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Reentrance effect in normal-metal/superconducting hybrid loops
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~Received 21 May 1998; revised manuscript received 7 July 1999!

We have measured the transport properties of two mesoscopic hybrid loops composed of a normal-metal arm
and a superconducting arm. The samples differed in the transmittance of the normal/superconducting inter-
faces. While the low-transmittance sample showed monotonic behavior in the low-temperature resistance,
magnetoresistance, and differential resistance, the high-transmittance sample showed reentrant behavior in all
three measurements. This reentrant behavior is due to coherent Andreev reflection at the normal/
superconducting interfaces. We compare the reentrance effect for the three different measurements and discuss
the results based on the theory of quasiclassical Green’s functions.@S0163-1829~99!02745-9#
ti
x-

p
th

he
th

a
iu
tin

t
m

a
y
n

in
gy

(

dj
tu

or

di
as
u
et
on

r-

it-
e-
ns-
ay

nce

s-
n-
as
the

nds.
ion
o a
ry,
m-
in-

re a
er-
tog
ag-
ge.
nce
to a
nts
on
r-

-

nts
of

the

it-

-

I. INTRODUCTION

The resistance of a normal metal~N! in contact with a
superconductor~S! is modified in the vicinity of theNS in-
terface, a phenomenon well known as the superconduc
proximity effect.1 The microscopic mechanism of the pro
imity effect is Andreev reflection at theNS interface: An
electron in the normal metal with energy less than the ga
the superconductor is Andreev-reflected as a hole, with
concurrent generation of a Cooper pair in t
superconductor.2 The consequence of this mechanism is
existence of a superconducting correlation in the norm
metal. Using theories based on quasiclassical nonequilibr
Green’s functions, it was shown that the superconduc
correlation is expected to decay over a lengthj(e)
5(A\DN /e), wheree is the energy of the electron andDN

the diffusion constant of electrons in the normal metal.3–8

The surprising result was predicted that the resistance of
normal metal returns to its normal state value at zero te
perature and energy, the so-called reentrance effect.3–8

The physical manifestation of this reentrant behavior c
be seen in the transport properties which are described b
effective diffusion constantD(e,x), a quantity dependent o
the energy of the electrone and the positionx.6–8 D(e,x)
coincides with its normal state value at zero energy,
creases and reaches a maximum at an intermediate ener
the order of the Thouless energyEc5\DN /L2, and coin-
cides with its normal state value again at higher energiesL
here is the length of the normal metal!. As a function of
temperature, the resistance of a diffusive normal metal a
cent to a superconductor shows a minimum at a tempera
T of the order ofEc /kB ~where kB is the Boltzmann con-
stant!, and regains its normal state value asT→0. A similar
minimum is expected in the differential resistance of the n
mal metal as a function of dc voltageV. If the diffusive
normal metal is connected to two superconductors with
ferent phases, the resistance is expected to oscillate
function of the phase difference between the supercond
ors, which can be modulated by the application of a magn
field. The amplitude of the magnetoresistance oscillati
shows a maximum whenT is of the order ofEc /kB and
vanishes again asT→0 ~neglecting electron-electron inte
PRB 600163-1829/99/60~22!/15356~8!/$15.00
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actions in the normal metal!.6–8 All this is strictly valid only
for high interface transmittances; if the interface transm
tance is low, the probability of Andreev reflection is corr
spondingly reduced, and the reentrant behavior in the tra
port properties is shifted to lower energy scales, and m
disappear entirely.5,9

Several groups have reported observing this reentra
effect in normal-metal–superconductor (NS) or
semiconductor-superconductor (SmS) structures. In NS
structures, Courtoiset al.10 reported observing magnetoresi
tance oscillations in a normal Cu loop with two superco
ducting Al islands on either side. No reentrant behavior w
observed, however, possibly because it was masked by
Josephson coupling between the superconducting isla
Charlatet al.11 observed the reentrance effect as a funct
of both temperature and voltage in a Cu loop adjacent t
small superconducting Al island. In a different geomet
Petrashovet al.12 observed the reentrance effect in the a
plitude of magnetoresistance oscillations in an Andreev
terferometer. InSmSstructures, den Hartoget al.13,14 have
reported observing reentrant behavior in a geometry whe
diffusive two-dimensional electron gas is coupled to a sup
conductor to form a loop. In these experiments, den Har
et al. observed reentrant behavior in the amplitude of m
netoresistance oscillations as a function of dc volta
Toyodaet al.15 observed reentrance in the magnetoresista
oscillations of a two dimensional electron gas connected
superconducting loop. While the results of these experime
qualitatively agree with the theory, quantitative comparis
with theory is still not satisfactory, especially at high ene
gies or temperatures close toTc , where quantitative predic
tions are difficult to obtain.

In this paper, we report detailed transport measureme
on two of theNS devices we have measured as a function
temperatureT, magnetic fieldH and dc voltage biasV. Both
devices are in the form of square loops, with one arm of
loop fabricated from a normal metal~Ag or Au! and the
remaining three arms from a superconductor~Al !. The pri-
mary difference between the two samples is in the transm
tance of theNS interfaces: One sample~sample A! has low
interface transmittances (Rb /RN.1, whereRb is the inter-
face resistance andRN is resistance of the normal metal!,
while the other sample~sample B! has high interface trans
15 356 ©1999 The American Physical Society
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PRB 60 15 357REENTRANCE EFFECT IN NORMAL- . . .
mittances (Rb /RN!1). Both samples show a strong tem
perature dependent resistanceR(T), large oscillations in the
magnetoresistanceR(H), and a differential resistancedV/dI
which is a function ofV below the critical temperatureTc of
the superconductor. While sample A shows monotonic
havior in all three measurements, sample B shows reen
behavior inR(T), dV/dI(V), and amplitude of oscillations
in R(H) as a function ofT. A third Andreev interferometer
fabricated from Ag/Al was also measured, but the expe
mental results were similar to those of sample B and so
not be discussed in detail here. The temperature and en
scales for this reentrant behavior are in qualitative agreem
with recent theories on Andreev reflection in mesoscopicNS
devices,3–8 although detailed quantitative agreement is s
lacking.

II. SAMPLE FABRICATION AND MEASUREMENT

An electron beam micrograph of sample A is shown
Fig. 1~a!, and schematics of the two samples A and B
shown in Fig. 1~b!. The samples were fabricated by a co
ventional multilevel electron-beam lithography process. T
normal metal was deposited first. After a second level
e-beam lithography, the normal metal surface was cleane
a dc Ar1 etch and the superconductor~Al ! was deposited
without breaking vacuum in order to ensure good conta
betweenN and S. Au was used as the normal metal f
sample A, while Ag was used for sample B. Control Ag a
Al wires were coevaporated with sample B in order to ca
brate film properties. The relevant film parameters are
follows: Au/Ag thickness;28 nm, Al thickness;37 nm,
wire linewidth ;0.120.14 mm, normal metal~Ag! coher-
ence lengthjN(T);0.23 mm/AT, superconducting coher
ence lengthjAl(T50)50.31 mm, and electron phase co
herence lengthLw50.9 mm at T530 mK.16 The areas of
theNS interfaces were approximately 0.1530.15 mm2. The
samples were measured in a dilution fridge between 30
and 1.5 K using a four-terminal ac resistance bridge, with
excitations in the range of 10–100 nA, small enough to av

FIG. 1. ~a! Scanning electron micrograph of sample A. T
additional gate electrode was kept grounded and not used in t
measurements.~b! Sample schematics for the two samples. T
dimensions are indicated inmm. The leads used to apply ac cu
rents and measure the voltages are also shown in the schem
For the dV/dI measurements, an additional dc current is appl
throughI 6.
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self-heating. The four terminal measurement configuratio
shown in Fig. 1~b!. For the dV/dI measurements, the d
current was applied through the same leads as the ac cur
Aside from the transparency of the interfaces, the major
ference between the two samples is the greater length o
normal metal arms beyond the loop in sample A in compa
son to sample B@see Fig. 1~b!#.

III. EXPERIMENTAL RESULTS

Figure 2 shows the resistance of both samples as a f
tion of temperature. The first difference noticeable betwe
the two samples can be seen nearTc . For sample B, there is
a sharp drop in resistance as the sample is cooled thro
Tc . If the NS interface resistances were negligible, o
might expect the superconducting arm to short out the n
mal arm of the loop, resulting in a decrease in resista
corresponding to the normal state resistance of the l
alone. This is indeed the change in resistance we observ
sample B within our experimental error, based on the m
sured resistivities of the normal metal and superconduc
Thus, the interface in sample B appears to be highly tra
parent. Since the resistance of sample A does not sho
sharp drop atTc , but only a gradual and small decrease
the temperature is lowered, we conclude that the interf
transmittances for this sample are small. We can also e
mate the barrier resistance from the resistivities of the A
Au, and Al films along with the measured resistance of
samples. Based on these measurements, the resistan
eachNS interface is;25V for sample A and,0.5V for
sample B.

The second major difference between the two sample
seen in the low temperature behavior. When the tempera
is reduced fromT51.2 K to 30 mK, the resistance o
sample A decreases monotonically. Sample B, on the o
hand, eventually shows anincreasein the resistance, result
ing in a minimum in the resistance at;520 mK. This is
similar to the behavior observed by Charlatet al.11 in their
Cu/Al loops, and was attributed by them to the proxim
effect in the Cu loop induced by the Al island. The tempe
ture at which the resistance minimumRmin occurs is given
approximately by the temperature at whichjN(e5kBT) is
comparable to length of the relevant normal region. F
sample B, the normal regions that contribute to the low te
perature zero bias resistance are the small normal arms
side the loop, which have lengths of 0.15 and 0.55mm,
respectively, since the loop itself has zero resistance be

se

ics.
d

FIG. 2. The normalized resistanceR/RN for samples A and B as
a function of temperatureT. RN567.5V and 10.3V for samples A
and B, respectively.
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15 358 PRB 60C.-J. CHIEN AND V. CHANDRASEKHAR
Tc . The resistance at the lowest temperature is 5.9V which
corresponds to the resistance of the normal side branch
this temperature as noted above. Due to its longer length
contribution from the 0.55mm arm should dominate th
electrical transport. The temperature corresponding to
Thouless energy for this arm isT5Ec /kB;170 mK, a fac-
tor of 3 lower than the measured temperature of;520 mK.
However, it should be noted that for a normal wire with o
end connected to a superconducting reservoir and the o
end to a normal reservoir, the minimum is expected to oc
at T;5Ec /kB @4,6#. For sample A, the absence of reentra
behavior is consistent with the fact the interface transm
tances in this sample are small. In addition, the normal s
arms are long, and would not be expected to show reent
behavior in our temperature range. If one considers the
mal region in the immediate vicinity of the low transmissio
interface as a highly disordered conductor with a very l
diffusion coefficient D, the relevantjN(T) is very short, and
hence the reentrant behavior is pushed to much lower e
gies and temperatures.5,13

A similar difference between the two samples can be
served by examining the magnetoresistance oscillations
function of temperature. Figure 3~a! shows the magnetoresis
tance of sample A at a few temperatures below 1 K. Os
lations of a period corresponding to a fluxh/2e through the
loop are observed which persist up to the critical tempera
Tc of the superconductor, and whose amplitude at the low
temperatures is much larger thane2/h ~in terms of conduc-
tance!. Similar oscillations are seen in sample B@Fig. 3~b!#.
The presence of magnetoresistance oscillations points to
existence of a quantum interference effect involving
doubly-connected loop. The large amplitude of these osc
tions rules out the possibility of their being due to a norm
metal quantum interference effect such as weak localiza
or conductance fluctuations, whose amplitude is typica
;e2/h, and points to a coherent interference phenome
involving charge carriers in the normal and superconduc
arms of the loop.17–24

Figure 3~c! shows the amplitude of the magnetoresistan
oscillations for the two samples as a function of temperatu
The amplitude is determined by calculating the power in
Fourier transform in the inverse field range corresponding
the area of the loop, over the field range625 mT for sample
A and 620 mT for sample B. While the oscillation ampl
tude in sample A shows a monotonic increase as the t
perature is decreased, the amplitude of the oscillations
sample B displays reentrant behavior with a maximum a
temperature of;200 mK. Since the oscillations arise from
interference effects around the loop, one might expect
the amplitude of the oscillations would be determined by
ratio of jN(e5kBT) to half the lengthL of the normal arm,
which is ;1.1 mm. At T;170 mK, 2jN(e5kBT)5L.
This is in good agreement with the temperature at which
observe the amplitude maximum. For sample A, no s
maximum is observed, even though the film parameters
the two samples are similar. This again is a consequenc
the lowNS interface transparencies in this sample. At high
temperatures, both samples show a temperature depend
which is well described by a function of the form
exp@2aL/jN(T)#, as can be seen in Fig. 3~c!. This is in con-
trast to the results of Courtoiset al.,10 where the magnetore
at
he

e

er
r

t
t-
e
nt
r-

r-

-
a

l-

re
st

he
e
-
l
n

y
n
g

e
e.
e
o

-
or
a

at
e

e
h
or
of
r
nce

sistance oscillations were seen to decay as a power la
temperature. For comparison, we also show the best fit to
power law dependence found in Ref. 10, which does
describe the data well. This difference may arise from
difference in the geometry of the samples in the two exp
ments. In the samples of Courtoiset al., the oscillations
come directly from the proximity coupled ring, whereas
our samples, the oscillations come primarily from nonloc
contributions to the side arms of the ring.

FIG. 3. ~a!, ~b! are the magnetoresistance curvesR(H) for
sample A and B, respectively. The small offset ofH in ~a! is due to
the residual flux trapped in the superconducting magnet. In~a! the
curves forT5101 mK, 203 mK, 400 mK, and 1.07 K are shifte
up by 4, 8, 12, and 16V, respectively. In~b! the curves forT
597, 199, 491, and 600 mK are shifted up by 0.2, 0.4, 0.7, a
0.8V, respectively.~c! Normalized amplitude of the Fourier trans
form of ~a! and~b! as a function of temperature. The field range
625 and620 mT and the normalization constant is 0.982 a
0.019V for samples A and B, respectively. The solid lines repres
fits to the form a exp(2bT1/2) at higher temperatures, witha
53.1, 2.7 andb53.4, 2.2 K21/2 for samples A and B, respec
tively. For comparison, we also show a best fit to a power law of
form a/T as used by Courtoiset al., Ref. 10 with the valuesa
50.128, 0.238 K for samples A and B, respectively.
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PRB 60 15 359REENTRANCE EFFECT IN NORMAL- . . .
The differential resistancesdV/dI as a function ofV of
sample A and sample B also show differences which
consistent with the difference in the quality of their inte
faces. Figure 4 showsdV/dI as a function ofV for both
samples at low temperature and bias. Sample B again sh
reentrant behavior, with a resistance minimum at a bias v
age of;7.25 mV. As in the temperature dependent res
tance, only the two normal side arms are expected to c
tribute at low dc bias.Ec for the longer arm is 15meV, and
hence the voltage at the resistance minimum issmaller than
expected by approximately factor of two. This should
contrasted with the temperature dependence of this sam
which was discussed earlier, where the temperature at w
the minimum in resistance was observed waslarger than
Ec /kB by a factor of 3. This discrepancy will be discuss
later when we attempt to compare these data with the qu
classical Green’s function theory.

In contrast to sample B, sample A shows only a grad
increase in resistance at zero field with voltage, consis
with the behavior seen in the temperature dependence.
finite magnetic field of 225 G, the curvature of the pe
changes, anddV/dI as a function ofV shows what appear
to be reentrant behavior as a function of voltage, similar
that of sample B. However, this change in the curvature
not due to reentrance, which can be seen by examining
temperature dependence of the sample in a finite magn
field. Figure 5~a! shows the temperature dependent resista
of sample A at six different magnetic fields corresponding
0, 1/2, 1, 3/2, 9, and 19/2 flux quantah/2e through the area
of the loop. Although the curves for half-integral flux quan
are different from those for integral flux quanta, and the
sistance increases at higher magnetic fields, no reentran
havior is observed. Even though the resistance of the ba
in sample A (;25V) is not in the tunnel regime, we believ
that the change in curvature is similar to the behavior
served by Kastalskyet al.25 van Weeset al.26 explained
Kastalskyet al.’s results as arising from suppression of c
herent multiple Andreev reflections by a magnetic field, d
to the confinement of the quasiparticle interference pa

FIG. 4. NormalizeddV/dI as a function of dc voltageV at T
530 mK for sample A~solid curve! and B ~dotted curve!. The
voltage is obtained by integratingdV/dI vs I dc . ac and dc currents
are applied throughI 6 shown in Fig. 1~b!. (dV/dI)N is 67.5 and
10.3V for samples A and B, respectively. The dashed curve sh
dV/dI for sample A at a magnetic field of 225 G.
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near the interface by the disorder in the samples. Figure~b!
shows similar data for sample B, where curves for both
tegral and half-integral flux quanta show clear reentrant
havior. At half-integral flux quanta, there is a small increa
in the temperatureTmin at which the resistance minimum
occurs, but the curve for zero and one flux quantum
almost the same. This is in contrast to the results of Cha
et al.,11 who saw a monotonic increase inTmin as the mag-
netic field was increased which they attributed to the fi
dependence of the electron phase coherence lengthLw . At
finite magnetic field,Lw is shorter than at zero field.32 Since
Lw defines the cutoff length for coherent Andreev reflectio
Lw corresponds to the effective length of the sample, a
hence the minimum in resistance as a function of tempe
ture would move to higher temperatures as a function
magnetic field. This is clearly not seen in our samples.

IV. DISCUSSION

A. Quasiclassical Green’s function model

We shall now attempt a quantitative description of t
temperature and voltage dependences of sample B using
quasiclassical Green’s function theory. Our analysis is ba

s

FIG. 5. R(T) measured for~a! sample A, and~b! sample B at
various values of integral and half-integral flux quantah/2e through
the loop. Closed symbols, integral flux quanta, open symbols, h
integral flux quanta. The temperature dependent curves were
tained from data similar to that of Fig. 3.
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15 360 PRB 60C.-J. CHIEN AND V. CHANDRASEKHAR
on solving the Usadel equation27 for the parametrized pai
correlation functionu(e,x) in the normal metal.3–8 u(e,x) is
a function of the energye and positionx. Assuming that the
electron phase coherence lengthLw is much longer than the
length of the normal metal, the Usadel equation can be w
ten in the simplified form

]2u~e,x!

]x2
12i e sinu~e,x!50. ~1!

The current is then given by the equation developed in Re
~for the special case of a perfect interface!:

I ~V,T!5
1

2RN
E

0

`

deF tanhS e1eV

2kBT D2tanhS e2eV

2kBT D GD~e!,

~2!

whereD(e) is the energy dependent diffusion coefficient
the normal metal which is given in terms ofu(e,x) by

D~e!5
1

1

LE0

L

dx sech2@ Im u~e,x!#

. ~3!

The conductance is obtained from Eq.~2! by taking the de-
rivative with respect to the voltageV, G(V,T)5dI/dV.
At zero bias, the calculation is simplified and the followin
formula is obtained for the resistanceR(T):

R~T!5RNF E0

` de

2kBTcosh2~e/2kBT!

3
1

1

LE0

L

dx sech2@ Im u~e,x!#G21

. ~4!

Equation ~1! must be solved subject to the appropria
boundary conditions, which are usually specified at theN
and S reservoirs.5,6,8 At a N reservior,u(e,x)50. At a S
reservoir,

u~e,x!5
p

2
1 i

1

2
lnFD~T!1e

D~T!2eG ~5a!

for e,D(T), and

u~e,x!5 i
1

2
lnFe1D~T!

e2D~T!G ~5b!

for e.D(T), whereD(T) is the temperature dependent s
perconducting energy gap. At theNS interface

sN,SSF]u~e,x!

]x G5Gb sin@us~L,e!2uN~L,e!#, ~5c!

wheresN,S is the conductivity of the interface,S is the cross
section of the wire andGb is the conductance of the inte
t-

8

face. Finally, at a node where two or more normal wir
intersect, the boundary condition is determined by
Kirchoff-like equation of the form

(
i

Si

]u~e,x!

]x
50, ~5d!

whereSi denotes the cross section of the branchi joining the
node.8

Conceptually, at least, determining the resistance of
arbitrary sample is a straightforward matter: one solves
Usadel equation for the pair amplitudeu(e,x) subject to the
appropriate boundary conditions, then substitutes the re
into either Eq.~2! or ~4!. Practically, however, the Usade
equation needs to be solved numerically. This is not ea
particularly for complicated structures such as our Andre
interferometers, and we make certain simplifying assum
tions to make the calculation tractable. Figure 6~a! shows a
schematic of sample B. As we have noted earlier, we ass
that theNS interface resistances are very small, so that
loop resistance is zero, as it is shorted by the supercond
ing arm. The measured normal-metal resistanceR is then
simply the sum of the twoN side branches,R1 andR2. To
determine the resistance of these structures in the proxim
effect regime, we need to solve the Usadel equation in
one dimensional wires on either side of the loop. Since
electron phase coherence lengthLw places an upper cutoff to
the pair correlation in the normal metal, we take the norm
reserviors to be at a distanceLw from the superconductor
Finally, our calculations show that the effect of the volta
probes onu(e,x) in the side arms of the structure is ve
small, and hence we ignore the effect of these probes.

Figure 6~b! shows the finalNSNgeometry that we simu-
late based on the procedure developed in Refs. 5,6,8. If
consider the superconductor to be at zero voltage, the en
e of the quasiparticles in each branchi of the structure is
related to the voltage dropVi between the correspondin
normal reservoir and the superconductor bye i5eVi . How-

FIG. 6. Schematic of the simulated model.~a! Actual sample.
~b! Geometry used in the calculation.
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PRB 60 15 361REENTRANCE EFFECT IN NORMAL- . . .
ever, due to the four terminal nature of our measureme
the voltage that is actually measured is the voltageV2-V1 at
the voltage probes. Although the potential profile in the o
dimensional normal wire between the normal and superc
ducting reservoirs is not predicted to be linear,28 the devia-
tions from linearity are small enough that we can relate
voltages measured at each probe to the voltageV at the cor-
responding normal reservoir by a linear scaling of the fo
Vi5V(Li /Lw), whereLi is the length of the arm from the
superconductor to the point at which the voltage probe jo
the wire. (Lw is the effective distance to the correspondi
normal reservoir.! Furthermore, to calculate the resistance
each branch, we need to use Eq.~4!, but with the integral
over the lengthL restricted toLi for each branch, and th
normal state resistanceRN corresponding to the normal sta
resistanceRNi for each arm. The total temperature depend
resistance of the sample is then the sum of the resista
R1(T) andR2(T).

B. Temperature dependence

In most previous theoretical simulations of the proxim
effect,D has been assumed to be independent of tempera
and much larger than the energy of the quasiparticle in
normal metal («!D).29 For Al, where the gap goes to zer
in the experimental regime of interest, this is clearly no
valid assumption, and it is necessary to take into account
temperature dependence ofD.

The solid line in Fig. 7~a! shows the sumR1(T)1R2(T)
assuming a BCS-like temperature dependence of the
with D(T50)5167 meV529.28 Ec taken to match the su
perconducting transition in the experimental data. For co
parison, the dashed line in Fig. 7~a! shows a simulation of
R1(T)1R2(T) assuming a temperature independent gap
D5200 Ec , much larger than the range of energies« used
in the simulation, the assumption used in most previous c
parisons to experimental data. Both theoretical curves do
fit the data. While the simulation with a fixed gap agre
reasonably well with the data at low temperatures, it clea
does not describe the data at higher temperatures nearTc .
This is to be expected, since a gap ofD5200 Ec corre-
sponds to a much higher transition temperature. The sim
tion with the variable gap, on the other hand, does acco
for the rapid increase in resistance nearTc , but it grossly
overestimates the contribution due to the proximity effe
The large correction to the conductance predicted by
simulation with a variable gap is a consequence of the div
gence of the boundary condition Eqs.~5a! and ~5b! when«
5D(T), which occurs at all temperatures in the range
interest. In order to make the simulations numerically tr
table, one needs to cut off the divergence by introducing
imaginary componentg of the quasiparticle energy,«→«
1 ig, whereg corresponds to a finite inelastic lifetime of th
quasiparticles.5 For the variable gap simulation in Fig. 7~a!,
we have used a value ofg50.5 Ec , which corresponds to a
scattering length ofLw . If the value ofg is increased, the
contribution due to the proximity effect decreases. Fig
7~b! shows a comparison of two simulations assuming a te
perature dependent gap withg50.5 Ec and g58.0 Ec .
(g58.0 Ec corresponds to a scattering length ofLw/4
50.225 mm). Although the curve withg58.0 Ec provides
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a better description at lower temperatures, there is sti
substantial discrepancy between this curve and the exp
mental data at higher temperatures. Using a reduced valu
the T50 gap as in Petrashovet al.29 changes the curve, bu
does not improve the agreement with the experiment. At
point, the source of the discrepancy at higher temperature
not clear, although it may be related to nonequilibrium s
perconductivity processes near the transition.30

C. Voltage dependence

A similar analysis can be used to calculate the differen
resistancedV/dI5R(V) as a function of voltageV. To cal-
culate R(V), one notes the temperature kernel in the in
grand of Eq.~2! becomes a step function atT50 with the
discontinuity centered ate5eV, i.e., the contribution to the

FIG. 7. Simulation of the resistance as a function of tempera
as described in the text.~a! Solid circles, experimental data fo
sample B; solid line, simulation with a variable temperature g
with D(T50)529.28 Ec andg50.5 Ec ; dashed line, simulation
with a temperature independent gap ofD5200 Ec . ~b! Depen-
dence on the inelastic parameterg. Solid circles, experimental data
solid line, temperature dependent gap simulation of~a!, with g
50.5 Ec ; dashed line, temperature dependent gap simulation,
with g58.0 Ec . Ec /kB5\D/Lw

2kB50.066 K for these plots.
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total currentI comes only fromueu,eV.5 The conductance
dI/dV thus contains ad function centered atueu5eV. This
results in a simple formula atT50:5

R~V!5RNS 1

LE0

L

sech2@ Im u~e,x!#dxD
e5eV

. ~6!

This formula is applicable to each branch in Fig. 6~b!. In
order to calculate the total resistanceR(V), however, one
must take into account that the voltageV across the entire
sample is the sum of the voltagesV1 and V2 across each
individual branch, subject to the condition that the curre
through both branches is the same. Figure 8 shows the
perimental data and the calculated curve~solid line! based on
the procedure outlined above, withD(0)522.98 Ec . The
agreement between theory and experiment is clearly not
isfactory. The minimum in the experimental resistance
curs at a voltage of;7.25 mV, while the theoretical curve
does not show a minimum in the voltage range 0–40meV,
but only an inflection point atV;20 meV. The simulation
with D5200Ec@« ~dashed line in Fig. 8! does show a mini-
mum, but the agreement with the experimental data is
good. Although we are not certain about the reason for
discrepancy, we note that the theoretical calculations do
take into account heating of the electron gas by the dc
rent. Even for samples which are shorter thanLw , appre-
ciable heating of the electron gas may take place in
sample,31 which would raise the effective temperature of t
electrons. Since the minimum indV/dI is expected to occu
at lower values ofV at higher temperatures, heating of th
electron gas by the dc current would have the effect of pu
ing the observed minimum indV/dI as a function ofV to

FIG. 8. Comparison of the theoretical calculation based on
theory of quasiclassical Green’s functions with the measu
dV/dI(V) ~triangles!. Solid line, D529.28 Ec ; dashed line,D
5200 Ec .
t
x-

at-
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values lower than those expected from the theory. We
lieve that this is the mechanism responsible for the discr
ancy between the observed energy scales for the voltage
temperature dependence of the differential resistance.

D. Magnetoresistance oscillations

The loop in our Andreev interferometers is essential
the observation of magnetoresistance oscillations, but
doubly connected nature of the sample complicates the
culation tremendously. Consequently, we have not attemp
to numerically solve the quasiclassical Green’s funct
equations in the presence of a magnetic field. However,
qualitative behavior can be understood by drawing on
experience with other quantum interference phenomen
doubly connected geometries. For the case of weak loca
tion in single normal metal rings, for example, the magn
toresistance oscillates as a function of magnetic field w
fundamental periodh/2e.32 The oscillations are suppresse
exponentially with the phase coherence lengthLw , exp
(2L/Lw), whereL is the perimeter of the loop. The differenc
between the geometry of those experiments and the ge
etry of sample B, for example, is that the oscillations
sample B arise primarily from a nonlocal contribution to t
side arms from the loop. Nonlocal magnetoresistance os
lations have already been observed in normal me
samples.33 In the normal metal case, the nonlocal oscillatio
arise from an electron wave from the ‘‘local’’ part of th
sample interfering with itself after going around the ‘‘nonl
cal’’ ring, so long as partial phase coherence is maintain
We believe a similar situation occurs in the Andreev int
ferometers, except that it is the correlated pair amplitude
the proximity coupled normal metal which interferes wi
itself. In Andreev interferometers, quantum coherence
maintained in the superconducting arms of the loop. In
normal arm, the oscillation amplitude is determined by t
phase coherence lengthjN . Since the normal arm is con
nected to the superconductor on both sides, the suppres
of the oscillation amplitude might be expected to go
;exp@2L/(2jN)#, whereL is now the length of the norma
arm. This exponential dependence is what we indeed obs
in sample A, and also in sample B at higher temperatu
The reentrance effect we see in the amplitude of the mag
toresistance oscillations in sample B is an indication t
these oscillations are dependent on the enhancement o
diffusion coefficient in the normal arm of the loop.

V. CONCLUSION

In conclusion, we have investigated the reentrance ef
in two mesoscopicNS hybrid loops with different interface
transparencies. The low transmittance sample showed n
entrant behavior, consistent with the fact that the relev
energy and temperature scales were shifted to values b
our measurement range. The high transmittance sample
the other hand, showed reentrant behavior inR(T),
dV/dI(V), and amplitude of magnetoresistance oscillatio
due to the long range coherence of the electron-hole p
induced by Andreev reflection at theNS interfaces. A quan-
titative understanding of the experimental results cannot
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obtained from the quasiclassical Green’s function theory
reentrance alone. For a more complete quantitative un
standing of the properties of suchNS devices, we believe it
is essential to understand the effect of inelastic processes
nonequilibrium phenomena on the transport properties,
ticularly at high bias voltages or near the transition tempe
ture of the superconductor.
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