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Triplet superconductivity in quasi-one-dimensional systems

A. A. Aligia
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We study a Hubbard Hamiltonian, including a quite general nearest-neighbor interaction, parametrized by
repulsionV, exchange interactionsJz ,J' , bond-charge interactionX, and hopping of pairsW. The case of
correlated hopping, in which the hopping between nearest neighbors depends upon the occupation of the two
sites involved, is also described by the model for sufficiently weak interactions. We study the model in one
dimension with usual continuum-limit field theory techniques, and determine the phase diagram. For arbitrary
filling, we find a very simple necessary condition for the existence of dominant triplet superconducting corre-
lations at large distance in the spin SU~2! symmetric case: 4V1J,0. In the correlated-hopping model, the
three-body interaction should be negative for positiveV. We also compare the predictions of this weak-
coupling treatment with numerical exact results for the correlated-hopping model obtained by diagonalizing
small chains and using a Berry phase to determine the opening of the spin gap.@S0163-1829~99!01046-2#
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I. INTRODUCTION

In the last years, the study of extensions of the us
Hubbard model has, among others, two important moti
tions. First, to explain many features of the rich diagra
observed in the quasi-one-dimensional organic compou
(TMTSF)2X ~where TMTSF means tetramethiltetraselen
fulvalene andX represents, PF6 , ClO4 or other complex!,
other interactions must be considered in the model Ham
tonian, in addition to the on-site Coulomb repulsion.1–4 Sec-
ond, consensus increases about the fact that the usual
bard Hamiltonian5 does not seem to define the minim
model for the superconducting cuprates, while additio
terms might explain the physics of the superconduct
phase of these materials.6 The proximity between the spin
density wave~SDW! and the superconducting phases o
served in the phase diagrams of both kind of systems
been many times pointed out as a remarkable fact.1,2 The
symmetry of the order parameter is, however, different
both systems. While it has been observed to bedx22y2 for the
case of the cuprates,7 experimental evidence suggests that
observed superconductivity in (TMTSF)2ClO4, and
(TMTSF)2PF6 under pressure,8 as well as in the layered
compound Sr2RuO4 ~Ref. 9! is of triplet p-wave character. In
this context, the extended Hubbard model with correla
hopping is particularly interesting, as it seems to provid
good scenario for the occurrence of both kinds of superc
ducting instabilities, as well as the SDW and charge den
wave ~CDW! ones, depending on the values of the para
eters and the filling factor.6,10–12

The model is defined by the Hamiltonian

H5U(
i

ni↑ni↓1V(̂
i j &

ninj2 (
^ i j &s

~ci s̄
†

cj s̄1H.c.!

3$tAA~12nis!~12nj s!1tBBnisnj s1tAB@nis~12nj s!

1nj s~12nis!#%, ~1!
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where^ i j & denotes nearest-neighbor sites. This model c
tains the one which Hirsch proposed to give rise to h
superconductivity.13 In the context of the superconductin
cuprates, Eq.~1! has been obtained as a one-band effect
Hamiltonian when a low energy reduction of the extend
three-band Hubbard Hamiltonian is performed. For realis
parameters of the three-band model, calculated hopping
rameters satisfy the following relation
tAB.(tAA1tBB)/2.14–17 In particular, in the limit in which
the Cu-O hoppingtpd is much smaller than the charge
transfer energies,tAB is of the order oftpd , while tAA and
tBB are of ordertpd

2 .16 In two dimensions~2D!, mean-field
calculations, including the effect of spin fluctuations, supp
the existence of a superconducting phase withdx22y2 sym-
metry at finite doping, which is stabilized with the additio
of a next-nearest neighbor hopping in the Hamiltonia6

While a realistic effective Hamiltonian for (TMTSF)2X has
not been constructed so far, Eq.~1! contains the main terms
if only the ground state with zero, one, and two particles
the singlet sector of an adequately chosen cell
retained.15,18

Collecting the correlated hopping terms in one-, two-, a
three-body terms, the Hamiltonian reads

H5U(
i

ni↑ni↓1V(̂
i j &

ninj1 (
^ i j &s

~ci s̄
†

cj s̄1H.c.!

3@2t1t2~nis1nj s!1t3nisnj s#, ~2!

where t5tAA , t25tAA2tAB, and t352tAB2tAA2tBB .
While two-body interactions are usual in many-particle pro
lems, three-body interactions are more rare and introd
additional complications in most of the usual analytic
many-body treatments. The appropriate mean-field reduc
of the three-body term with parametert3 to effective two-
body ones can be performed using Wick’s theorem and
glecting the resulting normal ordered three body term, w
15 332 ©1999 The American Physical Society
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the vacuum representing the optimum Slater determinant.19,20

In 1D, we have verified that in the continuum limit~repre-
senting the fermionic fields in terms of bosonic ones!, this
procedure is equivalent to perform operator product exp
sions in the resulting Hamiltonian, keeping only relevant a
marginal operators.12 In other words, both approaches a
equivalent in the weak-coupling limit. The ensuing two-bo
Hamiltonian reads17

Heff5U(
i

ni↑ni↓1Veff(̂
i j &

ninj1 (
^ i j &s

~ci s̄
†

cj s̄1H.c.!

3@ teff1D~nis1nj s!#2W(̂
i j &

~ci↑
† ci↓

† cj↓cj↑1H.c.!

1J(̂
i j &

Si•Sj , ~3!

with

teff5t2t3~3t22r2!, Veff5V1t3t,

W52t3t, D5t21rt3 , J54t3t, ~4!

where t5^cis
† cj s& and r5^nis&5n/2, with n being the

number of particles per site. In 1D and the weak coupl
limit:

t5
1

pE0

kF
dk cosk5

sin~pr!

p
, r5

1

pE0

kF
dk5

kF

p
. ~5!

The Hamiltonian ~3!, with arbitrary interactions
teff,D,W,J,U,Veff, defines the most general model with nea
est neighbor two-body interactions, which conserves cha
and spin SU~2! symmetry. If in addition, the parameters a
related by Eq.~4! with V50, r51/2 and arbitraryt, the
model also has pseudospin SU~2! symmetry.21 In the general
case, we will also include the possibility of anisotropic e
change (Jz in one direction,J' in the other two!, breaking
spin SU~2! symmetry. Equation~3! contains all the contribu-
tions up to nearest neighbors of the Coulomb interact
when written in the tight binding basis.22,23 In this case, for
weak screening of the interatomic repulsion, the relationU
.Veff.D.W;J.0 has been derived, while smaller valu
of V are expected if the screening is efficient.22,23,25Arbitrary
values of the different interactions could, however, be
pected when dealing with effective models, derived fro
some multiband model, as it is the case of Eq.~1!.

Several specific cases of the model Eq.~3! have been
studied before using continuum limit field theo
~CLFT!.4,12,23,24,26In particular, the chain described by th
correlated hopping model Eq.~1! was analyzed recently a
half filling.12 However, no definite conclusions regardin
possible dominance of superconducting correlations at la
distances were obtained, and the extension to other filli
remains open. An accurate phase diagram has also bee
tained numerically using topological transitions.10 Other
works on models similar to Eqs.~1! and~2! are cited in Refs.
12,27.

In this paper, we study the phase diagram ofHeff ~3! with
generic parameters (teff,t2

eff ,W,Jz ,J' ,Veff), in the weak-
coupling regime, using the CLFT. The boundaries of
n-
d

g

-
e

-

n

-

e
s

ob-

e

region with dominant triplet superconducting correlations
large distances are given by simple analytical expressio
This region will be denoted TS phase in the following. As
further step, we obtain the phase diagram of the correla
Hamiltonian Eq.~1!, for weak and strong interactions, b
numerical diagonalization of finite rings. The opening of t
spin gap is detected accurately using the novel singlet-tri
level crossing method, based on results of conformal fi
theory and renormalization group.28 This method is equiva-
lent to a topological transition which corresponds to a jum
in a Berry phase.29 The results of both approaches are co
pared and the conditions for the existence of the TS ph
are discussed. We also analyze the other phases of the m
and discuss within which region of parameters, a superc
ducting instability withdx22y2 symmetry could be expecte
in 2D. Section II describes the weak coupling results. Res
of the exact diagonalization of Eq.~1! and comparison with
the CLFT are presented in Sec. III. Section IV contains
discussion.

II. CONTINUUM LIMIT FIELD THEORY

The CLFT, also called g-ology, is a weak coupling a
proach. The whole procedure has been explained in deta
many contributions.3,4,12,26,30,31We, thus, present here only
brief explanation of the steps followed. The basic assump
is that the interactions are small, in comparison with t
Fermi energy. The non-interacting energy dispersion rela
is linearized around the two Fermi points and the interacti
in the momentum space are expressed in terms of four
ferent scattering processes, which are labeled by coup
constantsgi uu (gi') if they involve the same~opposite!
spins.

To describe the low-energy physics of the problem,
fermion operators are decomposed as

cj s→exp~ ikFRj !C1,s~ j !1exp~2 ikFRj !C2,s~ j !, ~6!

whereC r ,s( j ), r 52
1 describe left- and right-moving fermi

ons. In the continuum limita→0, L→`, with aL finite, a
being the lattice constant andL the number of sites of the
lattice, these operators scale asC r ,s( j )→AaC r ,s(x5 ja).
The Hamiltonian~3! can be written in terms of the con
tinuum fieldsC r ,s(x).

Using the same notation as Voit3,4 and neglecting irrel-
evant operators, we obtain the following coefficients for t
different scattering processes of the Hamiltonian Eq.~3!:

g1uu5S 2Veff1
Jz

2 D cos~2kFa!,

g2uu5g4uu5Veff1
Jz

4
, g3uu50,

g1'5U1S 2Veff2
Jz

2 D cos~2kFa!2J'22W18D cos~kFa!,

g2'5
U

2
1Veff2

Jz

4
2

J'

2
cos~2kFa!2W14D cos~kFa!,
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g3'5dn,1S U22Veff1
Jz

2
1J'12WD ,

g4'5
U

2
1Veff2

Jz

4
2

J'

2
2W cos~2kFa!14D cos~kFa!,

~7!

wheredn,1 in the g3' ~Umklapp! coupling constant indicate
that this scattering process is active only at half filling. T
fermionic fieldsC r ,s(x) can be written in terms of bosoni
fields fr , fs , wherer, (s) denotes charge~spin! degrees
of freedom, by recourse to a bosonization identity3 and the
Hamiltonian can be expressed as

Heff5Hr1Hs , ~8!

whereHn , (n5r,s) is a sine-Gordon Hamiltonian:

Hn5vnE dxH 1

2
@Pn

2~x!1~]xfn!2#1
mn

a2
cos~A8pKnfn!J ,

~9!

wherePn is the moment conjugate tofn , and

vn5A~vF
n !22S gn

2p D 2

, mr5
g3'

2p
, ms5

g1'

2p
,

vF
r 5vF1

g4uu1g4'

p
, vF

s5vF1
g4uu2g4'

p

vF52teff sinS pn

2 D , Kn5A2pvF
n 1gn

2pvF
n 2gn

, ~10!

with

gr52g1uu2g2uu2g2' , gs52g1uu2g2uu1g2' . ~11!

The physics of the sine-Gordon Hamiltonian is well know
from renormalization group.3,30,31 At half-filling, for ug3'u
<gr the charge sector renormalizes to the Tomona
Luttinger fixed point, where charge excitations are gaple
Away from half-filling, charge excitations are gapless, e
cept for commensurate fillingsn5p/q and strong repulsive
interactions:32 the system is insulating ifKr,1/q2. For ex-
ample at quarter filling (n51/2), the critical value ofKr is
1/4.32,33 In terms of the parameters of Eq.~3!, the condition
for Luttinger liquid behavior at half filling reduces to

2U14Veff12J'1Jz<0 and 2Veff<W. ~12!

For the particular case of the extended Hubbard model w
correlated hopping~2!, using Eqs.~4!, ~5!, and~7!, this con-
dition reads

~U12V18t3 /p<0 and V<0! ~13!

in agreement with Ref. 12. In particular, forV.0 the system
has always a charge gap at half filling.

Out of half filling, the HamiltonianHr @see Eqs.~9!, ~10!,
and ~7!#, reduces to a Gaussian model~except for higher
order Umklapp processes which are relevant for commen
rate fillings andKr<1/4, as mentioned above32,33!. In this
case,Kr is not renormalized and ifKr.1 superconducting
-
s.
-

th

u-

correlations dominate at large distances. From Eq.~10!, this
happens whengr.0. At half filling, Kr is renormalized, but
the initial value@Eq. ~10!# should be larger than one in orde
to reach a final value larger than one at the Gaussian poin
the renormalization-group procedure. Thus, from Eqs.~5!,
~10!, ~7!, and~11!, a necessary condition for the dominan
of superconducting correlations at large distances is
tained:

2U24Veff1S 2Veff1
Jz

2
1J'D cos~pn!12W

28D cos~pn/2!.0. ~14!

This condition is also sufficient away from half filling (n
Þ1). The character of the dominant superconducting co
lations at large distances~singlet or triplet! and simulta-
neously the opening of a spin gap is determined byHs @Eq.
~9!# and the flow of its paramenters under renormalization
the spin SU~2! invariant case (Jz5J'), gs5g1' . For nega-
tive gs a spin gap opens, the triplet superconducting~TS!
correlations functions~CF! decay exponentially, while the
singlet superconducting~SS! CF decay asd21/Kr with dis-
tanced. Instead, for positivegs , Ks renormalizes to 1, there
is no spin gap, the TS CF decay asd2121/Krln1/2d and domi-
nate over the SS CF, which decay asd2121/Krln23/2d.3 Thus,
in the Tomonaga-Luttinger liquid phase withJz5J' and
Kr.1, using Eqs.~5!,~7!,~10!,~11!, one sees that TS CF
dominate at large distances if and only if

U1S 2Veff2
J

2D cos~pn!2J22W18D cos~pn/2!.0.

~15!

If the model is not spin SU~2! invariant, TS CF dominate
decaying asd21/Kr21/Ks whenKr.1 andgs.ug1'u, which
in turn implies that the renormalizedKs.1 .

Adding Eqs.~14! and ~15! a very simple necessary con
dition for the existence of the TS phase in the model Eq.~3!
with Jz5J' is obtained:

4Veff1J,0. ~16!

This result is consistent with theoretical analysis which
lates triplet superconductivity with ferromagnetism.34

For the model with correlated hopping in the form of E
~2!, using Eqs.~4!,~5! the conditions~14!,~15! take the form

2U12V@cos~pn!22#1
8

p
t3 sin~pn/2!cos~pn!

28~ t21t3n/2!cos~pn/2!.0, ~17!

in order that superconducting CF dominate at large distan
and

U12V cos~pn!2
8

p
t3 sin~pn/2!

18~ t21t3n/2!cos~pn/2!.0 ~18!

for the region in which the spin gap is closed. Adding bo
conditions leads to
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V1
2

p
t3 sin~pn/2!,0, ~19!

as a necessary condition for the model to have a TS phas
the extended Hubbard model (t25t350), Eqs.~17! and~18!
imply that a TS phase can only exist for 2/3<n<4/3.

In addition to the SS and TS CF, the phase diagram at
filling is determined by the CF at large distances of the f
lowing order parameters for charge density wave~CDW!,
spin density wave~SDW!, bond ordering wave~BOW!, and
spin bond ordering wave~SBOW! order3,12

OCDW5(
is

~21! inis;cos~A2pKrfr!cos~A2pKsfs!,

OSDW5(
is

~21! isnis;sin~A2pKrfr!sin~A2pKsfs!,

OBOW5(
is

~ci 11s
† cis1H.c.!

;sin~A2pKrfr!cos~A2pKsfs!,

OSBOW5(
is

s~ci 11s
† cis1H.c.!

;cos~A2pKrfr!sin~A2pKsfs!, ~20!

The opening of the spin gap is accompanied by the orde
of fs with expectation valuêfs&50. When the charge ga
is closed, except for the particular casegr5ug3'u for which
Kr renormalizes to 1,gr renormalizes to a positive value an
Kr.1 at the fixed point. Then, as discussed above, TS~SS!
CF dominate at large distances if the spin gap is clo
~open!. Instead, when the charge gap opens (ug3'u.gr), fr

orders with expectation valuêfr&50 @^fr&5Ap/(8Kr)#
for negative~positive! g3' . If the spin gap is positive, this
implies CDW ~BOW! order, while if the spin gap is close
the dominant CF are the SBOW~SDW! ones.3,4,12 These

FIG. 1. Phase diagram of the general model Eq.~3! at half
filling ( n51) for J'5Jz5J. ~a! 2W1J,0, ~b! 2W1J.0.
In

lf
-

g

d

considerations lead to the phase diagram shown in Fig. 1
the general model Eq.~3! at half filling in the isotropic case
J'5Jz5J. ForW5J50, the model reduces to the extend
Hubbard model studied previously,4,24,35 and no BOW or
SBOW phases appear. For large positiveU the leading
power-law decay of the SDW, CDW, and BOW CF is 1/d,
but the logarithmic correction of the former (ln1/2d), makes
the SDW the dominant CF at large distances.4 The combina-
tion of parameters which control the existence of the BO
and SBOW phases is 2W1J. The BOW~BSDW! CF domi-
nate in a certain region ofU and V if and only if 2W1J
.0 (2W1J,0), particularly for largeU near the lineV
5U/22W2J/4 at which the spin gap opens.

III. NUMERICAL RESULTS

In this section we calculate the phase diagram of the c
related hopping model Eq.~1! by exact diagonalization o
finite rings, and compare the results with those of the pre
ous section. We concentrate on the electron-hole symme
case and settAA5tBB51. Numerical10 and CLFT~Ref. 12!
results for one particle per site (n51) have been done re
cently. We have concentrated on two other densitiesn
51/2 ~quarter filling! and n52/3. The boundary of the su
perconducting phase was determined from the equationKr

51, with Kr calculated from the expression

Kr5ApkDr/2, ~21!

where the Drude weightDr and the compressibilityk were
obtained extrapolating to the thermodynamic limit numeri
results~obtained in the usual way36! using a polynomial in
1/L, whereL is the length of the ring. Forn51/2, we have
used rings withL58, 12, and 16, and forn52/3 the lengths
used wereL56 and 12. We have also calculatedKr using
other two expressions which involvevr , the central charge
and charge and spin gaps,36 to check for consistency an
finite-size effects. The latter are in general very small, exc
for specific cases mentioned below. The opening of the s
gap was determined from the crossing of the levels of low
energy in the sectors with total spinS50 andS51 for pe-
riodic ~antiperiodic! boundary conditions ifN/2 is even
~odd!, whereN is the number of particles in the system.28

This method is based on results of conformal field theory a
renormalization group, which show in addition that at t
crossing point, the finite size corrections of these excitat
energies per site go as 1/L2, without logarithmic corrections
This allows a very accurate determination of the parame
for which the spin gap opens using finite-size scaling. T
level crossing has also a topological significance, since
this point, the spin Berry phase, which can only take t
values: 0 orp (mod 2p) jumps in (p) at the transition.29

In Fig. 2, we show the evolution with doping of the pha
diagram forV50. As soon as the density decreases bel
n51, the Umklapp processes become irrelevant and acc
ing to the CLFT, the degeneracy of TS and SBOW CF
one phase and the SS and CDW on the other10,12 is broken in
favor of the superconducting CF, sinceKr becomes larger
than one. As doping increases, the SDW phase adva
over the TS phase and at quarter filling (n51/2) the TS
phase lies entirely within the region of negativeU. Instead
the SS phase advances rapidly over the BOW~or dimer or-
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dered! phase at half filling. The agreement of the predictio
of the singlet-triplet level crossing method for detecting t
opening of the spin gap with the CLFT results is excellen
weak coupling (utAB21u,0.1), which confirms the accurac
of the method. The numerical results for the points at wh
Kr51 also agree very well with the weak coupling resu
for n51/2. Forn52/3, for which only two points (L56 and
L512) were used in the finite-size scaling, andKr varies
very slowly with the parameters near the noninteract
limit, the numerical points in the weak coupling limit are n
accurate enough. However, these points are also consi
with the CLFT results.

It is remarkable that forn51, the CLFT results are quan
titatively valid even at intermediate coupling. However, o
of half filling and weak coupling, the CLFT overestimat
the region in which the spin gap vanishes, and clearly und
estimate the extension of the superconducting phases.

In Fig. 3 we show the effect ofV on the phase diagram fo
n52/3. We have chosen this density because a TS ph
exists for positiveU if tAB,1. For tAB,0.4 the results are
affected by large finite size effects, perhaps because of
proximity of phase separation~PS!, and we were unable to
obtain reliable results. For 0.4<tAB,1, increasingV, from
zero, the line ofKr51 is crossed first and then at largerV a
spin gap opens, in qualitative agreement with the CLFT
sults. However, we obtain that the spin gap opens also w
V is decreased taking negative values. This crossing is ou
the reach of the CLFT. AsV is further decreased one expec

FIG. 2. Phase diagram of the correlated hopping model Eq.~1!
for V50 and several densities indicated at the top left of e
figure. Solid squares indicate values ofU and tAB for which Kr

51. The straight lineKr51 according to the CLFT@Eq. ~17! with
t2512tAB , t3522t2] is shown dot dashed. Solid circles a
points at which the spin gap closes. The corresponding results
cording to the CLFT@Eq. ~18!# are represented by the full straigh
line.
s

t

h

g

ent

t

r-

se

he

-
en
of

PS. FortAB,0.9 our results for the opening of the spin ga
at negativeV are affected by large finite size effects~re-
flected by the difference between the values ofV indicated
with solid and open circles in Fig. 3!. This is probably
caused by the proximity to PS. The numerical investigat
of PS is very delicate37 and is beyond the scope of this wor

IV. DISCUSSION

We have studied the phase diagram of a Hubbard mo
Eq. ~3! in the weak coupling limit, generalizing previou
studies which use the continuum limit field theory. Th
model includes the most general form of nearest-neigh
two-body interactions which conserves charge and spin.
phase diagram is very rich, and six different phases can
pear, according to the dominant correlation functions at la
distances~see Fig. 1!. In particular, in the isotropic case, i
there is a nearest-neighbor attraction (V,0) or ferromag-
netic exchange (J,0) a phase with dominant triplet supe
conducting correlations~TS phase! can exist. Specifically
4V1J,0 is a necessary condition for the existence of
TS phase. Work on weakly coupled chains using pertur
tion theory suggests that small interchain hopping stabili
a 3D long-range order with finite critical temperature, whi
corresponds to the dominant correlations at large distance
the purely 1D case.39 Thus, we expect that our results can
applied to real quasi-one-dimensional materials, which
be described by an effective Hamiltonian such as Eq.~1! or
~3!. Since in real materialsV is expected to be repulsive, a
efficient screening of the interatomic repulsions and effect
ferromagnetic exchange~such as that present in one
dimensional cuprates containing edge-sharing CuO4 units38!
would be necessary conditions for the existence of trip
superconductivity. It has been proposed that in some id
limit, ferromagnetism and triplet superconductivity might b
related by symmetry operations of the group SO~5!.34

For weak coupling, the general model Eq.~3!, with pa-
rameters satisfying the relations Eq.~4! describes the corre
lated hopping model Eq.~1!. For this model to display a TS
phase in the weak coupling limit, it is necessary thatV
1(2/p)(2tAB2tAA2tBB)sin(pn/2),0. We have studied
this model beyond the weak coupling regime by numeri
diagonalization of finite rings. In spite of the fact that th
size of the studied systems is small, the results agree
well with those obtained with the field theory in the wea
coupling regime. In particular, the accuracy of determini

h

c-

FIG. 3. Same as Fig. 2 forU50 andn52/3. The open circles
are points which correspond to the singlet-triplet crossing forL
512 and deviate substantially from the extrapolated results
indicate the opening of a spin gap.
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the gap by the method of the crossing of singlet and trip
excitations28 ~which in turn is equivalent to a topologica
transition in the spin Berry phase29! is confirmed. For values
of the correlated hopping which are outside the reach of
field theory, the regions of dominating superconducting c
relations at large distances extend beyond the prediction
the weak coupling treatment.

There are other physical phenomena which are outside
scope of the field theoretical treatment we followed. One
them is the opening of the spin gap fortAB,1 and negative
V found in our numerical calculations~see Fig. 3!. Another
one is phase separation. In addition, for very sm
tAB (tAB50.2), there is numerical evidence of peaks at
commensurate wave vectors in charge-charge and spin
correlation functions at half filling.11 These can be qualita
tively understood using the formalism of the exact solut
for tAB50:21 roughly, the doubly occupied sites are repr
sented by effective bosons and the singly occupied sites
effective fermions. The Fermi wave vector of these effect
fermions depends onU and hence, it is in general differen
from the noninteracting Fermi wave vector. Unfortunately
quantitative analytical calculation of these correlation fun
tions for smalltABÞ0, is very difficult due to the huge de
generacy fortAB50. On the level of the field theory, on
might speculate that irrelevant operators, which we have
glected, become important at large couplings in an adeq
renormalization group treatment and lead to incommens
bilities. In addition to the TS phase, the region of sing
superconductivity~SS! for tAB.1 andU.0 ~see Fig. 2! is
particularly interesting. In the caset352tAB2tAA2tBB50,
SS has been proposed and found in a mean-field treatm
by Hirsch as a model for hole superconductivity13

and confirmed by other numerical and analytic
calculations.12,26,27,36However, the case we studied nume
ev
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cally in Sec. III is electron-hole symmetric andt3 plays an
important role. It is also essential in 2D to give rise
dx22y2-wave superconductivity.6 In the limit in which tAB is
much larger than all other energy scales of the system, at
filling, a reasonable approximation to the ground state is
tained splitting the ring into consecutive dimers, and solv
the Hamiltonian in each dimer. Including the hopping b
tween dimers in second-order perturbation theory leads to
energy which is above the energy calculated with dens
matrix renormalization group by 1.6%.10 This suggests a pic
ture in which the system is composed of dimers, which
have as hard core bosons, being frozen at half filling~leading
to a dimerized phase with long range order, BOW in Fig.!
but which acquire mobility out of half filling, giving rise to
dominant SS correlations. If this image can be extended
2D, we expect some kind of short range resonance-vale
bond ground state at half filling, since dimers can be orde
in many different ways, and SS ofs- or dx22y2-wave sym-
metry would naturally arise as the system is doped. The
vored symmetry depends on the topology of the Fermi s
face. According to mean-field calculations and includi
spin fluctuations, thedx22y2-wave symmetry is favored fo
moderate doping if a negative next-nearest-neighbor hopp
is included in the model.6 We are presently investigating thi
possibility by numerical diagonalization.
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