexD(x) this algorithm turns out to
be qualitatively correct which can be seen by comparing
data in Fig. 2 with those in Fig. 5 of Ref. 10. For a mo
quantitative comparison, the triangles@real D(x)] and dia-

FIG. 1. Average DOS for realD(x) with DsL5107, V(x)
5Dav50, and Dsj51000, 100, 10, 2, 1, 0.5, 0.2. The minima
DOS r(v* ) decreases with increasingDsj.

FIG. 2. Average DOS for complexD(x) with DsL5107, V(x)
5Dav50, andDsj51000, 100, 10, 2, 1, 0.5, 0.2.r(0) decreases
with increasingDsj.
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monds@complexD(x)] in Fig. 3 show the DOSr(v* ) at the
energyv* wherer(v) assumes its minimum. Note that i
the incommensurate casev* 50. The numerical errors
~which are mainly due to the finite length of the chain! are
smaller than the size of the symbols. The straight lines
fits to power lawsr(v* )/r05A(Dsj)2m. For realD(x) we
obtain A50.48260.010,m50.352660.0043, while for
complex D(x) our result is A50.639760.0066 andm
50.639760.0024, i.e. within numerical accuracy we fin
A5m. The circles in Fig. 3 show for realD(x) the energy
scalev* wherer(v) is minimal. The long solid line is a fit
to a power law v* /Ds5B(Dsj)2g, with B50.2931
60.0074 andg50.351360.0051. Here, we find within nu
merical accuracym5g. The proportionality ofr(v* ) to the

FIG. 3. Double-logarithmic plot ofr(v* )/r0 as a function of
1/Dsj for real D(x) ~triangles! and complexD(x) ~diamonds!,
wherev* is the energy for which the DOS assumes its minimu
While v* 50 for complex D(x), the circles give the double
logarithmic plot ofv* /Ds for real D(x) as a function of 1/Dsj.
re

energy scalev* , which can be interpreted as the width of th
Dyson singularity, can also directly be seen in Fig. 1.
nally, we note that forDsj&0.2 our algorithm produces re
sults consistent with the white-noise limitDsj!1. While
r(0)→1 in the incommensurate case, in the commensu
case we obtain from the exact solution of Ovchinnikov a
Erikhman5 r(v* )/r0→0.9636, andv* →1.2514Ds

2j, which
determines the short solid line in Fig. 3 describingv* (j) in
the white-noise limit.

SUMMARY

We have developed a powerful numerical algorithm
calculate the average DOS of the FGM with very high ac
racy. The algorithm can be used for arbitrary forward a
backward scattering potentials, so that it is not restricted
the case of vanishing averages and Gaussian statistics
we further considered in this work. Our main results are:~a!
for commensurate chains in the absence of forward scatte
the DOS exhibits for largej a pseudogap and a Dyson si
gularity. We have explicitly calculated the width of th
Dyson singularity as a function ofj. The most promising
experimental systems to detect Dyson singularities are
chains.1 ~b! In the incommensurate case the algorithm p
posed by Sadovskii10 is qualitatively correct. However, his
result^r(0)&}j21/2 is incorrect. This should be kept in min
for a quantitative comparison between experimental da11

and calculations based on Sadovskii’s algorithm.
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