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Reentrance effect in normal-metal/superconducting hybrid loops
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We have measured the transport properties of two mesoscopic hybrid loops composed of a normal-metal arm
and a superconducting arm. The samples differed in the transmittance of the normal/superconducting inter-
faces. While the low-transmittance sample showed monotonic behavior in the low-temperature resistance,
magnetoresistance, and differential resistance, the high-transmittance sample showed reentrant behavior in all
three measurements. This reentrant behavior is due to coherent Andreev reflection at the normal/
superconducting interfaces. We compare the reentrance effect for the three different measurements and discuss
the results based on the theory of quasiclassical Green’s funcf®d$63-18209)02745-9

[. INTRODUCTION actions in the normal metgi=2 All this is strictly valid only
for high interface transmittances; if the interface transmit-

The resistance of a normal metd) in contact with a tance is low, the probability of Andreev reflection is corre-
superconducto(S) is modified in the vicinity of theNSin-  spondingly reduced, and the reentrant behavior in the trans-
terface, a phenomenon well known as the superconductingort properties is shifted to lower energy scales, and may
proximity effect! The microscopic mechanism of the prox- disappear entirely’
imity effect is Andreev reflection at th&l'S interface: An Several groups have reported observing this reentrance
electron in the normal metal with energy less than the gap offfect i normal-metal—superconductor N§)  or
the superconductor is Andreev-reflected as a hole, with thgem|conductor-supercolrgductOISmS structures. InNS
concurrent generation of a Cooper pair in the Structures, Courtoist al."~ reported observing magnetoresis-

superconductot.The consequence of this mechanism is thet@nce oscillations in a normal Cu loop with two supercon-

existence of a superconducting correlation in the normaid

metal. Using theories based on quasiclassical nonequilibriu bserved, howevgr, possibly because it was magked. by the
Green'’s functions, it was shown that the superconductin osephson coupling between the superconducting |sla_nds.
correlation is ex,pecte d to decay over a lengthie) harlatet al!* observed the reentrance effect as a function

. of both temperature and voltage in a Cu loop adjacent to a
=(VhDy/e), wheree is the energy of the electron atly a1 superconducting Al island. In a different geometry,
the diffusion constant of electrons in the normal métél. Petrashowet all2 observed the reentrance effect in the am-

The surprising result was predicted that the resistance of thgjitude of magnetoresistance oscillations in an Andreev in-
normal metal returns to its normal state value at zero teMyerferometer. INSm Sstructures, den Hartogt al'>!* have
perature and energy, the so-called reentrance €fféct. reported observing reentrant behavior in a geometry where a
The physical manifestation of this reentrant behavior cariffusive two-dimensional electron gas is coupled to a super-
be seen in the transport properties which are described by afbnductor to form a loop. In these experiments, den Hartog
effective diffusion constariD(e,x), a quantity dependent on et al. observed reentrant behavior in the amplitude of mag-
the energy of the electrom and the positiorx.5~8 D(¢,x) netoresistance oscillations as a function of dc voltage.
coincides with its normal state value at zero energy, in-Toyodaet all® observed reentrance in the magnetoresistance
creases and reaches a maximum at an intermediate energyascillations of a two dimensional electron gas connected to a
the order of the Thouless enerdg.=%Dy/L?, and coin-  superconducting loop. While the results of these experiments
cides with its normal state value again at higher enerdies ( qualitatively agree with the theory, quantitative comparison
here is the length of the normal metaAs a function of  with theory is still not satisfactory, especially at high ener-
temperature, the resistance of a diffusive normal metal adjegies or temperatures close 1@, where quantitative predic-
cent to a superconductor shows a minimum at a temperatutens are difficult to obtain.
T of the order ofE./kg (Wherekg is the Boltzmann con- In this paper, we report detailed transport measurements
stany, and regains its normal state valueTas:0. A similar  on two of theN S devices we have measured as a function of
minimum is expected in the differential resistance of the nortemperaturél, magnetic fieldH and dc voltage bia¥. Both
mal metal as a function of dc voltagé If the diffusive  devices are in the form of square loops, with one arm of the
normal metal is connected to two superconductors with difloop fabricated from a normal metéaAg or Au) and the
ferent phases, the resistance is expected to oscillate asr@maining three arms from a supercondudtl). The pri-
function of the phase difference between the superconductary difference between the two samples is in the transmit-
ors, which can be modulated by the application of a magnetitance of theN S interfaces: One samplsample A has low
field. The amplitude of the magnetoresistance oscillationsgnterface transmittancesR(,/Ry>1, whereR; is the inter-
shows a maximum wheiff is of the order ofE./kg and face resistance anRy is resistance of the normal metal
vanishes again a§—0 (neglecting electron-electron inter- while the other samplésample B has high interface trans-
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FIG. 2. The normalized resistanB2R, for samples A and B as
a function of temperaturé. Ry=67.5X) and 10.3) for samples A
and B, respectively.

FIG. 1. (8 Scanning electron micrograph of sample A. The self-heating. The four terminal measurement configuration is
additional gate electrode was kept grounded and not used in theshown in Fig. 1b). For the dV/dl measurements, the dc
measurementsb) Sample schematics for the two samples. Thecurrent was applied through the same leads as the ac current.
dimensions are indicated iam. The leads used to apply ac cur- Aside from the transparency of the interfaces, the major dif-
rents and measure the voltages are also shown in the schemati§gsrence between the two samples is the greater length of the
For thedV/dl measurements, an additional dc current is app'iEdnorma| metal arms beyond the |Oop in Samp|e Ain Compari_

throughl =. son to sample Bsee Fig. 1)].

mittances R,/Ry<<1). Both samples show a strong tem- Ill. EXPERIMENTAL RESULTS

perature dependent resistarREl), large oscillations in the '

magnetoresistand®(H), and a differential resistanabv/d| Figure 2 shows the resistance of both samples as a func-

which is a function oV below the critical temperaturg, of  tion of temperature. The first difference noticeable between
the superconductor. While sample A shows monotonic bethe two samples can be seen n&ar For sample B, there is
havior in all three measurements, sample B shows reentraat sharp drop in resistance as the sample is cooled through
behavior inR(T), dV/dI(V), and amplitude of oscillations T.. If the NS interface resistances were negligible, one
in R(H) as a function ofT. A third Andreev interferometer might expect the superconducting arm to short out the nor-
fabricated from Ag/Al was also measured, but the experiimal arm of the loop, resulting in a decrease in resistance
mental results were similar to those of sample B and so wilcorresponding to the normal state resistance of the loop
not be discussed in detail here. The temperature and energyone. This is indeed the change in resistance we observe for
scales for this reentrant behavior are in qualitative agreemeisample B within our experimental error, based on the mea-
with recent theories on Andreev reflection in mesoscofc  sured resistivities of the normal metal and superconductor.
devices’™® although detailed quantitative agreement is still Thus, the interface in sample B appears to be highly trans-

lacking. parent. Since the resistance of sample A does not show a
sharp drop afl;, but only a gradual and small decrease as
Il. SAMPLE FABRICATION AND MEASUREMENT the temperature is lowered, we conclude that the interface

transmittances for this sample are small. We can also esti-

An electron beam micrograph of sample A is shown inmate the barrier resistance from the resistivities of the Ag,
Fig. 1(a), and schematics of the two samples A and B areAu, and Al films along with the measured resistance of the
shown in Fig. 1b). The samples were fabricated by a con-samples. Based on these measurements, the resistance of
ventional multilevel electron-beam lithography process. TheeachNS interface is~25() for sample A and<0.5Q for
normal metal was deposited first. After a second level ofsample B.
e-beam lithography, the normal metal surface was cleaned by The second major difference between the two samples is
a dc Ar" etch and the superconductokl) was deposited seen in the low temperature behavior. When the temperature
without breaking vacuum in order to ensure good contactgs reduced fromT=1.2 K to 30 mK, the resistance of
betweenN and S. Au was used as the normal metal for sample A decreases monotonically. Sample B, on the other
sample A, while Ag was used for sample B. Control Ag andhand, eventually shows dncreasein the resistance, result-
Al wires were coevaporated with sample B in order to cali-ing in a minimum in the resistance at520 mK. This is
brate film properties. The relevant film parameters are asimilar to the behavior observed by Charédtal*! in their
follows: Au/Ag thickness~28 nm, Al thickness~37 nm,  Cu/Al loops, and was attributed by them to the proximity
wire linewidth ~0.1-0.14 um, normal metalAg) coher-  effect in the Cu loop induced by the Al island. The tempera-
ence lengthéy(T)~0.23 wm/\/T, superconducting coher- ture at which the resistance minimuRy,;, occurs is given
ence lengthé, (T=0)=0.31 um, and electron phase co- approximately by the temperature at whiéQ(e=kgT) is
herence length. ,=0.9 um at T=30 mK.!® The areas of comparable to length of the relevant normal region. For
theNSinterfaces were approximately 0:49.15 um?. The  sample B, the normal regions that contribute to the low tem-
samples were measured in a dilution fridge between 30 mKoerature zero bias resistance are the small normal arms out-
and 1.5 K using a four-terminal ac resistance bridge, with aside the loop, which have lengths of 0.15 and 0B,
excitations in the range of 10—100 nA, small enough to avoidespectively, since the loop itself has zero resistance below
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T.. The resistance at the lowest temperature i$)5vghich gop— T o
corresponds to the resistance of the normal side branches | s 1.07 K 1
this temperature as noted above. Due to its longer length, thi 76 Fenin s AT
contribution from the 0.55um arm should dominate the 72 Fnn VA - M\ijggfllg
electrical transport. The temperature corresponding to the 68 [ N\/\f\\/\/\f\j\ A N\N vV 203 mK]
Thouless energy for this arm &&= E./kg~170 mK, a fac- -\N\’\N\/\/\,ﬂv\/\ , Y 101 mK]
tor of 3 lower than the measured temperature-&20 mK. 64 _‘\Afvv\f\/\ A ‘J\/\/\)A\ A AUVY AN
However, it should be noted that for a normal wire with one 60} ’ Vf‘v"\j\ m "dr Jr vvl\/\/\f‘ 30 mK-]
end connected to a superconducting reservoir and the othe _ 56l (@) v ‘V'\/u“\,j\v’\’ / $25 e’/h -

end to a normal reservoir, the minimum is expected to occurCh . et .
at T~5E./kg [4,6]. For sample A, the absence of reentrant & J 600 mK

behavior is consistent with the fact the interface transmit- 6.2 =
tances in this sample are small. In addition, the normal side W 491 mK |
199 mK

| IS T T T [N T WORS TN W
L

E

arms are long, and would not be expected to show reentran
. . 61 -
behavior in our temperature range. If one considers the nor 97 mK
mal region in the immediate vicinity of the low transmission W ]
interface as a highly disordered conductor with a very low 5.8 30mK S
diffusion coefficient D, the relevargiy(T) is very short, and - .
$ 40¢e*h

hence the reentrant behavior is pushed to much lower ener 5. ¢l (b)
gies and temperaturés? NS TR SN B B
A similar difference between the two samples can be ob- -200 -100 0 100 200 300
served by examining the magnetoresistance oscillations as H(Gauss)
function of temperature. Figurd&® shows the magnetoresis- 1
tance of sample A at a few temperatures below 1 K. Oscil-
lations of a period corresponding to a flaxe through the 1
loop are observed which persist up to the critical temperature
T. of the superconductor, and whose amplitude at the lowes
temperatures is much larger thefYh (in terms of conduc-
tance. Similar oscillations are seen in sampld Bg. 3b)].
The presence of magnetoresistance oscillations points to th
existence of a quantum interference effect involving the 0.4
doubly-connected loop. The large amplitude of these oscilla-
tions rules out the possibility of their being due to a normal
metal quantum interference effect such as weak localizatior N T A T S T I
or conductance fluctuations, whose amplitude is typically 0 0.2 0.4 0.6 0.8 1 1.2
~e?/h, and points to a coherent interference phenomenor T(K)
involving charge carriers in the normal and superconducting
arms of the loog/~** FIG. 3. (a), (b) are the magnetoresistance curveéH) for
Figure 3c) shows the amplitude of the magnetoresistancgample A and B, respectively. The small offsetbin (a) is due to
oscillations for the two samples as a function of temperaturethe residual flux trapped in the superconducting magneta)lthe
The amplitude is determined by calculating the power in thecurves forT=101 mK, 203 mK, 400 mK, and 1.07 K are shifted
Fourier transform in the inverse field range corresponding taip by 4, 8, 12, and 1@, respectively. In(b) the curves forT
the area of the loop, over the field rangg®5 mT for sample =97, 199, 491, and 600 mK are shifted up by 0.2, 0.4, 0.7, and
A and +20 mT for sample B. While the oscillation ampli- 0.8, respectively(c) Normalized amplitude of the Fourier trans-
tude in sample A shows a monotonic increase as the tenform of () and(b) as a function of temperature. The field range is
perature is decreased, the amplitude of the oscillations fof 25 and+20 mT and the normalization constant is 0.982 and
sample B displays reentrant behavior with a maximum at ‘,9.0190 for samples A and Bl,/ respec@ively. The solid lines represent
temperature of-200 mK. Since the oscillations arise from fits o the form aexp(—bT 2)1/?t higher temperatures, wita
interference effects around the loop, one might expect thaf 3-1+ 27 andb=3.4, 2.2 K= for samples A and B, respec-
the amplitude of the oscillations would be determined by the!Vely- or comparison, we also show a best fit to a power law of the
ratio of &y(e=kgT) to half the lengthL of the normal arm, ffromlggoazggsidf by Coulrtouit al.,dITBef. 10 with Ithe values
which is ~1.1 um. At T~170 mK, 2y(e=kgT)=L. 0 or samples A and B, respectively.
This is in good agreement with the temperature at which waistance oscillations were seen to decay as a power law in
observe the amplitude maximum. For sample A, no suchemperature. For comparison, we also show the best fit to the
maximum is observed, even though the film parameters fopower law dependence found in Ref. 10, which does not
the two samples are similar. This again is a consequence aefescribe the data well. This difference may arise from the
the lowN S interface transparencies in this sample. At higherdifference in the geometry of the samples in the two experi-
temperatures, both samples show a temperature dependemaents. In the samples of Courto&t al, the oscillations
which is well described by a function of the form come directly from the proximity coupled ring, whereas in
exd —al/&(T)], as can be seen in Fig(a3. This is in con-  our samples, the oscillations come primarily from nonlocal
trast to the results of Courtoit al,® where the magnetore- contributions to the side arms of the ring.
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FIG. 4. NormalizeddV/dl as a function of dc voltag¥ at T 6 [ e} 112 .
=30 mK for sample A(solid curve and B (dotted curvé The L 1 B
voltage is obtained by integratir@v/d| vs | 4.. ac and dc currents - o 1/2 .
are applied through= shown in Fig. 1b). (dV/dl)y is 67.5 and 58 [ ¢ 9 N
10.30 for samples A and B, respectively. The dashed curve showsa - ¢ o 19/2 -
dV/dl for sample A at a magnetic field of 225 G. E/ B O % T
. o , 56 | . B ]
The differential resistancesdV/dl as a function ofV of S A o -
sample A and sample B also show differences which are : A & ]
consistent with the difference in the quality of their inter- 54 | dg -
faces. Figure 4 showdV/dl as a function ofV for both [ (b) ‘ . geoﬁ ]
samples at low temperature and bias. Sample B again show i =" )
reentrant behavior, with a resistance minimum at a bias volt- 5.2 sl ol
age of ~7.25 uV. As in the temperature dependent resis- 0.01 0.1 1
tance, only the two normal side arms are expected to con T(K)
tribute at low dc biask,. for the longer arm is 15ueV, and
hence the voltage at the resistance minimursnmllerthan FIG. 5. R(T) measured fofa) sample A, andb) sample B at

expected by approximately factor of two. This should bevarious values of integral and half-integral flux quahntze through
contrasted with the temperature dependence of this sampige loop. Closed symbols, integral flux quanta, open symbols, half-
which was discussed earlier, where the temperature at whidhtegral flux quanta. The temperature dependent curves were ob-
the minimum in resistance was observed Viager than tained from data similar to that of Fig. 3.

E./kg by a factor of 3. This discrepancy will be discussed

later when we attempt to compare these data with the quasrear the interface by the disorder in the samples. Fig(e 5
classical Green'’s function theory. shows similar data for sample B, where curves for both in-

In contrast to sample B, sample A shows only a graduategral and half-integral flux quanta show clear reentrant be-
increase in resistance at zero field with voltage, consisterjavior. At half-integral flux quanta, there is a small increase
with the behavior seen in the temperature dependence. Atig the temperaturdl,y, at which the resistance minimum
finite magnetic field of 225 G, the curvature of the peakoccurs, but the curve for zero and one flux quantum are
changes, andV/dl as a function oV shows what appears aimost the same. This is in contrast to the results of Charlat
to be reentrant behavior as a function of voltage, similar tqt al,'* who saw a monotonic increase T, as the mag-
that of sample B. However, this change in the curvature is\etic field was increased which they attributed to the field
not due to reentrance, which can be seen by examining thgependence of the electron phase coherence lengthAt
temperature dependence of the sample in a finite. magnetifite magnetic fieldL, is shorter than at zero fief.Since
field. Figure $a) shows the temperature dependent resistancg  defines the cutoff length for coherent Andreev reflection,
of sample A at six different magnetic fields corresponding tOL(P corresponds to the effective length of the sample, and
0, 1/2,1, 3/2, 9, and 19/2 flux quarttéZe through the area pence the minimum in resistance as a function of tempera-
of the loop. Although the curves for half-integral flux quantayre would move to higher temperatures as a function of
are different from those for integral flux quanta, and the reqnagnetic field. This is clearly not seen in our samples.
sistance increases at higher magnetic fields, no reentrant be-

havior is observed. Even though the resistance of the barrier

in sample A (~25()) is not in the tunnel regime, we believe IV. DISCUSSION
that the change in curvature is similar to the behavior ob-
served by Kastalskyet al?®> van Weeset al?® explained
Kastalskyet al’s results as arising from suppression of co- We shall now attempt a quantitative description of the
herent multiple Andreev reflections by a magnetic field, duegemperature and voltage dependences of sample B using the
to the confinement of the quasiparticle interference pathsguasiclassical Green’s function theory. Our analysis is based

A. Quasiclassical Green’s function model
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on solving the Usadel equatithfor the parametrized pair  (a)
correlation functiond(e,x) in the normal metat-2 6(e,x) is .
a function of the energy and positionx. Assuming that the - -— '
electron phase coherence length is much longer than the ? .

length of the normal metal, the Usadel equation can be writ-  1- JJjj} R[5 . K . I+
N N

ten in the simplified form

9%0(€,X)

NG

+ 2iesinf(e,x)=0. (1)

The current is then given by the equation developed in Ref. 8 v v,
(for the special case of a perfect interface (b)

et+teV e—eV
tan —tan 2T D(e), N S N

et
) M
B " B

whereD(¢€) is the energy dependent diffusion coefficient in ) .
the normal metal which is given in terms 6{e,x) by

©

1
|(V,T)= ﬁ 0 de

FIG. 6. Schematic of the simulated mod&l) Actual sample.

1 (b) Geometry used in the calculation.

D(e)= 1L . 3

Efo dxsecB[Im 6(e,x)]

face. Finally, at a node where two or more normal wires
intersect, the boundary condition is determined by a

) ) ) Kirchoff-like equation of the form
The conductance is obtained from E8g) by taking the de-

rivative with respect to the voltage, G(V,T)=dl/dV.

At zero bias, the calculation is simplified and the following S s 960(€,x) -0 (50)
formula is obtained for the resistanBgT): i ax '
whereS; denotes the cross section of the bran@ining the
R(T)=R J"” de node®
NE o 2kgTcosR(e/2kgT) Conceptually, at least, determining the resistance of any

arbitrary sample is a straightforward matter: one solves the
Usadel equation for the pair amplitudée,x) subject to the

1 -1 appropriate boundary conditions, then substitutes the result

><1 a . (4) into either Eq.(2) or (4). Practically, however, the Usadel
_f dxsech[Im 6(e,x)] equation needs to be solved numerically. This is not easy,
LJo particularly for complicated structures such as our Andreev

interferometers, and we make certain simplifying assump-
tions to make the calculation tractable. Figuf@)Ghows a
schematic of sample B. As we have noted earlier, we assume
that theNS interface resistances are very small, so that the
loop resistance is zero, as it is shorted by the superconduct-
ing arm. The measured normal-metal resistaRces then

Equation (1) must be solved subject to the appropriate
boundary conditions, which are usually specified at the
and S reservoirs:®8 At a N reservior, 8(e,x)=0. At a S
reservoir,

Blex)= T ti Eln A(M+e (59  SMPly the sum of the twal side branchesR, andR,. To
’ 2 2 |A(T)—e determine the resistance of these structures in the proximity
effect regime, we need to solve the Usadel equation in the
for e<A(T), and one dimensional wires on either side of the loop. Since the
electron phase coherence lengthplaces an upper cutoff to
1 et A(T) the pair correlation in the normal metal, we take the normal
0(ex)=i5In —A(T) (5B reserviors to be at a distante, from the superconductor.

Finally, our calculations show that the effect of the voltage
for e>A(T), whereA(T) is the temperature dependent su- probes oné(e,x) in the side arms of the structure is very
perconducting energy gap. At tieS interface small, and hence we ignore the effect of these probes.

Figure 6b) shows the finaN SN geometry that we simu-
late based on the procedure developed in Refs. 5,6,8. If we
=Gpsin O4(L,e)—Ox(L,€e)], (50)  consider the superconductor to be at zero voltage, the energy
e of the quasiparticles in each branclof the structure is
whereoy s is the conductivity of the interfac&is the cross related to the voltage drop; between the corresponding
section of the wire and3,, is the conductance of the inter- normal reservoir and the superconductordyy eV, . How-

d0(€,X)
X

ON,s
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ever, due to the four terminal nature of our measurements,
the voltage that is actually measured is the voltslge/, at

the voltage probes. Although the potential profile in the one
dimensional normal wire between the normal and supercon-
ducting reservoirs is not predicted to be linéathe devia-
tions from linearity are small enough that we can relate the
voltages measured at each probe to the voliage the cor-
responding normal reservoir by a linear scaling of the form
Vi=V(L;/L,), whereL; is the length of the arm from the
superconductor to the point at which the voltage probe joins
the wire. (L, is the effective distance to the corresponding
normal reservoij. Furthermore, to calculate the resistance of
each branch, we need to use Ed), but with the integral
over the lengthL restricted toL; for each branch, and the
normal state resistand® corresponding to the normal state
resistancdry; for each arm. The total temperature dependent
resistance of the sample is then the sum of the resistance:
R.(T) andRy(T).

B. Temperature dependence

In most previous theoretical simulations of the proximity
effect,A has been assumed to be independent of temperature
and much larger than the energy of the quasiparticle in the
normal metal £<A).%° For Al, where the gap goes to zero
in the experimental regime of interest, this is clearly not a
valid assumption, and it is necessary to take into account the
temperature dependence of

The solid line in Fig. 7a) shows the suniR;(T)+ Ry(T)
assuming a BCS-like temperature dependence of the gap
with A(T=0)=167 ueV=29.28 E taken to match the su-
perconducting transition in the experimental data. For com-
parison, the dashed line in Fig(af shows a simulation of
R.(T)+R,(T) assuming a temperature independent gap of
A=200 E., much larger than the range of energiesised
in the simulation, the assumption used in most previous com-

parisons to experimental data. Both theoretical curves do n%ts described in the texta) Solid circles, experimental data for

fit the data. While the simulation with a fixed gap agrees
reasonably well with the data at low temperatures, it clearl
does not describe the data at higher temperatures Thear
This is to be expected, since a gap 200 E. corre-
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FIG. 7. Simulation of the resistance as a function of temperature

sample B; solid line, simulation with a variable temperature gap
Xuith A(T=0)=29.28 E. and y=0.5 E.; dashed line, simulation
with a temperature independent gap »&200 E.. (b) Depen-
dence on the inelastic parameterSolid circles, experimental data;

sponds to a much higher transition temperature. The simulagjig fine, temperature dependent gap simulation(@f with y

tion with the variable gap, on the other hand, does account g5 g, ; dashed line, temperature dependent gap simulation, but
for the rapid increase in resistance ndar, but it grossly  with y=8.0 E.. E./kg=7D/L2kg=0.066 K for these plots.
overestimates the contribution due to the proximity effect.

The large correction to the conductance predicted by thg petter description at lower temperatures, there is still a
simulation with a variable gap is a consequence of the divergpstantial discrepancy between this curve and the experi-
gence of the boundary condition EdSa) and(5b) whene  mental data at higher temperatures. Using a reduced value of
=A(T), which occurs at all temperatures in the range ofthe T=0 gap as in Petrashat al?® changes the curve, but
interest. In order to make the simulations numerically trac-qoes not improve the agreement with the experiment. At this
table, one needs to cut off the divergence by introducing apoint, the source of the discrepancy at higher temperatures is
imaginary componeny of the quasiparticle energy,—e  not clear, although it may be related to nonequilibrium su-

+ivy, wherey corresponds to a finite inelastic lifetime of the perconductivity processes near the transiton.
quasiparticles.For the variable gap simulation in Fig(aJ,

we have used a value 9=0.5 E., which corresponds to a
scattering length ot . If the value ofy is increased, the
contribution due to the proximity effect decreases. Figure A similar analysis can be used to calculate the differential
7(b) shows a comparison of two simulations assuming a temresistancedV/dI=R(V) as a function of voltag®. To cal-
perature dependent gap with=0.5 E. and y=8.0 E.. culate R(V), one notes the temperature kernel in the inte-
(y=8.0 E; corresponds to a scattering length bf/4  grand of Eq.(2) becomes a step function @t=0 with the
=0.225 um). Although the curve withy=8.0 E. provides discontinuity centered at=eV, i.e., the contribution to the

C. Voltage dependence
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0.75 —~——a—v—vb—-v—"——"+—"F—"—"T"T"T—""-TT values lower than those expected from the theory. We be-
«+  Experiment .‘ lieve that this is the mechanism responsible for the discrep-
0.7 L Theory, A=29.28 E - | ancy between the observed energy scales for the voltage and
¢ temperature dependence of the differential resistance.
7 oo | — — ~Theory, A=200E_ .
~ 0.65 | ¢ . 1.
Q D. Magnetoresistance oscillations
% 0.6 The loop in our Andreev interferometers is essential for
= I the observation of magnetoresistance oscillations, but the
5 0.55 doubly connected nature of the sample complicates the cal-
> culation tremendously. Consequently, we have not attempted
Z 05 to numerically solve the quasiclassical Green’s function
equations in the presence of a magnetic field. However, the
[ qualitative behavior can be understood by drawing on our
0.45 experience with other quantum interference phenomena in
T doubly connected geometries. For the case of weak localiza-
04L. . L tion in single normal metal rings, for example, the magne-

" 1 A A 1 2 ] A ] L 1 A
0 5 10 15 20 25 30 35 40 toresistance oscillates as a function of magnetic field with
v(uVv) fundamental period/2e.3? The oscillations are suppressed
) _ ) exponentially with the phase coherence length, exp
FIG. 8. Companso_n of the theoretlcal_ calcula_mon based on th;)_ L/L,), whereL is the perimeter of the loop. The difference
theory of ql.1a5|cIaSS|caI. Green's functions with the measuretyetyeen the geometry of those experiments and the geom-
dvrdI(V) (triangles. Solid line, A=29.28 E; dashed line.A  oyy of sample B, for example, is that the oscillations in
=200 E.. sample B arise primarily from a nonlocal contribution to the
side arms from the loop. Nonlocal magnetoresistance oscil-
total currentl comes only from/e|<eV.® The conductance lations have already been observed in normal metal
di/dV thus contains & function centered dte|=eV. This samples? In the normal metal case, the nonlocal oscillations
results in a simple formula &=0:> arise from an electron wave from the “local” part of the
sample interfering with itself after going around the “nonlo-
cal” ring, so long as partial phase coherence is maintained.
We believe a similar situation occurs in the Andreev inter-
ferometers, except that it is the correlated pair amplitude in
the proximity coupled normal metal which interferes with
itself. In Andreev interferometers, quantum coherence is
maintained in the superconducting arms of the loop. In the
This formula is applicable to each branch in Figbs In  hormal arm, the oscillation amplitude is determined by the
order to calculate the total resistanB¢V), however, one Phase coherence leng . Since the normal arm is con-
must take into account that the voltayeacross the entire Nected to the superconductor on both sides, the suppression
sample is the sum of the voltagh§ and V, across each of the oscillation amplltu_de might be expected to go as
individual branch, subject to the condition that the current_ ex;{—.L/(ZgN)], WhereL IS now th? length of.the normal
through both branches is the same. Figure 8 shows the oQrm. This exponential dependence is what we indeed observe

perimental data and the calculated cufselid line) based on ?h:arrggrlﬁr;;ngﬁggom;g sS:éniEI?hI: :rtnh:%[:g; toefrr:rﬁ):rr?griz_
the procedure outlined above, with(0)=22.98 E.. The P 9

toresistance oscillations in sample B is an indication that

. S ) } . Afrese oscillations are dependent on the enhancement of the
isfactory. The minimum in the experimental resistance 0Cy;tt,sion coefficient in the normal arm of the loop.

curs at a voltage of-7.25 wV, while the theoretical curve
does not show a minimum in the voltage range 046V,
but only an inflection point a¥/~20 weV. The simulation
with A=200E > ¢ (dashed line in Fig. Bdoes show a mini-
mum, but the agreement with the experimental data is not In conclusion, we have investigated the reentrance effect
good. Although we are not certain about the reason for thisn two mesoscopid\'S hybrid loops with different interface
discrepancy, we note that the theoretical calculations do ndtansparencies. The low transmittance sample showed no re-
take into account heating of the electron gas by the dc curentrant behavior, consistent with the fact that the relevant
rent. Even for samples which are shorter tHap, appre- energy and temperature scales were shifted to values below
ciable heating of the electron gas may take place in th@ur measurement range. The high transmittance sample, on
sample®! which would raise the effective temperature of thethe other hand, showed reentrant behavior R{T),
electrons. Since the minimum ohv/d| is expected to occur dV/dI(V), and amplitude of magnetoresistance oscillations,
at lower values ol at higher temperatures, heating of the due to the long range coherence of the electron-hole pairs
electron gas by the dc current would have the effect of pushinduced by Andreev reflection at tiéS interfaces. A quan-

ing the observed minimum idV/dl as a function ofV to titative understanding of the experimental results cannot be

1 (L
R(V)=RN<EL sech[Im 6(e,x)]dx . (6)

e=eV

V. CONCLUSION
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