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Triplet superconductivity in quasi-one-dimensional systems
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We study a Hubbard Hamiltonian, including a quite general nearest-neighbor interaction, parametrized by
repulsionV, exchange interaction,,J, , bond-charge interactioX, and hopping of pair®V. The case of
correlated hopping, in which the hopping between nearest neighbors depends upon the occupation of the two
sites involved, is also described by the model for sufficiently weak interactions. We study the model in one
dimension with usual continuum-limit field theory techniques, and determine the phase diagram. For arbitrary
filling, we find a very simple necessary condition for the existence of dominant triplet superconducting corre-
lations at large distance in the spin @YJsymmetric case: ¥+J<O0. In the correlated-hopping model, the
three-body interaction should be negative for posititeWe also compare the predictions of this weak-
coupling treatment with numerical exact results for the correlated-hopping model obtained by diagonalizing
small chains and using a Berry phase to determine the opening of the spif50ap3-18209)01046-2

I. INTRODUCTION where(ij) denotes nearest-neighbor sites. This model con-
tains the one which Hirsch proposed to give rise to hole
In the last years, the study of extensions of the usuasuperconductivity® In the context of the superconducting
Hubbard model has, among others, two important motivacuprates, Eq(1) has been obtained as a one-band effective
tions. First, to explain many features of the rich diagramHamiltonian when a low energy reduction of the extended
observed in the quasi-one-dimensional organic compoundsree-band Hubbard Hamiltonian is performed. For realistic
(TMTSF),X (where TMTSF means tetramethiltetraselena-parameters of the three-band model, calculated hopping pa-
fulvalene andX represents, RF CIlO, or other complekx rameters satisfy the following relation:
other interactions must be considered in the model Hamilt,g> (tan+tgg)/2.2417 In particular, in the limit in which
tonian, in addition to the on-site Coulomb repulsiofiSec-  the Cu-O hoppingt,q is much smaller than the charge-
ond, consensus increases about the fact that the usual Hulpansfer energieg,sg is of the order oft,q, while tas and
bard Hamiltoniah does not seem to define the minimal tgp are of ordertzd.ls In two dimensions2D), mean-field
model for the superconducting cuprates, while additionata|culations, including the effect of spin fluctuations, support
terms might explain the physics of the superconductinghe existence of a superconducting phase with ,> sym-
phase of these materidisThe proximity between the spin metry at finite doping, which is stabilized with the addition
density wave(SDW) and the superconducting phases ob-of a next-nearest neighbor hopping in the Hamiltorfian.
served in the phase diagrams of both kind of systems haghijle a realistic effective Hamiltonian for (TMTSEX has
been many times pointed out as a remarkable facthe  not been constructed so far, H@) contains the main terms,
symmetry of the order parameter is, however, different fofif only the ground state with zero, one, and two particles in
both systems. While it has been observed talpe . forthe  the singlet sector of an adequately chosen cell are
case of the cuprat€sxperimental evidence suggests that theretainedt®:18
observed superconductivity in (TMTS[gIO,, and Collecting the correlated hopping terms in one-, two-, and
(TMTSF),PF; under pressurg,as well as in the layered three-body terms, the Hamiltonian reads
compound SiRuQ, (Ref. 9 is of triplet p-wave character. In
this context, the extended Hubbard model with correlated
hopping is particularly interesting, as it seems to provide a ~ H=U2, nin; +V>, nn+ > (c-¢;;+H.c)
good scenario for the occurrence of both kinds of supercon- ' (i U

ducting instabilities, as well as the SDW and charge density X[ = t+ (Nt Njy) +taNigN;, ], )
wave (CDW) ones, depending on the values of the param-
eters and the filling .factcﬁ’.lo‘lz . . where t=tan, tr,=taa—tag, and tz=2txg—tan—tpg.
The model is defined by the Hamiltonian While two-body interactions are usual in many-particle prob-
lems, three-body interactions are more rare and introduce
H=UY nn +VX ninj— > (c-¢z+H.c) additional complications in most of the usual analytical
i (ip (ihe many-body treatments. The appropriate mean-field reduction

SItan(l=1 (1= )+ taal N+ taaln (1—n of the three-body term with parametey to effective two-
{tan 1) (17 Njo) +taafioNjo + tasl Mol jo) body ones can be performed using Wick’s theorem and ne-
+nj,(1—ni,) 1}, 1 glecting the resulting normal ordered three body term, with

0163-1829/99/6(22)/153327)/$15.00 PRB 60 15332 ©1999 The American Physical Society



PRB 60 TRIPLET SUPERCONDUCTIVITY IN QUASI-ONE. .. 15333

the vacuum representing the optimum Slater determit¥sft. region with dominant triplet superconducting correlations at
In 1D, we have verified that in the continuum linfiepre-  large distances are given by simple analytical expressions.
senting the fermionic fields in terms of bosonic ondkis  This region will be denoted TS phase in the following. As a
procedure is equivalent to perform operator product expanturther step, we obtain the phase diagram of the correlated
sions in the resulting Hamiltonian, keeping only relevant andHamiltonian Eq.(1), for weak and strong interactions, by
marginal operator¥ In other words, both approaches are numerical diagonalization of finite rings. The opening of the
equivalent in the weak-coupling limit. The ensuing two-bodyspin gap is detected accurately using the novel singlet-triplet
Hamiltonian reads level crossing method, based on results of conformal field
theory and renormalization grodpThis method is equiva-
eff _ off T lent to a topological transition which corresponds to a jump

H™= UEi Mgy, +V <.EJ> nini+<%(, (CigCictH.C) in a Berry phasé’® The results of both approaches are com-
pared and the conditions for the existence of the TS phase
are discussed. We also analyze the other phases of the model,
and discuss within which region of parameters, a supercon-
ducting instability withd,2_,> symmetry could be expected

X[t A(ny, + njg)]—WUEj> (cliclcj cj+H.c)

+Jz S-S &) in 2D. Section Il describes the weak coupling results. Results
m ’ of the exact diagonalization of E¢l) and comparison with
_ the CLFT are presented in Sec. lll. Section IV contains a
with discussion.

tf=t—t3(8372—p?), VeT=V+t,r,
Il. CONTINUUM LIMIT FIELD THEORY

W=2tar, A=trtpls,  J=4teT, @ The CLFT, also called g-ology, is a weak coupling ap-
where T:<CiTU_C]‘O.> and p=(n;,)=n/2, with n being the proach. The whole procedure has been explained in detail in
number of particles per site. In 1D and the weak couplingmany contributiond:**226303\We, thus, present here only a
limit: brief explanation of the steps followed. The basic assumption
is that the interactions are small, in comparison with the
1 (ke sin(p) 1 (ke Ke Fermi energy. The non-interacting energy dispersion relation
= ;JO dkcosk=——, p=— o dk=—. (5 s linearized around the two Fermi points and the interactions
in the momentum space are expressed in terms of four dif-
The Hamiltonian (3), with arbitrary interactions ferent scattering processes, which are labeled by coupling
te",A,W,J,U, V", defines the most general model with near-constantsg;; (gi,) if they involve the same(oppositg
est neighbor two-body interactions, which conserves charg&pIns.
and spin S2) symmetry. If in addition, the parameters are ~ To describe the low-energy physics of the problem, the
related by Eq.4) with V=0, p=1/2 and arbitraryr, the  fermion operators are decomposed as
model also has pseudospin @Jsymmetry?! In the general
case, we will also include the possibility of anisotropic ex- Cjo—eXplikeR)W ;. (j)+exp—ikeR)W _ ,(j), (6)
change {, in one direction,J, in the other twg, breaking
spin SU2) symmetry. Equatiori3) contains all the contribu- whereW¥, ,(j), r=" describe left- and right-moving fermi-
tions up to nearest neighbors of the Coulomb interactiorons. In the continuum limiea—0, L—c, with aL finite, a
when written in the tight binding bast$2®In this case, for being the lattice constant aridthe number of sites of the
weak screening of the interatomic repulsion, the relatibn lattice, these operators scale %,U(j)ﬂ\/a‘lf,ﬁ(xﬂa).
>Veff> A>W~J>0 has been derived, while smaller values The Hamiltonian(3) can be written in terms of the con-
of V are expected if the screening is efficiéht>*Arbitrary  tinuum fields¥, ,(x).
values of the different interactions could, however, be ex- Using the same notation as Vbttand neglecting irrel-
pected when dealing with effective models, derived fromevant operators, we obtain the following coefficients for the
some multiband model, as it is the case of Eq. different scattering processes of the Hamiltonian 4.
Several specific cases of the model Eg) have been
studied before using continuum limit field theory J,
(CLFT). 4122324280 particular, the chain described by the 91|=(2Veﬁ+ >
correlated hopping model Eql) was analyzed recently at
half filling.'> However, no definite conclusions regarding
possible dominance of superconducting correlations at large
distances were obtained, and the extension to other fillings
remains open. An accurate phase diagram has also been ob-
tained numerically using topological transitioffs.Other
works on models similar to Eqél) and(2) are cited in Refs. g4, =U+
12,27.
In this paper, we study the phase diagranigf; (3) with
generic parameterst¥",ts" W,J,,d, ,V¢™, in the weak-
coupling regime, using the CLFT. The boundaries of the
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J, correlations dominate at large distances. From (EQ), this
Qa1 = Ona| U—2VeT+ - tIi+2w], happens wheg,>0. At half filling, K, is renormalized, but
the initial value[Eqg. (10)] should be larger than one in order
U 33 to reach a final value larger than one at the Gaussian point in
Ja. =5 +\Veff— 1 2 —W cog 2kga) +4A cogkga), the renormalization-group procedure. Thus, from E&s,
) (10), (7), and(11), a necessary condition for the dominance
of superconducting correlations at large distances is ob-
where é, ; in the gz, (Umklapp coupling constant indicate tained:
that this scattering process is active only at half filling. The

fermionic fieldsW, ,(x) can be written in terms of bosonic off off | 9z
fields ¢,, ¢,, wherep, (o) denotes chargéspin degrees —U-4va+|2v +§+‘Ji cogmn) +2W
of freedom, by recourse to a bosonization ideritand the
Hamiltonian can be expressed as —8A cog 7n/2)>0. (14
Heff:Hp+ H,, (8)  This condition is also sufficient away from half fillingn (
i ) o #1). The character of the dominant superconducting corre-
whereH,, (v=p,o) is a sine-Gordon Hamiltonian: lations at large distancesinglet or triple} and simulta-
1 m neously the opening of a spin gap is determinedHy[Eq.
_ T2 27, v Iy (9)] and the flow of its paramenters under renormalization. In
Hy V”f dx Z[H”(X)+(aX¢V) I* a2 COSVBTK,bu) 1 the spin SW2) invariant casel,=J,), g,=d,, . For nega-
tive g, a spin gap opens, the triplet superconductifi®)
©) correlations function§CF) decay exponentially, while the
wherell, is the moment conjugate t¢,, and singlet superconductingSS CF decay asi™ s with dis-
5 tanced. Instead, for positive, , K, renormalizes to 1, there
v = /(VV)Z— 9y mood G is no spin gap, the TS CF decayais' ™ **+In'?d and domi-
v F 27| P 2w’ 9 27w’ nate over the SS CF, which decaydas' ~Y¥»In~%2d.3 Thus,
in the Tomonaga-Luttinger liquid phase with=J, and
o 04|+ 941 o 04— 4L K,>1, using Egs.(5),(7),(10),(11), one sees that TS CF
VESVET ———, VF=Vpt—— dominate at large distances if and only if
n 2mvE+g, U+ 2vef— i)cos(7rn)—\]—2W+8A cog 7mn/2)>0
VF=2teﬁSin(7), K,=\/—— (10 2 '
2mVe—d, (15)
with If the model is not spin S(2) invariant, TS CF dominate,

decaying asl~*¥»~ "o whenK ,>1 andg,>|g,, |, which

9p=20 792" 921> 9o=201 792+ %20 - D implies that the renormalizei,>1 .
The physics of the sine-Gordon Hamiltonian is well known Adding Egs.(14) and(15) a very simple necessary con-
from renormalization group®®3! At half-filling, for |gs,|  dition for the existence of the TS phase in the model By.
<g, the charge sector renormalizes to the Tomonagawith J,=J, is obtained:
Luttinger fixed point, where charge excitations are gapless.
Away from half-filling, charge excitations are gapless, ex- 4vet+J<o. (16)
cept for commensurate fillings=p/q and strong repulsive
interactions®” the system is insulating i ,<1/g°. For ex-
ample at quarter fillingrf=1/2), the critical value oK, is
1/43%23%|n terms of the parameters of E(), the condition
for Luttinger liquid behavior at half filling reduces to

This result is consistent with theoretical analysis which re-
lates triplet superconductivity with ferromagnetisfn.

For the model with correlated hopping in the form of Eq.
(2), using Egs(4),(5) the conditiong14),(15) take the form

eff eff 8
2U+4VT+2J, +J,<0 and X/¥<W. (12) —U+2V[cog7wn)—2]+ ;t3sin(rrn/2)cos(7rn)

For the particular case of the extended Hubbard model with

correlated hopping2), using Egs(4), (5), and(7), this con- —8(t,+t3n/2)cog wn/2)>0, (17
dition reads
in order that superconducting CF dominate at large distances
(U+2V+8ty/7<0 and V=<0) (13 and

in agreement with Ref. 12. In particular, fgr>0 the system 8
has always a charge gap at half filling. U+ 2V cog 7n) — —tg sin(7n/2)

Out of half filling, the HamiltoniarH , [see Eqs(9), (10), 77
and (7)], reduces to a Gaussian modeixcept for higher +8(t,+t3n/2) cod 7n/2) >0 (18)

order Umklapp processes which are relevant for commensu-
rate fillings andK ,<1/4, as mentioned abo¥e®. In this  for the region in which the spin gap is closed. Adding both
case K, is not renormalized and iK,>1 superconducting conditions leads to
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v P considerations lead to the phase diagram shown in Fig. 1 for
@ ow NG the general model Eq3) at half filling in the isotropic case
. - "] J, =J,=J. Forw=J=0, the model reduces to the extended
wiz _~"SBOW " Hubbard model studied previously** and no BOW or
AY < spw p )
ss_~"" \ SBOW phases appear. For large positivethe leading
- TS power-law decay of the SDW, CDW, and BOW CF isl 1/
e but the logarithmic correction of the former Hfd), makes
the SDW the dominant CF at large distanédhe combina-
U tion of parameters which control the existence of the BOW
v o e / / and SBOW phases isVZ+J. The BOW(BSDW) CF domi-
> S nate in a certain region df andV if and only if 2W+J
cDW // ﬁ\mw >0 (2W+J<0), particularly for largeU near the lineV
wiz yd =U/2—W-J/4 at which the spin gap opens.
Ill. NUMERICAL RESULTS
In this section we calculate the phase diagram of the cor-

related hopping model Eql) by exact diagonalization of
finite rings, and compare the results with those of the previ-
FIG. 1. Phase diagram of the general model B).at half  ous section. We concentrate on the electron-hole symmetric
filing (n=1) for J, =J,=J. (8 2W+J<0, (b) 2W+J>0. case and sei,,=tgg=1. Numerical® and CLFT(Ref. 12
results for one particle per sitam&1) have been done re-
2 cently. We have concentrated on two other densities:
V+—ts sin(wn/2)<0, (19 —1/2 (quarter filling andn=2/3. The boundary of the su-

- perconducting phase was determined from the equagipn
as a necessary condition for the model to have a TS phase. a1, with K, calculated from the expression

the extended Hubbard modé} Et;=0), Eqgs.(17) and(18)
imply that a TS phase can only exist for 28<4/3. K,=VmkD /2, (22

In addition to the SS and TS CF, the phase diagram at hathere the Drude weialD - and the compressibility were
filling is determined by the CF at large distances of the fol- . lati g Ph h pres i ¥ ical
lowing order parameters for charge density wAGDW). obtained extrapolating to the thermodynamic limit numerical

spin density wavéSDW), bond ordering wavéBOW), and results(obtained in the usual WS& using aipolynomial in
spin bond ordering wavéSBOW) ordef-12 1L, whereL is the length of the ring. Fan=1/2, we have
used rings withl. =8, 12, and 16, and fan=2/3 the lengths
. used wereL =6 and 12. We have also calculatéd using
OCD\N:Z (—1)'nj,~cog V27K, p,)cod v27K,,¢,), other two expressions which involwg,, the central charge
' and charge and spin gapsfo check for consistency and
finite-size effects. The latter are in general very small, except
Ospw= 2 (—1)ion,~sin(\27K ,¢,)sin(\27K ), for specific cases mentioned below. The opening of the spin
o gap was determined from the crossing of the levels of lowest
energy in the sectors with total sp8=0 andS=1 for pe-
riodic (antiperiodi¢ boundary conditions ifN/2 is even

U

_ T
OBOW_% (Ciy10CisTH.C) (odd), whereN is the number of particles in the systéfh.
This method is based on results of conformal field theory and
~sin(\27K,¢,)cod 27K ,), renormalization group, which show in addition that at the

crossing point, the finite size corrections of these excitation

_ i energies per site go asL?/ without logarithmic corrections.
OSBOW—% o(Ci11,CistH.C) This allows a very accurate determination of the parameters
for which the spin gap opens using finite-size scaling. This
~cog V27K, ,)sinN\27K,d,), (200 level crossing has also a topological significance, since at

_ . _ _ . this point, the spin Berry phase, which can only take two
The opening of the spin gap is accompanied by the ordering, | es: 0 orr (mod 2m) jumps in () at the transitior?®

of ¢ with expectation valugss)=0. When the charge gap |, Fig. 2, we show the evolution with doping of the phase
is closed, except for the particular cagg=|gs, | for which diagram forV=0. As soon as the density decreases below
K, renormahz_es tolg, renormallzes_to a positive value and , — 1, the Umklapp processes become irrelevant and accord-
K,>1 at the fixed point. Then, as discussed above(SS ing to the CLFT, the degeneracy of TS and SBOW CF on
CF dominate at large distances if the spin gap is closede phase and the SS and CDW on the df&is broken in
(open). Instead, when the charge gap opejws(|>9,), ¢, favor of the superconducting CF, sinkg, becomes larger
orders with expectation valugp,)=0 [(¢,)=7/(8K,)]  than one. As doping increases, the SDW phase advances
for negative(positive gz, . If the spin gap is positive, this over the TS phase and at quarter filling=1/2) the TS
implies CDW (BOW) order, while if the spin gap is closed phase lies entirely within the region of negatile Instead

the dominant CF are the SBOWSDW) ones>*!2 These the SS phase advances rapidly over the B@Ndimer or-
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5
v 15
. V | SDw CDW
- ] 05 ““
SS 123ab e
123a] 05 :: TS SS
U n=2/3 3, 0.5 1 15 2
3 1 AB
- SDW CDW &
1} T g el . . _ .
L Y Rt 1O o E FIG. 3. Same as Fig. 2 fdd=0 andn=2/3. The open circles
1} T are points which correspond to the singlet-triplet crossingLfor
s sS =12 and deviate substantially from the extrapolated results that
ST ) indicate the opening of a spin gap.
-5 L
U5 = 'n=1 PS. FortAB<0.9 our results for the opening _of the spin gap
3P e P at negativeV are affected by large finite size effedte-
Ll TS_SBO\\;'J\l flected by the difference between the valuesvohdicated
with solid and open circles in Fig.)3 This is probably
-Lr e 2OV 1 caused by the proximity to PS. The numerical investigation
S . . . .
3t s CD‘;;\‘\-\,, of PS is very delicaf€ and is beyond the scope of this work.
-5 ) L =
0 03 ! L3ty 2 IV. DISCUSSION
FIG. 2. Phase diagram of the correlated hopping modelBq. We have studied the phase diagram of a Hubbard model

for V=0 and several densities indicated at the top left of eachgq. (3) in the weak coupling limit, generalizing previous
figure. Solid squares indicate values @fandtag for which K, stdies which use the continuum limit field theory. The
=1. The straight lin&k ,=1 according to the CLFTEQ. (17) with  mode| includes the most general form of nearest-neighbor
ta=1-1tag, t3=—21,] is shown dot dashed. Solid circles are y,_pody interactions which conserves charge and spin. The
points at which the spin gap closes. The corresponding results a?)-hase diagram is very rich, and six different phases can ap-
cording to the CLFT[Eq. (18)] are represented by the full straight pear, according to the dominant correlation functions at large
line. distancegsee Fig. 1 In particular, in the isotropic case, if
there is a nearest-neighbor attraction<{0) or ferromag-
dered phase at half filling. The agreement of the predictionsnetic exchangeJ<0) a phase with dominant triplet super-
of the singlet-triplet level crossing method for detecting theconducting correlation§TS phasg can exist. Specifically
opening of the spin gap with the CLFT results is excellent a4y +J<0 is a necessary condition for the existence of the
weak coupling [tag—1|<0.1), which confirms the accuracy TS phase. Work on weakly coupled chains using perturba-
of the method. The numerical results for the points at whichtion theory suggests that small interchain hopping stabilizes
K,=1 also agree very well with the weak coupling resultsa 3D long-range order with finite critical temperature, which
for n=1/2. Forn=2/3, for which only two pointsi(=6 and  corresponds to the dominant correlations at large distances in
L=12) were used in the finite-size scaling, aKg varies  the purely 1D cas& Thus, we expect that our results can be
very slowly with the parameters near the noninteractingapplied to real quasi-one-dimensional materials, which can
limit, the numerical points in the weak coupling limit are not be described by an effective Hamiltonian such as &yor
accurate enough. However, these points are also consiste@. Since in real material¥ is expected to be repulsive, an
with the CLFT results. efficient screening of the interatomic repulsions and effective
It is remarkable that fon=1, the CLFT results are quan- ferromagnetic exchangdsuch as that present in one-
titatively valid even at intermediate coupling. However, outdimensional cuprates containing edge-sharing Cufits®®)
of half filling and weak coupling, the CLFT overestimates would be necessary conditions for the existence of triplet
the region in which the spin gap vanishes, and clearly undersuperconductivity. It has been proposed that in some ideal
estimate the extension of the superconducting phases. limit, ferromagnetism and triplet superconductivity might be
In Fig. 3 we show the effect df on the phase diagram for related by symmetry operations of the group(53*
n=2/3. We have chosen this density because a TS phase For weak coupling, the general model E8), with pa-
exists for positiveU if tp\g<<1. Fort,g<<0.4 the results are rameters satisfying the relations Ed) describes the corre-
affected by large finite size effects, perhaps because of tHated hopping model Eq1). For this model to display a TS
proximity of phase separatiofPS, and we were unable to phase in the weak coupling limit, it is necessary that
obtain reliable results. For Ot ,g<<1, increasingV, from + (2/7)(2tag—tan—tgp)Sin(mn/2)<0. We have studied
zero, the line oK ,=1 is crossed first and then at largéa  this model beyond the weak coupling regime by numerical
spin gap opens, in qualitative agreement with the CLFT rediagonalization of finite rings. In spite of the fact that the
sults. However, we obtain that the spin gap opens also whesize of the studied systems is small, the results agree very
V is decreased taking negative values. This crossing is out afell with those obtained with the field theory in the weak
the reach of the CLFT. AY is further decreased one expects coupling regime. In particular, the accuracy of determining
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the gap by the method of the crossing of singlet and tripletally in Sec. Ill is electron-hole symmetric argl plays an
excitationg® (which in turn is equivalent to a topological important role. It is also essential in 2D to give rise to
transition in the spin Berry pha&® is confirmed. For values dy2_y2-wave superconductivityIn the limit in whicht,g is
of the correlated hopping which are outside the reach of theuch larger than all other energy scales of the system, at half
field theory, the regions of dominating superconducting corfilling, a reasonable approximation to the ground state is ob-
relations at large distances extend beyond the predictions ékined splitting the ring into consecutive dimers, and solving
the weak coupling treatment. the Harr_nltoma}n in each dimer. IncIudmg the hopping be-
There are other physical phenomena which are outside tH¥veen dlmgrs in second-order perturbation theory leads to an
scope of the field theoretical treatment we followed. One ofN€rdy which is above the energyécalcylated with density-
them is the opening of the spin gap fgi<1 and negative matrix renprmahzatlon group by 1.648 This suggests a pic-
V found in our numerical calculationsee Fig. 3 Another ~(Ure in which the system is composed of dimers, which be-
one is phase separation. In addition, for very smallh"’“’e as hgrd core boso.”s’ being frozen at half f|IQIB_gd|ng
tag (tag=0.2), there is numerical evidence of peaks at in-10 & dlr_nerlzed phase W'Fh long range qrder, B.O.W n Fip. 2
commensurate wave vectors in charge-charge and spin-sp tV_Vh'Ch acquire mo_b|I|ty out (.)f half filling, giving rise to
correlation functions at half filling! These can be qualita- 9°minant SS correlations. If this image can be extended to

tively understood using the formalism of the exact solutiontz)D'(;Ne expgct some hk"?fdf'l?f sho.rt rar:jge resonanbce—vzlencae
for tag=0:% roughly, the doubly occupied sites are repre- ond ground state at halt filling, since dimers can be ordere

sented by effective bosons and the singly occupied sites b} many different ways, and SS &f or d,2_,2-wave sym-

effective fermions. The Fermi wave vector of these effective "€y would naturally arise as the system is doped. The fa-
fermions depends obl and hence, it is in general different VOred symmetry depends on the topology of the Fermi sur-

from the noninteracting Fermi wave vector. Unfortunately, aface. According to mean-field calculations and including

quantitative analytical calculation of these correlation func-SPin fluctuations, thelz_.-wave symmetry is favored for
tions for smalltxg# 0, is very difficult due to the huge de- moderate doping if a negative next-nearest-neighbor hopping

generacy fort,5=0. On the level of the field theory, one is included in the modélWe are presently investigating this

might speculate that irrelevant operators, which we have ne[—’os‘c"b'“ty by numerical diagonalization.
glected, become important at large couplings in an adequate
renormalization group treatment and lead to incommensura-
bilities. In addition to the TS phase, the region of singlet One of us(A.A.A.) thanks Fabian Essler and M. Naka-
superconductivitfS9 for t,g>1 andU>0 (see Fig. 2is  mura for useful discussions. We thank the Max-Planck Insti-
particularly interesting. In the cagg=2tpg—tan—tgg=0, tut fur Physik komplexer Systeme, where this work was fin-
SS has been proposed and found in a mean-field treatmeished, for its hospitality. L.A. acknowledges support from
by Hirsch as a model for hole superconductivity, CONICET. A.A.A. is partially supported by CONICET. This
and confirmed by other numerical and analyticalwork was supported by PICT 03-00121-02153 of ANPCyT
calculationst22627*5However, the case we studied numeri- and PIP 4952/96 of CONICET.
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