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Superconducting persistent-current qubit
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We present the design of a superconducting qubit that has circulating currents of opposite sign as its two
states. The circuit consists of three nanoscale aluminum Josephson junctions connected in a superconducting
loop and controlled by magnetic fields. The advantages of this qubit are that it can be made insensitive to
background charges in the substrate, the flux in the two states can be detected with a superconducting quantum
interference device, and the states can be manipulated with magnetic fields. Coupled systems of qubits are also
discussed as well as sources of decoherence.@S0163-1829~99!00746-8#
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I. INTRODUCTION

Quantum computers are devices that store information
quantum variables such as spins, photons, and atoms,
that process that information by making those variables
teract in a way that preserves quantum coherence.1–5 Typi-
cally, these variables consist of two-state quantum syst
called quantum bits or ‘‘qubits.’’6 To perform a quantum
computation, one must be able to prepare qubits in a des
initial state, coherently manipulate superpositions of a
bit’s two states, couple qubits together, measure their s
and keep them relatively free from interactions that indu
noise and decoherence.1–4,7,8 Qubits have been physicall
implemented in a variety of systems, including cavity qua
tum electrodynamics,9 ion traps,10 and nuclear spins.11,12 Es-
sentially any two-state quantum system that can be
dressed, controled, measured, coupled to its neighbors,
decoupled from the environment, is potentially useful
quantum computation and quantum communications.13,14

Electrical systems that can be produced by modern litho
phy, such as nanoscaled quantum dots and tunnel junct
are attractive candidates for constructing qubits: a wide
riety of potential designs for qubits and their couplings a
available, and the qubits are easily scaled to large arrays
can be integrated in electronic circuits.3,15 For this reason,
mesoscopic superconducting circuits of ultrasmall Joseph
PRB 600163-1829/99/60~22!/15398~16!/$15.00
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junctions have been proposed as qubits16–20 and we detail
one such circuit in this paper.

Compared with the photonic, atomic, and nuclear qub
already constructed, solid-state proposals based on litho
phy such as the one described here have two consider
disadvantages and one considerable advantage. The firs
advantage is noise and decoherence:3,7,8 the solid-state envi-
ronment has a higher density of states and is typically m
strongly coupled to the degrees of freedom that make up
qubit than is the environment for photons in cavities, ions
ion traps, and nuclear spins in a molecule or crystal. Ex
care must be taken in solid state to decouple the qubit fr
all sources of noise and decoherence in its environment.
second disadvantage is manufacturing variability:8 each ion
in an ion trap is identical by nature, while each lithograph
Josephson junction in an integrated circuit will have sligh
different properties. Solid-state designs must either be ins
sitive to variations induced by the manufacturing process
must include a calibration step in which the parameters
different subcircuits are measured and compensated for.15

The advantage of solid state lithographed circuits is th
flexibility: the layout of the circuit of Josephson junctions
quantum dots is determined by the designer, and its par
eters can be adjusted continuously over a wide range. As
results presented in this paper demonstrate, this flexib
allows the design of circuits in which the variables that re
15 398 ©1999 The American Physical Society
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ister the qubits are only weakly coupled to their enviro
ment. In addition, the flexibility in circuit layout allows
many possible options for coupling qubits together, and
calibrating and adjusting the qubits’ parameters. That is,
advantage of flexibility in design can compensate for
disadvantages of decoherence and manufacturing variab

The flexibility in design afforded by lithography convey
a further advantage to constructing quantum computers
noted above, a qubit has to accomplish at least five functio
it has to be addressed, controled, measured, coupled t
neighbors, and decoupled from the environment. One of
axioms of design is that the number of parameters that c
acterize a system’s design should be at least as great a
number of parameters that characterize the syste
function.21 The problem of having too few design paramete
available is particularly acute in the design of quantum co
puters and qubits: a quantum computer is a device in wh
a number of physical degrees of freedom are used to reg
information and to perform the computation. Degrees
freedom that are not used to compute are sources of n
and must be isolated from the computing degrees of fr
dom. Designs for quantum computers are accordingly m
constrained by fundamental physics than are designs for
ventional computers: if one is storing information on a c
sium atom, then the ‘‘design parameters’’ of the cesiu
atom—its energy levels, decoherence times, interac
strengths, etc.—are fixed by nature once and for all. In
lithographed Josephson junction circuits proposed here
contrast, it is possible to make qubits that have a variety
different design parameters, each of which can be adjuste
optimize different functions.

II. JOSEPHSON-JUNCTION QUBITS

The superconducting Josephson tunnel junction is
scribed by a critical currentI 0 and a capacitanceC. ~We will
assume that the resistive channel of the junction is neglig
small.! For superconducting circuits the geometrical loop
ductanceLs is also important ifL5LJ /Ls,1, whereLJ
5F0/2pI 0 is the inductance associated with a Joseph
junction in the loop. HereF05h/2e is the superconducting
flux quantum. Josephson circuits can be divided into t
general categories. Circuits of the first type haveL@1 so
that the induced flux in the loop is not important. The
circuits are typically made of aluminum, and the mesosco
nature of their electronic transport has been studied in na
caled circuits. Circuits of the second type haveL!1, and
induced flux caused by circulating currents is importa
These circuits are typically made of niobium, and the m
roscopic nature of the tunneling of flux has been studied
small-scaled circuits.

The prospects of using superconducting circuits of
first type as qubits is encouraging because extensive ex
mental and theoretical work has already been done on m
scopic superconducting circuits.~For a review of this work
see Chap. 7 in Ref. 22 and in Ref. 23.! In circuits of the first
type (L@1), two energy scales determine the quantu
mechanical behavior: The Josephson coupling energy,EJ
5I 0F0/2p, and the coulomb energy for single charges,Ec
5e2/2C. The energies can be determined by the phase
the Cooper pair wave function of the nodes~islands! and the
-
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number of excess Cooper pairs on each node. The phase
the number can be expressed as quantum-mechanical c
gate variables.24

In the ‘‘superconducting’’ limitEJ.Ec , the phase is well
defined and the charge fluctuates. In the ‘‘charging’’ lim
the charges on the nodes are well defined and the p
fluctuates strongly. WhenEJ andEc are within a few orders
of magnitude of each other, the eigenstates must be con
ered as quantum-mechanical superpositions of either ch
states or phase states. Such superposition states are imp
in designing qubits. Experimental studies have been p
formed by several groups with aluminum tunnel junctio
with dimensions below 100 nm.22,23 Superposition of charge
states in circuits in the charging regime have be
demonstrated25–27 and are in quantitative agreement wi
theory.28,29 The Heisenberg uncertainty principle has be
demonstrated whenEJ'Ec .30,26 When EJ.Ec topological
excitations known as vortices exists and quantum mechan
interference of these quantities has been observed.31 Unfor-
tunately circuits of the first type in the charging regime a
sensitive to fluctuating off-set charges that are present in
substrate.32,33These random offset charges make difficult t
design of a controllable array of quantum circuits and int
duce a strong source of decoherence.

In circuits of the second type (L!1), the quantum vari-
ables can be related to the flux in the loops and their ti
derivatives. For a superconducting loop with a single Jose
son junction, known as an rf superconducting quantum in
ference device~SQUID!, thermal activation of macroscopi
quantum states34 has been observed as well as macrosco
quantum tunneling between states and the discrete natu
the quantum states.35 One of the advantages of these
SQUID systems is that the two states have circulating c
rents of opposite sign and, hence, produce a readily mea
able flux of opposite signs. To date no superposition of sta
have been demonstrated in the niobium circuits, although
improving quality of the niobium tunnel junctions may allo
such a demonstration.36,37

The goal of this paper is to design a qubit using circuits
the first type with aluminum, yet to have states~like in cir-
cuits of the second type! that are circulating currents of op
posite sign. These circulating current states create a mag
flux of about 1023F0 and we refer to these as ‘‘persiste
current ~PC! states.’’ These states obey all five function
requirements for a quantum bit:~1! The superconducting cir
cuit is at a sufficiently low temperature that the PC states
easily be prepared in their ground state.~2! The PC states can
be manipulated precisely with magnetic fields.~3! Two qu-
bits can be readily coupled inductively, and the inducti
coupling can be turned on and off.~4! The flux of the PC
states can be detected and measured using a SQUID
detector.~5! In contrast with charge quantum states in J
sephson circuits, the PC can be made insensitive to b
ground charges and effectively decoupled from their elec
static environment. The magnetic coupling to the PC sta
and the environment can also be made sufficiently weak

III. THE CIRCUIT

The circuit of the qubit is shown in Fig. 1. Each junctio
is marked by an3 and is modeled22,38 by a parallel combi-
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15 400 PRB 60T. P. ORLANDOet al.
nation of an ideal Josephson junction and a capacitorCi .
The parallel resistive channel is assumed negligible. T
ideal Josephson junction has a current-phase relationI i
5I 0 sinwi wherew i , is the gauge-invariant phase of junctio
i.

For the calculation of the energy the inductance of
loop is considered negligible,L@1, so that the total flux is
the external flux. In this case, fluxoid quantization around
loop containing the junctions givesw12w21w3522p f .
Heref is the magnetic frustration and is the amount of ext
nal magnetic flux in the loop in units of the flux quantumF0.

The Josephson energy due to each junction isEJn(1
2coswn). The total Josephson energyU is then U
5( iEJi(12coswi). Combined with the flux quantization
condition the Josephson energy is39

U

EJ
521a2cosw12cosw22a cos~2p f 1w12w2!. ~1!

The important feature of this Josephson energy is that
a function of two phases.40 For a range of magnetic frustra
tion f, these two phases,w1 andw2, permit two stable con-
figurations, which correspond to dc currents flowing in o
posite directions. We illustrate this in Fig. 2, where we p
the energy of the minimum of the system as a function of
for a50.8.

The energy is periodic with periodf 51 and is symmetric
about f 51/2. Near f 51/2, there is a region@1/22 f c,1/2
1 f c# where there are two stable solutions. The inset plotsf c
as a function ofa. These two solutions have circulating cu
rents of opposite direction and are degenerate atf 51/2. The
calculation of the energy for the stable solutions andf c is
given in Appendix A.

The main feature of the qubit that is proposed in t
paper is to use these two states of opposite current as the
states of the qubit. By adding the charging energy~the ca-
pacitive energy! of the junctions and considering the circu
quantum mechanically, we can adjust the parameters of
circuit so that the two lowest states of the system neaf
51/2 will correspond to these two classical states of oppo
circulating currents. Moreover, we will show that these tw

FIG. 1. The three-junction qubit. Josephson junctions 1 an
both have Josephson energiesEJ and capacitanceC and Josephson
junction 3 has a Josephson energy and capacitancea times larger.
The nodes 1 and 2 represent the superconducting islands~nodes!
that are coupled by gate capacitorsCg5gC to gate voltagesVA and
VB . The arrows define the direction of the currents. The flux
taken out of the page.
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states can be made insensitive to the gate voltages and
random offset charges. The quantum mechanics of the cir
will be considered in detail in the next section.

The stable classical solutions correspond to ene
minima inU(w1 ,w2). Let us consider the case off 51/2. For
a<1/2, U has only one minimum atw15w250 mod 2p.
Above the critical value ofa51/2, this minimum bifurcates
into two degenerate minima atw152w256w* mod 2p
where cosw*51/2a. The minima form a two-dimensiona
pattern with the two minima at (w* ,2w* ) and (2w* ,w* )
repeated in a two-dimensional square lattice. This pattern
be seen in Fig. 3, which is a contour plot of the Joseph
energy as a function of the phase variables fora50.8. The
nested nearly circular contours mark the maxima in the
tential. The figure-eight-shaped contour encloses t
minima.

2

s FIG. 2. U/EJ vs f for a50.8 and for minimum energy phas
configuration. The energy is periodic with periodf 51 and is sym-
metric aboutf 51/2. Near f 51/2, there is a region@1/22 f c,1/2
1 f c# where there are two stable solutions. The inset plotsf c as a
function of a.

FIG. 3. ~a! A contour plot of the Josephson energy~potential
energy! U(w1 ,w2) for f 51/2 fora50.8. The nested nearly circula
shapes mark the maxima in the potential, and the figure-ei
shaped contours enclose two minima.~b! a plot of the potential vs
wm , the phase along the direction between these two minimum
the same unit cell,~c! a plot of the potential vswn , the phase along
direction from one minima to its next-nearest neighbor. Note t
the barrier is a saddle point. The upper curve in each figure is
a51.0 and the lower fora50.8.
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PRB 60 15 401SUPERCONDUCTING PERSISTENT-CURRENT QUBIT
Figure 3~b! shows the potential alongwm , between the
two minima in a unit cell; that is, along the linew252w1.
The upper curve is fora51.0 and the lower fora50.8.
Figure 3~c! shows the potential vswn , which connects one
minimum @say at (2w* ,w* )# to its next-nearest neighbor@at
(w* ,2p2w* )#. For a50.8 the energy barrier between th
two minima is much lower than the energy barrier from t
minimum in one unit cell to the neighboring unit cell. Fo
a51.0 the energy barrier from unit cell to unit cell is near
the same as the barrier within the unit cell. The ability
manipulate the potential landscape by changinga will be
important in designing the qubit.

We now consider the electric energyT stored in the five
capacitors in the circuit. Each capacitorCj has a voltage
across it ofVj so that

T5
1

2 (
j

CjVj
22QgAVA2QgBVB . ~2!

Here j 51,2,3, andgA andgB. The last two terms subtrac
the work done by the voltage source to give the availa
electric ~free! energy.41 The voltage across each Josephs
junction is given by the Josephson voltage-phase rela
Vn5(F0/2p)ẇn , where the over-dot indicates a partial tim
derivative. The ground in the circuit labels the zero of pote
tial and is a virtual ground.

The voltage across the gate capacitorgA is VgA5VA
2V1 and similarly for VgB5VB2V2. The electric energy
can then be written in terms of the time derivatives of t
phases as

T5
1

2 S F0

2p D 2

ẇW T
•C•ẇW . ~3!

The constant term2 1
2 VW g

T
•Cg•VW g has been neglected and

ẇW 5S ẇ1

ẇ2
D , C5CS 11a1g 2a

2a 11a1g D , ~4!

and

VW g5S VA

VB
D , Cg5gCS 1 0

0 1D . ~5!

The classical equations of motion can be found from
LagrangianL5T2U. We take the electrical energy as th
kinetic energy and the Josephson energy as the pote
energy.42 The canonical momenta isPi5]L/]ẇ i . To attach
a more physical meaning to the canonical momentum,
shift the Lagrangian by a Galilean-like transformation to

L5T2U2S F0

2p D ẇW T
•Cg•VW g . ~6!

The canonical momentum is then

PW 5S F0

2p D 2

C•ẇW 2S F0

2p DCg•VW g ~7!

and is directly proportional to the charges at the islands
nodes 1 and 2 in Fig. 1 as
e
n
n

-

e

ial

e

at

QW 5
2p

F0
PW . ~8!

@For any Josephson circuit it can be shown that there e
linear combinations of the phases across the junctions s
that these linear combination can be associated with e
node and the corresponding conjugate variable is prop
tional to the charge at that node.43,44 If self and mutual in-
ductances need to be included in the circuit~as we argue
does not need to be done in our case!, then additional con-
jugate pairs would needed.#44

The classical Hamiltonian,H5( i Pi ẇ i2L, is

H5
1

2 S PW 1
F0

2p
QW gD T

•M21
•S PW 1

F0

2p
QW gD1U~wW !, ~9!

where the effective massM5(F0/2p)2C is anisotropic and
the induced charge on the island isQW g5Cg•VW g . When
driven by an additional external current source, the class
dynamics of this system have been studied in recent y
both theoretically45,46 and experimentally.47,48

Note that the kinetic energy part of this Hamiltonian is

T5
1

2
~QW 1QW g!T

•C21
•~QW 1QW g!, ~10!

which is just the electrostatic energy written is terms of t
charges and induced charges on the islands. Often this is
method used in discussing the charging part of the Ham
tonian. See, for example, Ref. 43 and the references the
A characteristic charge ise and characteristic capacitance
C so that the characteristic electric energy is the so-ca
charging energy,Ec5e2/2C.

IV. QUANTUM CIRCUIT

The transition to treating the circuit quantum mecha
cally is to consider the classically conjugate variables in
classical Hamiltonian as quantum-mechanical operators.49,50

For example, the momenta can be written asP15
2 i\]/]w1 and P252 i\]/]w2 and the wave function can
then be considered asuC&5C(w1 ,w2).

In this representation the plane-wave solutions, such
c5exp$2i(l1w11l2w2)% correspond to a state that hasl 1 Coo-
per pairs on island~node! 1 andl 2 Cooper pairs on island 2
These plane-wave states are the so-called charging stat
the system.51,28Since a single measurement of the number
Cooper pairs on each island must be an integer, then
should thel ’s here.~Note the expectation value of the num
ber of Cooper pairs is not restricted to an integer.! Further-
more, an eigenfunctionC(w1 ,w2) can be written as a
weighted linear combination of these charge states. T
means thatC(w1 ,w2) is periodic when each of the phase
are changed by 2p, as in the physical pendulum.52

By considering C(w1 ,w2)5exp$i(k18w11k28w2)%x(w1,w2)
with @k18 ,k28#52(gC/2e)@VA ,VB#, the Hamiltonian for
x(w1 ,w2) is almost the same but the induced charges
now transformed out of the problem, and we refer to t
new Hamiltonian as the transformed HamiltonianHt ,
where53
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Ht5
1

2
PW T

•M21
•PW 1EJ$21a2cosw12cosw2

2a cos~2p f 1w12w2!%. ~11!

The resulting equationHtx(w1 ,w2)5Ex(w1 ,w2) is the
same as for an anisotropic, two-dimensional particle in
periodic potentialU. The solutions are Bloch waves with th
‘‘crystal momentum’’k values corresponding to2k8, which
is proportional to the applied voltages. This choice of crys
momentum ensures thatC(w1 ,w2) is periodic in the phases

We will first present the numerical results of the ener
levels and wave functions for the circuit. Then we will u
the tight-binding-like approximation to understand the
sults semiquantitatively.

The eigenvalues and eigen-wave-functions for the tra
formed HamiltonianHt are solved numerically by expandin
the wave functions in terms of states of constant charge
states of constant phase. The states of constant charge
in the central equation for Bloch functions~see Ref. 74! and
are computationally efficient whenEc.EJ . The states of
constant phase are solved by putting the phases on a dis
lattice and the numerics are more efficient whenEJ.Ec .
Since the Josephson energy dominates, we will show res
computed using the constant phase states.~However, when
we used the constant charge states, we obtained the
results.!

The numerical calculations are done in a rotated coo
nate system, which diagonalizes the capacitance matrixC by
choosing as coordinates the sum and difference of
phases,wp5(w11w2)/2 andwm5(w12w2)/2. The resulting
reduced Hamiltonian is

Ht5
1

2

Pp
2

M p
1

1

2

Pm
2

Mm
1EJ$21a22 coswp coswm

2a cos~2p f 12wm!%, ~12!

where the momenta can be written asPp52 i\]/]wp and
Pm52 i\]/]wm . The mass terms areM p5(F0/2p)22C(1
1g) andMm5(F0/2p)22C(112a1g). In this coordinate
system the full wave functionC(wp ,wm)5exp$i(kp8wp

1km8wm)%x(wp ,wm) with @kp8 ,km8 #52(gC/2e)@VA1VB ,VA

2VB# and Htx(wp ,wm)5Ex(wp ,wm). Also the two
minima of the potentialU(wp ,wm) within a unit cell form a
periodic two-dimensional centered cubic lattice with latti
constantsa152p ix anda25p ix1p iy .

Figure 4 shows the energy levels as a function off and as
a function of the gate voltage, which is given in terms ofk.
We have takenEJ /Ec580, a50.8, andg50.02 in this ex-
ample. The energy levels are symmetric aboutf 51/2. In Fig.
4~a!, we see that the two lowest energy levels nearf 51/2
have opposite slopes, indicating that the circulating curre
are of opposite sign. We also see that there is only a sm
range of 0.485, f ,0.5, where the qubit can be operated b
tween these states of opposite circulating current. This ra

is consistent with the range@ 1
2 6 f c# from the classical stabil-

ity as shown in Fig. 2. Atf 50.49 direct calculation of the
average circulating current,̂CuI 0 sinw1uC& gives that the
circulating current for the lower level isI 1 /I 0520.70 and
for the upper level isI 2 /I 0510.70. ~A calculation of
e
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the circulating current from the thermodynamic relati
2F0

21]En /] f gives the same result.! For a loop of diameter
of d510 mm, the loop inductance is of the orderm0d
'10 pH.54 For I 0'400 nA (EJ5200 GHz), the flux due
to the circulating current isLI 1'1023F0, which is detect-
able by an external SQUID. Nevertheless, the induced flu
small enough that we are justified in neglecting its effe
when calculating the energy levels.

The difference in energy between the lower and up
level at the operating point off 50.485 is about 0.1EJ
'20 GHz. Moreover, Fig. 4~b! shows that the energies o
these levels is very insensitive to the gate voltages,
equivalently, to the random offset charges. The numer
results show that the bands are flat to better than one pa
a thousand, especially atf 50.48. To understand the unde
lying physics, a tight-binding model is developed.

Tight-binding model

Consider the case near the degeneracy pointf 51/2. The
minima in energy occur whenwp* 50 andwm56wm* , where
coswm*51/2a. Near the minimum at@wm ,wp#5@wm* ,0#, the
potential looks like a double potential well repeated at latt
pointsa152p ix anda25p ix1p iy . Figure 5 shows the two
eigenfunctions in a unit cell.

The wave function for the lower level (C1) is symmetric
and the wave function for the upper level (C2) is antisym-
metric. Both of the wave functions are localized near the t
minima in U in the unit cell.

To find an approximate tight-binding solution, le
u(wm ,wp) be the wave function for the ground state on o

FIG. 4. The energy levelsE vs frustration and gate voltage fo
EJ /Ec580, a50.8, andg50.02. The gate voltage is related to th
k values by@kp ,km#5(gC/2e)@VA1VB ,VA2VB#, ~a! E/EJ vs f b

near f b51/2 for @kp ,km#5@0,0#, and~b! E/EJ vs km for kp50.

FIG. 5. The eigen-wave-functions for the lower (C1) and upper
(C2) energy levels atf 51/2 as a function of the phases.
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PRB 60 15 403SUPERCONDUCTING PERSISTENT-CURRENT QUBIT
side of the double potential wells, andv(wm ,wp) be the
wave function on the other side. The tight-binding soluti
for Ht in Eq. ~12! is F5cuu1cvv and satisfies

S Huu Huv

Hvu Hvv
D S cu

cv
D 5ES cu

cv
D . ~13!

Because the double well is symmetric atf 51/2, each wave
function has the same energye0 and soHuu5Hvv5e0 . Let
t1 be the tunneling matrix element between these t
minima in the same unit cell andt2 between nearest
neighbor minima in the adjacent unit cells. ThenHuv5Hvu*
52t12t2eik•a22t2eik•(a12a2). The eigen-energy-levels ar
E5e07uHuvu. The effect oft1 is to split the degeneracy o
the two states so that atk50, the energy ise07(2t21t1) for
the symmetric and antisymmetric states respectively. The
fect of t2 is to give dispersion ink, that is, in gate voltage an
offset charges, to the energy levels. Because we wan
minimize the gate-voltage~and offset charge! dependence
we seek to minimize the tunnelingt2 from one unit cell to
another. Likewise, we want the two localized states in
two wells to interact, so that we wantt1 to be nonzero. This
is why the potential landscape in Fig. 3 was chosen to h
a'0.8: The potential has a much lower barrier betwe
states in the double well, but a large barrier between st
from one double well to the next.

An estimate oft i can be obtained by the WKB method
from calculating the actionSi between the two minima an
usingt i'(\v i /2p)e2Si /\ wherev i is the attempt frequency
of escape in the potential well. The action from pointwW a to
wW b is

S5E
wa
W

wW b
@2Mnn~E2U !#1/2udwnu. ~14!

Heren is a unit vector along the path of integration,dwn the
differential path length, andMnn5nT

•M•n is the compo-
nent of the mass tensor along the path direction. In Eq.~14!
we will approximate the energy differenceE2U which mea-
sures the deviation in the potential energyDU from the
minima along the path.

First, consider the calculation oft1, the tunneling matrix
element within the unit cell. The path of integration is tak
from (2wm* ,0) to (wm* ,0) along the directionn5 ix , so that
Mnn5Mm for this path. The potential energy at the minim
is Umin5221/2a. The difference in the potential energ
from the minima at (2wm* ,0) along this path can be writte
as DU15EJ$2a(coswm21/2a)2%. The action along this
path is then

S15E
2wm*

wm* ~4MmaEJ!
1/2S coswm2

1

2a Ddwm , ~15!

which yields

S15\@4a~112a1g!EJ /Ec#
1/2S sinwm* 2

1

2a
wm* D .

~16!

Now considert2, the tunneling from unit cell to unit cell
For example, take the integration to be from (wm* ,0) to one of
o

f-

to

e

e
n
es

its nearest-neighbor minima at (p2wm* ,p). We will take the
path of integration to be a straight line joining these tw
points in thewm-wp plane. This path is not the optimal tra
jectory, but the difference in the action for this straight lin
path from the optimal trajectory is quadratic in the sm
deviations of these two paths. The straight line path is
scribed bywm5wm* 1lwp, wherel5(p22wm* )/p; it has a
direction of n5l ix1 iy and a path length of ds
5A11l2dwp . The mass on this direction isM25(M p
1l2Mm)/(11l2). The difference of the potential energ
along this path from the minima energy isDU2 /EJ5
22 coswp cos(wm*1lwp)12a cos2(wm*1lwp)11/2a. The ac-
tion is then

S25@2M2EJ~11l2!#1/2E
0

pS DU2

EJ
D 1/2

dwp . ~17!

The integrand is not analytically integrable, but being zero
the end points of the integration, it is well approximated
ADU2 /EJ'(1/A2a)cos(wp2p/2). With this approximation,
S25(4M2EJ(11l2)/a)1/2, which is

S25\AEJ

Ec
S ~11g!~11l2!

a
12l2D . ~18!

To compare the tunneling rates we would first need
attempt frequencies in the two directions. However, we c
consider the attempt frequencies to be of the same orde
magnitude and thust2 /t1;e2(S22S1)/\. For a50.8, we find
that S1 /(\AEJ /Ec)'0.6 and S2 /(\AEJ /Ec)'1.4. For
EJ /Ec;100, thent2 /t1;1024!1. We are therefore able to
ignore t2, the tunneling from the unit cell to unit cell. Thi
means that there is little dispersion in the energy levels w
k and, consequently, with the voltage or offset charges
fact, using the action one can show that fora smaller than
about 0.85,t1.t2 for EJ /Ec'80. Throughout the rest of the
paper we will choose parameters so that the effects oft2 can
be ignored.

We now obtain an approximate solution for the ener
levels and tunneling matrix elements by modeling each s
of the double potential. Near the minimum at@wm ,wp#
5@wm* ,0#, the potential looks like an anisotropic two
dimensional harmonic oscillator. The Hamiltonian in the v
cinity of the minimum is approximately~with QW g50)

H'
1

2

Pp
2

M p
1

1

2
M pvp

2wp
21

1

2

Pm
2

Mm

1
1

2
Mmvm

2 ~wm2wm* !21U0 , ~19!

where

\vp

EJ
5A 4

a~11g!~EJ /Ec!
~20!

and

\vm

EJ
5A 4~4a221!

a~112a1g!~EJ /Ec!
~21!

and U05221/2a. The ground statef0 of the single har-
monic well has energye05\(vp1vm)/21U0. Let us now
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TABLE I. A comparison of the energy levels with the approximate harmonic oscillator levels~with
harmonic and anharmonic terms! with the numerical calculations. Heref 51/2, a50.8, g50.02, and
EJ /Ec580. Also,U051.38 andUbar50.225 for the harmonic and anharmonic estimations. All the ener
are in units ofEJ .

\vm \vp E0 (E11E2)/2 (E31E4)/2

Harmonic 0.193 0.247 1.60 1.79 1.84
Anharmonic 0.183 0.238 1.59 1.77 1.83
Numerical 0.154 0.226 1.58 1.74 1.81
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use this approximation to understand the energy levels,
at f 51/2 and then near this point.

At f 51/2 we expect the four lowest energy levels of t
two-dimensional harmonic oscillator to be withvm,vp ,
E15e02t1 , E25e01t1 , E35e02t11\vm , and E45e0
1t11\vm . Table I compares the results and we also list
small anharmonic corrections to the simple harmonic ene
levels. We have chosen to compare (E11E2)/2 and (E3
1E4)/2 so that the tunneling term is absent and a dir
comparison with the simple harmonic oscillators can
made.

The agreement between this tight-binding approximat
and the numerical calculations is good. We have also
cluded the barrier height from one minimum to the other o
in the same unit cell.

If we estimate the attempt frequency fort1 as vm , then
we find that for the parameters in Table I the action calcu
tion gives t151024EJ . From the full wave functions, we
estimatet15(E22E1)/2'1023EJ . This discrepancy can b
made smaller by noting that in the calculation of the acti
we could more accurately integrate from the classical turn
points in the potential rather than from the minima.55 How-
ever, for our purposes, the action expression will be su
cient for qualitative discussions, and we will use the f
numerical calculations when estimating actual numbers.

So far we have estimated the energy levels and tunne
matrix elements whenf 51/2. As f is decreased fromf
51/2 the potentialU changes such that one well becom
higher than the other, and the barrier height also chan
For the qubit we are mainly interested in the lowest t
energy states of the system, so we now estimate the term
tight-binding expression of Eq.~13!. By defining the zero of
energy as the average of the two lowest energy statesf
51/2, we find that the Hamiltonian for these two states i

H5S F 2t

2t 2F D . ~22!

HereF is the energy change of each of the wells measu
with respect to the energy of the wells at the degener
point; that is,F5(]U/] f )d f , whereU is the potential en-
ergy. Note that since we will be operating the qubit ju
below the degeneracy pointf 51/2, thenF,0. Also, t5t1
1Dt, wheret1 is the intracell tunneling matrix element ca
culated at the degeneracy point andDt is the change. The
eigenvalues arel1,257AF21t2, where we have explicitly
assumed thatF is negative andt is positive.

The eigenvectors are given as the columns in the rota
matrix
st
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D~u!5S cosu/2 2sinu/2

sinu/2 cosu/2 D , ~23!

whereu52arctant/F. For example, at the degeneracy poin
F50, so thatE57t and the eigenvectors are (1/A2,1/A2)T

and (21/A2,1/A2)T. These are just symmetric and antisym
metric combinations of the single well wave functions,
expected. Forf slightly below 1/2, we haveuFu@t, sou'0,
and the energies areE57AF21t2'6F. The eigenvectors
are approximately (1,0)T and (0,1)T, so that the eigenstate
are nearly localized in each well.

It is more convenient to discuss the Hamiltonian a
eigenstates in the rotated coordinate system such thatHD
5DT(u)HD(u). In the rotated coordinate system, th
Hamiltonian is diagonal with

HD52AF21t2sz , ~24!

and the eigenenergies areE56AF21t2 and the eigenstate
are then simply spin-downu0&5(1,0)T and spin-up u1&
5(0,1)T vectors. In other words, no matter what the oper
ing field is, we can always go to a diagonal representati
but the rotation matrix must be used to relate the sim
spin-up and spin-down vectors to the linear combinations
the wave functions in the well.

V. MANIPULATION OF THE QUBIT

As noted above, the flexibility of the design of Josephs
junction circuits affords a variety of methods for manipula
ing and controling the state of qubits. In this section we sh
how the basic qubit circuit can be modified to allow prec
control of its quantum states. To manipulate the states of
qubit, we need control over the properties of the qubit. F
example, control overf, the magnetic field, allows one t
change the operating point andF, the value of the energy
difference between the two states. Control over the poten
barrier height allows changing of the tunneling throught. For
example, if the operating points ofF0 andt0 are changed by
DF and Dt, then the Hamiltonian in the rotated coordina
system is

HD52AF0
21t0

2sz1DHD , ~25!

where withu052arctant0 /F0,

DHD5DF~cosusz2sinusx!2Dt~sinusz1cosusx!.

~26!

The control overF can be done by changingf. The control
over t can be done by changing the barrier heights. To c
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trol the barrier heights by external parameters, we replace
third junction by a SQUID, which acts like a variab
strength junction. The modified circuit of the qubit is show
in Fig. 6.

We now analyze this circuit since it will be used in a
subsequent discussion of the qubit. Flux quantization aro
each of the two loops givesw12w21w3522p f 1 and w4
2w3522p f 2. The Josephson energy due to each junct
is EJn(12coswn). The total Josephson energyU is then

U

EJ
5212b22 coswp coswm22b cos~p f a!

3cos~2p f b12wm!, ~27!

where wp5(w11w2)/2 and wm5(w12w2)/2, and alsof a
5 f 2 and f b5 f 11 f 2/2. Hence we see that 2b cos(pfa) plays
the role ofa in the three-junction qubit, but now this term
can be changed by changingf a5 f 2, the flux in the top
SQUID loop. Likewise,f b5 f 11 f 2/2 plays the role off in
the three-junction qubit. The reduced Hamiltonian is then

Ht5
1

2

Pp
2

M p
1

1

2

Pm
2

Mm
1EJ$212b22 coswp coswm

22b cos~p f a!cos~2p f b12wm!%, ~28!

where M p5(F0/2p)22C(11g) and Mm5(F0/2p)22C(1
14b1g).

To manipulate the parameters in the Hamiltonian let
magnetic fields change very slightly away from the so
degeneracy point off 1* and f 2* to a new operating pointf 1

0

5 f 1* 1e1 and f 2
05 f 2* 1e2. Then F changes from zero to

F05r 1e11r 2e2 andt changes tot05t11s1e11s2e2, where
r i andsi are constants andt1 is the tunneling matrix elemen
at the degeneracy point as found in the previous section.
take the operating point to be effectively in the regime wh
f ,1/2 in Fig. 4, so thate1,2,0. Hence,F0,0. Also, t0 is

FIG. 6. The four-junction qubit. Two junctions form a SQUI
loop and have Josephson energies and capacitanceb times larger
than the other junctions 1 and 2, which both have Josephson e
giesEJ and capacitanceC. The nodesA andB represent the super
conducting islands that are coupled by gate capacitorsCg5gC to
gate voltagesVA and VB . The arrows define the direction of th
currents. The flux is out of the page.
he

d

n

e
e

e
e

assumed to remain positive. In the new rotated frame w
u052arctant0 /F0, the Hamiltonian given by Eq.~24! is
HD52AF0

21t0
2sz .

Away from this new operating point, letf 15 f 1
01d1 and

f 25 f 2
01d2. In the operation of the qubit,ud i u!ue i u and d i

usually will have a sinusoidal time dependence. ThenF
5F01r 1d11r 2d2 and t5t01s1d11s2d2, so that DF
5r 1d11r 2d2 andDt5s1d11s2d2. Then the Hamiltonian in
the rotated system withu052arctant0 /F0 is

HD52AF0
21t0

2sz1DHD , ~29!

where

DHD5~r 1d11r 2d2!~cosu0sz2sinu0sx!2~s1d11s2d2!

3~sinu0sz1cosu0sx!. ~30!

Hence we see that changes in the magnetic field from
operating point off 1

0 and f 2
0 cause bothsz andsx types of

interactions.
To find the magnitude of these changes, we calculate

coefficients of change (r 1 , r 2 , s1 ands2) most simply at the
degeneracy point wheree i50; that is, at the degenerac
point f i

05 f i* . We choose the degeneracy point for the fou
junction qubit atf 1* 51/3 and f 2* 51/3. This results in clas-
sically doubly degenerate levels. In fact, any choice that
isfies 2f 1* 1 f 2* 51 when the classical energyU has two
minima will also result in doubly degenerate levels. For e
ample f 1* 51/2 andf 2* 50 is also a possible and convenie
choice. However, we preferf 1* 5 f 2* 51/3 for the following
reason. The change in potential energy withf a gives

]U

] f a
522pb sinp f a cos 2wm

0 ,

]2U

] f a
2

522p2b cosp f a cos 2wm
0 . ~31!

The first order terms vanishes iff 2
050, resulting in the po-

tential barrier always decreasing with changes inf 2. On the
other hand, iff 2

051/3, then the barrier height can be made
increase and decrease with changes inf 2, thus allowing more
control of the qubit.

Now the coefficients of change (r 1 , r 2 , s1, ands2) can be
estimated both from the numerical calculations and from
tight-binding model as shown in Appendix B. We find that
the degeneracy point off 15 f 251/3,

r 1

EJ
52pA121/~4b2!. ~32!

For our example withb50.8, we haver 1 /EJ54.90. Esti-
mates obtained from the numerical calculations done
changingf 1 and f 2 give r 1 /EJ54.8 andr 2 /EJ52.4 in good
agreement with Eq.~B6! in Appendix B.

Likewise, from Appendix B we have thats150 ands2

5htAEJ /Ec, whereh is of the order of unity. For the op
erating point we findh;3.5. Therefore, changes inH due to
changes int1 go like sx . These tight-binding estimates fo
b50.8 gives150 ands2 /EJ50.03. Full numerical calcula-
tions for our example gives150 and s2 /EJ50.20. The

er-
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agreement with the tight-binding results are good, althou
the tight-binding underestimatess2 for these parameters.

In summary, from the degeneracy point off 1* 5 f 2* 51/3,
let the operating point bef 1

05 f 1* 1e1 and f 2
05 f 2* 1e2, so

that F05r 1(e1e2/2) and t05t11s2e2. Now consider the
changes in field about the operating point such thatf 15 f 1*
1d1 and f 25 f 2* 1d2. In the rotated frame whereu05
2arctant0 /F0, the Hamiltonian is

HD52AF0
21t0

2sz1DHD , ~33!

where

DHD5r 1S d11
d2

2 D ~cosu0sz2sinu0sx!

2s2d2~sinu0sz1cosu0sx!, ~34!

and r 1 /EJ52pA121/(4b2) ands25ht0AEJ /Ec.
A typical design for a qubit will haveEJ /Ec580, b

50.8, g50.02. We find from numerical calculations th
t0'0.005EJ and h'3.5, which agree well with our tight
binding estimates. We operate atf 15 f 250.33 so thate1
5e2521/300. ~This is equivalent to operating the thre
junction qubit atf 5 f 11 f 2/250.495 in Fig. 4.! Writing the
energies asEi5hn i , we have taken typical values ofEJ
5200 GHz and Ec52.5 GHz, and we find thatt0
51 GHz andF055 GHz ~which gives a splitting between
the two states of about 10 GHz). The Hamiltonian is fou
to be

HD

EJ
520.025sz1~4.0d112.1d2!sz2~0.46d110.41d2!sx .

~35!

The numerical values used are from numerical calculatio
These values agree well with the estimates used in Eqs.~33!
and ~34! for the level splitting and the terms proportional
r 1; the terms proportional tos2 match to about 50%, due t
the more sensitive nature of estimating the tunneling term

The terms containingsx can be used to produce Ra
oscillations between the two states by modulatingd1 andd2
with microwave pulses of the frequency of the level splitti
of 2F0510 GHz. One could arrange the values ofd1 andd2
to make the time-varyingsz term vanish. Then the operatio
of the qubit would be isomorphic to the NMR qubit. How
ever, our simulations show that such an arrangement cou
higher-energy levels and invalidates the simple two-state
proximation. This is due to the large matrix element betwe
the ground state and the second excited state given by
change in potential due to varyingd2. ~It is interesting to
note that similar coupling to higher levels occurs in qub
based on the rf SQUID and on simple charge states.! We
propose to manipulate the qubit by varyingd1, which causes
a Rabi oscillation through thesx term as well as a strong
modulation of the Larmor precession through the time va
ing sz term. Because the Rabi frequency is much sma
than the Larmor frequency, the precession causes no pro
for manipulating the qubit. Ford150.001 andd250, the
Rabi frequency is about 90 MHz. We note that this mode
operation is also possible with the three-junction qubit.
course, it will not be possible to completely eliminate t
h
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deleterious effects of thed2 coupling, but the effect of this
coupling can be greatly reduced ifd2 is restricted below
0.0001.

The varying magnetic fieldsd1 and d2 can be applied
locally to the qubit by using a control line to inductivel
couple to the qubit. Moreover, if the the control line is drive
by a Josephson oscillator, then the coupling circuit could
fabricated on the same chip.

VI. INTERACTION BETWEEN QUBITS

A variety of methods is available for coupling qubits t
gether. As noted in Refs. 13 and 14, essentially any inte
tion between qubits, combined with the ability to manipula
qubits individually, suffices to construct a universal quantu
logic gate. Here we present two methods for coupling qub
inductively as shown in Fig. 7. The inductive coupling cou
either be permanent, or could be turned on and off at will
inserting Josephson junctions in the coupling loops.

Figure 7~a! shows one way of coupling two identical qu
bits. The lower portions of each qubit~the loops that contain
the circulating currents! are inductively coupled.

To a first approximation we model the coupling as chan
ing the flux in each of the two lower rings only through th
mutual inductive coupling.~We ignore the self-inductance
which can easily be included.! The effective frustration in the
lower loop ofA, f̃ 1

A , is changed over the applied frustratio

f 1
A to f̃ 1

A5 f 1
A1MI 1

B/F0. Here the current in the lower loop

of B is I 1
B . Similarly, f̃ 1

B5 f 1
B1MI 1

A/F0. The coupled Hamil-
tonian is

HAB5HA~ f̃ 1
A!1HB~ f̃ 1

B!1MI 1
AI 1

B , ~36!

which is the sum of the Hamiltonians for each system plu
term due to the mutual inductive coupling.

The inductively coupled contribution to the frustration
estimated to be of the order of 1023F0 which is much
smaller than the applied frustration. Since each persis
current will inductively couple into the other qubit, this wi
produce changes in the Hamiltonian of thesz and sx type
and these changes will be proportional to the sign of
circulating currents in the qubit. Hence, we expect the c
pling to be described by an interaction Hamiltonian of t
form,

HAB
int 5k1sz

Asz
B1k2sz

Asx
B11k3sx

Asz
B . ~37!

Hence we see that this interaction has bothsz
Asz

B andsz
Asx

B

types of coupling. We have estimated magnitude ofk i
'0.01EJ .

As Eq. ~35! shows, the inductive coupling between th
qubits can be made to be a substantial fraction of the q
Larmor frequency. This is an attractive feature, as the c
pling between two qubits sets the speed limit for how rapi
two qubit quantum logic operations can be performed
principle. In practice, it may be desirable to sacrifice speed
operation for enhanced accuracy: in this case, the induc
coupling could be designed to be smaller by decreasing
overlap of the inductive loops with the circuits.

Coupling between qubits is similar to the coupling w
envision between the qubit and the measurement circ
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FIG. 7. Coupling of qubitsA and B through
the mutual inductance between~a! the lower re-
gions of both, and~b! the lower region ofA and
the upper region ofB.
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containing SQUID-like detectors. In its usual configuratio
the SQUID is biased in the voltage state that produce
voltage related to the flux through its detector loop. Ho
ever, such a strong, continuous measurement on a q
would destroy the superposition of states in the qubit a
project out only one of the states. This problem can be
cumvented by designing a SQUID such that it is curr
biased in the superconducting state and hence is not me
ing the flux in its detector loop. When one needs to meas
the qubit, the SQUID can be switched to its voltage state,
example, by applying a pulse of bias. The coupling fro
mutual inductance between the SQUID and the qubit w
also have to be controlled. Other measurement scheme
ing SQUID’s that are weakly coupled to the macroscopica
coherent system have been proposed.56

VII. COMPUTING WITH THE PC QUBIT

All the ingredients for quantum computation are no
available. We have qubits that can be addressed, man
lated, coupled to each other, and read out. As will be in
cated below, the particular qubits that we have chosen
well insulated from their environment as well. The flexibili
of design for collections of qubits now allows a wide varie
of overall designs for quantum computers constructed fr
such qubits.

Before discussing various superconducting quantum c
puter architectures, let us review some basic ideas a
quantum logic and see how to implement quantum logic
ing our superconducting qubits. A quantum logic gate i
unitary operation on one or more qubits. Quantum compu
tions are typically accomplished by building up quantu
logic circuits out of many quantum logic gates. Just as in
case of classical computers, certain sets of quantum l
gates are universal in the sense that any quantum comp
,
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tion can be performed by wiring together members of the
In fact, almost any interaction between two or more qubits
universal;13,14 but a convenient universal set of quantu
logic gates widely used in the design of quantum algorith
consists of single qubit rotations and the quantum controll
NOT gate, orCNOT.57

A. One-qubit rotation

An arbitrary one qubit rotation can be written ase2 ist

5cost2i sints for some Pauli matrixs5asx1bsy1csz ,
wherea21b21c251. There are many ways of accomplis
ing a one qubit rotation: the ability to rotate the qubit by
precise amount around any two orthogonal axes suffic
Pursuing the analog with NMR, we choose a method t
involves applying an oscillatory field applied at the qubi
resonant frequency to rotate the qubit.

The Hamiltonian for a single qubit~A! can be gotten from
Eq. ~35!. Here we assumeEJ5200 GHz, d150.001 cosvt
andd250, and the level splitting isv510 GHz. Then, the
Hamiltonian is

HD~GHz!55sz10.80~cosvt !sz20.09~cosvt !sx .
~38!

The Rabi frequency is 90 MHz so that ap pulse would be
about 20 nsec.

B. Two-qubit controlled NOT

A controlled NOT is a two qubit quantum logic gate tha
flips the value of the second qubit if the value of the fi
qubit is 1. That is, it takesu00&→u00&, u01&→u01&, u10&
→u11&, andu11&→u10&. A controlled NOT can be combined
with single qubit rotations to give arbitrary quantum log
operations. A controlledNOT can be straightforwardly imple
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FIG. 8. A method for coupling a single qub
to other qubits.
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mented in the superconducting qubit system by exploit
the analogy with NMR. Suppose that two qubitsA and B
have been constructed with an inductive coupling betw
their lower loops as in the first part of the previous secti
Then the level splitting of qubitB depends on the state o
qubit A, with valuesDEA,0 for A in the u0& state andDEA,1
for A in the u1& state. When a resonant pulse correspond
of DEA,1 /\ is applied to qubitB, it will only change if qubit
A is in its u1& state. Since the coupling between the qubits
considerably larger than the Rabi frequency, the amoun
time that it takes to perform the controlledNOT operation is
equal to the amount of time it takes to perform ap rotation
of a single qubit.

So the basic quantum logic operations can be perform
on our superconducting qubits in a straightforward fashi
Accordingly, it is possible in principle to wire groups o
qubits together to construct a quantum computer. A var
of architectures for quantum computers exist, usually c
sisting of regular arrays of quantum systems that can
made to interact either with their neighbors or with a qua
tum ‘‘bus’’ such as a cavity photon field or a phonon field
an ion trap that communicates equally with all the system
the array. Because of the flexibility inherent in laying out t
integrated Josephson junction circuit, a wide variety of arc
tectures is possible. A particularly simple architecture fo
quantum computer can be based on the proposal of Lloy1,5

for arrays of quantum systems such as spins or quantum

C. Linear chain of qubits

Consider a linear array of qubitsABABABAB•••. Let
the bottom of each qubit be inductively coupled to the top
the neighbor to the left. Also let each type of qubit,A andB,
have a slightly different Josephson energy. Each qubit a
has the area of the top loop which, is half that of the bott
loop. In the absence of the driving electromagnetic flux
~the d i

j ), the Hamiltonian for the system can be generaliz
to be written as

H52\(
k

~vksk
z12Jk,k11sk

zsk11
z !, ~39!
g

n
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where \vk5AFk
21tk

2 and Jk,k115kk,k11(r 1,k1r 1,k11)/2.
This problem then maps on the linear chain of nuclear sp
that was shown by Lloyd5 to be a universal quantum com
puter. The coupling needed to performp/2 pulses is pro-
vided by the terms containing thed i

j ’s. The nice feature of
this linear chain is that separate control lines for ac fields
not needed. The whole linear array can sit in a microwa
cavity and be pulsed at the desired frequency.~The dc bias
fields to ensuref 15 f 251/3 will require at least two dc con
trol lines.! The frequencies needed are around 10–25 G
with intervals of 1 GHz~and with resolution of about 0.1
GHz!. We could make these numbers larger or smalle
needed.

Details of computing with this are given in various refe
ences, see, for examples, Ref. 5 and Chap. 20 of Ref. 5

D. Superconducting quantum integrated circuits

There is no reason why the inductive loops cannot cou
qubits that are far apart. In addition, a single qubit can
coupled to several other qubits as shown in Fig. 8.

This arrangement requires separate ac control lines
each of the qubits, which then demands localized on-c
oscillators. One can build up essentially arbitrary integra
circuits of superconducting qubits by this method. This fle
ibility in the construction of quantum computer architectur
is one of the benefits of using superconducting Joseph
junction circuits to perform quantum computation. The qua
tum integrated circuit could be set up to provide a numbe
useful features. For example,59 one might be able to desig
the circuit and interactions in such a way that it automa
cally implements an intrinsically fault-tolerant quantu
computer architecture such as those proposed by Kita60

and Preskill.61 In addition, since the circuits are paralleliz
able in that different quantum logic operations can be p
formed in different places simultaneously, the circuit cou
be designed to provide the maximum possible paralleliza
of a particular problem such as factoring,62 database
search,63 or computing a discrete quantum Fouri
transform.62,64



se
e

t w
se
e
tu
e
m
tio
e

a
t

sy
a
re
e
n-

e
1
rm

or

e
ta

th

co

e
on
ow
ty
e
p-
s
72

n
in
lu
te
-
n

d
p

y

e

e
ch

o
-
ates

cked
en
hat
s-

de

so

the

its
is
al
ce,
ong
f

r.
een
etic
-

eco-

ing
may
u-
his
ing

as
the
ce
r is
on-
en
our

ing

this

ts of
the
ric
and

in a

PRB 60 15 409SUPERCONDUCTING PERSISTENT-CURRENT QUBIT
VIII. DECOHERENCE

We have shown how superconducting circuits can be u
to construct qubits and quantum logic circuits. These sup
conducting qubits have been idealized in the sense tha
have ignored the effects of manufacturing variability, noi
and decoherence. Manufacturing variability can be comp
sated for as discussed above: before performing any quan
computations, the properties of individual qubits can be m
sured, recorded in a look-up table in a conventional co
puter, and used either to supply compensating calibra
fields or to alter the frequencies with which control puls
are supplied to the qubits.

From the point of view of the ultimate performance of
superconducting computer, a more pressing issue is tha
environmentally induced noise and decoherence. In real
tems the performance of a qubit will be limited by dissip
tive mechanisms that cause the quantum state to decohe
time td . The ‘‘quality factor’’ for a qubit is the decoherenc
time divided by the amount of time it takes to perform fu
damental quantum logic operations.3 The quality factor gives
the number of quantum logic operations that can be p
formed before the computation decoheres, and should be4

or greater for the quantum computer to be able to perfo
arbitrarily long quantum computations by the use of err
correction techniques.65–69

Decoherence can be due to ‘‘internal’’ dissipation~quasi-
particle resistance!, or coupling to an environmental degre
of freedom. It is also possible to couple to an environmen
degree of freedom, without a dissipative mechanism,
will still lead to decoherence.70

We will now discuss some of the major sources of de
herence.

Normal state quasiparticles can cause dissipation and
ergy relaxation at finite temperatures in Josephson juncti
However, mesoscopic aluminum junctions have been sh
to have the BCS temperature dependence for the densi
quasiparticles. At low temperatures this density is expon
tially small,71 so quasiparticle tunneling will be strongly su
pressed at low temperatures and at low voltages, as was
in a system with multiple superconducting islands in Ref.
We estimate a lower bound of 104 for the quality factor,
given a subgap resistance of 1010V.71

The qubit can also decohere by spontaneous emissio
photons. We estimate this effect for the case of emission
free space. From the example considered below we conc
that it is advantageous to have the typical size of the sys
~the dipole moment dimensions! much smaller than the radi
ated wavelength, so that the qubit is a maximally inefficie
antenna.

We start with a classical expression for the magnetic
pole radiation from an oscillating current in the qubit loo
and use it for estimating the emission rate of photons.~For
the treatment of a more general problem of damping b
dissipative electromagnetic environment, see Ref. 73.! For a
loop of radiusR with an oscillating current of the amplitud
of I m , the radiated power isPm5 4

3 p5I m
2 Z0(R/l)4. HereZ0

is the vacuum impedance andl5c/n is the wavelength of
radiation at the oscillation frequencyn. The radiation is
small when the qubit sizeR is much smaller thanl. A typical
rate for photon emission istm

215Pm/hn, which gives an es-
d
r-
e

,
n-
m
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timate of the decoherence time of tm

53hc4/(4p5I m
2 Z0R4n3). Here the frequency is taken to b

the Larmor frequency~other characteristic frequencies su
as the Rabi frequency are even smaller!. For our qubitR
'1 mm, n'10 GHz, andl53 cm. The amplitudeI m is the
oscillating part of ^C(t)uI C sinw1uC(t)&.^C1uIC sinw1uC2&
51 nA, whereC(t) is an arbitrary superposition of the tw
eigenstatesC1,2. Note thatI m!I C since we operate the qu
bit away from the degeneracy point, so that the eigenst
strongly overlap with the pure Josephson current states.

Using these numbers we find thattm;107 sec, so that the
radiation is not a serious source of decoherence. We che
that dipole radiation from electric dipole moments is ev
weaker for our system. However, it should be noted t
some proposals for using rf SQUID’s for qubits involve o
cillating currents of the order of 1mA and loops of the order
of 10 mm. These rf SQUID’s havetm'1023 sec, which is
substantially lower than for our qubit which can be ma
much smaller and operate at much less current.

Inhomogeneity in the magnetic flux distribution can al
be a source of decoherence. This is similar toT2 in NMR
systems. We estimate this for our system by calculating
amount of flux a 1mm31 mm wire carrying 100 nA of
current induces in a loop of the same size which has
center 3 mm away. We find that the induced frustration
aboutd f 51027. If this is taken as an estimate of the typic
variance of the frustration that difference qubits experien
then there will be a spread of operating frequencies am
the loops. An estimate oftd is the time for the extremes o
this frequency differ byp. This results intd'p/(2r 1d f ),
where we have taken the larger value from Eq.~35!. With
r 1 /\'600 GHz, we findtd'1.5 msec. The dipole-dipole
interaction between qubits gives a time of the same orde

We have also estimated the magnetic coupling betw
the dipole moment of the current loops and the magn
moments of the aluminum nuclei in the wire. At low tem
peratures where the quasiparticles are frozen out, the d
herence time for a single qubit is of the order ofT1, which is
exponentially large in the low-temperature superconduct
state. For an ensemble of qubits, the decoherence time
be of the order of milliseconds due to the different config
rations of nuclear spins in the different qubits. However, t
effect may be reduced by aligning the spins or by apply
compensating pulse sequences.

Coupling to Ohmic dissipation in the environment h
been modeled for superconducting qubits operating in
charging regime.19 In this case, the source of decoheren
can be made sufficiently small such that the quality facto
large enough. Similar calculations for qubits in the superc
ducting regime of circulating currents have not yet be
done. Experiments to measure this decoherence time in
circuits are underway. In practice electromagnetic coupl
to the normal state ground plane can limit coherence;35 how-
ever, a superconducting ground plane can greatly reduce
coupling.

Other possible sources of decoherence are the effec
the measuring circuit, the arrangement and stability of
control lines for the magnetic fields, and the ac dielect
losses in the substrate at microwave frequencies. These
other source of decoherence will have to be estimated
real circuit environment and measured.
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Taking 0.1 msec as a lower bound on the decohere
time and 10 nsec as a switching time, we find that the qu
ity factor is of the order of 104. Furthermore, if the proper se
of topological excitations is used to store information, t
decoherence time for quantum computation can be m
substantially longer than the minimum decoherence time
an individual junction circuit.60

IX. SUMMARY

In this paper we have discussed a superconducting q
that has circulating currents of opposite sign as its two lo
states. The circuit consist of three nanoscale Josephson
tions connected in a superconducting loop and controlled
magnetic fields. One of the three junctions is a variable ju
tion made as a SQUID loop. This qubit has quantum sta
which are equivalent to the states of a particle with an an
tropic mass moving in an two-dimensional periodic pote
tial. Numerical calculations of the quantum states of the
bit have been made as well as physical estimates fro
tight-binding approximation. The advantages of this qubi
that it can be made insensitive to background charges in
substrate, the flux in the two states can be detected, and
states can be manipulated with magnetic fields. Coupled
tems of qubits are also discussed as well as sources of d
herence.
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APPENDIX A: CLASSICAL STABILITY

In this appendix we find the eigenvalues of the stabi
matrix for the three-junction potential and the range of fru
tration aroundf 51/2, where there are two stable classic
solutions with opposite circulating currents.

The potential energy of the Josephson energy of the th
junction qubit is given by Eq.~1!,

Ũ5
U

EJ
521a2cosw12cosw22a cos~2p f 1w12w2!.

~A1!

We are interested in minimum energy phase configuratio
that is, stable solutions of the following system of equatio

]Ũ

]w1
5sinw11a sin~2p f 1w12w2!50,

]Ũ

]w2
5sinw22a sin~2p f 1w12w2!50. ~A2!
ce
l-

de
r

bit
c
nc-
y
-
s
-

-
-
a

s
he
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s-
co-
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d

-

d

-
l

e-

s;
:

The solutions (w1* ,w2* ) comply with sinw1*52sinw2*
5sinw* . Then

sinw* 52a sin~2p f 12w* !. ~A3!

In order to check the character of the solution we comp
the eigenvalues of the stability matrix,]2Ũ/]w i]w j , where

]2Ũ

]w1
2

5cosw11a cos~2p f 1w12w2!,

]2Ũ

]w2
2

5cosw21a cos~2p f 1w12w2!, ~A4!

]2Ũ

]w1]w2
52a cos~2p f 1w12w2!.

For the states with cosw1*5cosw2*5cosw* ~these are the
ones we are interested here!, the eigenvalues are

l15cosw* ,

l25cosw* 12a cos~2p f 12w* !. ~A5!

When f Þ0,1/2 we have used relaxation methods for co
puting w* . Both eigenvalues are greater than zero, wh
assures the minimum energy condition. Figure 2 shows
energy of the minimum energy configurations fora50.8.
We find that there exists a region of values of the field
which two different minimum energy phase configuratio
coexist.

Next we calculate the critical values of the external fie
for this coexistence. We can restrict our analysis to the
gion around f 50.5; that is, @0.52 f c,0.51 f c# ~where f c
>0). These extrema values of the field correspond to so
tions for which one of the eigenvalues is positive and
other equals zero. The inset of Fig. 2 showsf c(a).

We first calculatef c when a>1.0. The first eigenvalue
that equals zero isl1. Then at f 50.56 f c , l150 which
implies w* 57p/2 mod 2p ~here and below we associa
the sign inf c with the sign of the phase in order to havef c
>0). Then, going to Eq.~A3! we get

sin~7p/2!52a sin~p62p f c7p!,

6156a sin~2p f c! ~A6!

and

f c5
1

2p
arcsin

1

a
. ~A7!

We now calculatef c when 0.5<a<1.0. Now the first
eigenvalue to equal zero isl2, and we have to solve

sinw* 52a sin~2p f 12w* !5a sin~62p f c12w* !,

cosw* 522a cos~2p f 12w* !52a cos~62p f c12w* !.

~A8!

We will useD562p f 12w* , so that
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15sin2 w* 1cos2 w*

5a2 sin2 D14a2 cos2 D

5a213a2 cos2 D. ~A9!

Then

cosD5A12a2

3a2
, D57arccosSA12a2

3a2 D
cosw* 52A12a2

3
w* 57arccosS 2A12a2

3 D .

~A10!

Here we have followed the solution corresponding
cos(w* )>0. Finally we have the solution forf c (D5
62p f c12w* ),

f c5
1

2p F2arccosS 2A12a2

3 D 2arccosSA12a2

3a2 D G .

~A11!

APPENDIX B: TIGHT-BINDING ESTIMATE
OF COEFFICIENTS OF CHANGE

Recall that f a5 f 2 and f b5 f 11 f 2/2. Assume that we
changef a and f b independently. The minima inU occur at
wp* 50 andwm* 56wm

0 . Therefore, the energy due to the p
tential energy is for each of the minimum

U

EJ
5212b22 coswm* 22bcos~p f a!cos~2p f b12wm* !.

~B1!

The change in the magnetic fluxf a by d f a causes a chang
in U of

]U

] f a
d f a522pb sinp f a cos 2wm

0 d f a , ~B2!

which is the same for the minimum at6wm
0 . Whereas, the

flux f b causes a change

]U

] f b
d f b574pb cosp f a sin 2wm

0 d f b , ~B3!
which has opposite signs for the two minimum. Therefor

DU

EJ
522pb sinp f a cos 2wm

0 d f a1

24pb cosp f a sin 2wm
0 d f bsz . ~B4!

Recall thatDF in the change is the energy between t
two states when there is no tunneling. This is the sec
term in Eq.~B4!, since the first term is only a constant fo
both levels, so that

DF

EJ
524pb cosp f a sin 2wm

0 d f bsz . ~B5!

For this changeDF5r 1d11r 2d2; and sinced f b5d11d2/2,
we haver 152r 2 and

r 1

EJ
54pb cosp f a sin 2wm

0 . ~B6!

We have found previously that coswm
0 51/2a where a

52b cospfa so that withf a51/3,

r 1

EJ
52pA121/~4b2!. ~B7!

To find the changes inDt, we see that the changes int1
5(\vm/2p)e2S1 /\ are dominated by changes inS1, so that

Dt52
t

\ (
i 5a,b

]S1

] f i
d f i . ~B8!

The changes inf b do not changeS1 to first order. Hence,
changes int come from changes inf a5 f 2 only, so thats1
50. But changes inf a are equivalent to changes ina in the
three-junction problem, so we can use Eqs.~B8! and ~16!
and the fact that 2b cos(pfa) plays the role ofa to find

Dt5
pt

\

]S1

]a
~2b sinp f a!d f a . ~B9!

This allows us to writes25htAEJ /Ec, whereh is of the
order of unity. For the operating point we findh;3.5.
Therefore, changes inH due to changes int1 go like sx .
These tight-binding estimates forb50.8 and f a51/3 give
s150 ands250.03.
.J.
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