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Exact numerical calculation of the density of states of the fluctuating gap model
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We develop a powerful numerical algorithm for calculating the density of stgte} of the fluctuating gap
model, which describes the low-energy physics of disordered Peierls and spin-Peierls chains. Wge( atain
with unprecedented accuracy from the solution of a sinmptal value problemfor a single Riccati equation.
Generating Gaussian disorder with large correlation legdiir means of a simple Markov process, we present
a quantitative study of the behavior p{w) in the pseudogap regime. In particular, we show that in the
commensurate case and in the absence of forward scattering the pseudogap is overshadowed by a Dyson
singularity below a certain energy scale*, which we explicitly calculate as a function of.
[S0163-182699)02948-3

The fluctuating gap mode{FGM) describes the low- tained by various methotls’ in the white-noise limité
energy physics of one-dimensional fermions subject to static-0, A,—o, with A§§—>const. For realA(x) and V(x)
disorder potentials. The first quantized Hamiltonian of the=0 the average DOS is known to exhibit, for sufficiently

FGM can be written ds smallA,,, a Dyson singularityat w=0. In Ref. 9 we have
shown that this singularity survives for arbitragylo. A
H=—ivpdyos+V(X)og+A(X)o,+A*(X)o_, (1)  recursive algorithm due to SadovsRiidoes not reproduce

the Dyson singularity, so that this algorithm cannot be exact.
whereV(x) andA(x) are random potentials describing for- In fact, a subtle flaw in this algorithm has recently been
ward and backward scattering, is the Fermi velocity found by Tchernyshyo¥.Because Sadovskii's algorithfor
(henceforth we setg=1), o; are the usual Pauli matrices, generalizations of jthas been used in different contexts, e.g.,
o is the 2< 2 unit matrix, ando.. = 3 (o, *i0,). Equation  to explain the pseudogap phenomenon in the normal state of
(1) emerges as the effective low-energy Hamiltonian in dif-the cuprate superconductdrsi?it is also important to inves-
ferent physical contexts. For example, fluctuation effectdigate its validity for complexA(x) with quasi-long-range
close to the Peierls transition in quasi-one-dimensionatorrelations.
charge-density wave systems can be described by this Hamil- In this paper, we develop an accurate algorithm that al-
tonian. In this casd (x) describes the time-independent partlows us to investigate the regime,é=1 where no exact
of the fluctuating Peierls order parameter, the probability dissolution is available. We find that in the commensurate case
tribution of which can be obtained from a Ginzburg-Landauthe pseudogap is overshadowed by a Dyson singularity be-
expansion of the free enerdyFor commensurate chains low a cross-over energy*, which we determine as a func-
A(x) can be chosen to be real, whereas it is complex in théion of the correlation lengtlj. We also consider the incom-
incommensurate case® Truncating the Ginzburg-Landau mensurate case for which Sadovskii's solution turns out to be
expansion at the second ordé(x) is approximated by a qualitatively correct but leads to a wrorigdependence of
Gaussian random process, with finite averddéx))=A,, the depth of the pseudogap.
below the Peierls transition antl,,=0 in the disordered

phase. For commensurate chains the correlatorA Gf) RICCATI EQUATION
=A(X)— A is (AX)A(X"))=A2e"*X'V€ whereas in the
incommensurate cast(x)Z*(x’))zAge*V*X"’f and In the following, we use the special symmetries of the

(Z(X)Z(x’))=0. Here, ¢ is the order parameter correlation continuum model(1) to show that the DOS can be obtained

length, which diverges at the Peierls transition. The Hamil-without ever calculating the eigenvalues of Hinstead, we
tonian (1) describes also the low-energy physics of disor-obtain the DOS from the solution of a simpiitial value
dered spin chaink? which can be mapped onto disordered problemfor a Riccati equation. This will enable us to calcu-
fermions by means of the usual Jordan-Wigner transformalate p(w) with unprecedented numerical accuracy. For a
tion. In many cases the filling of the effective fermionic sys-given realization of the disorder the local DOS of the Hamil-
tem is then commensurate with the lattice, so thék) is  tonian(1) can be defined By**
real.

The fundamental quantity that determines the thermody- p(X,®)=—a " Um T o3G R(x,x, w)], 2
namics of the mode(l) is the density of stateO9) p(w).
In general, one has to rely on approximations to calculatavhere the retarded22 matrix Green functiorG *(x,x’, »)
p(w) or its disorder averagép(w)), but in special limits ~ satisfies
exact results are available. Besides the trivial case where
V(x) and A(x) are constant, the exa¢p(w)) can be ob- [idy—M(X,0+i07)]GR(x,x",0)=8(x—X")og, (3)
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M(X,@)=[V(X) —o+A(X)o, +A*(X)o_]Joz. (4 1 1+®, (x)D*(x)
p(X,w)=—Re .
T 1-d  (X)D*(X)

GRX, X", ®)=U(X,0)GR(x—x" U L(X", ), (5  Using Eq.(7), we find that thed ,(x) are both solutions of
the same Riccati equation,

. . (14
We now make the non-Abelian Schwinger-an$atz

whereU (x,w) is an invertible 2X2 matrix andgff(x) is the

Green function to the operatoé,+i0" o3, i.e., 9D (X)=2i w(X)D ,(X) +A(X)— A* (x)D2(x), (15)
R a(x) 0 where we have introduced(x) = w—V(x). Similar Riccati
Go)=—i| —o(—x))" (6)  equations have recently been obtained by Schdpdiom

the Eilenberger equations of superconductivity. To specify
In the following, thew-dependence is suppressed. The ansatthe initial conditions, let us assume that outside the interval

(5) indeed solves Eq3) if U(x) satisfies [O.L] the potentialsV(x) and A(X) are real constants/..
and A,,. From the definition of®, we find that Eq.(15)
[id,—M(X)JU(x)=0 (7)  should then be integrated with the initial conditions
with the boundary conditions Ot (L) . (0-V.)2 w-V., 5
=d_(L)=1/1- +i ,
U =) =Upy() =0. ®) : A2 As
Two different solutions of Eq(7) are given by where the square root has to be taken such that\for-0

the right-hand side of Eq16) vanishes. Note that the initial

_ e values are simply given by the stable stationary solution of
U+(X)—T9XF{ i fw'\’“y)dy} ©)  the Riccati equatioril5) with V(x)=V.. andA(x)=A.,.
o THE CASE OF A DISCRETE SPECTRUM
U(x)=T‘1ex+J M(y)dy}, (10 )
X For (w—V.)?’<AZ2 the spectrum turns out to be

discrete'® Introducing ¢, (x) via ® ,(x)=e'¢«™ the phases

. 1 . ._ _
whereT exp is the path ordered afid “exp is the anti-path satisfy

ordered exponential function. BecauT&eT:@I\{Ias and
TrM=0, the matricesU, satisfy U,=o3U, 03 and 9T () ; _
detU,=1, which means that they belong to the noncompact FpaX)=200) =2 AsiM ¢4 (X) , 5001, A7
group SU(1,1). Thus, the elements of thé, satisfyU,,, Where we have written A(x)=|A(x)|e""™. Because
—U*,;, Uaio=U%,;, and|U 42— U ,00?=1. While each  [®4(0)|=]|®_(L)|=1 for (o—V..)?<AZ, the initial val-
U,(x) only obeys one of the two conditiori8), the combi- ues¢,(0) ande_(L) are real. Hence, the solutions of Eq.
nation (17) remain real, which implies thdtb (x)|=1 for all x.
From Eg.(16), we obtain for the initial values

1 (U_15(X) UiqaAX)
Ux)=—

JulU_o1(x)  Uipf(x)/’

satisfies both boundary conditions. Hene=U _1(—®)
=U, 5y(), so that ddJ(x)=1. Denoting the first column
of the matrixU , by u, and the second column lw, (so that
V,=0ouk), we obtain from Eqs(5) and(11)

(11 ( 0)=t L) 0=V,
ne. (0)=tane_(L)=————-—oo—.
Ao (O =ane- (U= T o=y

Note that theg,(x) are unreduced phases, which are not
limited to take values between 0 andr2In terms of the
¢,(X) the local DOS can be written as

(18

o 1 P(X) =@ (X)
GROXX' ) = —i( e(x—x’)w p(x,w)=——Im cox{—z +i0

v, Ovh (x) =237 8@ ()¢ (x)—2mm). (19

HOX' =X)————(03. (120 We now make thas dependence of,(x) explicit again.

Since the right-hand side of E(L7) is a 2m-periodic func-

Here,ufrF constitutes adjungation af, , so thatu,uﬂ isa tion of ¢, (x) it follows that if ¢ . (X,w)—¢_(X,w)=27m
2X 2 matrix. Equivalent but more complicated forms of Eq. for onex, this must also be true for ak. This implies that
(12) were first derived by Abrikosov and Ryzhkjiﬁ_Com- only for discrete values ab does Eq(19) yield a contribu-

bining Egs.(2) and(12), we get tion to the local DOS. We get a delta-peak contribution to
the total DOS if ¢,(L,w)=27m+ ¢, (0,w), where
1 U_jUr +U ,U%, 0, (0w)=¢_(L,w) is given by Eqg. (18. Since
p(X,0)=—Re (13 9,0, (x,0)>0, the integrated total DOS is given by

A>3 .
* *
T U_pUi;—U 5U%y

Since this expression only depends on the ratiogx) /\/(w):% (PJ'(L’w)Z;(PJr(L'O) —C(w)| , (20

=—iU%,(X)/U%4(X), we may also write int
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where [z]; gives the integer value ofz, and C(w)
=[¢+(0,0)— ¢, (0,0)]/27 is a finite size correction of or-
der unity that depends on the initial condition. Feal A(X),

a similar equation has been derived by Lifshits, Gredeskul,
and Pastifrwithin the phase formalism. While these authors
use a rather unphysical boundary condition, we can cope
with arbitrary A, andV.,. In the thermodynamic limit the
integrated DOS is independent of the boundary conditions
given by

Mo)=Ilim[e,(L,0)— ¢, (L,0)]/27L. (21

L—oo

pw)/po

w/A,

For large frequencies we recover the classical high- FIG. 1. Average DOS for realA(x) with AL=10", V(x)
frequency limit AVy(w)=w/m, so that the DOSp(w) =A,=0, and A;£=1000, 100, 10, 2, 1, 0.5, 0.2. The minimal
=d,Mw) is given byp,= 1/7r. The white noise limitis also DOS p(w*) decreases with increasingé.

easily recovered: in this case E{d.7) implies that the prob-

ability distribution of ¢, (x) satisfies a Fokker-Planck equa- (gn)=0 and(gﬁ>= 1. For realA(x) we SetAn:Aav"—Zn
tion, which was first solved by Ovchinnikov and Erikhman
for the commensurate case. For the most general case wi
complexA(x) see Ref. 7.

n
ﬁ,pd generate tha, recursively according to

ZOZAnga Zn+1:anzn+ Vl_anAsgn+11 (24)

NUMERICAL ALGORITHM where a,=e~1%//¢ |t is straightforward to show that this
Markov process indeed leads to a Gaussian random process
with the desired properties. Obvious advantages of our algo-
rithm are that the random variables, can be generated
simultaneously with the iteration of the recurrence relation
(23), and thatA, ;. ; depends only on the previous,, so that

‘the implementation of this algorithm requires practically no
memory space. Of course, our algorithm can also be used to
generate/,, and in the complex case Rg and ImA, can

be generated by replacingy by As/\/E.

In the following, we present an exact algorithm that al-
lows to numerically calculate th@ntegrated DOS for step-
wise constant potentials. By choosing the step size suffi
ciently small, arbitrarily given potentials may be
approximated in this way. Assuming that in the open inter
vals X, ,Xq41[ the potentialsA(x) and V(x) are given by
the constanta,, andV,, the matrixU , (x) can be written as
a finite product of matrices of the form

Lok
th Iry;

e*iMn‘SnE
; *
—ir, t;

)=cosrﬁ |AL2—@26,]00 RESULTS

_ In Fig. 1 we show our numerical results fp(w)/p, for
Ao, —Afo_+wnos V(x)=A,=0 and realA(x). Except forA¢=1000,0.2 we
\/|A IZ—Z)Z ' have chosen the same values of the dimensionless parameter
" n A as in Fig. 7 of Ref. 10. One clearly sees the Dyson
(22 singularity, which exists for any finite value @fand over-
shadows the pseudogap at sufficiently small energies. This
Dyson singularity is missed by Sadovskii's algorithfnon
the other hand, for compleX(x) this algorithm turns out to
be qualitatively correct which can be seen by comparing our
data in Fig. 2 with those in Fig. 5 of Ref. 10. For a more
(23) guantitative comparison, the trianglg®al A(x)] and dia-

+i sini V|A 2= ©268,]

wherew,=w—V, and ,=X,,1—X,. For the Riccati vari-

able ® , (x) satisfying Eq.(15) this implies the recurrence
relation

r: +tnq)+(xn)

D, (X = .
+( n+1) t’,§+rn<13+(xn)

15

We found that for a given realization &f, andV,, it is easier
to calculate the dynamics @b (x) and to keep track of its
phase than to directly solve E¢L7). Whenever R® . (x) 1|
>0 and there is a sign change indm(x), the winding

number| ¢, (X)/27 ] is changed by one. To detect all such
changes we demand that the lengthof all intervals satis- 05 [

fies 2(wy,| +|Ap|)8,<7/2. Since very long chains show a

self-averaging effect, we only need to simulate one typical

chain to obtain the average DOS. 0
To generate Gaussian disorder with correlation lerggth

we have found the following realization of an Ornstein-

Uhlenbeck process, which is much simpler than the algo-  FIG. 2. Average DOS for comple&(x) with A L =107, V(x)

rithm proposed in Ref. 3. Using the Box-Muller algoritfth, =A_,=0, andA.£=1000, 100, 10, 2, 1, 0.5, 0.2(0) decreases

we generate independent Gaussian random nungpensth with increasingA£.

pw)/po

2
wfA,
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FIG. 3. Double-logarithmic plot op(w*)/p, as a function of
1/A¢¢ for real A(x) (triangles and complexA(x) (diamonds,

wherew* is the energy for which the DOS assumes its minimum.

While o*=0 for complex A(x), the circles give the double-
logarithmic plot ofw* /A for real A(x) as a function of W ¢.

monds{complexA(x)] in Fig. 3 show the DO$(w*) at the

energyw* wherep(w) assumes its minimum. Note that in

the incommensurate case*=0. The numerical errors
(which are mainly due to the finite length of the chaare

smaller than the size of the symbols. The straight lines ar

fits to power lawsp(w* )/ pg=A(A&) ™ *. For realA(x) we
obtain A=0.482+0.010,u=0.3526+0.0043, while for
complex A(x) our result is A=0.6397-0.0066 and u

=0.6397-0.0024, i.e. within numerical accuracy we find

A= . The circles in Fig. 3 show for real(x) the energy
scalew* wherep(w) is minimal. The long solid line is a fit
to a power law w*/A;=B(As£)” 7, with B=0.2931
+0.0074 andy=0.3513+0.0051. Here, we find within nu-
merical accuracyt= . The proportionality ofp(w*) to the
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energy scale*, which can be interpreted as the width of the
Dyson singularity, can also directly be seen in Fig. 1. Fi-
nally, we note that fo\ (¢=<0.2 our algorithm produces re-
sults consistent with the white-noise limit;é<1. While
p(0)—1 in the incommensurate case, in the commensurate
case we obtain from the exact solution of Ovchinnikov and
Erikhmar? p(w*)/po— 0.9636, andv* —1.2514A 2¢, which
determines the short solid line in Fig. 3 describmf(¢) in

the white-noise limit.

SUMMARY

We have developed a powerful numerical algorithm to
calculate the average DOS of the FGM with very high accu-
racy. The algorithm can be used for arbitrary forward and
backward scattering potentials, so that it is not restricted to
the case of vanishing averages and Gaussian statistics that
we further considered in this work. Our main results dag:
for commensurate chains in the absence of forward scattering
the DOS exhibits for largg a pseudogap and a Dyson sin-
gularity. We have explicitly calculated the width of the
ston singularity as a function of. The most promising
experimental systems to detect Dyson singularities are spin
chainst (b) In the incommensurate case the algorithm pro-
posed by SadovsKfl is qualitatively correct. However, his
result(p(0))= & ¥2is incorrect. This should be kept in mind
for a quantitative comparison between experimental ‘data
and calculations based on Sadovskii's algorithm.
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