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We present the design of a superconducting qubit that has circulating currents of opposite sign as its two
states. The circuit consists of three nanoscale aluminum Josephson junctions connected in a superconducting
loop and controlled by magnetic fields. The advantages of this qubit are that it can be made insensitive to
background charges in the substrate, the flux in the two states can be detected with a superconducting quantum
interference device, and the states can be manipulated with magnetic fields. Coupled systems of qubits are also
discussed as well as sources of decoherd&@163-18209)00746-3

[. INTRODUCTION junctions have been proposed as qufit® and we detail
one such circuit in this paper.

Quantum computers are devices that store information on Compared with the photonic, atomic, and nuclear qubits
guantum variables such as spins, photons, and atoms, aatteady constructed, solid-state proposals based on lithogra-
that process that information by making those variables inphy such as the one described here have two considerable
teract in a way that preserves quantum coherént@ypi-  disadvantages and one considerable advantage. The first dis-
cally, these variables consist of two-state quantum systemadvantage is noise and decoherehtthe solid-state envi-
called quantum bits or “qubits® To perform a quantum ronment has a higher density of states and is typically more
computation, one must be able to prepare qubits in a desirestrongly coupled to the degrees of freedom that make up the
initial state, coherently manipulate superpositions of a qugubit than is the environment for photons in cavities, ions in
bit's two states, couple qubits together, measure their statén traps, and nuclear spins in a molecule or crystal. Extra
and keep them relatively free from interactions that inducecare must be taken in solid state to decouple the qubit from
noise and decoherente"’® Qubits have been physically all sources of noise and decoherence in its environment. The
implemented in a variety of systems, including cavity quan-second disadvantage is manufacturing variabfligach ion
tum electrodynamic3jon trapst® and nuclear spins:*?Es-  in an ion trap is identical by nature, while each lithographed
sentially any two-state quantum system that can be adlosephson junction in an integrated circuit will have slightly
dressed, controled, measured, coupled to its neighbors, awlifferent properties. Solid-state designs must either be insen-
decoupled from the environment, is potentially useful forsitive to variations induced by the manufacturing process, or
quantum computation and quantum communicatidrtd. must include a calibration step in which the parameters of
Electrical systems that can be produced by modern lithogradifferent subcircuits are measured and compensatetf for.
phy, such as nanoscaled quantum dots and tunnel junctions, The advantage of solid state lithographed circuits is their
are attractive candidates for constructing qubits: a wide vaflexibility: the layout of the circuit of Josephson junctions or
riety of potential designs for qubits and their couplings arequantum dots is determined by the designer, and its param-
available, and the qubits are easily scaled to large arrays thaters can be adjusted continuously over a wide range. As the
can be integrated in electronic circufts For this reason, results presented in this paper demonstrate, this flexibility
mesoscopic superconducting circuits of ultrasmall Josephsaallows the design of circuits in which the variables that reg-
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ister the qubits are only weakly coupled to their environ-number of excess Cooper pairs on each node. The phase and
ment. In addition, the flexibility in circuit layout allows the number can be expressed as quantum-mechanical conju-
many possible options for coupling qubits together, and fogate variable$*
calibrating and adjusting the qubits’ parameters. That is, the In the “superconducting” limitE;>E., the phase is well
advantage of flexibility in design can compensate for thedefined and the charge fluctuates. In the “charging” limit,
disadvantages of decoherence and manufacturing variabilitghe charges on the nodes are well defined and the phase
The flexibility in design afforded by lithography conveys fluctuates strongly. WheE; andE, are within a few orders
a further advantage to constructing quantum computers. Asf magnitude of each other, the eigenstates must be consid-
noted above, a qubit has to accomplish at least five functiongred as quantum-mechanical superpositions of either charge
it has to be addressed, controled, measured, coupled to itsates or phase states. Such superposition states are important
neighbors, and decoupled from the environment. One of theén designing qubits. Experimental studies have been per-
axioms of design is that the number of parameters that chafermed by several groups with aluminum tunnel junctions
acterize a system’s design should be at least as great as thwith dimensions below 100 n’t:2% Superposition of charge
number of parameters that characterize the system’states in circuits in the charging regime have been
function?! The problem of having too few design parametersdemonstrated 2’ and are in quantitative agreement with
available is particularly acute in the design of quantum comtheory?®?° The Heisenberg uncertainty principle has been
puters and qubits: a quantum computer is a device in whicklemonstrated whek ;~E, .3%?® When E,>E_ topological
a number of physical degrees of freedom are used to registexcitations known as vortices exists and quantum mechanical
information and to perform the computation. Degrees ofinterference of these quantities has been obsefvemhfor-
freedom that are not used to compute are sources of noiganately circuits of the first type in the charging regime are
and must be isolated from the computing degrees of freesensitive to fluctuating off-set charges that are present in the
dom. Designs for quantum computers are accordingly moreubstraté?3These random offset charges make difficult the
constrained by fundamental physics than are designs for contesign of a controllable array of quantum circuits and intro-
ventional computers: if one is storing information on a ce-duce a strong source of decoherence.
sium atom, then the “design parameters” of the cesium In circuits of the second typeA(<1), the quantum vari-
atom—its energy levels, decoherence times, interactiombles can be related to the flux in the loops and their time
strengths, etc.—are fixed by nature once and for all. In thelerivatives. For a superconducting loop with a single Joseph-
lithographed Josephson junction circuits proposed here, bgon junction, known as an rf superconducting quantum inter-
contrast, it is possible to make qubits that have a variety oference devicéSQUID), thermal activation of macroscopic
different design parameters, each of which can be adjusted tpuantum staté4 has been observed as well as macroscopic
optimize different functions. guantum tunneling between states and the discrete nature of
the quantum stateS. One of the advantages of these rf
SQUID systems is that the two states have circulating cur-
Il. JOSEPHSON-JUNCTION QUBITS rents of opposite sign and, hence, produce a readily measur-

The superconducting Josephson tunnel junction is deable flux of opposite signs. To date no superposition of states
scribed by a critical current, and a capacitand@. (We will have been demonstrated in the niobium circuits, although the
assume that the resistive channel of the junction is negligiblymproving quality of the niobium tunnel junctions may allow
small) For superconducting circuits the geometrical loop in-Such a demonst(aucfﬁ: _ . S
ductanceL is also important ifA=L,/L,<1, whereL, The goal of this paper is to design a qubit using circuits of
=®d /27, is the inductance associated with a JosephsofNe first type with aluminum, yet to have statéi&e in cir-
junction in the loop. Herab,=h/2e is the superconducting cuits of the second _typdhat are circulating currents of op- _
flux quantum. Josephson circuits can be divided into twdPosite sign. These circulating current states create a magnetic

. ¢ team
general categories. Circuits of the first type have-1 so  flux of about 10 cI),(? and we refer to these as “persistent
that the induced flux in the loop is not important. Thesecurrent(PC) states.” These states obey all five functional
circuits are typically made of aluminum, and the mesoscopi¢eduirements for a quantum bitt) The superconducting cir-
nature of their electronic transport has been studied in nano§Vit is at a sufficiently low temperature that the PC states can
caled circuits. Circuits of the second type have<1, and  €asily be prepared in their ground sta®.The PC states can
induced flux caused by circulating currents is importantP€ manipulated precisely with magnetic fields) Two qu-
These circuits are typically made of niobium, and the macDits can be readily coupled inductively, and the inductive
roscopic nature of the tunneling of flux has been studied irfOUPling can be turned on and of#t) The flux of the PC
small-scaled circuits. states can be detected and measured using a SQUID-type

The prospects of using superconducting circuits of thedetector.(5) In contrast with charge quantum states in Jo-
first type as qubits is encouraging because extensive expefi€Phson circuits, the PC can be made insensitive to back-
mental and theoretical work has already been done on mes@round charges and effectively decoupled from their electro-
scopic superconducting circuitéFor a review of this work static environment. The magnetic coupling 'Fo_ the PC states
see Chap. 7 in Ref. 22 and in Ref. 2B circuits of the first and the environment can also be made sufficiently weak.
type (A>1), two energy scales determine the quantum-
mechanical behavior: The Josephson coupling enefgy,
=19®y/27, and the coulomb energy for single chargEs,
=e?/2C. The energies can be determined by the phases of The circuit of the qubit is shown in Fig. 1. Each junction

9 _ _ :
the Cooper pair wave function of the nodésdands and the  is marked by anx and is modelet?*®by a parallel combi-

lll. THE CIRCUIT
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FIG. 1. The three-junction qubit. Josephson junctions 1 and 2
both have Josephson energiesand capacitanc€ and Josephson 0 o .
1 1 2

junction 3 has a Josephson energy and capacitanimes larger. -
The nodes 1 and 2 represent the superconducting islarutes f
that are coupled by gate capacit@g= yC to gate voltage¥ , and

Vg. The arrows define the direction of the currents. The flux is FIG. 2. U/E; vs f for «=0.8 and for minimum energy phase
taken out of the page. configuration. The energy is periodic with periée¢ 1 and is sym-

metric aboutf=1/2. Nearf=1/2, there is a regiofl/2—f1/2

nation of an ideal Josephson junction and a capa@or +f.] where there are two stable solutions. The inset plptas a

The parallel resistive channel is assumed negligible. ThéunCtiOIﬂ of a.
ideal Josephson junction has a current-phase relation,
=1, Sing, whereg;, is the gauge-invariant phase of junction
i

states can be made insensitive to the gate voltages and the
random offset charges. The quantum mechanics of the circuit

For th lculati f th the induct f th will be considered in detail in the next section.
or the cafculation ot the energy the inductance of the 1, giapie classical solutions correspond to energy

loop is considered negligibley>1, so that the total flux is minima inU( ¢y, ). Let us consider the case bt 1/2. For

the external flux. In this case, fluxoid quantization around theaSﬂZ' U has only one minimum ab;=@,=0 mod 2r.
loop containing the junctions giveg;— ¢,+ ¢3=—27rf.

: . . : Above the critical val =1/2, this minimum bifur
Heref is the magnetic frustration and is the amount of exter- bove the critical value ot=1/2, this um bifurcates

: . . . into two degenerate minima =—@,=*¢* mod2r
nal magnetic flux in the loop in units of the flux quantdrg. where 0030*921/20[ The minirﬁl;lfornzoza twé)o—dimensional
The Josephson energy due to each junctiorEjg(1 )

_ . pattern with the two minima atg*, — ¢*) and (— ¢*,¢*)

—;OE‘Pn)i_The totzg J(;)gepgsorlth etr;]ergfsld IS ‘hﬁﬂ LtJ repeated in a two-dimensional square lattice. This pattern can

N niditJii(n thCOJS‘P‘)' horr:] mner \glgli € fiux quantizalion o seen in Fig. 3, which is a contour plot of the Josephson

co on the Josepnson energy-is energy as a function of the phase variablesder0.8. The

U nested nearly circular contours mark the maxima in the po-

== 2+ a—COS@,— COSey— a COg 27 + 01— @), (1) trﬁlr;]t:ra:]la The figure-eight-shaped contour encloses two
J .

The important feature of this Josephson energy is that it is 3
a function of two phase®. For a range of magnetic frustra- - - > )
tion f, these two phaseg; and ¢,, permit two stable con-
figurations, which correspond to dc currents flowing in op-
posite directions. We illustrate this in Fig. 2, where we plot
the energy of the minimum of the system as a functior of
for «=0.8.

The energy is periodic with perioid=1 and is symmetric
about f=1/2. Nearf=1/2, there is a regiofl/2—f.,1/2
+ f.] where there are two stable solutions. The inset figts
as a function ofx. These two solutions have circulating cur-
rents of opposite direction and are degeneratie=dat/2. The
calculation of the energy for the stable solutions dpds

given in Appendix A. FIG. 3. (a) A contour .
. . . . . . 3. plot of the Josephson enerpotential
The main feature of the qubit that is proposed in th'senergyU(gol,<p2) for f=1/2 for «=0.8. The nested nearly circular

paper is to use th_ese two stgtes of opposite current as the t"gﬂapes mark the maxima in the potential, and the figure-eight-
states of the qubit. By adding the charging enefte ca-  ghaped contours enclose two minintial a plot of the potential vs
pacitive energy of the junctions and considering the circuit ;, " the phase along the direction between these two minimum in
quantum mechanically, we can adjust the parameters of th@le same unit cellc) a plot of the potential v, the phase along
circuit so that the two lowest states of the system nfear direction from one minima to its next-nearest neighbor. Note that
=1/2 will correspond to these two classical states of oppositéne barrier is a saddle point. The upper curve in each figure is for
circulating currents. Moreover, we will show that these twoa=1.0 and the lower forr=0.8.

04 (pm /27'C 0.4
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Figure 3b) shows the potential along,,, between the . 2.
two minima in a unit cell; that is, along the ling,= — ¢;. Q=3P
The upper curve is fow=1.0 and the lower fore=0.8. 0
Figure 3c) shows the potential vg,,, which connects one [For any Josephson circuit it can be shown that there exist
minimum([say at (- ¢*,¢*)] to its next-nearest neighbfat  |inear combinations of the phases across the junctions such
(¢*,2m—¢*)]. For «=0.8 the energy barrier between the that these linear combination can be associated with each
two minima is much lower than the energy barrier from thenode and the corresponding conjugate variable is propor-
minimum in one unit cell to the neighboring unit cell. For tional to the charge at that no#&** If self and mutual in-
a=1.0 the energy barrier from unit cell to unit cell is nearly ductances need to be included in the cirdiais we argue
the same as the barrier within the unit cell. The ability todoes not need to be done in our cashen additional con-
manipulate the potential landscape by changingvill be  jugate pairs would needddf

®

important in designing the qubit. , _ The classical HamiltoniarH =3P, ¢, — £, is
We now consider the electric enerdystored in the five
capacitors in the circuit. Each capacitG; has a voltage 1 Dy \T @,
across it ofV; so that =_|P+—0, M L|{P+-—0,+U(o
1 . . . .
T= > 2}: CjVjZ_QgAVA_QgBVB- (2)  where the effective masdd = (P ,/27)2C is anisotropic and

the induced charge on the island @=C,-V,. When
Herej=1,2,3, andgA andgB. The last two terms subtract driven by an additional external current source, the classical
the work done by the voltage source to give the availablélynamics of this system have been studied in recent years
electric (free) energy’! The voltage across each JosephsorPoth theoreticall{>*®and experimentall§’*®
junction is given by the Josephson voltage-phase relation Note that the kinetic energy part of this Hamiltonian is

V,=(®o/27) @, , Where the over-dot indicates a partial time 1
derivative. The ground in the circuit labels the zero of poten- 2 LUANT A1 ALA
tial and is a virtual ground. T Z(Q Qy) - C 7 (QHQy), (10
The voltage across the gate capacitph is Vga=Va
—V; and similarly forVgg=Vg—V,. The electric energy which is just the electrostatic energy written is terms of the
can then be written in terms of the time derivatives of thecharges and induced charges on the islands. Often this is the

phases as method used in discussing the charging part of the Hamil-
tonian. See, for example, Ref. 43 and the references therein.
1D, 2.»T - A characteristic charge is and characteristic capacitance is
T= E(Z) LR & (3 C so that the characteristic electric energy is the so-called

charging energyE .= e?/2C.

The constant term- 3V - Cy- V4 has been neglected and
. IV. QUANTUM CIRCUIT
- ®q 1+atvy -«
e=|. |, C=C ' 4 The transition to treating the circuit quantum mechani-
—a 1+a+vy : ! . . X .
P2 cally is to consider the classically conjugate variables in the
classical Hamiltonian as quantum-mechanical oper&tors.
For example, the momenta can be written &5=
R Va 1 0 —ifhdldp, and P,=—ihdlde, and the wave function can
_(V ) Cy= yC(O 1). (5 then be considered a¥ )=V (¢4, ¢,).
B In this representation the plane-wave solutions, such as
The classical equations of motion can be found from the/’ — expl—i(l1¢1+12¢-)} correspond to a state that Ha<Coo-
per pairs on islandnode 1 andl, Cooper pairs on island 2.

LagrangianZ=T—U. We take the electrical energy as the pese plane-wave states are the so-called charging states of
kinetic energy and the Josephson energy as the potent%]e systen?*?8Since a single measurement of the number of

energy*? The canonical momenta Bj=JL/d¢;. To attach  cooper pairs on each island must be an integer, then so
a more physical meaning to the canonical momentum, wepiq thel’s here.(Note the expectation value of the num-
shift the Lagrangian by a Galilean-like transformation to  po, of Cooper pairs is not restricted to an integ&urther-
P - more, an eigenfunction?(¢,,¢,) can be written as a
EzT—U—(—O) ('pT.Cg.\?g_ (6)  weighted linear combination of these charge states. This
2 means that¥V (¢4, ¢,) is periodic when each of the phases
are changed by 2, as in the physical pendulurA.
By considering W (1, ¢2) = expli(kie1+ ko) }x(¢1,¢2)
. [ Do\ - [Py . with [kj,ks]=—(yC/2e)[Va,Vg], the Hamiltonian for
PI(ﬁ) C'(P_(ﬂ) Cy- Vg (M x(¢1,¢5) is almost the same but the induced charges are
now transformed out of the problem, and we refer to this
and is directly proportional to the charges at the islands abew Hamiltonian as the transformed Hamiltoniath,,
nodes 1 and 2 in Fig. 1 as where?

and

g

The canonical momentum is then
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1. - 22— 22
Hi=-PT-M " P+E,{2+ a—cosp,—cosg, 2| E/E 30 f=0.5, k=0
> S A o

—acoq27f+o1—@,)}. (11 E s ' os E
The resulting equationtHx(¢1,¢2) =Ex(¢1,¢,) is the g 18
same as for an anisotropic, two-dimensional particle in the ’
periodic potentiald. The solutions are Bloch waves with the e >
“crystal momentum”k values corresponding to k', which T om0 owm  o0s 0 04 038
is proportional to the applied voltages. This choice of crystal (a) f (b) k,,

momentum ensures th# (¢, ¢») is periodic in the phases.

We will first present the numerical results of the energy FIG. 4. The energy levelg vs frustration and gate voltage for
levels and wave functions for the circuit. Then we will use Ea/Ec=80, @=0.8, andy=0.02. The gate voltage is related to the
the tight-binding-like approximation to understand the re-K values bylk, kn]=(yC/2€)[Va+Vp,Va— V], (@ E/E; vs Ty
sults semiguantitatively. nearf,=1/2 for [ky ,ky,]=[0,0], and(b) E/E; vs k, for k,=0.

The eigenvalues and eigen-wave-functions for the trans- ) . ] ]
formed HamiltoniarH, are solved numerically by expanding the circulating current from the thermodynamic relation
the wave functions in terms of states of constant charge or ®o “7E,/df gives the same resultor a loop of diameter
states of constant phase. The states of constant charge regfitd=10 um, the loop inductance is of the order,d
in the central equation for Bloch functiotisee Ref. 74and ~ ~10 pH>* For1;~400 nA (E;=200 GHz), the flux due
are computationally efficient wheB,>E,;. The states of to the circulating current it l;~10">®,, which is detect-
constant phase are solved by putting the phases on a discrétéle by an external SQUID. Nevertheless, the induced flux is
lattice and the numerics are more efficient wHep>E.. small enough that we are justified in neglecting its effect
Since the Josephson energy dominates, we will show resul#hen calculating the energy levels.
computed using the constant phase stadswever, when The difference in energy between the lower and upper
we used the constant charge states, we obtained the safg¥el at the operating point of =0.485 is about OH,
results) ~20 GHz. Moreover, Fig. @) shows that the energies of

The numerical calculations are done in a rotated coordithese levels is very insensitive to the gate voltages, or
nate system, which diagonalizes the capacitance m@ttiy ~ equivalently, to the random offset charges. The numerical
choosing as coordinates the sum and difference of théesults show that the bands are flat to better than one part in
phasesp,=(¢1+ ¢;)/2 andeyn=(¢1— ¢,)/2. The resulting @ thousand, especially &&=0.48. To understand the under-
reduced Hamiltonian is lying physics, a tight-binding model is developed.

1P, 1P
H=sm. " 2w, . .
p m Consider the case near the degeneracy pioint/2. The
—acod2mf+2¢,)}, (12  minima in energy occur wheay =0 andey,= * ¢f, where
cosgpy,=1/2a. Near the minimum aten,,¢p]1=[ ¢p,,0], the
where the momenta can be written Bs= —i%d/dp, and  potential looks like a double potential well repeated at lattice
Pm=—i%dld¢y. The mass terms amd ,= (Po/27)?2C(1  pointsa, =27, anda,= i, + iy . Figure 5 shows the two
+y) andM,=(®o/27)?2C(1+2a+ v). In this coordinate  eigenfunctions in a unit cell.
system the full wave functionW (¢, ,<pm)=exp{i(k")qop The wave function for the lower level{(;) is symmetric
ke Ix(ep em) with [k) ki ]=—(yC/2e)[Vo+Vg,V,  and the wave function for the upper level§) is antisym-
—Vg] and Hx(¢p.om)=Ex(¢p.@m). Also the two metric. Both of the wave functions are localized near the two
minima of the potential (¢, @) Within a unit cell forma ~ minima inU in the unit cell.
periodic two-dimensional centered cubic lattice with lattice To find an approximate tight-binding solution, let
constantsa, = 2 iy, anda,= i+ iy . U(¢em,ep) be the wave function for the ground state on one
Figure 4 shows the energy levels as a functio afd as
a function of the gate voltage, which is given in termskof
We have takerk;/E.;=80, «=0.8, andy=0.02 in this ex-
ample. The energy levels are symmetric abioatl/2. In Fig.
4(a), we see that the two lowest energy levels ngarl/2 0
have opposite slopes, indicating that the circulating current<o.1
are of opposite sign. We also see that there is only a smal,,
range of 0.485.f<0.5, where the qubit can be operated be-
tween these states of opposite circulating current. This rangt 4

is consistent with the randgé = f.] from the classical stabil-
ity as shown in Fig. 2. Af=0.49 direct calculation of the
average circulating current,W|l4sing,|W) gives that the

circulating current for the lower level ik /1,=—0.70 and FIG. 5. The eigen-wave-functions for the lowe¥ () and upper
for the upper level isl,/lo=+0.70. (A calculation of (W¥,) energy levels af =1/2 as a function of the phases.

Tight-bindi del
+Ej{2+a—2 cose, cosen, 1ghi=binding mode

.2
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side of the double potential wells, and ¢,,¢,) be the its nearest-neighbor minima at - ¢}, , ). We will take the
wave function on the other side. The tight-binding solutionpath of integration to be a straight line joining these two

for H; in Eq. (12) is ®=cyu+c,v and satisfies points in thee-¢, plane. This path is not the optimal tra-
jectory, but the difference in the action for this straight line
Huo HulfCu) _[Cy path from the optimal trajectory is quadratic in the small

Ho Hw/\c,) e/ (13 deviations of these two paths. The straight line path is de-

_ . scribed byen= ¢+ N ¢, whereh=(7—2¢p)/; it has a
Becayse the double well is symmetricfat 1/2, each wave direction of n=\i,+i, and a path length ofds
function has the same energy and soH,,=H,,=¢€y . Let  _ \/mzd(pp_ The mass on this direction i¥,=(M,
tl_ pe th.e tunneling mat.rlx element between these two+)\sz)/(1+)\z)' The difference of the potential energy
minima in .the same um@ cell anfﬂz between nearfst- along this path from the minima energy BU,/E,=
neighbor mwpma m_the fldjacent un_lt cells. Thidg,=H?, — 2 COS@, COSE: + N o)+ 2a ook + N o)+ 1/2a. The ac-
=—t; -1, %t ("% The eigen-energy-levels are 4o ic then moore
E=e,+|H,,|. The effect oft, is to split the degeneracy of
the two states so that kt=0, the energy ig,+ (2t,+t;) for o1 [T AU\ M
the symmetric and antisymmetric states respectively. The ef- S;=[2ME,(1+1%)] fo E_J dep. (17)
fect oft, is to give dispersion itk that is, in gate voltage and _ _ . . .
offset charges, to the energy levels. Because we want tdhe integrand is not analytically integrable, but being zero at
minimize the gate-voltagéand offset chargedependence, the end points of the integration, it is well approximated by
we seek to minimize the tunnelinig from one unit cell to \/AUz/EJ*(l/\/%)COS((qu—W/Z)- With this approximation,
another. Likewise, we want the two localized states in theS,=(4M,E(1+\?)/@)? which is
two wells to interact, so that we waht to be nonzero. This E T 1T (1T %2
is why the potential landscape in Fig. 3 was chosen to have S,=# \/_J(( I ) +2)\2). (18
a~0.8: The potential has a much lower barrier between E.
states in the double well, but a large barrier between states
from one double well to the next.

An estimate oft; can be obtained by
from calculating the actiois; between the two minima and
usingt;~ (A w;/2m)e”S'" wherew; is the attempt frequency
of escape in the potential well. The action from poht to

To compare the tunneling rates we would first need the
the WKB method. attempt frequencies in the two directions. However, we can
' consider the attempt frequencies to be of the same order of
magnitude and thus, /t;~e~(S27SV"" For a=0.8, we find
that S;/(hVE;/E;)~0.6 and S,/(hE;/E.)~1.4. For
E;/E.~100, thent,/t;~10"%<1. We are therefore able to

¢p IS ignoret,, the tunneling from the unit cell to unit cell. This
R means that there is little dispersion in the energy levels with
s= | P[2My(E-U) 14 dey. (14)  k and, consequently, with the voltage or offset charges. In
®a fact, using the action one can show that téoismaller than

about 0.851,>t, for E;/E.~80. Throughout the rest of the
paper we will choose parameters so that the effects oén
be ignored.

We now obtain an approximate solution for the energy
levels and tunneling matrix elements by modeling each side
of the double potential. Near the minimum pby,,p]

- . . . ) i

First, consider the calculation ¢of, the tunneling matrix (;%Zﬂéqgr,watlhr?arfnoc:ﬁnélilscl'cljlgt(jr Iﬁ?e i;niﬂfﬁggpftg\go._
element within the unit cell. The path of integration is taken ' ] : o ! ] ! ; i Htonian 1 Vi
from (— ¢*,0) to (¢*,0) along the directiom=i,, so that Cinity of the minimum is approximatelgwith Qq=0)

Heren is a unit vector along the path of integratiahy,, the
differential path length, and/,,=n"-M-n is the compo-
nent of the mass tensor along the path direction. In(E4).
we will approximate the energy differenée- U which mea-
sures the deviation in the potential enerdy) from the
minima along the path.

M,,=M,, for this path. The potential energy at the minima 1P2 1 1 p2

is Upin=2—1/2«. The difference in the potential energy H%__p+_|\/|pwg(p§+__m

from the minima at ¢ ¢},,0) along this path can be written 2Mp, 2 2 Mp,

as AU;=E,{2a(cosg,—1/2a)%}. The action along this 1

path is then +5M o em— k)2 + Uy, (19

x 1 where
S= f¢m*(4M ma’EJ)llz( COS‘Pm_Z)d(Pm: (15
Pm

- hwp_ 4 20
which yields E, ~ Va(lt)(E,/E) 29

and

1
S;=f[4a(1+2a+y)E,/E 1’2(sin 5o *).
1 [ a( [e4 ‘)’) J C] Pm Za(Pm ﬁwm \/ 4(4&2_1)

(16) E; Va(l+2a+y)(Es/E)

Now considett,, the tunneling from unit cell to unit cell. and U,=2—1/2«. The ground statep, of the single har-
For example, take the integration to be frogf(0) to one of  monic well has energyo="7(wp+ wn)/2+Ug. Let us now

(21)
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TABLE I. A comparison of the energy levels with the approximate harmonic oscillator léweis
harmonic and anharmonic terjmwith the numerical calculations. Here=1/2, «=0.8, y=0.02, and
E;/E.=80. Also,U,=1.38 andU,,=0.225 for the harmonic and anharmonic estimations. All the energies
are in units ofg;.

hwm fiwp Eo (E;+Ey)/2 (Es+En)/2
Harmonic 0.193 0.247 1.60 1.79 1.84
Anharmonic 0.183 0.238 1.59 1.77 1.83
Numerical 0.154 0.226 1.58 1.74 1.81
use this approximation to understand the energy levels, first cosfl2 —sinol2
at f=1/2 and then near this point. D(o)=| . , (23
sinf/l2  coshl2

At f=1/2 we expect the four lowest energy levels of the
two-dimensional harmonic oscillator to be wih,<w,, where §= —arctar/F. For example, at the degeneracy point,
Ei=e€o—t1, Ex=€p+ty, Es=€e—t1+howy,, andEs;=€e;  F=0, so thatE= +t and the eigenvectors are (&,14/2)7
+t;+fwy. Table | compares the results and we also list theand (- 1/\/511/\/§)T_ These are just symmetric and antisym-
small anharmonic corrections to the simple harmonic energynetric combinations of the single well wave functions, as
levels. We have chosen to comparg, ¢ E,)/2 and E;  expected. Fof slightly below 1/2, we havéF|>t, so §~0,
+E4)/2 so that the tunneling term is absent and a direcknd the energies afe= = JF?+t>~ +F. The eigenvectors
comparison with the simple harmonic oscillators can begre approximately (1,0)and (0,1Y, so that the eigenstates
made. are nearly localized in each well.

The agreement between this tight-binding approximation |t js more convenient to discuss the Hamiltonian and

and the numerical calculations is good. We have also ingjgenstates in the rotated coordinate system suchHpat
cluded the barrier height from one minimum to the other one=pT(g)HD(#). In the rotated coordinate system, the

in the same unit cell. Hamiltonian is diagonal with
If we estimate the attempt frequency foras w,,, then
we find that for the parameters in Table | the action calcula- Hp=— VF?+t%o,, (24)

tion givest;=10"%E;. From the full wave functions, we _ _ .
estimatetl=l(E2— El)J/2~ 10 3E,. This discrepancy can be and the eigenenergies de= + \F2+t2 and the eigenstates
are then simply spin-dowr0)=(1,0)" and spin-up|1)

made smaller by noting that in the calculation of the action, 1
we could more accurately integrate from the classical turning_ (0;1)" vectors. In other words, no matter what the operat-
points in the potential rather than from the minifiadow- N9 field is, we can always go to a diagonal representation;
ever, for our purposes, the action expression will be suffiPut the rotation matrix must be used to relate the simple
cient for qualitative discussions, and we will use the ful SPiN-up and sp'ln-do'wn vectors to the linear combinations of
numerical calculations when estimating actual numbers, ~ the wave functions in the well.

So far we have estimated the energy levels and tunneling
matrix elements wherf=1/2. As f is decreased fronf V. MANIPULATION OF THE QUBIT

=1/2 the potential changes such that one well becomes  ag poted above, the flexibility of the design of Josephson

higher than the other, and the barrier height also changeg,nction circuits affords a variety of methods for manipulat-
For the qubit we are mainly interested in the lowest tWojng and controling the state of qubits. In this section we show
energy states of the system, so we now estimate the terms iy, the basic qubit circuit can be modified to allow precise

tight-binding expression of Eq13). By defining the zero of .o of its quantum states. To manipulate the states of the
energy as the average of the two lowest energy statés atqpit we need control over the properties of the qubit. For
=1/2, we find that the Hamiltonian for these two states is example, control ovef, the magnetic field, allows one to

change the operating point ark the value of the energy

difference between the two states. Control over the potential
: (22 barrier height allows changing of the tunneling throwghor
example, if the operating points &f, andt, are changed by
4QF andAt, then the Hamiltonian in the rotated coordinate

Foo—t
-t -F

H=

HereF is the energy change of each of the wells measure ;
with respect to the energy of the wells at the degeneracyyYStem 1S
oint; that is,F=(90U/df) of, whereU is the potential en- =2

grgy. Note that éince vae will be operatingpthe qubit just Ho=~VFot 1o+ AHp, (25)
below the degeneracy poifit=1/2, thenF<0. Also,t=t;  where with§,= — arctart,/F,,
+ At, wheret, is the intracell tunneling matrix element cal-
culated at the degeneracy point ad is the change. The  AHp=AF(cosfo,—sinfo,)—At(sinfo,+ cosboy).
eigenvalues arex; ,= + JFZ+1t2, where we have explicitly (26)
assumed thaf is negative and is positive.

The eigenvectors are given as the columns in the rotation The control oveF can be done by changirigThe control
matrix overt can be done by changing the barrier heights. To con-
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Va Vg assumed to remain positive. In the new rotated frame with
i l 6,= —arctarty/F,, the Hamiltonian given by EQq(24) is
VeaCpn L C,E, L V5 Cpp Hp=—vFo+tgo,. ' . .
Away from this new operating point, lé¢y=f;+ §; and
S f,=f5+6,. In the operation of the qubits|<|e;| and &
©F usually will have a sinusoidal time dependence. Then
] 2 :F0+r151+r252 and t:t0+5151+8252, SO that AF
C,Ej, =r16,+r,8, andAt=s;6;+5S,8,. Then the Hamiltonian in
the rotated system withy= — arctany/Fq is
C,E l ' C,E
o O e Ho=— \F3+ o Ao, 29
where
L
= AHD=(r151+I‘252)(008000'Z—Sin6’00'><)—(5151+8252)
FIG. 6. The four-junction qubit. Two junctions form a SQUID X(sinyo,+ cosbyoy). (30

loop and have Josephson energies and capacitartaees larger . o
than the other junctions 1 and 2, which both have Josephson endrieénce we see that changes in the magnetic field from the
giesE, and capacitanc€. The nodesA andB represent the super- Operating point off‘} and fS cause bothr, and oy types of
conducting islands that are coupled by gate capaciigrs yC to interactions.
gate voltages/, andVg. The arrows define the direction of the To find the magnitude of these changes, we calculate the
currents. The flux is out of the page. coefficients of changerg, r,, s; ands,) most simply at the
degeneracy point where;=0; that is, at the degeneracy
trol the barrier heights by external parameters, we replace thgoint fi°= f¥ . We choose the degeneracy point for the four-
third junction by a SQUID, which acts like a variable junction qubit atf} =1/3 andf =1/3. This results in clas-
strength junction. The modified circuit of the qubit is shownsjcally doubly degenerate levels. In fact, any choice that sat-
in Fig. 6. S _ isfies 27 +f5=1 when the classical energy has two
We now analyze this circuit since it will be used in all minima will also result in doubly degenerate levels. For ex-
subsequent discussion of the qubit. Flux quantization aro“”Qmplef’l‘ =1/2 andf% =0 is also a possible and convenient
each of the two loops giveg, — ¢y + @3=—2af, and ¢4 cpoice. However, we prefet =5 =1/3 for the following

—¢3=—2mf,. The Josephson energy due to each junctione,qon The change in potential energy withgives
is Ejn(1—cose,). The total Josephson enertyis then

U ) 0
U aT=—277Bsm7rfacosme,
E—=2+2ﬂ—2 COS¢, Cospy,— 2B cog 7f,) a
J
#*U ) 0
xcog2mfy+2¢n), 27 F:_ZW B cosf, cos 20,. (31
a

where ¢,=(¢1+ ¢2)/2 and o= (¢1— ¢,)/2, and alsof,
=f, andf,=f,+f,/2. Hence we see thatRcos(rf,) plays
the role of« in the three-junction qubit, but now this term
can be changed by changirfg="f,, the flux in the top
SQUID loop. Likewise,f,=f,+f,/2 plays the role of in
the three-junction qubit. The reduced Hamiltonian is then

The first order terms vanishes ﬁ§=0, resulting in the po-
tential barrier always decreasing with changeg$.4JnOn the
other hand, iff9=1/3, then the barrier height can be made to
increase and decrease with changek,jrthus allowing more
control of the qubit.

Now the coefficients of change{, r,, S;, ands,) can be

1p2 1p2 gstimqted_ both from the numgrical calcu_lations ar_ld from the
=5 M_F;+ > _: +Ey{2+28—2 cose, COSep tight-binding model as shown in Appendix B. We find that at

H
! the degeneracy point df,=f,=1/3,
—2pcod wfy)coq2nwfy+20n)}, (28)

"
E—1=2m/1—1/(432). (32)
where M, = (®¢/27)?2C(1+ y) and M= (Po/27)?2C(1 J

+48+7). For our example with3=0.8, we haver,/E;=4.90. Esti-

To manipulate the parameters in the Hamiltonian let themates obtained from the numerical calculations done by
magnetic fields change very slightly away from the somechangingf, andf, giver,/E;=4.8 andr,/E;=2.4 in good
degeneracy point of; andf} to a new operating poinlt(l) agreement with Eq(B6) in Appendix B.
=f*+¢, and f5=f%+e, ThenF changes from zero to Likewise, from Appendix B we have tha;=0 ands,
Fo=r,€,+r,€, andt changes tdy=t,;+S;€;+S,65, Where = nt\E;/E;, where 5 is of the order of unity. For the op-

r; ands; are constants ang is the tunneling matrix element erating point we findy~ 3.5. Therefore, changes khdue to
at the degeneracy point as found in the previous section. Wehanges irt; go like o, . These tight-binding estimates for
take the operating point to be effectively in the regime where3=0.8 gives;=0 ands,/E;=0.03. Full numerical calcula-
f<1/2 in Fig. 4, so thak; ,<0. HenceF;<0. Also,ty is  tions for our example gives;=0 ands,/E;=0.20. The
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agreement with the tight-binding results are good, althouglueleterious effects of thé, coupling, but the effect of this
the tight-binding underestimates for these parameters. coupling can be greatly reduced #, is restricted below

In summary, from the degeneracy point fdf=f3 =1/3,  0.0001.
let the operating point bé?=f* + ¢, and f5=f% +¢,, so The varying magnetic field$,; and &, can be applied
that Fo=r,(€e1€,/2) and to=t;+S,e,. Now consider the locally to the qubit by using a control line to inductively
changes in field about the operating point such fhatf*  couple to the qubit. Moreover, if the the control line is driven
+68, and f,=f5+3,. In the rotated frame wherd@,= by a Josephson oscillator, then the coupling circuit could be

— arctary/F,, the Hamiltonian is fabricated on the same chip.

Hp=— \/Foz+toza'Z+AHD , (33 VI. INTERACTION BETWEEN QUBITS
where A variety of methods is available for coupling qubits to-
gether. As noted in Refs. 13 and 14, essentially any interac-
02 : tion between qubits, combined with the ability to manipulate
AHp=ry| 81+ | (cOSboo,—Sinbooy) qubits individually, suffices to construct a universal quantum
logic gate. Here we present two methods for coupling qubits
—S28,(SiNOpo,+ COSOyoy), (34 inductively as shown in Fig. 7. The inductive coupling could

either be permanent, or could be turned on and off at will by
inserting Josephson junctions in the coupling loops.

Figure 7a) shows one way of coupling two identical qu-
s. The lower portions of each quiithe loops that contain
the circulating currenjsare inductively coupled.

To a first approximation we model the coupling as chang-
ing the flux in each of the two lower rings only through the
mutual inductive coupling(We ignore the self-inductance,

\ which can easily be includedThe effective frustration in the
=200 GHz and E;=2.5 GHz, and we find thatt,

—1 GHz andFy=5 GHz (which gives a splitting between Ic;werjgop :\)fA, fé’ is changed over the gpphed frustration
the two states of about 10 GHz). The Hamiltonian is foundf1 t©© f1=f7+MIj/®,. Here the current in the lower loop

andrllEJ:27-r\/1—1/(4,32) ands,= ntyVE,/E..

A typical design for a qubit will haveE;/E.=80, B
=0.8, y=0.02. We find from numerical calculations that | .,
tp~0.00F; and »~3.5, which agree well with our tight-
binding estimates. We operate &t=f,=0.33 so thate;
=e€,=—1/300. (This is equivalent to operating the three-
junction qubit atf =f,+f,/2=0.495 in Fig. 4. Writing the
energies af;=hv;, we have taken typical values &;

to be of Bis12. Similarly, f8=f5+M17/®,. The coupled Hamil-
tonian is

Hp

E, - —0.025r,+ (4.06,+ 2.15,) o,— (0.466, + 0.415,) 0 . Hag=HATY) +HE(TE) + MI%18, (36)

(39 which is the sum of the Hamiltonians for each system plus a

The numerical values used are from numerical calculationgerm due to the mutual inductive coupling.
These values agree well with the estimates used in B3s. The inductively coupled contribution to the frustration is
and(34) for the level splitting and the terms proportional to estimated to be of the order of 18D, which is much
r1; the terms proportional te, match to about 50%, due to smaller than the applied frustration. Since each persistent
the more sensitive nature of estimating the tunneling termseyrrent will inductively couple into the other qubit, this will

The terms containingr, can be used to produce Rabi produce changes in the Hamiltonian of the and o, type
oscillations between the two states by modulaiggnd,  and these changes will be proportional to the sign of the
with microwave pulses of the frequency of the level splitting circulating currents in the qubit. Hence, we expect the cou-

of 2F;=10 GHz. One could arrange the valuessgfands,  pling to be described by an interaction Hamiltonian of the
to make the time-varying-, term vanish. Then the operation form,

of the qubit would be isomorphic to the NMR qubit. How-
ever, our simulations show that such an arrangement couples (37)
higher-energy levels and invalidates the simple two-state ap-

proximation. This is due to the large matrix element betweerHence we see that this interaction has beftw> and o) o?
the ground state and the second excited state given by thgpes of coupling. We have estimated magnitude «f

A

= Klo'?O'ZB‘f‘ KZO'Q‘O'E’-I— + K30y O'ZB .

HAB_

change in potential due to varying. (It is interesting to

note that similar coupling to higher levels occurs in qubits

based on the rf SQUID and on simple charge stafdse
propose to manipulate the qubit by varyidg which causes

~0.01;.

As Eq. (35) shows, the inductive coupling between the
qubits can be made to be a substantial fraction of the qubit
Larmor frequency. This is an attractive feature, as the cou-

a Rabi oscillation through the, term as well as a strong pling between two qubits sets the speed limit for how rapidly
modulation of the Larmor precession through the time varytwo qubit quantum logic operations can be performed in
ing o, term. Because the Rabi frequency is much smalleprinciple. In practice, it may be desirable to sacrifice speed of
than the Larmor frequency, the precession causes no probleaperation for enhanced accuracy: in this case, the inductive
for manipulating the qubit. Fos;=0.001 ands,=0, the coupling could be designed to be smaller by decreasing the
Rabi frequency is about 90 MHz. We note that this mode ofoverlap of the inductive loops with the circuits.

operation is also possible with the three-junction qubit. Of Coupling between qubits is similar to the coupling we
course, it will not be possible to completely eliminate theenvision between the qubit and the measurement circuits
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FIG. 7. Coupling of qubitsA and B through
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containing SQUID-like detectors. In its usual configuration,tion can be performed by wiring together members of the set.
the SQUID is biased in the voltage state that produces & fact, almost any interaction between two or more qubits is
voltage related to the flux through its detector loop. How-universal*®!* but a convenient universal set of quantum
ever, such a strong, continuous measurement on a qubitgic gates widely used in the design of quantum algorithms
would destroy the superposition of states in the qubit andonsists of single qubit rotations and the quantum controlled-
project out only one of the states. This problem can be cirnoT gate, orcNOT.>’

cumvented by designing a SQUID such that it is current

biased in the superconducting state and hence is not measur- A. One-qubit rotation

ing the flux in its detector loop. When one needs to measure ) ) _ ) ot

the qubit, the SQUID can be switched to its voltage state, for AN arbitrary one qubit rotation can be written as
example, by applying a pulse of bias. The coupling fromzCOSt_z' S'n;‘(’ fc;r some Pauli matrio=ao,+boy+coy,
mutual inductance between the SQUID and the qubit willvheréa®+b“+c“=1. There are many ways of accomplish-
also have to be controlled. Other measurement schemes 89 & one qubit rotation: the ability to rotate the qubit by a

ing SQUID’s that are weakly coupled to the macroscopicallyPrécise amount around any two orthogonal axes suffices.
coherent system have been propo¥ed. Pursuing the analog with NMR, we choose a method that

involves applying an oscillatory field applied at the qubit’s
resonant frequency to rotate the qubit.
The Hamiltonian for a single qubi®) can be gotten from
All the ingredients for quantum computation are now Ed. (35). Here we assumg;=200 GHz, §;=0.001 cosut
available. We have qubits that can be addressed, manip@ndd,=0, and the level splitting i&»=10 GHz. Then, the
lated, coupled to each other, and read out. As will be indiHamiltonian is
cated below, the particular qubits that we have chosen are
well insulated from their environment as well. The flexibility ~ Hp(GH2)=50,+0.8Qcoswt)o,—0.09coswt) o

VIl. COMPUTING WITH THE PC QUBIT

of design for collections of qubits now allows a wide variety (38)
of overall designs for quantum computers constructed froMrpe Rabi frequency is 90 MHz so thatmapulse would be
such qubits. about 20 nsec.

Before discussing various superconducting quantum com-
puter architectures, let us review some basic ideas about
guantum logic and see how to implement quantum logic us-
ing our superconducting qubits. A quantum logic gate is a A controlledNOT is a two qubit quantum logic gate that
unitary operation on one or more qubits. Quantum computaflips the value of the second qubit if the value of the first
tions are typically accomplished by building up quantumqubit is 1. That is, it take$00)—|00), |01)—|01), |10)
logic circuits out of many quantum logic gates. Just as in the—|11), and|11)—|10). A controlled NOT can be combined
case of classical computers, certain sets of quantum logiwith single qubit rotations to give arbitrary quantum logic
gates are universal in the sense that any quantum computaperations. A controlledoT can be straightforwardly imple-

B. Two-qubit controlled NoT
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mented in the.superconducting qubit system by exploitingvhere % w,= ‘/F2k+tk2 and Jy 1= Kk 1(F ikt Mg 1)/2.
the analogy with NMR. Suppose that two qubfsand B  This problem then maps on the linear chain of nuclear spins
have been constructed with an inductive coupling betweeinat was shown by Lloytito be a universal quantum com-

their lower loops as in the first part of the previous section.puter. The coupling needed to performi2 pulses is pro-
Then the level splitting of qubiB depends on the state of vided by the terms containing tk&é’s. The nice feature of

qubit A with valuesAE, for A in the |0) state andAE, ._this linear chain is that separate control lines for ac fields are
for Ain the |1) state. When a resonant pulse corresponding, oy needed. The whole linear array can sit in a microwave

of AE /% is applied to qubiB, it will only change if qubit 5,y and be pulsed at the desired frequer@ne dc bias
Ais in its|1) state. Since the coupling between the qubits ISfields to ensuré, = f,=1/3 will require at least two dc con-

considerably larger than the Rabi frequency, the amount g jines) The frequencies needed are around 10-25 GHz
time that it takes to perform the controlleT operation is it intervals of 1 GHz(and with resolution of about 0.1

equal to the amount of time it takes to performraotation Gz \we could make these numbers larger or smaller if
of a single qubit. eeded.

So the basic quantum logic operations can be performed peyails of computing with this are given in various refer-
on our'superc_:onductlng quplts ina stralghtfgrward faSh'Onences, see, for examples, Ref. 5 and Chap. 20 of Ref. 58.
Accordingly, it is possible in principle to wire groups of
qubits together to construct a quantum computer. A variety
of architectures for quantum computers exist, usually con-
sisting of regular arrays of quantum systems that can be . , )
made to interact either with their neighbors or with a quan- There is no reason why the |ndpct|ve Iqops cannot couple
tum “bus” such as a cavity photon field or a phonon field in qubits that are far apart. In gddltlon, a smgle_ qubit can be
an ion trap that communicates equally with all the systems iffoupled to several other qubits as shown in Fig. 8.
the array. Because of the flexibility inherent in laying out the ~ ThiS arrangement requires separate ac control lines for
integrated Josephson junction circuit, a wide variety of archi€ach of the qubits, which then demands localized on-chip
tectures is possible. A particularly simple architecture for a°Scillators. One can build up essentially arbitrary integrated
quantum computer can be based on the proposal of Efoyd circuits of superconducting qubits by this method. This flex-

for arrays of quantum systems such as spins or quantum dot&ility in the construction of quantum computer architectures
is one of the benefits of using superconducting Josephson

junction circuits to perform quantum computation. The quan-
tum integrated circuit could be set up to provide a number of
Consider a linear array of qubi®BABABAB--. Let  useful features. For exampigpne might be able to design
the bottom of each qubit be inductively coupled to the top ofthe circuit and interactions in such a way that it automati-
the neighbor to the left. Also let each type of quiitandB,  cally implements an intrinsically fault-tolerant quantum
have a slightly different Josephson energy. Each qubit alseomputer architecture such as those proposed by Kftaev
has the area of the top loop which, is half that of the bottomand Preskilf* In addition, since the circuits are paralleliz-
loop. In the absence of the driving electromagnetic fluxesable in that different quantum logic operations can be per-
(the 8}), the Hamiltonian for the system can be generalizedormed in different places simultaneously, the circuit could

D. Superconducting quantum integrated circuits

C. Linear chain of qubits

to be written as be designed to provide the maximum possible parallelization
of a particular problem such as factoriffg,database
_ searctf® or computing a discrete quantum Fourier
H——ﬁEK (0ot 2 K+ 10K0k+ 1), (39 transformb264 puting g
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VIIl. DECOHERENCE timate of the decoherence time of t,

=3hc*/(47°12Z,R*°). Here the frequency is taken to be

We have shown how superconducting circuits can be use% L ¢ h h istic f . h
to construct qubits and quantum logic circuits. These super- € Larmor: requencyother characteristic requencies suc
s the Rabi frequency are even smalléfor our qubitR

conducting qubits have been idealized in the sense that w . X

have ignored the effects of manufacturing variability, noise, 1|"|’“T »~10 tGHfZ'\;nS}‘“ 3 cm. |$hf zim\?,hltlude_m 'Siqt,he
and decoherence. Manufacturing variability can be compen2>c' aind parn o (W (D)1 sing:[¥(O)=(V4lc sing;| W)

. ) . =1 nA, whereW (t) is an arbitrary superposition of the two

sated for as discussed above: before performing any quantum ;

) ) o . eigenstated,; ,. Note thatl ,<I. since we operate the qu-

computations, the properties of individual qubits can be mea :

. . . it away from the degeneracy point, so that the eigenstates
sured, recorded in a look-up table in a conv_entlona_l COm'strongly overlap with the pure Josephson current states.
puter, and used either to supply compensating calibration Using these numbers we find thaj~ 107 sec, so that the
fields or to alter the frequencies with which control pulses;;giation is not a serious source of decoherence. We checked
are supplied to the qubits. _ that dipole radiation from electric dipole moments is even

From the point of view of the ultimate performance of & yeaker for our system. However, it should be noted that
superconducting computer, a more pressing issue is that @ome proposals for using rf SQUID’s for qubits involve os-
environmentally induced noise and decoherence. In real Sygillating currents of the order of A and loops of the order
tems the performance of a qubit will be limited by dissipa-of 10 um. These rf SQUID’s havé,,~10~2 sec, which is
tive mechanisms that cause the quantum state to decoherednbstantially lower than for our qubit which can be made
time 74. The “quality factor” for a qubit is the decoherence much smaller and operate at much less current.
time divided by the amount of time it takes to perform fun-  Inhomogeneity in the magnetic flux distribution can also
damental quantum logic operatioh$he quality factor gives be a source of decoherence. This is similaimtoin NMR
the number of quantum logic operations that can be persystems. We estimate this for our system by calculating the
formed before the computation decoheres, and should be 1@mount of flux a 1umx1 um wire carrying 100 nA of
or greater for the quantum computer to be able to perfornzurrent induces in a loop of the same size which has its
arbitrarily long quantum computations by the use of error-center 3 um away. We find that the induced frustration is
correction technique®®° aboutsf=10"". If this is taken as an estimate of the typical

Decoherence can be due to “internal” dissipatiguasi-  variance of the frustration that difference qubits experience,
particle resistange or coupling to an environmental degree then there will be a spread of operating frequencies among
of freedom. It is also possible to couple to an environmentathe loops. An estimate df; is the time for the extremes of
degree of freedom, without a dissipative mechanism, thaghis frequency differ bys. This results inty~ m/(2r5f),

will still lead to decoherencé’ where we have taken the larger value from E23f). With
We will now discuss some of the major sources of decor, /,~600 GHz, we findty~1.5 msec. The dipole-dipole
herence. interaction between qubits gives a time of the same order.

Normal state quasiparticles can cause dissipation and en- \We have also estimated the magnetic coupling between
ergy relaxation at finite temperatures in Josephson junctionshe dipole moment of the current loops and the magnetic
However, mesoscopic aluminum junctions have been showmoments of the aluminum nuclei in the wire. At low tem-
to have the BCS temperature dependence for the density @eratures where the quasiparticles are frozen out, the deco-
quasiparticles. At low temperatures this density is exponenherence time for a single qubit is of the orderTof which is
tially small,”* so quasiparticle tunneling will be strongly sup- exponentially large in the low-temperature superconducting
pressed at low temperatures and at low voltages, as was segiate. For an ensemble of qubits, the decoherence time may
in a system with multiple superconducting islands in Ref. 72pe of the order of milliseconds due to the different configu-
We estimate a lower bound of 4Gor the quality factor, rations of nuclear spins in the different qubits. However, this

given a subgap resistance of'4Q." effect may be reduced by aligning the spins or by applying
The qubit can also decohere by spontaneous emission @bmpensating pulse sequences.

photons. We estimate this effect for the case of emission into  Coupling to Ohmic dissipation in the environment has
free space. From the example considered below we concludgeen modeled for superconducting qubits operating in the
that it is advantageous to have the typical size of the systergharging regimé? In this case, the source of decoherence
(the dipole moment dimensionsuch smaller than the radi- can be made sufficiently small such that the quality factor is
ated wavelength, so that the qubit is a maximally inefficientjarge enough. Similar calculations for qubits in the supercon-
antenna. ducting regime of circulating currents have not yet been
We start with a classical expression for the magnetic didone. Experiments to measure this decoherence time in our
pole radiation from an oscillating current in the qubit loop, circuits are underway. In practice electromagnetic coupling
and use it for estimating the emission rate of photdRsr  to the normal state ground plane can limit coheretidew-
the treatment of a more general problem of damping by @ver, a superconducting ground plane can greatly reduce this
dissipative electromagnetic environment, see Ref. 8t a  coupling.
loop of radiusR with an oscillating current of the amplitude  Other possible sources of decoherence are the effects of
of Iy, the radiated power iB,=37°12Z,(R/\)*. HereZ,  the measuring circuit, the arrangement and stability of the
is the vacuum impedance and=c/v is the wavelength of control lines for the magnetic fields, and the ac dielectric
radiation at the oscillation frequency. The radiation is losses in the substrate at microwave frequencies. These and
small when the qubit sizR is much smaller than. A typical  other source of decoherence will have to be estimated in a
rate for photon emission is,'=P,/hv, which gives an es- real circuit environment and measured.
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Taking 0.1 msec as a lower bound on the decoherenc€he solutions 75 ,¢3) comply with sing}=—sing;
time and 10 nsec as a switching time, we find that the qual=sin¢*. Then
ity factor is of the order of 19 Furthermore, if the proper set
of topological excitations is used to store information, the sing*=—asin27f+2¢*). (A3)
decoherence time for quantum computation can be made

substantially longer than the minimum decoherence time for !N order to check the character of the solution we compute

an individual junction circuif® the eigenvalues of the stability matri&?U/agoiagoj , Where
IX. SUMMARY 9?0
' —2=COS(pl+aCOS(27Tf+(p1—(pZ),
Ie1

In this paper we have discussed a superconducting qubit
that has circulating currents of opposite sign as its two logic

R . . k 277
states. The circuit consist of three nanoscale Josephson junc- U _
tions connected in a superconducting loop and controlled by 92 = C0SpFa CoL2mi+ o1~ ), (A4)

magnetic fields. One of the three junctions is a variable junc-

tion made as a SQUID loop. This qubit has quantum states 20
which are equivalent to the states of a particle with an aniso- =—acog2mf+p,—@,).
tropic mass moving in an two-dimensional periodic poten- IP10¢2

tial. Numerical calculations of the quantum states of the qur. e states with cast =cosgl =cos¢* (these are the

bit have been made as well as physical estimates from ; .
tight-binding approximation. The advantages of this qubit isg‘nes we are interested hgrene eigenvalues are

that it can be made insensitive to background charges in the \,=COSe*,
substrate, the flux in the two states can be detected, and the
states can be manipulated with magnetic fields. Coupled sys- \p=COS@* +2a cod 27f +2¢%). (A5)
tems of qubits are also discussed as well as sources of deco-
herence. Whenf #0,1/2 we have used relaxation methods for com-
puting ¢*. Both eigenvalues are greater than zero, which
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that equals zero i3;. Then atf=0.5=f;, A ;=0 which
APPENDIX A: CLASSICAL STABILITY implies ¢* =¥ /2 mod 2 (here and below we associate
the sign inf. with the sign of the phase in order to hafe

In this appendix we find the eigenvalues of the stability>0) Then, going to Eq(A3) we get

matrix for the three-junction potential and the range of frus-

tratio.n aroundf = 1/2,. whgre thgre are two stable classical Sin(F m/2) = — a sin( = 27t 5 1),
solutions with opposite circulating currents.
The potential energy of the Josephson energy of the three- 1
junction qubit is given by Eq(l), +1==asin2mto) (A6)
and
~ U
U=E—=2+a—c05¢1—005go2—acos(27-rf+<p1—<p2). 1 1
J _ = ;
(A1) fe 5 arcsm;. (A7)

We are interested in minimum energy phase configurations; \we now calculatef . when 0.5<@<1.0. Now the first
that is, stable solutions of the following system of equations'eigenvalue to equal zéro ), and we have to solve

aU sing* = — a sin(27f +2¢* )= a sin( = 27f .+ 2¢*),
Gor = SiNert asin2at+ g1 ¢2)=0, ¢ A ¢7)=asin ot2e7)
! cosp* = —2a coq27f+2¢*)=2a cog =27f.+2¢%).

U sin sin(27f+ )=0 (A2) (A8)
- = - o - = V.
ey 2 v We will useA=+27f+2¢*, so that
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1=sir? ¢* +cog ¢*
=a?siP A+4a?cof A
=a’+3a’cogA. (A9)
Then
1—a? 1-a?
COSA = > A=ZFarcco 5
3a a
x> 1-a? . 5 1-a?
cose* = 3 ¢ =Farcco 3 |
(A10)

Here we have followed the solution corresponding to

cos@*)=0. Finally we have the solution forf, (A=
+27f+20%),

2

fe

2 arccoé 2

APPENDIX B: TIGHT-BINDING ESTIMATE
OF COEFFICIENTS OF CHANGE

Recall thatf,=f, and f,=f;+f,/2. Assume that we
changef, and f,, independently. The minima ibJ occur at
<p; =0 andep==* <p°m. Therefore, the energy due to the po-
tential energy is for each of the minimum

E 2+2B—2 cospp,—2Bcoq wf,)cog27fy+2¢7,).
J

(B1)

The change in the magnetic fldx by 6f, causes a change
in U of

)
i 0fa=—2mpBsinf, cos 200 54, (B2)
a

which is the same for the minimum &t ¢°, . Whereas, the
flux f,, causes a change

du

afy (B3)

6f,=F 4B cosmf, sin 202 6f,,
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which has opposite signs for the two minimum. Therefore,

AU
Es

— 2w B sinwf,cos 200 6,1

— 47 B cosmi,sin 200 6,0, (B4)

Recall thatAF in the change is the energy between the
two states when there is no tunneling. This is the second
term in Eq.(B4), since the first term is only a constant for
both levels, so that

AF

E;
For this chang&\F=r 8, +r,68,; and sincedf,= 6, + 5,/2,
we haver,;=2r, and

— 47 B cosmi,sin 202 6o, . (B5)

M

3 (B6)

=47 B cosmi,sin 2¢0,.
We have found previously that cgS=1/2« where a
=2 cosmwf, so that withf,=1/3,

LE PN - 1/(42).

= (B7)
To find the changes iit, we see that the changestip
=(hw/2m)e St'" are dominated by changes %, so that

t IS,

At=—— S 22
h iS5 of

of;. (B8)
The changes irf, do not changes; to first order. Hence,
changes int come from changes ifi,=f, only, so thats;
=0. But changes irf, are equivalent to changes inin the
three-junction problem, so we can use E38) and (16)
and the fact that B cos(rf,) plays the role ofx to find

T 7q (2BsinTia) oty

At (B9)

This allows us to writes,= 5t E;/E., wherey is of the
order of unity. For the operating point we fing~3.5.
Therefore, changes ikl due to changes im; go like o, .
These tight-binding estimates f@=0.8 andf,=1/3 give
$;=0 ands,=0.03.
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