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Topological phase fluctuations, amplitude fluctuations, and criticality
in extreme type-II superconductors
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We study the effect of critical fluctuations on the (B,T) phase diagram in extreme type-II superconductors
in zero and finite magnetic field. In zero magnetic field the critical fluctuations are transverse phase fluctuations
of the complex scalar Ginzburg-Landau order parameter, which when excited thermally will induce topological
line defects in the form of closed vortex loops into the system. The distribution functionD(p) of vortex loops
of perimeterp changes from an exponential functionD(p);p2a exp@2«(T)p/kBT# to a power law distribution
D(p);p2a at the zero-field critical temperatureT5Tc . We find that the long-wavelength vortex-line tension
vanishes as«(T);uT2Tcug;g'1.45, asT→Tc . At T5Tc , an extreme type-II superconductor suffers an
unbinding of large vortex loops of order the system size. When this happens, the connectivity of the thermally
excited vortex tangle of the system changes abruptly. The loss of phase stiffness in the Ginzburg-Landau order
parameter, the anomaly in specific heat, the loss of vortex-line tension, and the change in the connectivity of
the vortex tangle are all found at the same temperature, the critical temperature of the superconductor. At zero
magnetic field, unbinding of vortex loops of order the system size can be phrased in terms of a global
U(1)-symmetry breaking involving a local complex disorder field which is dual to the order parameter of the
usual Ginzburg-Landau theory. There is one parameter in the theory that controls the width of the critical
region, and for the parameters we have used, we show that a vortex-loop unbinding gives a correct picture of
the zero-field transition even in the presence of amplitude fluctuations. A key result is the extraction of the
anomalous scaling dimension of the dual field directly from the statistics of the vortex-loop excitations of the
Ginzburg-Landau theory in the phase-only approximation. A scaling analysis of the vortex lattice melting line
is carried out, yielding two different scaling regimes, namely, a high-field scaling regime and a distinct
low-field three-dimensionalXY critical scaling regime. We also find indications of an abrupt change in the
connectivity of the vortex tangle in the vortex liquid along a lineTL(B), which at low enough fields appears
to coincide with the vortex line lattice melting transition line within the resolution of our numerical calcula-
tions. We study the temperature at which this phenomenon takes place as a function of system size and shape.
Our results show that this temperature decreases and appears to saturate with increasing system size, and is
insensitive to aspect ratios of the systems on which the simulations are performed, for large enough systems.
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I. INTRODUCTION

Ten years after Abrikosov’s classic prediction of a latti
of quantized vortices, the Abrikosov vortex-line lattic
~VLL !,1 as the ground state of type-II superconductors wh
the magnetic field is tuned beyond a lower critical valu2

Gerd Eilenberger suggested that the VLL could melt close
the critical temperature of the system.3 The magnetic field
versus temperature (B,T)-phase diagram of extreme type-
superconductors has for some time been under intense in
tigation both theoretically and experimentally, followin
suggestions that the VLL could undergo a melting transit
in regime of the (B,T)-phase diagram of the high
temperature superconductor that could be experimen
resolved.4,5 This was soon confirmed by a more thorou
theoretical analysis6 where it was shown that the VLL of th
high-temperature superconductors was particularly sus
tible to thermal fluctuations due to the large anisotropy
these compounds. The anisotropy only affects the mel
PRB 600163-1829/99/60~22!/15307~25!/$15.00
n

o

es-

n

lly

p-
f
g

line of the VLL when the pronounced nonlocal elastic pro
erties of the VLL in strong type-II superconductors, first d
cussed for the isotropic case in the pioneering works
Brandt,7,8 are taken into account.6

Recently has it been established, through numer
simulations9,10 that the vortex-liquid is alwaysincoherent,
i.e., phase coherence is destroyed in all directions, includ
the direction of the induction, as soon as the VLL mel
Inside the vortex liquidregime, there is no transition from a
disentangled to an entangled vortex liquid. For such a tr
sition to occur inside the vortex-liquid, the longitudinal s
perfluid density would have to be nonzero above the melt
temperature. This, however, does not happen in the c
limit,9,10 even in the isotropic case.11 It has also been ques
tioned whether the vortex-line picture of the molten phase
the Abrikosov VLL is viable at all at low fields.12–14,10,15,11

In terms of fundamental physics, extreme type-II sup
conductors are interesting due to their large fluctuation
fects not commonly seen in condensed matter systems.
15 307 ©1999 The American Physical Society
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is ultimately due to the fact that they are strong coupl
superconductors arising out of doped Mott-Hubbard insu
tors. The latter fact gives rise to the effect that the ph
stiffness of the superconducting order parameter is low,
to a low value of the superfluid densityrs

rs;
]2f

]~Du!2
,

whereDu is a twist in the superconducting order parame
over the size of the system, andf is the free energy density
This particular and important aspect of doped Mott-Hubb
insulators has been quite strongly emphasized already
some time,16–18 see also Ref. 19. The strong coupling effe
gives rise to a largeTc , so that the Ginzburg-Landau param
eterk;Tc /Ars is large. This also softens the vortex matt
in these systems, particularly when coupled with their stro
layeredness.6

There is also a close connection between thermodyna
phase transitions in these systems, and phase transitio
superfluids,20 liquid crystals,21 crystals,22 and
cosmology.23–27 The close connection between these app
ently different physical problems, is due to the similarity
the topological objects that appear in these problems.
ticularly in the context of superfluid He4, the proposition that
an unbinding of topological phase fluctuations in the form
vortex loops is the microscopic mechanism for t
superfluid-normal state transition, has been extensively s
ied in the past,28–33and early attempts at formulating a field
theory of this in the context of charged superfluids in ze
magnetic field has also appeared in the literature.34 Effective
gauge-field theories with an internal U(1)-symmetry all have
in common that they supportline defect in the form of
vortex-loop excitations as stable topological objects. Und
standing the role of such excitations on the (B,T) phase
diagram of type-II superconductors is an important probl
in physics, and presumably will shed light on the relat
problems mentioned above as well.

In conventional low-temperature superconductors,
temperature where Cooper pairs start to form,TMF , is prac-
tically identical to the true superconducting transition te
peratureTc . The commonly applied Ginzburg-criterion pro
vides a useful estimate for the width of the critical regions
systems with weak fluctuation effects, showing that
width of the critical region is of orderutu;(Tc2T)/Tc
;102621024. In high-Tc superconductors, this may n
longer be the case. There appears to be mounting experim
tal evidence that the width of the critical region is as large
a few K in the high-Tc superconductor YBa2Cu3O7
~YBCO!,35–39 which would encompass the melting line
the flux-line lattice up to a field of order 1T.6

In zero field, the superconducting-normal phase transi
is exclusively caused by a vortex loop unbinding.14,40,11,41,42

Below the critical temperatureTc vortex loops are confined
to a typical perimeterL0, and cause only local disturbance
in the macroscopic superconducting state. Recently, this
been demonstrated clearly, by correlating an abrupt cha
in vortex tangle connectivity, a loss of vortex-line tensio
loss of superfluid stiffness and specific heat anomaly p
cisely at the critical temperature of the superconductor, e
for the isotropic case.40,11 At Tc , thermally induced vortex
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loops lose theireffectiveline tension«(T) ~free energy per
unit length!, and therefore unbind.

The fact that the zero-field transition can be characteri
precisely by a loss of line tension of thermally induced fl
lines, implies that there is a sharp change in the distribut
function D(p) for vortex loops of a given perimete
p. It changes from an exponential formD(p)
;p25/2exp@2«(T)p/kBT# to a power lawD(p);p25/2 at
Tc .11 This implies the existence of a diverging length sca
L0(T)5kBT/«(T).40,11 Given this fact, it raises the questio
of whether the critical fluctuations can affect the melting li
in a sizeable field-temperature regime, rendering the vo
lines tensionless. The vortex line tension is analogous to
mass of the bosons in a two-dimensional~2D! nonrelativistic
boson analogy of the vortex system. If the vortex-line te
sion were to vanish, it would mean that the boson m
would vanish in the corresponding analogy. There is no n
relativistic limit of any massless theory. The conclusi
would be that any 2D boson-model which is nonrelativist
is inapplicable in the part of the phase diagram where
vortex-line tension vanishes. We reemphasize that at
evated fields, where the first order flux-line lattice melti
line splits off from the transition line proposed here, the Li
demann criterion of flux-line lattice melting6 is expected to
correctly locate the position of the melting line.40

The outline of this paper is as follows. In Sec. II, w
introduce the Ginzburg-Landau model studied in this pap
and various approximations and reformulations of it, as w
as their inter-relations. In Sec. III, we present the ideas
derlying the simulations that are presented in this paper,
introduce and discuss the quantities we study. In Sec. IV,
present results of the simulations in zero magnetic field.
particular, we present results which demonstrate that
zero-field transition in an extreme type-II superconductor
driven by a proliferation of unbound vortex loops, whic
therefore constitute the critical fluctuations of this system.
Sec. V, finite-field results are given. Summary and conc
sions are presented in Sec. VI, and in this section we also
point by point the results obtained in this paper. A prelim
nary account of a subset of the present results have appe
in Ref. 40.

II. MODELS

In this section we define the models considered in t
paper: ~1! the continuum Ginzburg-Landau model,~2! the
lattice Ginzburg-Landau model in a frozen gauge approxim
tion, and~3! the uniformly frustrated 3DXY model. We also
discuss the approximations involved and the validity of t
models.

A. Ginzburg-Landau model

Our starting point is the continuum Ginzburg-Land
~GL! model.43 In quantum field theory, the GL model is als
referred to as the scalar QED or the U(1)1Higgs model or
the Abelian Higgs model. The effective Hamiltonian for th
GL model in an anisotropic system is given by44
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HGL5E d3r Fa~T!ucu21
g

2
ucu4

1 (
m5x,y,z

\2

2mm
US ¹m2 i

2p

F0
AmDcU2

1
1

2m0
~¹3A!2G . ~1!

Here,c(r )5uc(r )ueiu(r ) is a complex order field represen
ing the superconducting condensate. In superconductors
amplitudeuc(r )u2 should be interpreted as the local Coop
pair density. Furthermore,mm is the effective mass forone
Cooper pair when moving along them direction,F05h/2e
is the flux quantum, andm0 is the vacuum permeability. In
Eq. ~1!, the gauge fieldA is related to the local magneti
induction b(r )5¹3A(r ). Finally, the GL parameterg is
assumed to be temperature independent, whilea5a(T)
changes sign at a mean-field critical temperatureTMF(B),
where Cooper pairs start to form.B is the spatial average o
the magnetic induction. The critical temperatureTc where
phase coherence develops, is always smaller thanTMF ; the
existence a finite Copper-pair density does not imply that
system is in a superconducting state.

Below, the Ginzburg-Landau theory is recast into a qu
different form that also exhibits a U(1) symmetry, but whe
the field conjugate to the relevant phase is the number
erator for the topological excitations destroying the order
the Ginzburg-Landau theory itself. Although this may se
to be an unnecessary complication, it has the advantag
facilitating a detailed discussion of the vortex-liquid phase
the GL theory in terms of the ordering of some local fie
namely, the complex scalar fieldf(r ) to be introduced and
discussed in Sec. II E. This is not possible using
Ginzburg-Landau order parameter functionc(r ) since
^c(r )& is always zero in the vortex liquid phase.9,10 In the
zero-field low-temperature ordered phase, the system s
taneously chooses a preferred phase angleQ, and explicitly
breaks the U(1) symmetry. The vortex sector of the G
theory also exhibits a U(1) symmetry breaking, but whe
U(1) symmetry is broken in the high-temperature phase,
restored in the low-temperature phase.

Equation ~1! has two intrinsic length scales, the mea
field coherence length

jm
2 ~T!5

\2

2mmua~T!u
~2!

and the magnetic penetration depth

lm
2 5

mmb

4m0e2ua~T!u
. ~3!

jm is the characteristic length of the variation ofuc(r )u along
the m direction, andlm is the characteristic length of th
variation of the current flowing along them direction.

In order to carry out Monte Carlo simulations of the G
model, the model is discretized by replacing the covari
derivative in the continuum GL Hamiltonian, Eq.~1!, with a
covariant lattice derivative
the
-
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Dmc5S ¹m2 i
2p

F0
AmDc

→D” mc5
1

am
@c~r1m̂ !e2 i (2p/F0)amAm(r )2c~r !#.

~4!

The resulting model is a version of the Lawrence-Donia
model45 with all three directions discretized. The effectiv
Hamiltonian for the lattice GL model is given by

HLGL5axayaz(
r

Faucu21
g

2
ucu41 (

m5x,y,z

\2

2mmam
2

3uc~r1m̂ !e2 i (2p/F0)amAm(r )2c~r !u2

1 (
m5x,y,z

1

2m0am
2 ~D3A!m

2 G . ~5!

Here, am and m̂ is a lattice constant and a unit vecto
along them axis, respectively. Furthermore, the lattice d
rivative is defined as

Dmc~r !5c~r1m̂ !2c~r !.

Taking the continuum limitam→0, the effective Hamil-
tonian for the lattice GL model@Eq. ~5!# reduces correctly to
the GL effective Hamiltonian in the continuum@Eq. ~1!#. As
defined in Eq.~5!, the lattice GL model does not contai
vortices. To reintroduce the vortices in the model, we m
compactify the gauge-theory by requiring that the gauge
variant phase differences satisfy46

Fu~x1m̂ !2u~x!2
2p

F0
amAm~x!GP@2p,p&. ~6!

Whenever this constraint is used to bring the gauge invar
phase differences back to its primary interval, we autom
cally introduce a unit closed vortex loop, and the net vort
ity of the system is guaranteed to be conserved at every s
of the Monte Carlo simulation. From the renormalizatio
group point of view the continuum GL model and the latti
GL model belong to the same universality class.22 We there-
fore expect the lattice GL model and the continuum G
model to give, qualitatively, the same results.

B. Lattice Ginzburg-Landau model in a frozen gauge
approximation

In extreme type-II superconductors, the zero tempera
mean-field penetration depth is much greater than the z
temperature coherence lengthlm(T50)@jm(T50). Thus,
fluctuations of the gauge field represented by the last term
Eq. ~1!, around the extremal field configuration are strong
suppressed and can therefore be neglected. The effe
Hamiltonian for the frozen gauge~FG! model can be written
as
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HFG5
ua~0!u2

g
axayaz(

r
Fa~T!

a~0!
uc8u21

1

2
uc8u4

1 (
m5x,y,z

jm
2

am
2

uc8~r1m̂ !uuc8~r !u

3@222 cos~Dmu2Am!#G . ~7!

Here, we have defined a dimensionless order field
vector potential

c85
c

Aua~0!u/g
→uc8u;@0,1#,

Am5
2p

F0
amAm .

The natural energy scale along them direction is

Jm52
ua~0!u2

g
axayaz

jm
2

am
2

.

Assuming a uniaxial anisotropy along thez axis, the natural
energy scale for the FG model is

J05Jx5
2ua~0!u2

g
jab

2 az5
F0

2d

4p2m0lab
2

. ~8!

Here, we have put our coordinates (x,y,z) axis parallel to
the crystals (a,b,c) axis. Furthermore,jx5jy5jab and jz
5jc is the coherence length in the CuO planes and along
crystal’sc axis, respectively. Furthermore,lx5ly5lab and
lz5lc is the penetration depth in the CuO planes and al
the crystalsc axis, respectively. In Eq.~8!, d is the distance
between two CuO superconducting planes in adjacent
cells. The energy scaleJ0 is roughly the energy scale o
exciting a unit vortex loop.16,47,10

The ratio between the energy scalesJx andJz serves as an
anisotropy parameter

G5AJx

Jz
5

jabaz

jcax
5

lcaz

labax
. ~9!

In this model, the lattice constantam should be defined a

am5max~dm ,C0jm!.

Here,dm is an intrinsic length along them direction in the
underlying superconductor to be modeled. Examples of s
intrinsic length are the distance between CuO-planes in
jacent unit cells, the (a,b) dimension of the unit cell. To be
consistent, the constantC0 should be larger than;4. This
requirementam /jm.4 ensures that the amplitude of the o
der field does not overlap.48 Such overlap will give rise to a
domain wall term (¹ucu), which is absent in the lattice GL
model.

Within the frozen gauge approximation, the gauge fi
serves only as a constraint, fixing the value of the unifo
induction. In terms of magnetic induction this approximati
d

e

g

it

ch
d-

d

is valid whenB@Bc1(T), where the field distribution from
individual flux lines overlap strongly, giving uniform induc
tion. Note thatBc1(T) also vanishes when the temperatu
approachesTc . In zero field, this approximation is valid fo
all temperatures except an experimentally inaccessible t
perature region aroundTc .49

In our simulations on the FG model, we allow for bo
phase and amplitude fluctuations of the superconducting
der parameterc(r )5uc(r )uexp@iu(r )#. Details of the Monte
Carlo procedure for this case will be given below.

C. Uniformly frustrated 3D XY model

The uniformly frustrated 3DXY model was first used as
phenomenological model for extreme type-II supercondu
ors by Li et al.47 and Hetzelet al.50 To obtain the uniformly
frustrated 3DXY (3DXY) model from the FG model, we
freeze the amplitude of the complex order field in Eq.~7!,
uc8u51. This is the London approximation. The resultin
effective Hamiltonian for the 3DXY model is given by

HXY52
2ua~0!u2

g
axayaz(

r ,m

jm
2

am
2

cos~Dmu2Am!. ~10!

The lattice constants in the 3DXY model should be defined
as

am5max~dm ,jm !.

Assuming uniaxial anisotropy, the energy scales and the
isotropy parameter of the 3DXY model are the same as fo
the FG model, Eqs.~8!, ~9!. Note that both the FG model an
the 3DXY model contain precisely the same topological o
jects, i.e. vortex loops and vortex lines, as for the GL mod
The local gauge symmetry in the GL model is, howev
reduced to a global U(1) symmetry in the FG and the 3DXY
models.

D. Villain approximation and vortex representation

To further corroborate interpretations of the results fro
our Monte Carlo simulations using the uniformly frustrat
3DXY model, to be detailed in the next section, it is useful
provide an alternative, but entirely equivalent formulation
the GL theory. This formulation replaces a description
terms of the GL functionc by vortex degrees of freedom
where the interaction between vortex segments is medi
by a gauge field, which we denote byh. This gauge field is
not the electromagnetic vector potentialA, but will couple to
it. The resulting structure of the theory makes it possiblein
three dimensions, and three dimensions only, to reformulate
the vortex content of the GL theory as a theory of a comp
matter fieldf coupled to the gauge fieldsh andA. Although
this may seem as an unnecessary detour, the great adva
of this approach, is that certainvortex correlators, notably
our quantityOL to be defined below, can be directly relate
to a U(1) symmetry of thef theory.

To proceed with this, we introduce the well-known Vi
lain approximation to the 3DXY model. The Villain approxi-
mation consists of replacing the cosine potential in the u
formly frustrated 3DXY model by a Gaussian 2p-periodic
potential. In this way the longitudinal spin-wave excitatio
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of the u field decouple from transverse vortex-excitations
the theory. This decoupling does not alter the critical beh
ior of the system. The partition function for this theory rea
after a rescaling of the vector potential and charge

ZV5)
r
E Du~r !E DA~r ! (

n(r )52`

`

eS

S52(
r

Fb2 ~¹u22eA22pn!21
1

2
~¹3A!2G ,

where n(r ) is an integer-valued field. The kinetic term
linearized by a Hubbard-Stratonovich decoupling, introd
ing an auxiliary velocity-fieldv(r ) and using the identity

)
r

e2bu2(r )/2;)
r
E Dv expS 2(

r
Fv~r !2

2b
2 iv~r !•u~r !G D .

This is now inserted back into the original partition functio
using u5¹u22eA22pn(r ). The sum over the integer
n„r ) may be carried out, yielding the constraint thatv„r ) is
integer valued, sayv„r )5 l(r ). The next step is to integrat
out the u(r ) variable, which yields the constraint¹•v„r )
50, which is solved by introducing an integer valued fie
h(r ) such thatl(r )5¹3h(r ). In order to be able to treath
as a continuous variable, we introduce a new integer-val
field m and apply the Poisson-summation formula

(
m52`

m5`

e2p im•h5 (
l52`

`

d~ l2h!.

Note that this procedure does not involve any approxim
tions. Finally, we write the partition function for the G
theory in phase-only and Villain approximations as

Z5)
r
E Dh DA (

m52`

`

eSeff[m,h,A] , ~11!

Seff52(
r

F2p im•h1
1

2b
~¹3h!2

12ie~¹3h!•A1
1

2
~¹3A!2G ,

where the following constraints apply in the functional int
gral: ¹•A5¹•h5¹•m50. The effective action@Eq. ~11!#,
is invariant under

h→h1¹vh ,

A→A1¹vA .

The field h is readily interpreted as a fictitious gauge fie
that mediates an interaction between vortex segmentsm.
This is easily seen by integrating out theh field.

E. Dual representation

Whenever a field theory sustains topological defects,
often useful to formulate a field theory of the topologic
excitations of the original theoryper se, and this forms a
dual description of the original theory. We will do this fo
f
-
,

-

,

d

-

is
l

the present problem also, following Ref. 22. This means t
the vortex content Eq.~11! of the Ginzburg-Landau theory
Eq. ~5! in the phase-only Villain approximation is cast in
the form of a local field theory involving a complex scal
mass field describing local vortex fluctuations, coupled t
dual gauge field that mediates an interaction between
vortex segments. The resulting theory will exhibit explicit
a U(1) symmetry, and as always in such cases, the ques
to be asked is under what circumstances, if any, the sym
try will be spontaneously broken.51

The purpose of this reformulation is to provide a point
contact between on the one hand a quantity to be introdu
in Sec. III A and studied in Secs. IV B and V A, probin
vortex-tangle connectivity and denotedOL , and on the other
hand thermodynamics. The key point is that in zero magn
field, the two-point correlation function of the complex sc
lar mass fieldf(r ) of the dual theory, is precisely the prob
ability of finding a connectedvortex path between the two
points of the correlation function, regardless of by whi
path the two points are connected.22 Long-range order in
G(x,y) implies a broken U(1) symmetry. Equivalently
long-range vortex connectivity in zero magnetic field impli
a broken U(1)-symmetry, which is ‘‘hidden’’ at the level of
Eq. ~11!, but is brought out when Eq. 11 is reformulated
the dual form, to be described below.

In three dimensions,and three dimensions only, a vortex-
loop system interacting with a long-range Biot-Savart int
action and steric repulsion, mayin the continuum limitbe
written as a gauge theory of a local complex matter fieldf
coupled toh.22,52,15We may extend the results of this wor
including fluctuations inA in a finite magnetic field, in
which case the vortex content of the Villain approximation
the GL theory corresponds precisely to an action of the
lowing form:

Z5)
r
E Df~r !Df* ~r !Dh~r !DA~r !eS̃eff[f,f* ,h,A] ,

S̃eff52(
r

Fa8ufu21
g8

2
ufu41

1

2 US ¹

i
2e8hDfU2

1
1

2b
~¹3h!212ie~¹3h!•A1

1

2
~¹3A!2G ,

~12!

where the coefficients (a8,e8,g8) appearing in the theory ar
given in terms of the parameters entering Eq.~11!.52 For our
discussion, their precise values are of no importance.
interpretation of thef field is that it is a local field describ
ing local fluctuations in the topological excitations of the G
theory, namely, line defects in the form of vortex lines. T
effective action, Eq.~12!, is invariant under the set of trans
formations

f→f exp~ ivh!,

h→h1
1

e8
¹vh

A→A1¹vA . ~13!
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By rewriting the theory in Eq.~11! in this way one observe
that it explicitly exhibits a U(1) symmetry. Note that th
relies entirely on the possibility of reformulating the intera
ing loop gas, including Biot-Savart interactions, in terms o
complex matter fieldf coupled to a gauge fieldh.

The main advantage of the above formulation is that
probability of finding a connected path of vortex segmen
starting atx and ending aty, G(x,y), is given by the two-
point correlation function of thef field22

G~x,y!5^f* ~x!f~y!&. ~14!

A vortex-loop unbinding will lead to a finiteG(x,y) when
ux2yu→`, because infinitely large loops will connect opp
site sides of the vortex system. On the other hand
limux2yu→`G(x,y)Þ0, this implies that̂ f* (x)&Þ0, corre-
sponding to a broken U(1) symmetry. Therefore, the d
field f(r ) is an order parameter of a vortex-loop unbindi
transition. The broken U(1) symmetry is associated with
loss of number conservation of connected vortex pa
threading the system in any direction~including direction
perpendicular to an applied magnetic field, if that is prese!.
This limit of the two-point correlation function is closel
related to the quantityOL we introduce in Sec. III A, which
probes the connectivity of the vortex tangle in an extre
type-II superconductor. The above connection makes it at
very least plausible that an abrupt change in this connec
ity, as probed by the change inOL , is associated with break
ing a U(1) symmetry of thevortexsector of the GL theory,
equivalently an onset̂f* & or ^f&. Since this only happen
above a critical temperature, we may viewf as adisorder
field, in contrast to the order-parameter fieldc of the original
GL theory. We will make explicit use of this connection
Sec. IV.

At finite magnetic fields, the situation is complicated
the fact that the vortex system is always connected acros
system in at least one direction, namely, the field direction
all temperatures. One may however still extract informat
of the type encoded in̂f* (r )f(r )& at zero field by perform-
ing a singular gauge-transformation of the type used in R
12,15, which roughly speaking amounts to subtracting
the field-induced vortices and studying the remaining lo
gas, which has a field-theory description very similar to
zero-field version of Eq.~12!. The obvious advantage of thi
is that one removes the asymmetry of the system impose
the magnetic field. A two-point correlator of this theory th
probes the connectivity of nonfield induced vortex pa
across the system, which in turns probes the possibility
having a broken U(1) symmetry and hence an onset of
order parameter̂f(r )&Þ0.

We will perform a numerical analogous of this in o
simulations, namely, we will probe the connectivity of th
vortex tangle of the superconductor in directions perpend
lar to the magnetic field. Ideally, what one should do is
generate phase configurations~and vortex configurations! of
the extreme type-II superconductor, subtract out from e
configuration a number of vortex paths that connects the
tem along the field direction precisely corresponding to
number of field induced vortices in the system, which is
fixed number in a canonical ensemble usually studied for
problem. Out of the remaining vortex tangle one may th
e
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try to find vortex paths connecting opposite sides of the s
tem. Numerically this procedure is entirely prohibitive an
we therefore opt for the algorithm of calculatingOL , to be
described in detail in Sec. III A.

We stress that the procedure of computingOL described
in Sec. III A unquestionably probes the connectivity of a vo
tex tangle across the system,not associated with magneti
field, precisely as in the zero-field case. The objective is
probe the breaking of a U(1)-symmetry associated with th
proliferation of unbound vortex-loops in the system,
pointed out in Ref. 40. This will be shown to be precise
borne out in zero magnetic field. In finite magnetic field w
also obtain a weak specific heat anomaly at the tempera
whereOL changes abruptly, as the system size is increas

III. DEFINITIONS, SIMULATION PROCEDURE,
AND MODEL PARAMETERS

In this section, we define the physical quantities cons
ered, describe our Monte Carlo procedure, and present
values of the model parameters used in the simulations.
specific heat is calculated in standard fashion. One mi
complicating factor is that ineffectivetheories, with in gen-
eral temperature-dependent coefficients, a modified exp
sion for the internal energy needs to be used if the spec
heat is to computed from a temperature-derivative of t
quantity, for details see Refs. 53,10,54. The structure fu
tion for the vortex lattice is also computed in standard fa
ion, for details see, for instance, Ref. 10. In addition to the
quantities, we consider the following ones.

A. Definitions

1. Local Cooper-pair densitykzc8z2l

As a probe for the local Cooper-pair density, we calcul

^uc8u2&[
1

V (
r

^uc8~r !u2&. ~15!

We see in Eq.~15! that ^uc8u2& involves both thermal and
space average. Recall thatc8[c/Aua(0)u/g. At the mean
field level, we expect̂uc8u2& to develop an expectation valu
below the mean field critical temperatureTMF(B).

2. Superfluid condensate densityzkc8lz2

As a probe for the local condensate density~density of
Cooper pairs participating in the superconducting cond
sate!, we calculate

u^c8&u2[
1

V (
r

u^c8~r !&u2. ~16!

Note the difference between^uc8&u2 andu^c8&u2. The former
describes local Cooper-pair density, while the latter descri
what is commonly known as the condensate density in4He
physics. In zero field, we expectu^c8&u2 to develop an ex-
pectation value below the critical temperatureTc .

3. Distribution of the order field phase angle

To probe the distribution of the phase angle inc8(r )
5uc8(r )ueiu(r ), we define the distribution function
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Du~u8!5
1

V K (
r

du(r ),u8L . ~17!

Here,d i , j is the Kronecker delta function. In the simulation
we have chosen to work with a discrete set of phase ang
u8,u(r )52pn/Nu . Here,nP@0,Nu# is an integer, andNu is
the number of allowed discrete phase angles. In our exp
ence, the simulation results do not depend onNu , provided
Nu*16. In zero field, when the phase is disordered, we
pectDu(u) to be uniformly distributed,D(u)51/Nu . In the
ordered phase, we expectDu(u) to show a peak around
preferred phase angle.

4. Helicity modulusYµ

To probe the global superconducting phase cohere
across the system, we consider the helicity modulusYm ,
defined as the second derivate of the free energy with res
to an infinitesimal phase twist in them direction.55,56,14Finite
Ym means that the system can carry a supercurrent along
m direction. Within the 3DXY model, the helicity modulus
along them direction becomes

Ym

Jm
5

1

V K (
r

cos@Dmu2Am#L
2

Jm

kBTV K F(
r

sin@Dmu2Am#G2L .

For the FG case

Ym

Jm
5

1

V K (
r

uc8~r !uuc8~r1m̂ !ucos@Dmu2Am#L
2

Jm

kBTV K F(
r

uc8~r !uuc8~r1m̂ !usin@Dmu2Am#G2L .

Note the difference betweenu^c8&u2 and Ym ; they are not
identical. The former quantity probes the superfluid conde
sate density, which is a locally defined quantity, while t
latter quantity probes a global phase coherence along a g
direction m. Since ^c8& is the order parameter of th
Ginzburg-Landau theory, close to the critical point we ha

u^c8&u2;utu2b, ~18!

wheret5(T2Tc)/Tc . On the other hand,Ym}rsm , where
rsm is the superfluid density in them direction. Using the
Josephson scaling relationrsm;j22d;utun(d22) ~Ref. 57!
along with the scaling lawsg5n(22h) ~Ref. 58! and 2b
522a2g,59 we find

Ym;utu2b2hn. ~19!

Here,d is the dimensionality of the system,n is the correla-
tion length exponent of the system,b is the order paramete
exponent,g is the order parameter susceptibility expone
and h is the anomalous dimension of the order parame
two-point correlation function at the critical point. Therefor
althoughu^c8&u2 andYm are in principle different, they may
appearto be very close if the anomalous dimensionh of the
c field is small, as indeed is the case for the neu
Ginzburg-Landau theory, whereh'0.04.60 Note that forh
s,

ri-
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.0, the curve forYm should bend more sharply towards ze
at the critical point thanu^c8&u2. We will explicitly show by
direct calculations within the Ginzburg-Landau theory th
u^c8&u2 is very close toYm both in zero field and finite mag
netic field. In zero magnetic field this is precisely what o
would expect based on the above, whenh!1.61 For the
special case ofd53, we have 2b2hn5n,2b. To high
precision, we have for the 3DXY model, thatn50.673 and
h50.038.60

5. Vortex loop distribution D(p)

To probe the typical perimeterL0(T) and the effective
long-wavelengthvortex-line tension«(T) ~not to be con-
fused with theflux-line tension, which is always zero when
gauge-fluctuations are completely suppressed due to the
sence of tubes of confined magnetic flux!, we define a
vortex-loop distribution functionD(p), which measures the
ensemble-averaged number of vortex loop in the system h
ing a perimeterp.62,14,11,33In order to compare results from
different system sizes, we normalizeD(p) with respect to
the system size.

We search for a vortex loop using the following proc
dure. Given a vortex configuration, we start with a random
chosen unit cell with vortex segments penetrating
plaquettes. We follow the directed vortex path and record
trace. When the directed vortex path encounters a unit
containing more than one outgoing direction, we choose
outgoing directionrandomly. When the vortex path encoun
ters a previously visited unit cell, i.e. when it crosses its o
trace, we have a closed vortex loop, its perimeter beingp.
We now delete the vortex loop from the vortex configur
tion, to prevent double counting, and continue the sea
The search is continued until all vortex segments are dele
from the system.

Using a 3D noninteracting boson analogy to the vor
system, it can be shown63 that the distribution functionD(p)
can be fitted to the form64

D~p!5Ap2a expF2
«~T!p

kBT G . ~20!

Here,A is a temperature independent constant, and the
ponenta'5/2 to a first approximation.65 When «(T) is fi-
nite, there exists a typical length scaleL05kBT/« for the
thermally excited vortex loops. The probability of findin
vortex loops with much larger perimeter thanL0 is exponen-
tially suppressed, according to Eq.~20!. When«50, D(p)
decays algebraically, and the length scale of the prob
L05kBT/«(T), has diverged. As a consequence, configu
tional entropy associated with topological phase fluctuati
is gained without penalty in free energy. In zero field, the
is only one critical point, and in this caseL0 must be some
power of the superconducting coherence lengthj(T).

6. Probe of vortex-connectivity OL

For probing the connectivity of a vortex tangle in a type
superconductor, in zero as well as finite magnetic field,
introduce a quantityOL , defined in zero magnetic field a
the probability of finding a vortex configuration thatcan
have at least one connected vortex path threading the e
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system in any direction. In the presence of a finite magn
field, OL is defined as the probability of finding a similar
connected vortex path in a direction transverse to the fi
direction, without using the periodic boundary conditio
~PBC! along the field direction. In zero field, we use th
same procedure as in finite field, namely searching for c
nected vortex paths perpendicular to thez direction, although
in this case we could just as well have used any direct
Note thatOL is very different from the winding numberW in
the 2D boson analogy.66,67 There,W is proportional to the
number of vortex paths percolating the system transvers
the field direction. However, in the calculation ofW, the
PBC along the field direction is used many times.

In an attempt to probe‘‘vortex percolation,’’ a slightl
different quantity thanOL has been considered in the conte
of high-temperature superconductors by others.68,69A crucial
difference between our work and that of Ref. 68, is that R
68 allows periodic boundary conditions along the field dire
tion to be used several times before the vortex path wi
once around thex or y axis, as is easily seen from Fig. 2~b! of
Ref. 68. This ultimately is the same as computing the wi
ing number of the 2D nonrelativistic boson analogy of t
vortex system,5 as recently done in careful Monte Car
simulations in Ref. 54. It also explains why the authors
Ref. 68 get longitudinal dissipation at the onset of what th
denote ‘‘vortex-percolation,’’ which is nothing but the tem
perature at which the winding number becomes finite.

This is entirely consistent with a number of other Mon
Carlo simulation results on the 3DXY model9,14,10,40,11which
all show the loss of longitudinal phase coherence and o
of longitudinal dissipation precisely at the vortex latti
melting transition. This is measured simply by the helic
modulusYz , which is quite different fromOL . To the con-
trary, in our calculation ofOL , we do not allow for the use
of periodic boundary conditions in thez direction to measure
vortex-tangle connectivity in thex or y directions, in other
words the ‘‘percolating’’ configurations of Fig. 2~b! of Ref.
68 are not counted when computingOL .

We have

OL5
Nc

Ntotal
. ~21!

Ntotal is the total number of independent vortex configu
tions provided by the Monte Carlo simulation. Furthermo
Nc is the number of vortex configurations containingat least
onedirected vortex path that traverses the entire system
pendicular to the direction, without using the PBC along
field direction. For convenience, we treat the zero field c
as the limit limB→0 keeping the ‘‘field direction’’ intact.

We search for thepossibilityof finding a vortex path such
as described above by using the following procedure.
sume that the magnetic induction points along thez axis. We
follow all paths of directed vortex segments starting from
four boundary surfaces with surface normal perpendicula
ẑ, and check whether at least one of these vortex paths
colates the system and reaches the opposite surface, wi
applying the PBC in the z direction. Note that when cross
vortex segments are encountered, the procedure is to att
to continue in a direction that will bring the path closer to t
opposite side of the system, rather than randomly resolv
ic
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the intersection.OL is therefore anecessary, but not suffi-
cientcondition for finding an actual vortex-path crossing t
system. However, in zero field this procedure does not m
a difference to that of resolving the intersections random
This is demonstrated by the correlations of the change inOL

andD(p), to be detailed in the next section.
If a vortex path is actually found crossing the system

any direction in zero field, or without using PBC in the fie
direction when a field is present, one may safely conclu
that the vortex-line tension has vanished. If it were finite
would not be possible to find such a path at all, either
cause all vortex lines form closed confined loops in ze
field, or because the vortex-line fluctuations along the fi
direction would bediffusivein finite field. In zero field, this
is clear by the above mentioned correlation between
change inOL andD(p), see the results of the next sectio
In this paper, we also investigate this in detail for the fini
field case, by considering the position of the lowest tempe
ture TL where we haveOL51 both as a function of system
size and aspect ratioLx /Lz5Ly /Lz . If vortex-line physics
remains intact,TL should move monotonically up with sys
tem size, and should scale withLx /Lz . Instead, we will find
that TL movesdown slightly, and saturates with increasin
system size at fixed aspect ratio. In addition, we find thatTL
is virtually independent of aspect ratio for large enough s
tems.

This contradicts expectations based on a lines-only
proximation to the vortex liquid. It demonstrates that t
connectivity of the vortex tangleundergoes a fundamenta
change inside the vortex liquid. The abovementioned fin
size scaling analysis, suggests to us that this geometric t
sition is a property that survives in the thermodynamic lim
The issue is whether the change in connectivity has anyth
to do with a thermodynamic phase-transition. This will
investigated in detail for zero magnetic field in Sec. IV
and for finite magnetic field in Sec. V A. In particular, w
look for a specific heat anomaly scaling up with system si
at the putative transition pointTL . This will reveal if the
change in the geometric properties of the vortex liquid
indeed associated with singular thermodynamics. In a
case, once thegeometrictransition has taken place, it is n
longer possible to model the vortex-liquid regime in terms
field-induced flux lines only, with merely renormalized inte
actions between them.

In the VLL phaseOL50, since the field induced flux
lines are well defined and do not ‘‘touch’’ each others, a
the thermally excited vortex loops are confined to siz
smaller than the magnetic length.14 OL51 in the normal
phase above the crossover region where the remnant o
zero field vortex loop blowout takes place. Needless to sa
is a matter of interest to investigate precisely whereOL
changes value from zero to 1.

Note thatOL itself is not a genuine thermodynamic ord
parameter, although it may be said toprobe an order-
disorder transition.40 However, by the transcription of the
vortex content of the Ginzburg-Landau theory to the fo
Eq. ~12! in Sec. II E, it is brought out that probing the vorte
tangle connectivity by consideringOL is closely connected
to probing the two-point correlator of a local complex fie
f(r ), the dual field of the local vorticity-fieldmm(r ) of the
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Villain approximation and London approximation to th
Ginzburg-Landau theory, Eqs.~11!. The two-point correlator
^f* (r )f(r 8)& is ultimately the probe of whether or not th
f theory Eq.~12! exhibits off-diagonal long-range order an
a broken U(1)-symmetry. An entirely equivalent interpreta
tion of the change inOL was given in Ref. 40 which did no
involve a local fieldf(r ), but number conservation of vorte
lines threading the entire superconductor. This numbe
conjugate to the phase field of the local complex fieldf(r ).
An advantage of the present formulation involving Eq.~12!
is that it directly relates the change inOL to the long-distance
part of a correlation for a local field, and hence to a lo
order parameter̂f(r )&. This connection makes it at lea
plausiblethat the change in vortex-tangle connectivity, i.e.
change in the geometry of the vortex tangle, may be rela
to a thermodynamic phase transition. We emphasize tha
present problem is very different from the percolation tra
sition known to occur in the 3D Ising-model, and which h
nothing to do with the thermodynamic phase-transition
that model.70

7. Extended Landau gauge

Periodic boundary conditions together with Landau gau

Ay52p f x

give rise to a constraintLxf 51,2,3 . . . . Thus, for givenLx ,
the smallest filling fractionf allowed isf 51/Lx . To perform
simulations and finite size scaling of systems with very l
filling fractions, we define an ‘‘extended’’ Landau gauge

Ax5
2pymymn

LxLy
; Ay5

2pxnxmn

LxLy
, ~22!

where nx ,n,my ,m are positive integers satisfyingnxn
5Ly , andmym5Lx . The filling fractionf is now given by

f 5
nm@nx2my#

LxLy
.

Hence, it is possible to choose systems with a filling fract
as low asf 51/LxLy .40

B. Details of the Monte Carlo simulations

The statistical mechanics of the 3DXY model and the FG
model is investigated by Monte-Carlo simulations on the
fective Hamiltonians, Eqs.~10! and Eq.~7!. For the 3DXY
model, a Monte Carlo move is an attempt to replace a ph
angle at a given siteu(r ) with a new randomly chosen phas
angleu8P@0,2p&. For the FG model, a Monte Carlo mov
is an attempt to replace a complex number at a given
c(r ) with a new randomly chosen complex numberc8.
Here,uc8uP@0:11e# andu8P@0,2p&. We have introduced
a small positive parametere to allow the system to perform
Gaussian fluctuations, around the extremal field configu
tion uc8u251, at very low temperature. Note that we a
letting the amplitude fluctuate around its mean value at ev
temperature. The Monte Carlo move is accepted or reje
according to the standard Metropolis algorithm.71 If the new
phase angle causes a gauge invariant phase differencej m
5Dmu2Am to fall outside the primary interval@2p,p&, we
is
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take it back into the primary interval. This compactizatio
procedure creates a closed unit vortex loop around the
where j m is changed. In this way, all the vortex loops intr
duced into the system are closed, and the net inductio
always conserved.

A Monte Carlo sweep consists ofLx3Ly3Lz Monte
Carlo moves. Typical runs consist of 1.23105 sweeps per
temperature, where the first 23104 sweeps are discarded fo
equilibration. Near the phase transitions up to 23106 sweeps
per temperature is necessary to capture the correct phy
For a given system, we always start the simulation by
cooling sequence, where the starting temperature is sig
cantly higher than all temperatures associated with ph
transitions or crossovers the model might exhibit. The res
shown in this paper originate both from cooling and heat
sequences. Since these two methods give essential iden
results, we do not differentiate between them.

In order to resolve anomalies in the specific heat, we m
in some cases perform simulations on systems as larg
3603. To be able to carry out simulation on such large s
tems, we must~1! write part of the code in assembly and~2!
carry out the simulations in a parallel manner. Our syste
are divided into ‘‘black and white’’ subsystems, arranged
a 3D checkerboard pattern. Each black subsystem has
six white subsystems as its nearest neighbors, and visa v
Since the 3DXY and the FG model only have nearest neig
bor interactions, all subsystems with the same color can
updated simultaneously. To be able to calculate
nonparallel-able routine asOL in an effective manner, we
divide the computer nodes in two groups, the large m
group takes care of the Monte Carlo simulation, and a sm
subgroup carries out, simultaneously, the calculation ofOL .

C. Model parameters

~a! System sizes. We put our coordinate (x,y,z) axes
along the crystal (a,b,c) axes. For the anisotropic cases, w
assume uniaxial anisotropy, and use the crystalc axis as the
anisotropy axis. We perform simulations on tetragonal s
tems with dimensionsLx ,Ly ,Lz . The main part of the simu-
lations is done on cubic or nearly cubic systems. Nearly
bic systemsLx;Ly5Lz is some times necessary in order
satisfy the boundary conditions enforce by the extended L
dau gauge, Eq.~22!. To check for the finite size effect o
OL , we carry out simulations on slab systems with the
pect ratiosLy /Lz51.00,1.25,1.5,1.75,2.00. System sizes
to 3603 were used.

~b! Cooper-pair chemical potentiala(T). We let the
Cooper-pair chemical potential have the simple linear for

a~T!

a~0!
5

T2TMF

TMF
.

We have also carried out simulations with other forms
a(T)/a(0), such as tanh(@T2TMF /TMF#T0). Here, T0 is a
constant regulating the size of the region wherea(T)/a(0)
grows from21 to 1. The results are, however, qualitative
the same as for the linear case. The parameterTMF is the
parameter effectively controlling the width of the critical r
gion in these calculations. In units ofJ0, Eq. ~8!, we write
TMF8 5kBTMF /J0. The values we will use areTMF8 50.3,1.0.
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An estimate for what temperatures these values corresp
to may readily be obtained by usingaz511 Å, lab

51500 Å , implying thatTMF8 51 corresponds to 300 K
while usinglab52000 Å implies thatTMF8 51 corresponds
to 180 K. These are very reasonable numbers.

~c! Anisotropy parameterG. The anisotropy parameterG
is defined as

G5
azjx

axjz
5

lcaz

labax
.

Note thatG.1 only when the layering of the superconduct
to be simulated is pronounced, i.e.,dm.jm for at least one
direction m. In this article, we consider systems with th
anisotropy parameterG51,3,7.

~d! Filling fraction f. The filling fraction along them di-
rection f m is defined as

2p f m5~D3A!m .

f m is a measure of the fraction of flux quanta of magne
induction penetrating a single plaquette with surface nor
alongm̂. When the magnetic field is applied along thez axis,
f x5 f y50, and

f [ f z5
Baxay

F0
5

3DXY Bjab
2

F0
. ~23!

In this work, we consider filling fractions f
50,1/20, . . .,1/1560.

IV. MONTE CARLO SIMULATIONS, B50

In this section, we discuss the zero field superconduct
normal ~SN! phase transition, both in terms of the usu
Ginzburg-Landau order fieldc(r ), and in terms of the be
havior of topological excitations which can be tied to t
formulation of the transition using the disorder-field pictu
presented in Sec. II E. We compare our results obtained f
the FG model to known simulation results of the 3DXY
model,72,10 the London model,28 and the Villain model.73,14

Unless otherwise stated, in this subsection we show si
lation results for the FG model with the parametersf 50,
G51, TMF8 50.3,1,am /jm56, andV5603. We have chosen
am /jm56 to slightly enhance the critical features of the F
model. Simulations of the FG model using a smaller ra
am /jm54 leads to the same conclusions, but larger syste
and longer simulation times are required to obtain the sa
quality of the data. What we will find is that the width of th
regions where phase fluctuations dominate is controlled
the parameterTMF , increasing withTMF .

A. Order field

In Fig. 1 we plot the helicity modulusYz , the local den-
sity of Cooper pairŝ uc8u2&, and the superfluid condensa
densityu^c8&u2 as functions of temperature. We see that
condensate densityu^c8&u2 is zero above a critical tempera
ture and develops a finite expectation value belowTc . In
contrast to this,̂ uc8u2& is finite both above and belowTc .
Close toT5Tc we have performed the simulations for a ve
dense set of temperatures, and from the top panel of Fig
nd
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we may however discern a kink in the curve and henc
singular behavior of the temperature derivative of^uc8u2&.
The top panel shows the results forTMF51.0, while the
lower panel shows the same results forTMF50.3. The dif-
ference between the two panels is that sinceTMF has been
changed, the width of the critical region has changed,
creasing upon increasingTMF . Had we chosenTMF50.01,
an appropriate value for conventional superconductors,
curves for u^c8&u2 and ^uc8u2& would have been indistin-
guishable, the conventional BCS mean-field picture of
superconducting transition would have been appropriate.
reason that it is no longer the case in the high-Tc cuprates is
the large energy scale for pairing, coupled with the fact t
the phase stiffness is low.

FIG. 1. Helicity modulusYz , local Cooper-pair densitŷuc8u2&,
and superfluid condensate densityu^c8&u2 as functions of tempera
ture for the Ginzburg-Landau model in a frozen gauge approxim
tion. Upper panel shows results forf 50, G51, TMF8 51.0,
am /jm56, andV5603. Lines are guide to the eye.Yz andu^c8&u2

develop finite expectation values forT,Tc , while ^uc8u2& is finite
both above and belowTc . Inset: The distribution function of the
phase angle of the order fieldDu(u) as a function ofu, for several
temperatures. BelowTc , a preferred phase angle is chosen and
global U(1) symmetry is spontaneously broken. Note how
phase fluctuates around a mean value even in the ordered p
Lower panel shows the same forTMF8 50.3.
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Note how the curve forYz;utu2b2hn bends slightly more
sharply towards zero than the curve for the condensate
sity u^c8&u2;utu2b, as expected for a positiveh, since in
that case 2b2hn,2b. In fact, this provides a nice consis
tency check on the Monte Carlo simulations.

In the normal phase, the phase angle of the order fiel
uniformly distributed, Fig. 1 inset, while forT,Tc , the sys-
tem spontaneously chooses a preferred phase angle giv
peak inDu(u). Due to our finite set of discrete phase angl
Du(u)51/Nu for T.Tc , and not zero as in the continuum-u
limit.

Given that the condensate density is nonzero belowTc ,
we next focus on a global quantity, the long-waveleng
limit of the helicity modulusYm , or equivalently the super
fluid stiffness in them direction. In Fig. 1 we see thatYz

vanishes for temperaturesT>Tc , and develops an expecta
tion value forT,Tc . Thus, the superconducting phase e
hibits global phase coherence, while the normal phase d
not. We have also calculatedYx and Yy , and found~not
shown! that they show the same behavior asYz . Apart from
minor details, we see in Fig. 1 that the helicity modulus
proportional to the condensate density.55 We will also show
that this equality also applies to the finite field case.

At low temperature,Ym decreases linearly. This feature
also obtained in the zero field 3DXY model,10 but not in the
zero field Villain model.14 In the Villain model, the spin
waves and the vortex loops can be analytically decoup
Here, at low temperatures, spin wave excitations do not
fect the vortex loops excitations and the superfluid ph
stiffness should decay in an activated manner due to the
citation of vortex loops. In the 3DXY model, the spin wave
and the vortex loops are coupled together. Whether or no
low-temperature features ofYm in Fig. 1 can explain experi-
mental data on the temperature dependence of 1/lm

2 , see for
instance Ref. 74, is an interesting but so far unsettled is
see also the results of Refs. 10,40,19. Within the anisotro
3DXY model, the helicity modulusYz has a larger, but
negative slope of its linear low-T behavior compared toYx

andYy . On the other hand, it is not entirely trivial to con
nectYz(T)/Yz(0) to theT50 normalized superfluid densit
rsz,75 which is the quantity measured in the experiments
Hardy et al.74 However, our main point of emphasis is th
the vanishing of the superconducting phase stiffness aT
5Tc is caused exclusively by an unbinding of large vort
loops. Further evidence for the connection betweenYm and
the vortex loops can be found in simulations of the latt
London model, where vortex loops are the only degrees
freedom.28,13,76 Here, the normalized helicity modulu
limk→0 Ym(T)/Ym(T50) is renormalized to zero atTc ex-
clusively by the expansion of vortex loops. The above c
siderations and results provide an overwhelming amoun
evidence in favor of the proposition that unbound vorte
loops are precisely the critical fluctuations of an extre
type-II superconductor.

ApproachingTc from below,Ym(T) decays to zero with
an exponent consistent withy52b2hn, and h'0.04 as
discussed in Sec. III A 5, see Fig. 1. For the special cas
d53, which we consider, we haversm;j21;utun, and
hence we find 2b2hn5n,2b.
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is

g a
,

h

-
es

d.
f-
e
x-

he

e,
ic

f

of

-
of
-
e

of

B. Topological excitations and vortex-line tension

In Fig. 2, we show the probability of finding a connecte
vortex tangle across the system in zero magnetic field,
G51,7, and system sizesL3, with L56, . . .,64. Notice how
the curves cross at approximately the same temperature
get progressively sharper. Similar results were seen for c
siderably smaller system sizesL54,6,8 in Ref. 77. Below,
we will also give results for much larger system sizes, co
firming that the crossing temperature in Fig. 2 gives a go
estimate for the threshold temperature for vortex-loop
binding throughout the sample. As pointed out in Ref. 7
such a finite-size effect indicates that a percolation thresh
exists for the vortex tangle in the thermodynamic limit.78 A
precisely similar finite-size effect inOL will be seen in finite
magnetic field, to be considered in Sec. V B. This will ha
pen inside the vortex liquid phase at elevated magn
fields, but will coincide with VLL melting at low fields, and
suggests the revision of the picture of the molten phase of
Abrikosov vortex system purely in terms of a vortex-lin
liquid.

We next proceed to correlate the change inOL with the
unbinding of large-vortex loops and the loss of vortex-li
tension atT5Tc , by correlating its abrupt change with th

FIG. 2. OL as a function of temperature for several system si
for the 3DXY model with f 50. Lines are guide to the eye. To
panel:G51, bottom panel:G57. Note the finite-size effect inOL ,
with the crossings of the curve approximately at the same temp
ture.
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FIG. 3. Top panel: Specific heatC, helicity
modulusYz , andOL as functions of temperature
for the 3DXY model with f 50, G51 and V
51203. Lines are guide to the eye. Bottom pane
Vortex-loop distribution function D(p) as
a function of loop-perimeterp for various
temperatures. Lines are fits usingD(p)
5p25/2 exp@2«(T)p/kBT#. At T5Tc the decay
changes from exponential to algebraic implyin
that the vortex-line tension« vanishes. The inse
of bottom panel shows«(T). Solid line is a fit
using uT82Tc8u

g, with g51.4560.05.
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characteristics developing inD(p), which probes the typica
size of thermally induced vortex loops in the system. We fi
consider the case of the 3DXY model, for which the results
are shown in Fig. 3. The top panel shows specific heat,OL
and helicity modulus, while the bottom panel shows t
vortex-loop distribution functionD(p) as a function of pe-
rimeter p for a number of temperaturesT<Tc , while the
inset of the bottom panel shows the temperature depend
of the long-wavelength vortex-line tension«(T). In the top
panel it is clear that the loss of helicity modulus, the anom
in specific heat, and the abrupt change inOL all occur at
precisely the same temperature. The change in the deca
D(p) also occurs at the same temperature,Tc .

For T,Tc , OL50, and all vortex loops are confined
with typical size given byŁ0(T)5kBT/«(T), where

L0~T!5
kBT

«~T!
, ~24!

where«(T) is the effective long-wavelength vortex line te
sion, equivalently the free energy per unit length of vort
lines. These objects, present also in the low-tempera
phase, cause only a local perturbation of the order param
t

e

ce

y

of

x
re
ter

in the system, and may simply be ‘‘coarse grained’’ awa
The low energy physics of the model is therefore describ
essentially by the physics of the zero temperature fixed po
At and aboveTc , OL51, and vortex loops with infinite size
always exist. The length scaleL0(T) has diverged, showing
that there are vortex loops on all length scales with a pow
law tail in the distribution. Such loops cannot be coar
grained away and taken into account by any ‘‘appropri
renormalization’’ of the zero-temperature theory. Thus,
SN phase transition can be viewed as a blowout out of th
mally induced vortex loops. AboveTc , free thermally in-
duced ‘‘vortex lines’’ exist in all directions, and any infini
tesimal applied current will move these thermally induc
‘‘vortex lines’’ and dissipate energy.79 Thus, the system is in
the normal phase.

In Fig. 4, we show the specific heat anomaly, the helic
moduli Yx andYz , as well asOL for the 3DXY model, with
G57. The correlation noted above in connection with Fig
is again perfect, the only difference being that the spec
heat anomaly has become more symmetric due to the
creased anisotropyG57. Although the amplitude ofYx is
larger than the amplitude ofYz due to the uniaxial anisot
ropy along thez axis, the temperature at which they vanis
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FIG. 4. Top panel: Specific heatC, helicity
moduli Yx ,Yz , andOL as functions of tempera
ture for the 3DXY model with f 50, G57, and
V51403. Lines are guide to the eye. Bottom
panel: Vortex-loop distribution functionD(p) as
a function of loop-perimeterp at various tem-
peratures. Lines are fits using D(p)
50.37p22.35exp@2«(T)p/kBT#. Inset: Vortex-line
tension«(T) as a function of temperature. Soli
line is a fit using uT82Tc8u

g, with g51.45
60.05.
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and the power law with which they vanish, are the sam
Note also the sharpness of the manner in which the mo
Ym approach zero atTc , there is no high-temperature tail a
one would have found in too small systems. This in fa
serves as a highly nontrivial benchmark on the quality of
Monte Carlo simulations.

Figures 5 and 6 show essentially the same as Fig. 4,
now for the FG model, i.e., including amplitude fluctuatio
on an equal footing with the phase fluctuations. Clearly,
picture that it is the topological phase fluctuations, or
vortex-loop unbinding, that drives the superconduc
normal-fluid transition, is not at all altered by the fact th
amplitude fluctuations are included. This is a reconfirmat
of the results obtained in Sec. IV A, showing that amplitu
fluctuations of the local Ginzburg-Landau order parame
have a large mass at the critical temperature where the
perfluid density vanishes.

For a more detailed study of the properties of therma
induced vortex loops, we now focus on the vortex-loop d
tribution functionD(p) as a function of vortex-loop perim
eterp at various temperatures. These are shown in Figs.
and are clearly well approximated by the formD(p)
5Ap25/2e2«(T)p/kBT for all temperatures considered. No
that«(T) is the only temperature-dependent fitting parame
.
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in all plots. The effective long-wavelength line tension
vortex loops is finite belowTc , and vanishes forT>Tc . The
physical picture of this phase transition is as follows. Belo
Tc , «(T) is finite defining a typical length scale for the vo
tex loopsL05kBT/«(T). Here, D(p) is dominated by an
exponential decay and vortex loops with much larger per
eterp thanL0, are exponentially suppressed. Thus, the to
logical excitations that are present in the system may
coarse grained away. At and aboveTc , «(T)50 and no
typical length scale for the vortex loops exist; the leng
scaleL0 has diverged. Here,D(p) is purely algebraic, and
vortex loops of all sizes including infinite size, exist. Thu
the SN phase transition atTc is triggered by an unbinding o
large vortex loops, analogous to the Onsager-Feynm
mechanism,14 suggested for the superfluid-normal fluid tra
sition in 4He.80

In the insets in the bottom panels of Figs. 3–6, we sh
the vortex line tension«(T) extracted from the vortex loop
distribution functionD(p). Regardless of whether the 3DXY
or the FG models are used, we find that the long-wavelen
vortex-line tension vanishes as

«~T!;uT2Tcug; g51.4560.05. ~25!
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FIG. 5. Top panel: Specific heatC calculated
using the fluctuation formula,OL , helicity modu-
lus Yz , and superfluid densityu^c8&u2 as func-
tions of temperature for the Ginzburg-Landa
model in a frozen gauge approximation withf
50, G51, TMF8 51, am /jm56, and sizeV
5603. Lines are guide to the eye. Inset shows t
specific heat calculated using numerical differe
tiation of the internal energy. Bottom pane
Distribution of vortex loops D(p) as a
function of the loop-perimeterp for several
temperatures. Lines are fits usingD(p)
51.15p25/2 exp@2«(T)p/kBT#. Inset: Vortex-line
tension«(T) as a function of temperature. Dotte
line is a fit using uT82Tc8u

g, with g51.45
60.05.
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The numerical value of the exponentg has been extracte
from the systems with the largest critical regions, i.e. Fi
3–5. The system shown in Fig. 6 does not allow a v
precise value forg to be obtained, although the qualitativ
aspects of the results are clearly precisely the same as t
for the 3DXY model and the FG approximation of the G
model with TMF8 51.0. This implies that the typical vortex
loop perimeter diverges whenTc is approached from below
using Eq.~24!, as

L0~T!;uT2Tcu2g, ~26!

such thatL0(T) is a power of the correlation lengthj of the
3DXY model.

C. Anomalous dimension of the dual field

We next connect the result for«(T) to the anomalous
dimension of the dual fieldf. It is natural, within the for-
mulation of the problem given in Sec. II D, to associate
proliferation of unbound vortex loops with a vortex-loop su
ceptibility, or equivalently a susceptibility for thef field of
Sec. II E. This is seen as follows. The proliferation of u
bounded vortex loops as the temperature of the super
.
y

se

e
-

-
n-

ductor is increased, is associated with the developmen
long-range correlations in the two-point correlation functi
of the dual field,G(x)[^f* (x)f(0)&, where on the low-
temperature side the dual order parameter has zero exp
tion value^f&50. A scaling ansatz forG(x) reads

G~x!5
1

uxud221hf
G~x/j!, ~27!

wherehf is the anomalous dimension of the dual fieldf, j
is its correlation length, andG(x/j) is some scaling function
The square of the mass of the dual field,mf

2 , is therefore
naturally mapped to the line tension«(T) of the vortex
loops. This follows from the observation that the dual bos
system of which thef theory is a field-theory description
has a chemical potentialmf

2 which in turn is nothing but the
line tension«(T) of the vortex-loop system, when the de
sity distribution D(p) is viewed as a partial density in
fugacity expansion for the density of the dual Bose system63

The Fourier transformG̃(k)5^f* (k)f(2k)& of G(x) may
be written in the form
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FIG. 6. Same as Fig. 5, withTMF8 50.3,
D(p)50.12p25/2 exp@2«(T)p/kBT#, and
«(T)a/J0529uT82Tc8u
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G̃~k!5j22hfF~kj!, ~28!

whereF(kj) is some new scaling function. Thek→0 limit
of this is the static uniform susceptibilityxf of the dual field
on the low-temperature side, where^f&50. On the other
hand, as long as the dual field is massive, which it is on
low-temperature side, we must have limk→0 G̃(k)5mf

22 .
Hence, we obtain

xf;
1

mf
2

;
1

«
;j22hf;utu2nf(22hf). ~29!

The field f has a correlation length exponent given bynf
52/3, the same as for the 3DXY model.60 This follows
from the fact that it is a thermodynamic exponent describ
the divergence of one and the same length in the Ginzb
Landau theory and dual theory. Very importantly, itmustbe
equal both for the dual model and its Ginzburg-Landau co
terpart by ‘‘strong’’ duality.81–83 Were thisnot to hold, the
dual of thedual theory would not be the original theory, as
ought to be. The above of course precisely amounts to
e

g
g-

-

e

Fisher scaling law58 relating the susceptibility exponent o
the dual fieldgf to nf andhf

gf5nf~22hf!. ~30!

Using our estimategf51.4560.05 with nf52/3 giveshf
520.1870.07 in close agreement with previous renorm
ization group calculations,81 who foundhf520.20 to one-
loop order.

The resulthf520.1870.07 obtained directly from com
puting the statistics of the loop excitations of the 3DXY
model is a truly noteworthy result, when viewed juxtapos
to the RG calculations of Ref. 81. In Ref. 81, the RG res
for the anomalous dimension of the dual field was obtain
directly from the dual theory. On the other hand, our nume
cal result is obtained directly from the phase-only appro
mation to the original Ginzburg-Landau theory. The agre
ment shows conclusively, and to our knowledge for the fi
time, that viewing the zero-field transition of the 3
Ginzburg-Landau theory as a vortex-loop unbinding, wh
is the phase transition of the dual theory, ispreciselycorrect,
not only qualitatively, butquantitatively.84
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At and belowTc , the order field^c8(r )& develops an
expectation value, and explicitly breaks the global U(
symmetry of the GL theory. In contrast to the order fie
picture, in a description using only topological excitation
the global U(1) symmetry is hidden. There does not app
to be any symmetry operation involving the phase of a lo
field, that will leave the effective action Eq.~11! invariant.
Therefore, there is also no obvious local quantity that dev
ops an expectation value in the non-symmetric phase. N
ertheless, it is possible to define a global quantity that
plicitly probes the breaking of the global U(1) symmetr
namely,OL . Let Nm denote the number of ‘‘vortex lines’
~percolating directed vortex paths without using PBC! along
the m direction. BelowTc , Nm is fixed to zero andOL50.
Concomitant with the conservation of the global quant
Nm , the system must exhibit a global U(1) symmetry.
and aboveTc , Nm develops an expectation value andOL
Þ0. This leads to a broken U(1) symmetry.

V. MONTE CARLO SIMULATIONS BÞ0

We next discuss the indications we have of phase tra
tions in the vortex system in a finite magnetic field. In ad
tion to the first order VLL melting transition lineTm(B)
which we map out for a large range of filling fractions, w
find indications for a new phase transition in the vortex l
uid. We emphasize that in all simulations performed in fin
magnetic field, the filling fraction is low enough to ensu
that there is zero transverse Meissner effect at any temp
ture of interest. That is to say, the vortex-line lattice is d
pinned from the numerical lattice at much lower temperat
than the temperatures where the Bragg peaks in the stru
function of the VLL vanishes. Therefore, commensurat
effects due to defining the theory on a lattice effectively ha
been eliminated at the temperatures of interest.

Before entering into the discussion, a clarifying remark
appropriate. Note that the phase transition that we sug
may be taking place inside the vortex liquid, is not a tran
tion from a disentangled low-temperature vortex liquid to
entangled high-temperature vortex liquid, as discussed
numerous previous authors. Such a transition would have
its hallmark that the superfluid stiffness along the magn
field, or equivalently the helicity modulusYz , would vanish
inside the vortex-liquid phase. This has now been conc
sively demonstrated not to be the case.9–11,85

A. Change in vortex-tangle connectivity

We next discuss in some detail the results obtained for
quantity OL , which probes the connectivity of the vorte
tangle in extreme type-II superconductors. We will make
following point: as for the zero field case, the increasing
sharp change inOL from zero to one in finite field, with
increasing system size, also denotes a phase transition w
a global U(1) symmetry is broken. This refers to a U(
symmetry associated with the vortex-content of t
Ginzburg-Landau theory. As argued in Sec. II E, this sy
metry of the vortex content of the theory is seen explici
when rewriting it to a gauge-theory involving a local com
plex matter-field, see Sec. II E. We also discuss the finite
effects of OL , in systems with slab geometry, i.e. whe
Lx /Lz'Ly /Lz.1, as well as in cubic systems.
)
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In Fig. 7 we showOL as a function of temperature fo
several system sizes,V5203,603,1203. We see that for in-
creasing system sizes, the largest temperature whereOL50
increases, while the smallest temperature whereOL51 de-
creases.

If the vortex liquid regime were always describable as
liquid of vortex lines, then an inescapable consequence
this picture would be thatTL should shift to higher tempera
ture with increasing system size. This is in clear contras
the finite size effect ofOL shown in Fig. 7. In the zero field
case,OL50 indicates that the line tension of vortex loops
finite, while O51 indicates that the line tension of vorte
loops is zero. The temperature whereOL jumps from zero to
one is the critical temperature for the SN phase transitio

We now focus on the inset of Fig. 7. Note how the curv
for OL cross, and reach a valueOL51 for progressively

FIG. 7. Top panel:OL as a function of temperature for th
Ginzburg-Landau model in a frozen gauge approximation withf
51/60, G57, TMF8 51, am /jm56, andV5203,603,1203. For in-
creasing system size the largest temperature whereOL50 increases
and the smallest temperature whereOL51 decreases. Thus, in th
thermodynamical limit, there exists a well defined temperatureTL

where OL jump sharply from zero to one. If we use the criter
OL;0.9, to determineTL , we find thatTL monotonically decreases
to a limiting value for increasing system sizes. The inset shows the
details ofOL close toTL . Note how the curves forOL all cross at
the same temperature with increasingL. Note also how the lowestT
at whichOL51 actuallydecreaseswith L. Bottom panel: Same as
for top panel, but withTMF8 50.3.
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lower temperatures asL increases. If a picture of the vortex
liquid in terms of well-defined vortex lines with nonzero lin
tension were applicable to this point, one would expect
point TL at which OL reaches the value 1, to movemono-
tonically upwith L. The crossings of the curves forOL ob-
served in the inset of Fig. 7 simply would not occur. No
also the similarity of this finite-size effect, and the ones o
served in Fig. 2 for the zero-field case. There, it was arg
that such a finite-size effect was strongly indicative of a p
colation threshold for thermally induced unbound vort
loops in the thermodynamic limit.77,78 The crossing point
Tcrossseems a likely candidate for the limiting value ofTL as
L→`, see Fig. 10 and the more detailed discussion bel
This, in our view, provides strong numerical evidence t
the progressively more abrupt change in the connectivity
the vortex tangle asL→`, is a real feature of the vorte
system that survives in the thermodynamic limit, also a
finite magnetic field. In other words, the geometric transit
signaled by the change inOL seems to be a real feature an
not an artifact of small systems. Whether or not it also c
responds to a finite-field thermodynamic phase transition
be discussed below.

In the vortex representation, Eq.~11! the U(1) symmetry
to be broken is hidden, and can only be explored implic
using the conservation ofNm . The connection is made ex
plicit by rewriting the vortex Hamiltonian in the disorde
field language, see Eq.~12! of Sec. II E. BelowTL , only
field induced vortex line percolate the system. Thus,Nx

5Ny50 andNz5 f LxLy . Here,f LxLy is the number of field
induced vortex lines. ForT.TL , in addition to the field
induced vortex lines, thermally excited ‘‘vortex lines’’ als
exist. Thus, aboveTL , Nm is not a conserved quantity an
the global U(1) symmetry is broken, as for the zero fie
case.

In Ref. 10 it was claimed that because the longitudi
superfluid density vanished precisely at the melting line,
now found by several authors9–11,85 including the isotropic
case, the vortex lines could not be considered well define
the vortex liquid phase. By itself, this is not a tenable co
clusion. Nor does it follow automatically that the vortex lin
are entangled and that the mechanism for VLL melting
entanglement.86 To substantiate such a claim one has to
vestigate in more detail the geometric properties of the v
tex tangle in the liquid phase, as done above and in R
40,11. Even if it should turn out that the loss of longitudin
superfluid density is entanglement it is probably more app
priate to view the entanglement as triggered by VLL melti
transition rather than the converse. However, it is wo
while pointing out at this stage that there is now consen
on the fact that at intermediate fields and above, the V
melts into an incoherent vortex liquid and that there do
exist a regime where the molten phase consists of intact
tex lines, remarks to the contrary in Ref. 10 not withstandi
Moreover, various Monte Carlo simulations agree that
Lindemann-criterion for VLL melting applies in thi
regime.10,54,40,86In the low-field regime, far less consens
has so far been reached. Therefore, the question of whe
vortex loops influence VLL melting or not, and wheth
there exists a genuine transition lineTL(B) inside the vortex
liquid, are two separate issues.
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We hereafter focus on simulation results obtained for
3DXY model. There is no qualitative difference between t
results for this model, and the Ginzburg-Landau model.
Fig. 8 we show results for the 3DXY model f 51/90, G
57. The top panel shows structure factor, superfluid den
along the field, specific heat andOL for a system of size
72380380. The bottom panel shows a sharpening ofOL for
increasing system sizes. The trend in the change in
vortex-tangle connectivity is precisely the same as that s
for f 51/60 within the Ginzburg-Landau model includin
amplitude fluctuations. The lowest temperature at whichOL

rises from zero, increases with system size, but the hig
temperature at which it reaches the valueOL51 decreases
with system size. Again, we find a feature which indica
that the vortex-tangle connectivity is undergoing a chang

Note the weak specific heat anomaly in the top of Fig.
While have have not carried out a systematic finite-size s
ing analysis of this anomaly, we have found that the prese
of an anomaly is reproducible for this system. The posit
of the peak appears lightlybelow the deviation ofOL from
the value 1, for the system size 72380380. This is entirely
consistent with the finite-size results forTL , to be detailed in
the next section, given the fact that the specific heat anom
is computed for a much larger system.

Note also that the anomaly is quite sharp, perhaps ind
tive of a first order transition, rather than a 3DXY transition.
The issue of determining precisely the universality class
the transition, whether it is first order, 3DXY or some other
universality class, deserves further consideration. In our
perience, a systematic and reliable finite-size scaling anal
of this weak anomaly, which clearly is of fundamental im
portance, is beyond the computational facilities offered
the Cray T3E or the Cray Origin 2000, and will have to aw
the next generation of supercomputers.

B. Effect of varying system aspect ratio

To further investigate the possibility of a breakdown
vortex-line physics inside the vortex-liquid regime, we co
sider the crossing feature found inOL in more detail for
various aspect ratiosLx /Lz of the systems on which the
simulations are done. According to the 2D nonrelativis
boson-analogy of the vortex-liquid,TL should be propor-
tional to the aspect ratioLx /Lz .87

In this section, we carry out the simulations using t
3DXY model with the parametersf 51/380 andG57. We
have varied the field to illustrate that the features ofOL are
the same as for the higher fields, but do become shar
Furthermore, comparing the results obtained from the
model to the results obtained from the 3DXY model, we
again find that these models give qualitatively the same
sults when parameters are comparable.

In Fig. 9, we showOL as a function ofT for the 3DXY
model with parametersf 51/380,G57, for a system of size
Lx'Ly5Lz in one case, andLx'Ly and Lz50.5Ly in the
other case. Using the crossing temperature in the insets a
estimate for the temperatureTL in the thermodynamic limit,
as for the zero-field case, we see that this tempera
changes very little when changing the aspect ratio by a fa
of 2. This indicates that in the thermodynamic limit there
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FIG. 8. Top panel: Helicity moduliYx and
Yz , structure functionS(K ,kz50) and OL for
the 3DXY-model as a function of temperature fo
f 51/90, G57, and system sizeV572380
380. Bottom panel:Yz and OL for increasing
system sizes. For increasing system size the la
est temperature whereOL50 increases and the
smallest temperature whereOL51 decreases.
Thus, in the thermodynamical limit, there exists
well defined temperatureTL where OL jumps
sharply from zero to one, precisely as seen in t
zero-field case. Shown is also specific heat fo
system of sizeV53603 ~shifted up by 0.2kB for
clarity!.
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only one TL , regardless of the system shape. What th
results indicate, is that the expectation one has based on
2D nonrelativistic Bose analogy of the vortex liquid, name
that TL should scale withLx /Lz , is not borne out. Note tha
the present case is very different from the situation enco
tered in the 3D Ising model where a percolation threshold
overturned spins in an ordered spin state is found at a t
perature which is lower than the critical temperature.70

This may be further illustrated by considering the finit
size effect ofTL , for two different aspect ratiosLx /Lz51
and Lx /Lz52. We investigate this by definingTL by four
sets of criteria, namely, the temperature at whichOL
5(0.10,0.20,0.90,0.95). If the curves forOL sharpen up, as
seen in the above results, it is ultimately immaterial what s
of criteria are being used. The sets will give convergi
curves forTL(L), one coming up from below and one com
ing down from above, see Fig. 10. We may use the b
estimate for the crossing temperatures in Fig. 9 as an
mate for what the limiting value ofTL will be in the thermo-
dynamic limit.

These results illustrate two important points, namely,~i!
TL does not move up monotonically with system size, b
saturates at a specific value asL→` precisely as for the
zero-field case and~ii ! the limiting value ofTL is indepen-
dent of aspect ratio. Both of these two points contradict
pectations based on a vortex-line liquid picture of the mol
phase of the Abrikosov VLL.
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C. Scaling of the melting lineTm„B…

In Fig. 11, we show data from various simulations, of t
vortex lattice melting lineTm(B). We want to emphasize th
fact that there aretwo distinct scaling regimes for the meltin
line Tm(B), one at high fields which we somewhat arbitrari
denote high-field scaling regime,88 and one at low magnetic
fields which we identify to be 3DXY scaling.

The dotted straight line is the curve given by88

kBTm(B)/J050.41y, wherey51/Af G. It describes the pub-
lished numerically obtained melting lines for large enou
filling fractions y,2 or so well, in our case withG57 cor-
responding to approximatelyf .1/200. On the other hand
for y.2, clear deviations from linear behavior is seen.

The melting curves obtained forG51 in Ref. 11 shown
by the filled circles, and forG57 in Ref. 10 shown by the
half-filled circles saturate at low filling fractionsf to the val-
ues given by the zero-field critical temperatureTc . For G
51, we have kBTc /J052.2, while for G57 we have
kBTc /J051.12.40 The data given by the filled triangles14 are
obtained on the 3DXY model with an anisotropy paramete
G53. As G increases from 1, the zero-field transition tem
peratureTc rapidly approaches its 2D value, although t
transition is always 3D in character for finite anisotrop
Hence, the results from the anisotropic 3DXY model with
G53 ~Ref. 14! are very close to those of the 3DXY model
with G57, see Ref. 10.
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FIG. 9. OL as a function of system tempera
ture, obtained within the 3DXY model for f
51/380, G57, for various system sizes. To
panel: Aspect ratioLy /Lz51. Bottom panel: as-
pect ratioLy /Lz52. Insets show details of the
curve-crossings close toTL . Note that while the
lines-only approximation would predict a chang
in the crossing temperature of roughly a factor
they only change by about 5%, which is withi
the uncertainty of the estimate for the crossi
temperature.
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The results of Ref. 89, obtained by fixingf 51/15 and
varying GP(1, . . . ,10), agree entirely with our results o
Refs. 10,11,40 in the low-field regime 1/Af G.2. The sig-
nificance of all these three sets of points is that they
significantly below the straight line obtained from the hig
field scaling of the melting line.

Note also that even if we normalize the melting lin
Tm(B), quite arbitrarily, with a factor 1/(12Tm /Tc)

2n,88

this might take out the strong downward curvature of
data in the top panel of Fig. 11, but there is absolutely
reason for why the slope of the resulting curve in the l
field regime, which would be a straight line, should be t
same as in the high-field regime.

Assuming 3DXY scaling for the melting line wheny
@2, i.e. B/u12T/Tcu2n5B0 whereB0 is a field-scale that
depends on anisotropy, we findkBTm(B)/J05(kBTc /J0)@1
2(x0 /Gy)1/n# on the melting line, and where the last term
negligible for low fields. Hence, we find that the melting lin
saturates to the true critical temperatureTc , as it obviously
must. The dotted straight linekBTm /J050.41y, overshoots
Tc as the field is lowered. The Monte Carlo results follo
ll

e
o

this line at large fields, but are however starting to be
rested in their tracks by the zero-field vortex-loop critic
fluctuations already at aroundy52, thus crossing over to
3DXY critical scaling, as our Monte Carlo simulations r
sults show.

In the top panel of Fig. 11, we have drawn the functi
Tm(B)/J05(Tc /J0)@12(x0 /yG)1/n# through the two sets o
points obtained from Monte Carlo simulations fory.4 and
G51,7, given by filled and half-filled circles, respectivel
Using x052.70 for G51 and x056.45 for G57, we find
that the 3DXY scaling function given above fits the Mont
Carlo data well fory.4, while the high-field scaling is ex
cellent for y,2. Note how vastly different the scaling o
Tm(B), in the two regimesy,2 andy.4, is.

The bottom panel of Fig. 11 shows the low-field meltin
line Tm(B) normalized by the zero-field critical temperatur
obtained from simulations of the 3DXY model with G
51,kBTc /J052.2 in Ref. 11,G53,kBTc /J051.34 in Ref.
10, andG57,kBTc /J051.12 in this work and in Ref. 40
plotted in terms of the variablex/x0, wherex51/Af andx0
is a fitting parameter for eachG. The corresponding value
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of G and x0 are (1,2.70), (3,4.65), and (7,6.45). Forx/x0
'2 or less, i.e., at large enough fields, we see that deviat
from 3DX scaling occur. ForG5(1,3,7) this corresponds t
1/f 5(30,90,160), respectively. The line through the lo
field data, is the 3DXY scaling function 12(x/x0)21/n. No-
tice the sharp bending of the 3DXY-scaling function asx/x0
increases beyond the value 3, and how the available num
cally obtained melting curves follow this line. This, in ou
view, provides strong numerical support for the notion tha
low filling fractions f G2,,1, the melting lineTm(B) obeys
3DXY critical scaling, while it follows follows a quite dif-
ferent ‘‘mean-field’’ type of scalingTm(B);1/AB at large
fields.88

We find that the field above which deviations from 3DXY
critical scaling is seen, decreases with increasing anisotr
recall that the corresponding values ofG and 1/f are approxi-
mately (1,30), (3,90), and (7,160). This is due to the f
that with increasingG, the melting curve becomes flatter
low fields.6 On the other hand, the width of the zero-fie
critical region appears to widen only marginally with in

FIG. 10. Finite-size effect inTL as obtained for the
3DXY-model using four sets of defining criteria forTL , OL

5(0.10,0.20,0.90,0.95). Each of the criteria gives converg
curves forTL(L), whose limiting values are estimated by the cro
ing temperatures in the insets of Fig. 9. Top panel: aspect r
Ly /Lz51. Bottom panel: aspect ratioLy /Lz52. Note that the lim-
iting values forLy /Lz51 and 2 differ by about 5%, whereas a
cording to a vortex-line liquid picture, they should differ by abou
factor of 2.
ns

ri-

t

y,

t

creasingG.10 The dominant effect in determining the field
which the melting line enters the critical region, is thus t
flattening of the melting line at low fields, whenG increases.

D. Phase diagram, clean limit

A summary of all of the above is contained in Fig. 12, w
have included results from filling fractions 1/f
P@90, . . .,1560#. The results we have obtained pertain to
extreme type-II superconductor in the absence of disor
since we are primarily interested in the intrinsic properties
this phase diagram excluding the severe complications du
disorder. There is a low-temperature vortex-line latti
phase. When the vortex lattice melts, it melts directly into
incoherent vortex liquid with zero longitudinal superflu
density. The transverse superfluid density has been el
nated at temperature far below those where the VLL me

g
-
io

FIG. 11. Top panel: Melting temperatureTm8 (B) of the vortex
lattice as a function ofy51/Af G. At large enough filling fractions,
y,2.0, Tm8 (B) obtained from various simulations on the 3DXY
model and boson analogy of the vortex system, agree and is
described byTm8 (B)50.41y, the dotted line. At low filling frac-
tions, y.2.0, there is a crossover to 3DXY critical scaling of
Tm(B). The solid lines through the two sets of data points a
3DXY critical-scaling functions, described in the text. Botto
panel: Normalized melting temperatureTm8 (B)/Tc8 as a function of
the variablex/x0, wherex51/Af andx0 is an anisotropy dependen
fitting parameter. Solid line is the 3DXY scaling functionh(x)
512(x/x0)21/n, wheren50.67.
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by choosing low enough filling fractions to eliminate an u
wanted commensuration effect due to the presence of
numerical lattice on which the theory is defined.

At zero magnetic field, we have demonstrated that an
ternative way of describing the superconductor–norm
metal transition, in addition to the phase-disordering pict
using the Ginzburg-Landau order parameter, is in terms o
unbinding of vortex loops. We emphasize that although
quantityOL we have focused on is not an order paramete
may betied to an order via the discussion in Sec. II E. B
including amplitude fluctuations explicitly in the Ginzburg
Landau theory, it is shown that this vortex-loop unbindi
does not lead to critical amplitude fluctuations. A generaliz
‘‘stiffness’’ characterizing the low-temperature phase wh
vanishes at the transition, is the long-wavelength vortex-
tension«(T), or equivalently the free energy per unit leng
of the the thermally induced vortex loops of the system.

In a finite magnetic field, we find indications of a chan
in the vortex-tangle connectivity across the system at a t
peratureTL(B), whose zero-field end point isTc . This has
been done by monitoring the quantityOL in the Ginzburg-
Landau theory or the 3DXY model in the same way as fo
the zero-field case.OL has precisely the same characterist
at finite fields and zero field. In the regimeTm(B),T
,TL(B), the connectivity across the system of the vort
tangle of the molten phase is given entirely by the field
duced vortex lines. This appears to change across the
TL(B). We have been able to tieOL to an order paramete
even at finite field, see Sec. II E, involving a breaking o
U(1) symmetry across the lineTL(B).

At low magnetic fields, to the accuracy of our calcul
tions, we have found that the VLL melting line and the lin
TL(B) mergeat low fields. Below these low magnetic field
the picture of the molten phase as a vortex-line liquid
pears to be questionable. For fields well above the p
whereTm(B) andTL(B) merge, we have found that the po
sition of the VLL melting line is well described by a Linde

FIG. 12. B-T phase diagram for extreme type-II supercondu
ors based on Monte Carlo simulations of the 3DXY model withBic
andG57. The phase diagram splits into three different regime
II, and III, characterized by the values of the Ginzburg-Landau
dual order parameters.
he

l-
l-
e
n
e
it

d

e

-

s

x
-
ne

-
nt

mann criterion with Lindemann numberc'0.25, estimated
from the Debye-Waller factor.

Note that the rewriting of the theory Eqs.~11!, ~12! is
exact. The onset of the expectation value^f& takes place
when vortex-loops unbind. Moreover, the theory Eq.~12!
exhibits an explicit U(1) symmetry. When this connection
made, it seems very reasonable to tie the observed chan
the vortex-tangle connectivity to a vortex-loop unbindin
and hence an onset of^f&, i.e., the order parameter and th
symmetry being broken in the transition, have been ide
fied.

VI. SUMMARY AND DISCUSSION

We have explored the (B,T) phase diagram for extrem
type-II superconductors using two simplified versions of t
the Ginzburg-Landau model:~i! The frozen gauge~FG! ap-
proximation where the gauge-field is fixed, while the pha
and amplitude of the superconducting order parameter
allowed to fluctuate and~ii ! the uniformly frustrated 3DXY
model where only phase fluctuations are allowed for. T
former is obviously a more general model than the latt
while the latter is a commonly accepted model in the stud
of fluctuation effects in extreme type-II superconductors. O
results show that in thek→` limit, where suppression o
gauge fluctuations is an exact feature of a superconduc
amplitude fluctuations are completely dominated by ph
fluctuations over asizeable temperature regime. The local
order field^c8(r )&, as well as the helicity modulus~global
phase stiffness! Ym develop an expectation value forT
,Tc , and explicitly break the usual U(1) symmetry prese
in the Ginzburg-Landau theory. In contrast to this, the lo
Cooper-pair densitŷuc8u2&, is finite both above and below
Tc . Our precise calculations close toT5Tc has brought out
clearly its singular temperature derivative atT5Tc . Below,
we list the main results of this paper.

B50. In zero field, we have shown that th
superconducting–normal-metal phase transition is descr
by a vortex-loop unbinding. This is achieved by correlating
detailed study of qualitative changes in the vortex-loop d
tribution functionD(p) with calculations of superfluid den
sity, condensate density, specific heat, amplitude fluct
tions, and change in vortex-tangle connectivity, bo
including and excluding amplitude fluctuations of th
Ginzburg-Landau order parameter. The topological ph
fluctuations destroying the superconducting phase coher
are thus unambiguously identified as thermally induced v
tex loops. When amplitude fluctuations are included exp
itly, they are found to be far from critical. In other words, th
vortex-loop unbinding maynot be viewed as a reparametr
zation of critical amplitude fluctuations of the Ginzbur
Landau order parameter, as is sometimes claimed.

The vortex content of the Ginzburg-Landau theory, fo
mulated in Sec. II E, is characterized by its own U(1) sy
metry which becomes explicit on a furtherexactreformula-
tion of the vortex sector in terms of a new gauge-field, s
Sec. II E. The low-temperature phase of the vortex-secto
the Ginzburg-Landau theory, where all vortex-loops are c
fined, exhibits a U(1) symmetry. This symmetry of the vo
tex sector reflects the fact that there is a number conserva
of vortex loops extending across the entire superconduc
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In zero magnetic field, the conserved number is zero, and
distribution function for closed vortex loops of perimeterp is
an exponential function with length scale given byL0(T)
5kBT/«(T), where«(T) is the vortex-line tension. At the
zero-field critical temperature, we find vortex loops with
algebraic distribution of perimeters, concomitant with
abrupt change in the connectivity of the vortex tangle
extreme type-II superconductors. The vortex line tension
found to vanish as a power law asTc is approached from
below,«(T);uT2Tcug, with g51.4560.05.

Both the change in the distribution function of closed vo
tex loops, and the abrupt change in the connectivity of
vortex tangle, shows that there is a diverging length in
problem, i.e.,L0(T)→`; T→Tc

2 . At this point, the number
of closed vortex loops extending through the system is
longer a conserved number equal to zero, it becomes fi
and undergoes thermal fluctuations. Therefore, the U
symmetry characterizing the low-temperature vortex phas
broken.

The connection between the power-law behavior close
Tc of the vortex-line tension and the anomalous dimens
hf of the dual fieldf was discussed in Sec. IV C. Relatin
the power law for the vortex-line tension to the susceptibi
exponentg of the f field, in conjunction with the Fishe
scaling lawg5n(22hf), allowed us to extract the valu
hf520.1870.07. This result was compared to renorm
ization group calculation performed directly on the du
theory, for which the vortex-loop unbindingis the phase
transition, and excellent agreement was found. Note
negative sign ofhf in the extreme type-II case.

BÞ0. In finite field, we have studied the phase diagra
over a wide range of filling fractionsf, corresponding to
1/f P@90, . . .,1560#, the results are summarized in Fig. 1
The VLL is found to melt in a first order phase transition, f
all filling fractions considered, into acompletely incoheren
vortex liquid characterized by zero global phase coherenc
all directions. At intermediate fields, the VLL melts into
liquid of vortex lines, whose position in the (B,T)-phase
diagram is well estimated by the Lindemann criterion with
Lindemann number'0.25.

We have performed a scaling analysis for the melting l
for all filling fractions considered. We find a crossover fro
mean-field type scaling at elevated fields to 3DXY scaling
behavior at small fields, showing that for the anisotropies
have considered, the melting line of the vortex lattice at l
fields is significantly affected by zero-field critical fluctu
tions in a sizeable region of the phase diagram.

Significantly, in addition to the VLL melting transition
line Tm(B), we find indications of another transition lin
TL(B) inside the vortex liquid. This line is the finite-fiel
extension of the zero-field vortex-loop unbinding, and has
end point which is the zero-field critical temperatureTc .
Below TL , connectivity of the vortex-system is determine
exclusively by the field-induced vortex lines. All vortex line
threading the entire system are field induced. AboveTL , this
changes, as discussed in Sec. IV B. AboveTL(B) there exist
vortex lines that thread the system also perpendicular to
magnetic field, without using periodic boundary conditio
along thez axis.

We have performed a large-scale study of the finite-s
effects in TL , and found that the temperature where t
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vortex-tangle connectivity changes does not move up w
system size, as it would have done in a vortex-line liquid.
the 2D nonrelativistic boson analogy of vortex liquid, su
vortex configurations are never found. The symmetry brok
at TL is a global U(1) symmetry, associated with the numb
conservation of vortex paths threading the entire system,
considerations are similar to the zero-field case. In a fin
magnetic field, this symmetry is hidden in the usu
Ginzburg-Landau local order field representation, but
brought out by a dual description of the Ginzburg-Land
theory. In zero field,TL andTc are identical and there is onl
one phase transition.

We have found that the vortex-system in the clean lim
appears to be able to exhibit three distinct phases, I, II,
III shown in Fig. 12, characterized by the values of t
Ginzburg-Landau order parameter^c& and its dual order pa-
rameter^f&. Here, we explicitly utilized the connection o
Sec. II E between the vortex-tangle connectivity probeOL
and the U(1) ordering in the dual fieldf. We found the
three regimes

Region I : ^c&Þ0, ^f&50,

Region II : ^c&50, ^f&50,

Region III : ^c&50, ^f&Þ0.

At low fields, we have found that region II vanishes. No
that the transition lineTL(B) separating the regions II and II
inside the vortex liquid, was brought out solely through t
dual description, it could not have been detected by study
the Ginzburg-Landau order parameter^c&, or any local
function of it.

A few further comments are in order. In the low-fie
regime,within a lines-only picture of the molten phase, one
finds that the longitudinal correlation length of field-induc
vortex lines above melting increases, due to the increa
distance between field induced lines, being given by

jz5
1

G2
AF0

B
. ~31!

It was therefore pointed out in Ref. 54 that in order to co
rectly predict the direct transition from the Abrikosov vorte
lattice to a phase-incoherent vortex liquid at low magne
fields, or equivalently predict the direct transition from th
crystal phase to the superfluid phase of 2D nonrelativi
bosons atT50 at low magnetic, sufficiently large systems
the z direction must be used. The use of too small syste
could result in observing, merely as a result of a finite-s
effect, a normal T50 2D nonrelativistic Bose fluid, or
equivalently a disentangled vortex liquid. The former cann
exist in the thermodynamic limit in the absence of disord
on quite general grounds.

The above is a valid point of concern within the 2
boson-liquid analogy of the vortex system when looking
entanglement. It is no longer a point of concern if the line
only approximation is abandoned and the connectivity of
vortex tangle is probed rather than entanglement.~Precisely
how to establish a criterion for when field-induced vort
lines are entangled, also appears to be problematic to sa
least.! For all fields we have considered, and for all samp
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geometries we have used, it is clear from our results that
have been able to correctly predict the direct transition fr
the Abrikosov vortex lattice to the phase-incoherent vor
liquid. The onset ofOL and the change in the vortex-tang
connectivity is a separate matter. The vortex configurati
dominating the contribution to a change inOL , are thermally
induced unbound vortex loops and not field-induced fl
lines. Our results in the low-field regime are therefore n
artifacts of considering too small systems in thez direction.
Quite the contrary, since we see the change inOL also when
making the system flatter, it supports the proposition t
there exists a regime in the (B,T) phase diagram, beyond th
line TL(B), where the notion of a vortex-line liquid physics
most probably should be revised.

The U(1)-transition lineTL(B) has the zero-field super
fluid normal state transitionTc as an end point. It is a featur
of extreme type-II superconductors, even homogeneous,
tropic three-dimensional ones, and should moreover occu
helium4 which is a perfectly three-dimensional, homog
neous, isotropic superfluid. The proposed transition there
is not in any obvious way connected to various previou
proposed quite intriguing scenarios leading to a loss oflocal
line tensionof field induced vortices, often referred to a
‘‘decoupling transitions.’’90,91 These phenomena rely on th
layerednessof the superconducting compounds, howev
they have no symmetry-breaking or order parameter ass
ated with them, but most importantly do not have a zero-fi
counterpart. Moreover, probing phase coherence betweenad-
jacent layers in a layered superconductor as was, for
stance, done in Ref. 90@see their Eq.~28!# probesmaximum
qz behavior, a part of reciprocal space not usually associa
with critical phenomena, which are infrared singularities
Probing phase coherence between increasingly distant la
.e
e

e

x

s

x
t

t

o-
in
-
re
y

,
ci-
d

-

ed

ers

ultimately amounts to computing the helicity modulusYz ,
which cannot vanish above the melting line of the vorte
lattice in the thermodynamic limit, in the absence of diso
der.

The TL(B) line is potentially an important line in the
(B,T) phase diagram. It locates the position in the (B,T)
diagram where the line-only approximation of the vortex li
uid breaks down. Pinning of vortices by extended obje
such as columnar pins may very well turn out to be ine
cient beyond the lineTL(B). It also shows that the line-only
approximation can be used to describe the vortex-liq
phase and the first order melting transition of the VLL
TM(B) only for large and intermediate magnetic inductio
In low magnetic fields, on the other hand,TL(B) andTm(B)
collapse into a single line.40 Here, it would appear that a
line-only approximation does not describe the vortex liqu
properly. The fields where the line-only approximation fa
in the entire liquid regime are expected to be of order 1T or
less in YBCO.40
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