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We study the effect of critical fluctuations on thB,T’) phase diagram in extreme type-Il superconductors
in zero and finite magnetic field. In zero magnetic field the critical fluctuations are transverse phase fluctuations
of the complex scalar Ginzburg-Landau order parameter, which when excited thermally will induce topological
line defects in the form of closed vortex loops into the system. The distribution furidijph of vortex loops
of perimeterp changes from an exponential functibr{p) ~p~ * exd —e(T)p/ksT] to a power law distribution
D(p)~p * at the zero-field critical temperatule=T.. We find that the long-wavelength vortex-line tension
vanishes ag(T)~|T—T.|”;y=1.45, asT—T,. At T=T,, an extreme type-ll superconductor suffers an
unbinding of large vortex loops of order the system size. When this happens, the connectivity of the thermally
excited vortex tangle of the system changes abruptly. The loss of phase stiffness in the Ginzburg-Landau order
parameter, the anomaly in specific heat, the loss of vortex-line tension, and the change in the connectivity of
the vortex tangle are all found at the same temperature, the critical temperature of the superconductor. At zero
magnetic field, unbinding of vortex loops of order the system size can be phrased in terms of a global
U(1)-symmetry breaking involving a local complex disorder field which is dual to the order parameter of the
usual Ginzburg-Landau theory. There is one parameter in the theory that controls the width of the critical
region, and for the parameters we have used, we show that a vortex-loop unbinding gives a correct picture of
the zero-field transition even in the presence of amplitude fluctuations. A key result is the extraction of the
anomalous scaling dimension of the dual field directly from the statistics of the vortex-loop excitations of the
Ginzburg-Landau theory in the phase-only approximation. A scaling analysis of the vortex lattice melting line
is carried out, yielding two different scaling regimes, namely, a high-field scaling regime and a distinct
low-field three-dimensionaXY critical scaling regime. We also find indications of an abrupt change in the
connectivity of the vortex tangle in the vortex liquid along a liRgB), which at low enough fields appears
to coincide with the vortex line lattice melting transition line within the resolution of our numerical calcula-
tions. We study the temperature at which this phenomenon takes place as a function of system size and shape.
Our results show that this temperature decreases and appears to saturate with increasing system size, and is
insensitive to aspect ratios of the systems on which the simulations are performed, for large enough systems.
[S0163-182699)03145-9

[. INTRODUCTION line of the VLL when the pronounced nonlocal elastic prop-
erties of the VLL in strong type-Il superconductors, first dis-
Ten years after Abrikosov’s classic prediction of a latticecussed for the isotropic case in the pioneering works of
of quantized vortices, the Abrikosov vortex-line lattice Brandt/® are taken into accoufit.
(VLL),! as the ground state of type-Il superconductors when Recently has it been established, through numerical
the magnetic field is tuned beyond a lower critical vaue, simulations'° that the vortex-liquid is alwaysncoherent
Gerd Eilenberger suggested that the VLL could melt close ta.e., phase coherence is destroyed in all directions, including
the critical temperature of the systénThe magnetic field the direction of the induction, as soon as the VLL melts.
versus temperatureB(T)-phase diagram of extreme type-ll Inside the vortex liquidegime there is no transition from a
superconductors has for some time been under intense invedisentangled to an entangled vortex liquid. For such a tran-
tigation both theoretically and experimentally, following sition to occur inside the vortex-liquid, the longitudinal su-
suggestions that the VLL could undergo a melting transitionperfluid density would have to be nonzero above the melting
in regime of the B,T)-phase diagram of the high- temperature. This, however, does not happen in the clean
temperature superconductor that could be experimentalljmit,®° even in the isotropic casé.lt has also been ques-
resolved*® This was soon confirmed by a more thoroughtioned whether the vortex-line picture of the molten phase of
theoretical analysfsvhere it was shown that the VLL of the the Abrikosov VLL is viable at all at low fields> 14101511
high-temperature superconductors was particularly suscep- In terms of fundamental physics, extreme type-Il super-
tible to thermal fluctuations due to the large anisotropy ofconductors are interesting due to their large fluctuation ef-
these compounds. The anisotropy only affects the meltindects not commonly seen in condensed matter systems. This
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is ultimately due to the fact that they are strong couplingloops lose theireffectiveline tensione(T) (free energy per
superconductors arising out of doped Mott-Hubbard insulaunit length, and therefore unbind.

tors. The latter fact gives rise to the effect that the phase The fact that the zero-field transition can be characterized
stiffness of the superconducting order parameter is low, dugrecisely by a loss of line tension of thermally induced flux

to a low value of the superfluid densipy lines, implies that there is a sharp change in the distribution
) function D(p) for vortex loops of a given perimeter
N o°f p. It changes from an exponential formD(p)
Ps a(AG)2 ~p~ 2exd —&(T)p/ksT] to a power lawD(p)~p %2 at

_ o _ T. .1 This implies the existence of a diverging length scale
whereA @ is a twist in the superconducting order parameterl_o(-r):kBT/S(T)_zto,u Given this fact, it raises the question

O\r'fr the .Sizle of ﬂ:je. system, ahds the irze en dergy densbitt))/. of whether the critical fluctuations can affect the melting line
This particular and important aspect of doped Mott-Hu arqn a sizeable field-temperature regime, rendering the vortex

'Snosrl:lléﬂt?rrns el?‘_"‘fg sbeeee;fou'éeefStE%ngrlﬁee;?%T,asfff I?rl]rei?fi;%es tensionless. The vortex line tension is analogous to the
' o 9 piing mass of the bosons in a two-dimensioffD) nonrelativistic

gives rise to a largé@ ., so that the Ginzburg-Landau param- )
. . boson analogy of the vortex system. If the vortex-line ten-
eterk~T./ps is large. This also softens the vortex matter _. . :
sion were to vanish, it would mean that the boson mass

in these systems, particularly when coupled with their Stron%\/ould vanish in the corresponding analogy. There is no non-

layeredness. ativistic limit of less th h s
There is also a close connection between thermodynamirc,e anvistic Timit ‘of any massiess theory. The conclusion
uld be that any 2D boson-model which is nonrelativistic,

phase transitions in these systems, and phase transitions \if" : X _
superfluid®®  liquid crystals?  crystals??  and S inapplicable in the part of the phase diagram where the

cosmology?®~2” The close connection between these apparyortex—lir_1e tension vanish_es. We reemphasize_ that at. el-
ently different physical problems, is due to the similarity of evated fields, where the first order flux-line lattice melting
the topological objects that appear in these problems. Paline splits off from the transition line proposed here, the Lin-
ticularly in the context of superfluid Hethe proposition that demann criterion of flux-line lattice meltiigs expected to
an unbinding of topological phase fluctuations in the form ofcorrectly locate the position of the melting lifie.
vortex loops is the microscopic mechanism for the The outline of this paper is as follows. In Sec. Il, we
superfluid-normal state transition, has been extensively studatroduce the Ginzburg-Landau model studied in this paper,
ied in the past®~33and early attempts at formulating a field- and various approximations and reformulations of it, as well
theory of this in the context of charged superfluids in zeroas their inter-relations. In Sec. Ill, we present the ideas un-
magnetic field has also appeared in the literatigffective  derlying the simulations that are presented in this paper, and
gauge-field theories with an interna(l)-symmetry all have introduce and discuss the quantities we study. In Sec. IV, we
in common that they suppottne defectin the form of  present results of the simulations in zero magnetic field. In
vortex-loop excitations as stable topological objects. Underparticular, we present results which demonstrate that the
standing the role of such excitations on th®,T) phase zero-field transition in an extreme type-Il superconductor is
diagram of type-Il superconductors is an important problemyiven by a proliferation of unbound vortex loops, which
in physics, and presumably will shed light on the relatediyerefore constitute the critical fluctuations of this system. In
problems mentioned above as well. Sec. V, finite-field results are given. Summary and conclu-
In conventional Iow—tempe_rature supercond_uctors, thG'sions are presented in Sec. VI, and in this section we also list
temperature where Cooper pairs start to folifje, IS prac- point by point the results obtained in this paper. A prelimi-

tically identical to the true superconducting transition M- ary account of a subset of the present results have appeared
peratureT.. The commonly applied Ginzburg-criterion pro- in Ref. 40

vides a useful estimate for the width of the critical regions in

systems with weak fluctuation effects, showing that the

width of the critical region is of ordett|~(T.—T)/T,

~10°%-10"%. In high-T. superconductors, this may no Il. MODELS

longer be the case. There appears to be mounting experimen- , s section we define the models considered in this

tal evidence that the width of the critical region is as large $aper: (1) the continuum Ginzburg-Landau modép) the
?Yég"(v)) 3*2_3'9” ;heh h'ghl-gc supercond?rt]:tor TF"QUISQ ¢ lattice Ginzburg-Landau model in a frozen gauge approxima-
' which would: encompass the meiting fine o tion, and(3) the uniformly frustrated 3IXY model. We also

the flux-line lattice up to a field of orderT1® ) AN 0
; . ... _discuss the approximations involved and the validity of the
In zero field, the superconducting-normal phase transition

is exclusively caused by a vortex loop unbindig®114142 models.
Below the critical temperatur@; vortex loops are confined

to a typical perimetet, and cause only local disturbances

in the macroscopic superconducting state. Recently, this has

been demonstrated clearly, by correlating an abrupt change Our starting point is the continuum Ginzburg-Landau
in vortex tangle connectivity, a loss of vortex-line tension, (GL) model®® In quantum field theory, the GL model is also
loss of superfluid stiffness and specific heat anomaly prereferred to as the scalar QED or the U{aHliggs model or
cisely at the critical temperature of the superconductor, evethe Abelian Higgs model. The effective Hamiltonian for the
for the isotropic cas&” ! At T, thermally induced vortex GL model in an anisotropic system is given‘by

A. Ginzburg-Landau model
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The resulting model is a version of the Lawrence-Doniach

Here, y(r)=| (r)|€' ") is a complex order field represent- modef® with all three directions discretized. The effective
) Y =19 . P P Hamiltonian for the lattice GL model is given by
ing the superconducting condensate. In superconductors, the

amplitude|(r)|? should be interpreted as the local Cooper-

pair density. Furthermorem,, is the effective mass foone » 9, 4 2
Cooper pair when moving along the direction, ®,=h/2e HLGL:axayazzr: aly| +§|'/’| * ;X:yz om a2
is the flux quantum, ang, is the vacuum permeability. In e wop

Eq. (1), the gauge fieldA is related to the local magnetic X|w(r_‘_/l)efi(Zw/tbo)aMAM(r)_w(r)|2
induction b(r)=VXA(r). Finally, the GL parameteg is

assumed to be temperature independent, whitea(T) 1

changes sign at a mean-field critical temperafligg(B), + S(AXA)L ] 5
where Cooper pairs start to form.is the spatial average of HEXYZ 21108,

the magnetic induction. The critical temperaturg where

phase coherence develops, is always smaller Tan the Here,a, and u is a lattice constant and a unit vector
existence a finite Copper-pair density does not imply that thyong they axis, respectively. Furthermore, the lattice de-

system is in a superconducting state. rivative is defined as

Below, the Ginzburg-Landau theory is recast into a quite
different form that also exhibits a U(1) symmetry, but where .
the field conjugate to the relevant phase is the number op- A p(r)=o(r+p)—i(r).
erator for the topological excitations destroying the order of
the Ginzburg-Landau theory itself. Although this may seemTaking the continuum limita,—0, the effective Hamil-
to be an unnecessary complication, it has the advantage tbnian for the lattice GL modeEq. (5)] reduces correctly to
facilitating a detailed discussion of the vortex-liquid phase ofthe GL effective Hamiltonian in the continuufiq. (1)]. As
the GL theory in terms of the ordering of some local field, defined in Eq.(5), the lattice GL model does not contain
namely, the complex scalar fielgl(r) to be introduced and vortices. To reintroduce the vortices in the model, we must
discussed in Sec. IIE. This is not possible using thecompactify the gauge-theory by requiring that the gauge in-
Ginzburg-Landau order parameter functiop(r) since variant phase differences sati
(y(r)) is always zero in the vortex liquid pha3$é® In the
zero-field low-temperature ordered phase, the system spon- 20
taneously chooses a preferred phase afigland explicitly O(x+ p)— 6(x)— 3a“A“(X) e[—m,m). (6)
breaks the U(1) symmetry. The vortex sector of the GL 0
theory also exhibits a U(1) symmetry breaking, but where ) o ) ) )
U(1) symmetry is broken in the high-temperature phase, andVhenever this constraint is used to bring the gauge invariant

restored in the low-temperature phase. phase differences back to its primary interval, we automati-
Equation (1) has two intrinsic length scales, the mean-cally introduce a unit closed vortex loop, and the net vortic-
field coherence length ity of the system is guaranteed to be conserved at every stage
of the Monte Carlo simulation. From the renormalization
2 group point of view the continuum GL model and the lattice
£(T)= 2 el (2)  GL model belong to the same universality cl&s%Ve there-
pl @ fore expect the lattice GL model and the continuum GL

and the magnetic penetration depth model to give, qualitatively, the same results.

m, B B. Lattice Ginzburg-Landau model in a frozen gauge

2= (©)) approximation

" Auee® a(T)|
In extreme type-ll superconductors, the zero temperature
&, is the characteristic length of the variation|gf(r)| along  mean-field penetration depth is much greater than the zero
the w direction, and\ , is the characteristic length of the temperature coherence length(T=0)>§,(T=0). Thus,
variation of the current flowing along the direction. fluctuations of the gauge field represented by the last term in
In order to carry out Monte Carlo simulations of the GL Eq. (1), around the extremal field configuration are strongly
model, the model is discretized by replacing the covariansuppressed and can therefore be neglected. The effective
derivative in the continuum GL Hamiltonian, Ed.), with a  Hamiltonian for the frozen gaug€&G) model can be written
covariant lattice derivative as
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a(T) 1 is valid whenB>B_,(T), where the field distribution from
— |y %+ §|¢’|4 individual flux lines overlap strongly, giving uniform induc-
(0) tion. Note thatB.,(T) also vanishes when the temperature

|(0)]?

Hee= T axayazE

T

£2 approached .. In zero field, this approximation is valid for
Suy - / all temperatures except an experimentally inaccessible tem-
+,u:2,y,z aiw (r+ )l ) perature region around, .*°
In our simulations on the FG model, we allow for both
phase and amplitude fluctuations of the superconducting or-
xX[2-2 COSAMH—AM)]]- (7)) der parametets(r)=|y(r)|exdi6(r)]. Details of the Monte
Carlo procedure for this case will be given below.

Here, we have defined a dimensionless order field and
vector potential C. Uniformly frustrated 3D XY model

The uniformly frustrated 3IXY model was first used as a
o= ¥ W ~[0.] phenomenological model for extreme type-Il superconduct-
[2(0)|/g b ors by Liet al*” and Hetzekt al*° To obtain the uniformly
frustrated 3DXY (3DXY) model from the FG model, we
o freeze the amplitude of the complex order field in Edf),
A,L:c}ﬁaMAﬂ- |'|=1. This is the London approximation. The resulting
0 effective Hamiltonian for the 3RY model is given by
The natural energy scale along thedirection is

2|(0)| &
5 ol & Hxy=— 5 aaa. 5 008A,0-A,). (10
= — M
" xAyGz o 2
g a

a The lattice constants in the 3¥ model should be defined

Assuming a uniaxial anisotropy along thexis, the natural g
energy scale for the FG model is

a,=maxd,,§, ).
2/a(0))? , 5d " o
Jo= == ——5 5 (8)  Assuming uniaxial anisotropy, the energy scales and the an-

9 AT ol gy isotropy parameter of the 30Y model are the same as for
Here, we have put our coordinates,y,z) axis parallel to the FG model, Eqd8), (9). Note that both the FG model and
the crystals &,b,c) axis. Furthermoreg,= &,= £, and &, f[he 3[_)(Y model contain premsely_the same topological ob-
= ¢ is the coherence length in the CuO planes and along thigcts, i.e. vortex loops and vortex lines, as for the GL model.
crystal'sc axis, respectively. Furthermorg, =\, =\, and The local gauge symmetry in the GL model is, however,
\,=\. is the penetration depth in the CuO planes and alongeduced to a global U(1) symmetry in the FG and thex3D

the crystalsc axis, respectively. In E(8), d is the distance odels.
between two CuO superconducting planes in adjacent unit
cells. The energy scald, is roughly the energy scale of D. Villain approximation and vortex representation

exciting a unit vortex loop~ ™" To further corroborate interpretations of the results from
The ratio between the energy scalgsandJ, serves as an  oyr Monte Carlo simulations using the uniformly frustrated
anisotropy parameter 3DXY model, to be detailed in the next section, it is useful to
provide an alternative, but entirely equivalent formulation of
= ﬁz §abazz Acd; ] (9) the GL theory. This formulation replaces a description in
Jz &y Napd terms of the GL function) by vortex degrees of freedom,
where the interaction between vortex segments is mediated
by a gauge field, which we denote by This gauge field is
a,=maxd, ,Cof,). _notthe electrpmagnetic vector potenthal but WiII_coupIe_ to
m w05 it. The resulting structure of the theory makes it possilvle,
Here,d, is an intrinsic length along thg direction in the  three dimensions, and three dimensions ptdyreformulate
underlying superconductor to be modeled. Examples of sucthe vortex content of the GL theory as a theory of a complex
intrinsic length are the distance between CuO-planes in adnatter field¢ coupled to the gauge fieldsandA. Although
jacent unit cells, thed,b) dimension of the unit cell. To be this may seem as an unnecessary detour, the great advantage
consistent, the constaf, should be larger thar-4. This  of this approach, is that certawvortex correlators notably
requirementa,, /¢, >4 ensures that the amplitude of the or- our quantityO, to be defined below, can be directly related
der field does not overla}Y.Such overlap will give rise to a to a U(1) symmetry of theb theory.
domain wall term ¥|#|), which is absent in the lattice GL To proceed with this, we introduce the well-known Vil-
model. lain approximation to the 3RY model. The Villain approxi-
Within the frozen gauge approximation, the gauge fieldmation consists of replacing the cosine potential in the uni-
serves only as a constraint, fixing the value of the uniformformly frustrated 3IXY model by a Gaussian2-periodic
induction. In terms of magnetic induction this approximation potential. In this way the longitudinal spin-wave excitations

In this model, the lattice constaaf, should be defined as
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of the 6 field decouple from transverse vortex-excitations ofthe present problem also, following Ref. 22. This means that
the theory. This decoupling does not alter the critical behavthe vortex content Eq1ll) of the Ginzburg-Landau theory

ior of the system. The partition function for this theory reads,Eg. (5) in the phase-only Villain approximation is cast into
after a rescaling of the vector potential and charge the form of a local field theory involving a complex scalar

rn > e

n(r)y=-—o=

S=

-2

r

1
Vo—2eA—2mn)%+ E(VXA)Z},

—iv(r)-u(r)

m=oo ]
> emmh= 3 s(-h).
m=—x

|=—0o

DhDA >, eSelmnAL

[

1
+2ie(VXh)-A+ E(VXA)Z ,

z=11

¥

mass field describing local vortex fluctuations, coupled to a
Zy= H

a U(1) symmetry, and as always in such cases, the question
5

The purpose of this reformulation is to provide a point of

ing an auxiliary velocity-fieldv(r) and using the identity vortex-tangle connectivity and denot€q , and on the other
v(r)?

lar mass fieldp(r) of the dual theory, is precisely the prob-
using u=V#—2eA—2=n(r). The sum over the integers path the two points are connect&dLong-range order in
out the 4(r) variable, which yields the constraiit-v(r) a broken Y1)-symmetry, which is “hidden” at the level of
as a continuous variable, we introduce a new integer-valued In three dimensionsnd three dimensions onlg vortex-

written as a gauge theory of a local complex matter fi¢ld
Note that this procedure does not involve any approximawhich case the vortex content of the Villain approximation to
| 11

dual gauge field that mediates an interaction between the
; Da(r) | DA( vortex segments. The resulting theory will exhibit explicitly
B to be asked is under what circumstances, if any, the symme-
try will be spontaneously broket.
wheren(r) is an integer-valued field. The kinetic term is contact between on the one hand a quantity to be introduced
linearized by a Hubbard-Stratonovich decoupling, introducin Sec. IllA and studied in Secs. IVB and VA, probing
hand thermodynamics. The key point is that in zero magnetic
H e‘ﬁuz(r)’2~1_[ f Dvex;{ _2 . ) field, the two-point correlation function of the complex sca-

' ' ' A ability of finding a connectedvortex path between the two
This is now inserted back into the original partition function, points of the correlation function, regardless of by which
n(r) may be carried out, yielding the constraint thvét) is  G(x,y) implies a broken U(1) symmetry. Equivalently,
integer valued, say(r)=I(r). The next step is to integrate long-range vortex connectivity in zero magnetic field implies
=0, which is solved by introducing an integer valued field Eq. (11), but is brought out when Eq. 11 is reformulated to
h(r) such that(r)=VXh(r). In order to be able to tredt  the dual form, to be described below.
field m and apply the Poisson-summation formula loop system interacting with a long-range Biot-Savart inter-

action and steric repulsion, mag the continuum limitbe
coupled toh.??%215We may extend the results of this work
including fluctuations inA in a finite magnetic field, in
tions. Finally, we write the partition function for the GL the GL theory corresponds precisely to an action of the fol-
theory in phase-only and Villain approximations as
Seff= — Z

) 1
2mim-h+ —

2B(Vxh)?

where the following constraints apply in the functional inte-
gral: V-A=V-h=V-m=0. The effective actiofEq. (11)],
is invariant under

h—h+Vo,,

The field h is readily interpreted as a fictitious gauge field
that mediates an interaction between vortex segments
This is easily seen by integrating out thdield.

E. Dual representation

Whenever a field theory sustains topological defects, it is

often useful to formulate a field theory of the topological
excitations of the original theorper se and this forms a
dual description of the original theory. We will do this for

lowing form:

ZZH f D ¢(r)D ¢* (r)Dh(r)DA(r)eSeil ¢:6* n.AL

2

’ Zg_’ 45(2_’
o |92+ |1+ 5 || = —eh| g

éeﬁ: - E

T

1

+2,3

_ 1
(VXh)2+2ie(Vxh)-A+ E(VXA)Z},

(12

where the coefficientsa’ ,e’,g’) appearing in the theory are
given in terms of the parameters entering Ed).>? For our
discussion, their precise values are of no importance. The
interpretation of thep field is that it is a local field describ-
ing local fluctuations in the topological excitations of the GL
theory, namely, line defects in the form of vortex lines. The
effective action, Eq(12), is invariant under the set of trans-
formations

¢— ¢ expliwy),
1

h—h+ —Vaoy,
e
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By rewriting the theory in Eq(11) in this way one observes try to find vortex paths connecting opposite sides of the sys-

that it explicitly exhibits a U(1) symmetry. Note that this tem. Numerically this procedure is entirely prohibitive and

relies entirely on the possibility of reformulating the interact- we therefore opt for the algorithm of calculati@ , to be

ing loop gas, including Biot-Savart interactions, in terms of adescribed in detail in Sec. lll A.

complex matter fieldp coupled to a gauge field. We stress that the procedure of comput®g described
The main advantage of the above formulation is that theén Sec. Ill A unquestionably probes the connectivity of a vor-

probability of finding a connected path of vortex segmentstex tangle across the systemgt associated with magnetic

starting atx and ending ay, G(x,y), is given by the two- field, precisely as in the zero-field case. The objective is to

point correlation function of theb field®? probe the breaking of a (d)-symmetry associated with the
proliferation of unbound vortex-loops in the system, as
G(x,y)=(d* (X)P(y)). (14) pointed out in Ref. 40. This will be shown to be precisely

borne out in zero magnetic field. In finite magnetic field we

A vortex-loop unbinding will lead to a finit&(x,y) when  also obtain a weak specific heat anomaly at the temperature
|x—y|—oc, because infinitely large loops will connect oppo- WhereO changes abruptly, as the system size is increased.
site sides of the vortex system. On the other hand, if

limj,—y—.G(x,y) #0, this implies that ¢* (x))#0, corre- [ll. DEFINITIONS, SIMULATION PROCEDURE,

sponding to a broken U(1) symmetry. Therefore, the dual AND MODEL PARAMETERS

field ¢(r) is an order parameter of a vortex-loop unbinding

transition. The broken U(1) symmetry is associated with the In this section, we define the physical quantities consid-
loss of number conservation of connected vortex path?red’ describe our Monte Carlo procedure, and present the

threading the system in any directigincluding direction valugs of the model parameters used in the .simulations..The
perpendicular to an applied magnetic field, if that is present speC|f|_c h_eat IS calpulated_ n sta_mdard f.aSh'Of‘- One minor
This limit of the two-point correlation function is closely complicating factor is that lreffectlv_eyheorles, W'th In gen-

related to the quantityd, we introduce in Sec. Il A, which e_ral temperqture-dependent coefficients, a mo_d|f|ed Eexpres-
probes the connectivity of the vortex tangle in an extrem sion for the internal energy needs to be used if the specific

type-ll superconductor. The above connection makes it at th ﬁg:n'if tc;ofodrgf;fsiggoge?s t%rgFi%rgfr?ﬁ:rgﬁxﬁrgffmi
very least plausible that an abrupt change in this connectivﬁon foryt,he vortex lattice is aléo c,om, utéd in standard fash-
ity, as probed by the change @y , is associated with break- . ; . P "

: ion, for details see, for instance, Ref. 10. In addition to these
ing a U(1) symmetry of theortexsector of the GL theory, Lantities. we consider the following ones

equivalently an onset®* ) or (). Since this only happens q ' 9 '

above a critical temperature, we may vietvas adisorder
field, in contrast to the order-parameter figiaf the original
GL theory. We will make explicit use of this connection in 1. Local Cooper-pair density|/|?
Sec. IV.

At finite magnetic fields, the situation is complicated by
the fact that the vortex system is always connected across the 1
system in at least one direction, namely, the field direction, at (o' 1D== 2 (|9 (n]?). (15)
all temperatures. One may however still extract information Ve
of the type lencoded i(;“ﬁ*(rf) ¢(f)2_ at Z?rt?]ﬁ?ld by pe(rijrmF\; fWe see in Eq(15) that(|#'|?) involves both thermal and
INg a singular gauge-transtormation of the typ€ uUsed In RISy, .0 ayerage. Recall that = y/\[a(0)[/g. At the mean
12,15, which roughly speaking amounts to subtracting OUkaId level, we expect| ' |2) to deve|lop aL expectation value

the field-induced vortices and studying the remaining loo - i
gas, which has a field-theory description very similar to thog[)eIOW the mean field critical temperatifge(B).

_zero-field version of Eq(12). The obvious advantage of this 2. Superfluid condensate densitj )2

is that one removes the asymmetry of the system imposed by ) )

the magnetic field. A two-point correlator of this theory then _ AS @ probe for the local condensate densitgnsity of
probes the connectivity of nonfield induced vortex pathsCOOPer pairs participating in the superconducting conden-
across the system, which in turns probes the possibility ofate, we calculate

having a broken U(1) symmetry and hence an onset of the

order parametefe(r))#0. |<¢,>|25% S ()2 (16)

We will perform a numerical analogous of this in our

simulations, namely, we will probe the connectivity of the . 12 12
vortex tangle of the superconductor in directions perpendic:u'—\IOte the difference betweffy")|" and|(y")|". The former

lar to the magnetic field. Ideally, what one should do is todescr?bes local Cooper-pair density, while the Iatter_describes
generate phase configuratiof@d vortex configurationsof what_ IS commonly known as the C?”g'ensate densitjHe

the extreme type-Il superconductor, subtract out from eathyS'C_s' In zero field, we ex_peb@z,b )|° to develop an ex-
configuration a number of vortex paths that connects the sy§2eCtatI0n value below the critical temperatig:

tem along the field direction precisely corresponding to the
number of field induced vortices in the system, which is a
fixed number in a canonical ensemble usually studied for this To probe the distribution of the phase angle #n(r)
problem. Out of the remaining vortex tangle one may then=|y’'(r)|e'", we define the distribution function

A. Definitions

As a probe for the local Cooper-pair density, we calculate

3. Distribution of the order field phase angle
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1 >0, the curve fofY',, should bend more sharply towards zero
Dy(0")= ]—}< > 50(r),9’> : (17)  at the critical point thaf(y')|?. We will explicitly show by
' direct calculations within the Ginzburg-Landau theory that
Here, 8, ; is the Kronecker delta function. In the simulations, |(#’)|? is very close toY , both in zero field and finite mag-
we have chosen to work with a discrete set of phase anglesgtic field. In zero magnetic field this is precisely what one
0',6(r)=2mn/N,. Here,ne[ON,] is an integer, antil, is  would expect based on the above, whegre1.5* For the
the number of allowed discrete phase angles. In our experspecial case otl=3, we have B— nv=v<2B. To high
ence, the simulation results do not depend\yn) provided  precision, we have for the 30Y model, thatr=0.673 and
N,=16. In zero field, when the phase is disordered, we ex#=0.038%
pectD 4(8) to be uniformly distributedD (6)=1/N,. In the
ordered phase, we expebt,(6) to show a peak around a 5. Vortex loop distribution D(p)

preferred phase angle. To probe the typical perimetdry(T) and the effective
long-wavelengthvortex-line tensions(T) (not to be con-
fused with theflux-line tensionwhich is always zero when

To probe the global superconducting phase coherencgauge-fluctuations are completely suppressed due to the ab-
across the system, we consider the helicity modiys, sence of tubes of confined magnetic jluxve define a
defined as the second derivate of the free energy with respegbrtex-loop distribution functiom (p), which measures the
to an infinitesimal phase twist in the direction>>°®!Finite ~ ensemble-averaged number of vortex loop in the system hav-
Y, means that the system can carry a supercurrent along ttieg a perimetep.®***1:33In order to compare results from
w direction. Within the 3IXY model, the helicity modulus different system sizes, we normaliZp) with respect to

4. Helicity modulusY

along theu direction becomes the system size.
We search for a vortex loop using the following proce-
Y, 1 D A A dure. Given a vortex configuration, we start with a randomly
3, V\4 Co44,0-A,] chosen unit cell with vortex segments penetrating its

plaguettes. We follow the directed vortex path and record the
2 trace. When the directed vortex path encounters a unit cell
' containing more than one outgoing direction, we choose the
outgoing directiorrandomly When the vortex path encoun-
For the FG case ters a previously visited unit cell, i.e. when it crosses its own
v 1 trace, we have a closed vortex loop, its perimeter bging
o / / - We now delete the vortex loop from the vortex configura-
J__l_/<2 v (Ol (r+,u)|cos{AM0 A"]> tion, to prevent double countir?g, and continue the sgearch.
) The search is continued until all vortex segments are deleted
from the system.
>' Using a 3D noninteracting boson analogy to the vortex

Y23
kBTV<

_ ) system, it can be shoWhthat the distribution functiol (p)
Note the difference betweddy')|* andY ,; they are not .3 pe fitted to the forfit

identical The former quantity probes the superfluid conden-
sate density, which is a locally defined quantity, while the
latter quantity probes a global phase coherence along a given D(p)=Ap ¢ ex;{ —
direction u. Since (') is the order parameter of the

Ginzburg-Landau theory, close to the critical point we have

> siMA,60—A,]

r

7
kg TV

Z ' (|9 (r+ p)|sinA 60— A,]

e(T)p
kT

. (20)

Here, A is a temperature independent constant, and the ex-
()2~ | |25, (18) p_onenta%5/2_to a first_approximatioﬁff When e(T) is fi-
nite, there exists a typical length scalg=kgT/e for the
where7=(T—T.)/T.. On the other handy ,>ps,, where thermally excited vortex loops. The probability of finding
ps, is the superfluid density in tha direction. Using the vortex loops with much larger perimeter thig is exponen-
Josephson scaling relatign, ~ &2~ 9~|7|*(9"? (Ref. 57 tially suppressed, according to EQQ). Whene=0, D(p)
along with the scaling lawg=v(2—7) (Ref. 58 and 28  decays algebraically, and the length scale of the problem
=2—a—7,>° we find Lo=kgT/e(T), has diverged. As a consequence, configura-
g tional entropy associated with topological phase fluctuations
YM~|T| pom, (19 is gained without penalty in free energy. In zero field, there
is only one critical point, and in this casg must be some

Here,d is the dimensionality of the system,is the correla- .
y y power of the superconducting coherence leng{fR).

tion length exponent of the systeif,is the order parameter
exponent,y is the order parameter susceptibility exponent,
and 7 is the anomalous dimension of the order parameter
two-point correlation function at the critical point. Therefore,  For probing the connectivity of a vortex tangle in a type-II
although| (" )|? andY , are in principle different, they may superconductor, in zero as well as finite magnetic field, we
appearto be very close if the anomalous dimensigiof the  introduce a quantityD, , defined in zero magnetic field as

¢ field is small, as indeed is the case for the neutrathe probability of finding a vortex configuration thatan
Ginzburg-Landau theory, wherg~0.04%° Note that fory  have at least one connected vortex path threading the entire

6. Probe of vortex-connectivity O
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system in any direction. In the presence of a finite magneti¢he intersectionO, is therefore anecessarybut not suffi-

field, O, is defined as the probability of finding a similarly ¢jentcondition for finding an actual vortex-path crossing the
connected vortex path in a direction transverse to the f'el‘éystem. However, in zero field this procedure does not make
direction, without using the periodic boundary condition 5" yigterence to that of resolving the intersections randomly.

(PBQ along the f|e|_d @rgctpn. In zero field, we use the This is demonstrated by the correlations of the chandg,in
same procedure as in finite field, namely searching for con-

nected vortex paths perpendicular to #hdirection, although andD(p), to be det.alled in the next secthn. .
in this case we could just as well have used any direction. If a vortex path is actually found crossing the system in
Note thatO, is very different from the winding numbat/in any direction in zero field, or without using PBC in the field
the 2D boéon analogd*®” There, W is proportional to the direction when a field is present, one may safely conclude

number of vortex paths percolating the system transverse ﬂ‘gat the vortex-line_tension_ has vanished. If it Were_finite, it
the field direction. However, in the calculation W, the ~ Would not be possible to find such a path at all, either be-
PBC along the field direction is used many times. cause all vortex lines form closed confined loops in zero

In an attempt to probe“vortex perco|ation"’ a S||ght|y fleld, or because the vortex-line fluctuations along the field

different quantity tharOL has been considered in the Contextdirection would bediffusivein finite field. In zero field, this

of high-temperature superconductors by otf&fSA crucial  is clear by the above mentioned correlation between the
difference between our work and that of Ref. 68, is that Refchange inO andD(p), see the results of the next section.
68 allows periodic boundary conditions along the field direc-In this paper, we also investigate this in detail for the finite-
tion to be used several times before the vortex path wind§eld case, by considering the position of the lowest tempera-
once around th& ory axis, as is easily seen from Figh2of  ture T, where we haveéd, =1 both as a function of system
Ref. 68. This ultimately is the same as computing the windsize and aspect ratib, /L, =L, /L,. If vortex-line physics

ing number of the 2D nonrelativistic boson analogy of theremains intactT, should move monotonically up with sys-
vortex systent, as recently done in careful Monte Carlo tem size, and should scale with /L, . Instead, we will find
simulations in Ref. 54. It also explains why the authors ofthat T, movesdown slightly, and saturates with increasing
Ref. 68 get longitudinal dissipation at the onset of what theysystem size at fixed aspect ratio. In addition, we find That
denote “vortex-percolation,” which is nothing but the tem- js virtually independent of aspect ratio for large enough sys-
perature at which the winding number becomes finite. tems.

This.is ent.irely consistent with a number of other .Monte This contradicts expectations based on a lines-only ap-
Carlo simulation results on the 30 modef**%***which  proximation to the vortex liquid. It demonstrates that the
all show the loss of longitudinal phase coherence and onsgnnectivity of the vortex tanglendergoes a fundamental
of longitudinal dissipation precisely at the vortex lattice change inside the vortex liquid. The abovementioned finite
melting transition. This is measured simply by the helicity sjze scaling analysis, suggests to us that this geometric tran-
modulusY,, which is quite different fronO, . To the con-  sition is a property that survives in the thermodynamic limit.
trary, in our calculation oD, we do not allow for the use The issue is whether the change in connectivity has anything
of periodic boundary conditions in tedirection to measure o do with a thermodynamic phase-transition. This will be
vortex-tangle connectivity in the or y directions, in other jnyestigated in detail for zero magnetic field in Sec. IV B,
words the “percolating” configurations of Fig.(8) of Ref.  and for finite magnetic field in Sec. VA. In particular, we

68 are not counted when computiy . look for a specific heat anomaly scaling up with system size,
We have at the putative transition point, . This will reveal if the
change in the geometric properties of the vortex liquid is
NG indeed associated with singular thermodynamics. In any
O, = . (21 . o -
Niotal case, once thgeometrictransition has taken place, it is no

longer possible to model the vortex-liquid regime in terms of

Niotar IS the total number of independent vortex configura-field-induced flux lines only, with merely renormalized inter-
tions provided by the Monte Carlo simulation. Furthermore,actions between them.
N, is the number of vortex configurations containetgeast In the VLL phaseO, =0, since the field induced flux
onedirected vortex path that traverses the entire system pefines are well defined and do not “touch” each others, and
pendicular to the direction, without using the PBC along thethe thermally excited vortex loops are confined to sizes
field direction. For convenience, we treat the zero field casgmaller than the magnetic lengthO, =1 in the normal
as the limit limg_, keeping the “field direction” intact. phase above the crossover region where the remnant of the

We search for theossibilityof finding a vortex path such  zero field vortex loop blowout takes place. Needless to say, it
as described above by using the following procedure. Asis a matter of interest to investigate precisely wh@e
sume that the magnetic induction points alongzlais. We  changes value from zero to 1.
follow all paths of directed vortex segments starting from all  Note thatO, itself is not a genuine thermodynamic order
four boundary surfaces with surface normal perpendicular tarameter, although it may be said mobe an order-
z, and check whether at least one of these vortex paths pedisorder transitiot” However, by the transcription of the
colates the system and reaches the opposite surface, withougrtex content of the Ginzburg-Landau theory to the form
applying the PBC in the z direction. Note that when crossinggq. (12) in Sec. I E, it is brought out that probing the vortex-
vortex segments are encountered, the procedure is to attentpingle connectivity by considerin@, is closely connected
to continue in a direction that will bring the path closer to theto probing the two-point correlator of a local complex field
opposite side of the system, rather than randomly resolving(r), the dual field of the local vorticity-fieldn,(r) of the
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Villain approximation and London approximation to the take it back into the primary interval. This compactization
Ginzburg-Landau theory, Eqgél1). The two-point correlator procedure creates a closed unit vortex loop around the link
(@*(r)#(r')) is ulimately the probe of whether or not the wherej, is changed. In this way, all the vortex loops intro-
¢ theory Eq.(12) exhibits off-diagonal long-range order and duced into the system are closed, and the net induction is
a broken U1)-symmetry. An entirely equivalent interpreta- always conserved.
tion of the change i©, was given in Ref. 40 which did not A Monte Carlo sweep consists df, XL, XL, Monte
involve a local fieldg(r), but number conservation of vortex Carlo moves. Typical runs consist of X20°> sweeps per
lines threading the entire superconductor. This number isemperature, where the first210* sweeps are discarded for
conjugate to the phase field of the local complex figla). equilibration. Near the phase transitions up to° sweeps
An advantage of the present formulation involving E&R) per temperature is necessary to capture the correct physics.
is that it directly relates the change@® to the long-distance For a given system, we always start the simulation by a
part of a correlation for a local field, and hence to a localcooling sequence, where the starting temperature is signifi-
order parametef¢(r)). This connection makes it at least cantly higher than all temperatures associated with phase
plausiblethat the change in vortex-tangle connectivity, i.e., atransitions or crossovers the model might exhibit. The results
change in the geometry of the vortex tangle, may be relatedhown in this paper originate both from cooling and heating
to a thermodynamic phase transition. We emphasize that thrgequences. Since these two methods give essential identical
present problem is very different from the percolation tran-results, we do not differentiate between them.
sition known to occur in the 3D Ising-model, and which has In order to resolve anomalies in the specific heat, we must
nothing to do with the thermodynamic phase-transition inin some cases perform simulations on systems as large as
that model® 36C°. To be able to carry out simulation on such large sys-
tems, we mustl) write part of the code in assembly a(®)

7. Extended Landau gauge carry out the simulations in a parallel manner. Our systems

are divided into “black and white” subsystems, arranged in

Periodic boundary conditions together with Landau gau
i g gaug a 3D checkerboard pattern. Each black subsystem has only

Ay=2mfx six white subsystems as its nearest neighbors, and visa versa.
o _ ' Since the 3IXY and the FG model only have nearest neigh-
give rise to a constraint,f=1,23 ... .Thus, forgivenL,,  bor interactions, all subsystems with the same color can be

the smallest filling fractiorf allowed isf=1/L,. To perform  uypdated simultaneously. To be able to calculate a

simulations and finite size scaling of systems with very |0Wnonpara||e|-ab|e routine a@L in an effective manner, we

filling fractions, we define an “extended” Landau gauge divide the computer nodes in two groups, the large main
group takes care of the Monte Carlo simulation, and a small

_2mymymn _2mxnmn subgroup carries out, simultaneously, the calculatio®of
Ax_ l - 1 (22)
LL, L,
where n,,n,m,,m are positive integers satisfyingn C. Model parameters

=Ly, andmym=L,. The filling fractionf is now given by (a) System sizesWe put our coordinatex(y,z) axes
along the crystald,b,c) axes. For the anisotropic cases, we

_nmin,—my] assume uniaxial anisotropy, and use the crystatis as the
Ly anisotropy axis. We perform simulations on tetragonal sys-

tems with dimensionk, L ,L,. The main part of the simu-
Nations is done on cubic or nearly cubic systems. Nearly cu-
bic systemd_,~L,=L, is some times necessary in order to
satisfy the boundary conditions enforce by the extended Lan-
B. Details of the Monte Carlo simulations dau gauge, Eq(22). To check for the finite size effect of

The statistical mechanics of the XI¥ model and the FG O we carry out simulations on slab systems with .the as-
model is investigated by Monte-Carlo simulations on the efPect ratiosL,/L,=1.00,1.25,1.5,1.75,2.00. System sizes up
fective Hamiltonians, Eqg10) and Eq.(7). For the 3IXY 1O 360 were used. . .
model, a Monte Carlo move is an attempt to replace a phase (P) Cooper-pair chemical potentiab(T). We let the
angle at a given sité(r) with a new randomly chosen phase Cooper-pair chemical potential have the simple linear form
angle#’ €[0,27). For the FG model, a Monte Carlo move
is an attempt to replace a complex number at a given site a(T) T-Tye

Hence, it is possible to choose systems with a filling fractio
as low asf=1/L,L,.%°

#(r) with a new randomly chosen complex numbgéft. a(0) Tue

Here,|'| €[0:1+ €] and ¢’ €[0,27). We have introduced

a small positive parameterto allow the system to perform We have also carried out simulations with other forms for
Gaussian fluctuations, around the extremal field configurae(T)/«(0), such as tanfit—Tye/Tue]To). Here, T is a
tion [4'|?=1, at very low temperature. Note that we are constant regulating the size of the region whe(d)/«(0)
letting the amplitude fluctuate around its mean value at evergrows from—1 to 1. The results are, however, qualitatively
temperature. The Monte Carlo move is accepted or rejectethe same as for the linear case. The paramé&jgr is the
according to the standard Metropolis algorithhif the new  parameter effectively controlling the width of the critical re-
phase angle causes a gauge invariant phase differ¢nces gion in these calculations. In units df, Eq. (8), we write
=A,60— A, to fall outside the primary interval—m,m), we  Ty==kgTyue/Jo. The values we will use arg;,-=0.3,1.0.
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An estimate for what temperatures these values correspon 1
to may readily be obtained by using,=11 A, A,
=1500 A, implying thatT},-=1 corresponds to 300 K,
while using\,,=2000 A implies thafT{,-=1 corresponds
to 180 K. These are very reasonable numbers.

(c) Anisotropy parameteF. The anisotropy parametér 06
is defined as

44444

08 r

04
- azéx - Acay

axé; )\abax. f = )
g, < [PP> ]

E-Bg.g N

02t
Note thatl’>1 only when the layering of the superconductor I'=

to be simulated is pronounced, i.€,,> ¢, for at least one mp =1

direction w. In this article, we consider systems with the 0 : : , ’

anisotropy parametdr=1,3,7. 0 0.2 0.4 0.6 0.8 1
(d) Filling fraction f. The filling fraction along theu di- T

rectionf , is defined as

20t,=(AXA),,. ;
’=0.
f, is a measure of the fraction of flux quanta of magneticos | R’y
induction penetrating a single plaquette with surface normal
along,&. When the magnetic field is applied along thaxis, 06 |
f,=f,=0, and '
Ba,a, 3PXYB£2 04}
f=f,=—2 = 220 (23)
D D
In this work, we consider filling fractions f  %2[
=0,1/2Q...,1/1560.
0
IV. MONTE CARLO SIMULATIONS, B=0 0 01 02 0.3 0.4
In this section, we discuss the zero field superconducting- T

nqrmal (SN) phase trans_ition, both in_ terms of the usual g5 1 Helicity modulusY , , local Cooper-pair densit]¢'|2),
Ginzburg-Landau order fielgi(r), and in terms of the be- 4ng superfiuid condensate density’)|? as functions of tempera-

havior of topological excitations which can be tied to theyyre for the Ginzburg-Landau model in a frozen gauge approxima-
formulation of the transition using the disorder-field pictureon. Upper panel shows results for=0, T'=1, Tiue=1.0,

presented in Sec. Il E. We compare our results obtained frorgﬂ/gﬂzel andV=60%. Lines are guide to the ey¥., and|( 4’ )|
the FG model to known simulation results of the 8D  develop finite expectation values fo< T, while (|4'|?) is finite
model/**°the London modet® and the Villain model>**  poth above and below,. Inset: The distribution function of the
Unless otherwise stated, in this subsection we show simushase angle of the order fieldl,(6) as a function o9, for several
lation results for the FG model with the parametérsO, temperatures. BeloW,., a preferred phase angle is chosen and the
r=1, TI’\AF:O-‘?”l’aM/g,uZG’ andV=60%. We have chosen global U(1) symmetry is spontaneously broll<en. Note how the
a, /£,=6 to slightly enhance the critical features of the FG phase fluctuates around a mean value even in the ordered phase.
model. Simulations of the FG model using a smaller ratio-ower panel shows the same f&f;-=0.3.
a,/¢,=4 leads to the same conclusions, but larger systems
and longer simulation times are required to obtain the sam@e may however discern a kink in the curve and hence a
quality of the data. What we will find is that the width of the singular behavior of the temperature derivative(pp’|?).
regions where pha;e ﬂuct.uations dominate is controlled bype top panel shows the results fg,-=1.0, while the
the parametel g, increasing withT . lower panel shows the same results Taj==0.3. The dif-
ference between the two panels is that sifigg has been
A. Order field changed, the width of the critical region has changed, in-
In Fig. 1 we plot the helicity modulu¥,, the local den- creasing upon increasinfy:. Had we chose=0.01,
sity of Cooper pairg|'|?), and the superfluid condensate an appropriate value for conventional superconductors, the
density|(4')|? as functions of temperature. We see that thecurves for|(')|? and (|'|?) would have been indistin-
condensate densily')|? is zero above a critical tempera- guishable, the conventional BCS mean-field picture of the
ture and develops a finite expectation value belbw In  superconducting transition would have been appropriate. The
contrast to this{|’|?) is finite both above and beloW, . reason that it is no longer the case in the higheuprates is
Close toT=T, we have performed the simulations for a very the large energy scale for pairing, coupled with the fact that
dense set of temperatures, and from the top panel of Fig. the phase stiffness is low.
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Note how the curve fo¥ ,~| 7|22~ 7" bends slightly more 1 - '
sharply towards zero than the curve for the condensate der V=6 ——
sity [(")|2~|7|?#, as expected for a positivg, since in os |l Vo1
that case B— nv<<2pB. In fact, this provides a nice consis- V=328 e
tency check on the Monte Carlo simulations.

In the normal phase, the phase angle of the order field is 98
uniformly distributed, Fig. 1 inset, while fofr<T_, the sys- )
tem spontaneously chooses a preferred phase angle giving 44 |
peak inD 4(6). Due to our finite set of discrete phase angles,

Dy(#)=1/N,for T>T., and not zero as in the continuuén- on
limit. T

Given that the condensate density is nonzero belQw

we next focus on a global quantity, the long-wavelength 0 - -

limit of the helicity modulusY ,,, or equivalently the super-
fluid stiffness in thew direction. In Fig. 1 we see that,
vanishes for temperaturds=T., and develops an expecta- 1
tion value forT<T.. Thus, the superconducting phase ex-
hibits global phase coherence, while the normal phase doe
not. We have also calculated, and Y, and found(not
shown) that they show the same behavior¥s. Apart from
minor details, we see in Fig. 1 that the helicity modulus is 06
proportional to the condensate densitywe will also show S
that this equality also applies to the finite field case.

At low temperatureY ,, decreases linearly. This feature is

0.4
"

also obtained in the zero field 30¥ modell® but not in the 3DXY
zero field Villain model* In the Villain model, the spin 0.2 f=0
waves and the vortex loops can be analytically decoupled F=7
Here, at low temperatures, spin wave excitations do not af- | . ,

fect the vortex loops excitations and the superfluid phase 1 1.05 1.1 1.15 12 1.25

stiffness should decay in an activated manner due to the ex T

citation of vortex loops. In the 30Y model, the spin wave FIG. 2. O, as a function of temperature for several system sizes
and the vortex loops are coupled together. Whether or not thg, the 30y model with f=0. Lines are guide to the eye. Top
low-temperature features af , in Fig. 1 can explain experi- panel:I'=1, bottom panell'=7. Note the finite-size effect i, ,
mental data on the temperature dependence)(ﬁ J1see for  with the crossings of the curve approximately at the same tempera-
instance Ref. 74, is an interesting but so far unsettled issuéyre.

see also the results of Refs. 10,40,19. Within the anisotropic

3DXY model, the helicity modulus’, has alarger, but B. Topological excitations and vortex-line tension

negative slope of its linear low-behavior compared In Fig. 2, we show the probability of finding a connected
andYy. On the other hand, it is not entirely trivial to con- \orex tangle across the system in zero magnetic field, for
nectY,(T)/Y,(0) to theT=0 normalized superfluid density -1 7 and system sizds®, with L=86, ...,64. Notice how
psz,'> which is the quantity measured in the experiments ofihe curves cross at approximately the same temperature and
Hardy et al.”* However, our main point of emphasis is that get progressively sharper. Similar results were seen for con-
the vanishing of the superconducting phase stiffnes$ at siderably smaller system sizés=4,6,8 in Ref. 77. Below,
=T, is caused exclusively by an unbinding of large vortexwe will also give results for much larger system sizes, con-
loops. Further evidence for the connection betw&gnand  firming that the crossing temperature in Fig. 2 gives a good
the vortex loops can be found in simulations of the latticeestimate for the threshold temperature for vortex-loop un-
London model, where vortex loops are the only degrees obinding throughout the sample. As pointed out in Ref. 77,
freedom?®37® Here, the normalized helicity modulus such a finite-size effect indicates that a percolation threshold
lim_oY ,(T)/Y ,(T=0) is renormalized to zero &, ex-  exists for the vortex tangle in the thermodynamic liffie
clusively by the expansion of vortex loops. The above conprecisely similar finite-size effect i@, will be seen in finite
siderations and results provide an overwhelming amount ofmagnetic field, to be considered in Sec. V B. This will hap-
evidence in favor of the proposition that unbound vortex-pen inside the vortex liquid phase at elevated magnetic
loops are precisely the critical fluctuations of an extremefields, but will coincide with VLL melting at low fields, and
type-Il superconductor. suggests the revision of the picture of the molten phase of the
ApproachingT. from below,Y ,(T) decays to zero with Abrikosov vortex system purely in terms of a vortex-line
an exponent consistent with=28— n»v, and n~0.04 as liquid.
discussed in Sec. Il A5, see Fig. 1. For the special case of We next proceed to correlate the changeOin with the
d=3, which we consider, we havpsﬂ~§*l~|r|”, and unbinding of large-vortex loops and the loss of vortex-line
hence we find B— nv=v<28. tension atT=T,, by correlating its abrupt change with the
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0 *. . FIG. 3. Top panel: Specific he&, helicity
0 -"'MG“W“*&“%*M-W*%°WW modulusY,, andO, as functions of temperature
0 05 1 15 > 25 for the 3DXY model with f=0, I'=1 andV
' T ' ' =12(". Lines are guide to the eye. Bottom panel:
Vortex-loop distribution function D(p) as
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characteristics developing D(p), which probes the typical in the system, and may simply be “coarse grained” away.
size of thermally induced vortex loops in the system. We firstThe low energy physics of the model is therefore described
consider the case of the 3Y model, for which the results essentially by the physics of the zero temperature fixed point.
are shown in Fig. 3. The top panel shows specific h@at, At and aboveT,, O, =1, and vortex loops with infinite size
and helicity modulus, while the bottom panel shows thealways exist. The length scalg(T) has diverged, showing
vortex-loop distribution functiorD(p) as a function of pe-  that there are vortex loops on all length scales with a power-
rimeter p for a number of temperaturéb<T., while the  |aw tail in the distribution. Such loops cannot be coarse
inset of the bottom panel shows the temperature dependengeained away and taken into account by any “appropriate
of the long-wavelength vortex-line tensierT). In the top  renormalization” of the zero-temperature theory. Thus, the
panel it is clear that the loss of helicity modulus, the anomalysN phase transition can be viewed as a blowout out of ther-
in specific heat, and the abrupt changeQp all occur at  mally induced vortex loops. Abov&,, free thermally in-
precisely the same temperature. The change in the decay @ficed “vortex lines” exist in all directions, and any infini-

D(p) also occurs at the same temperattrg, tesimal applied current will move these thermally induced
For T<T., O, =0, and all vortex loops are confined, “vortex lines” and dissipate energy.Thus, the system is in
with typical size given byt o(T)=kgT/e(T), where the normal phase.
In Fig. 4, we show the specific heat anomaly, the helicity
kgT moduliY, andY,, as well ag0, for the 3DXY model, with
Lo(T)= &(T)" (24 =7 The correlation noted above in connection with Fig. 3

is again perfect, the only difference being that the specific
whereg(T) is the effective long-wavelength vortex line ten- heat anomaly has become more symmetric due to the in-
sion, equivalently the free energy per unit length of vortexcreased anisotrop¥y/=7. Although the amplitude ot is
lines. These objects, present also in the low-temperaturkarger than the amplitude of , due to the uniaxial anisot-
phase, cause only a local perturbation of the order parameteopy along thez axis, the temperature at which they vanish,
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and the power law with which they vanish, are the samein all plots. The effective long-wavelength line tension of

Note also the sharpness of the manner in which the moduliortex loops is finite belowl ., and vanishes fof=T.. The

Y, approach zero &k, there is no high-temperature tail as physical picture of this phase transition is as follows. Below

one would have found in too small systems. This in factT., £(T) is finite defining a typical length scale for the vor-

serves as a highly nontrivial benchmark on the quality of theex loopsLy=kgT/e(T). Here,D(p) is dominated by an

Monte Carlo simulations. exponential decay and vortex loops with much larger perim-
Figures 5 and 6 show essentially the same as Fig. 4, buterp thanlL,, are exponentially suppressed. Thus, the topo-

now for the FG model, i.e., including amplitude fluctuationslogical excitations that are present in the system may be

on an equal footing with the phase fluctuations. Clearly, thecoarse grained away. At and aboVe, £(T)=0 and no

picture that it is the topological phase fluctuations, or thetypical length scale for the vortex loops exist; the length

vortex-loop unbinding, that drives the superconductorscalel, has diverged. HereD(p) is purely algebraic, and

normal-fluid transition, is not at all altered by the fact thatvortex loops of all sizes including infinite size, exist. Thus,

amplitude fluctuations are included. This is a reconfirmationthe SN phase transition @, is triggered by an unbinding of

of the results obtained in Sec. IV A, showing that amplitudelarge vortex loops, analogous to the Onsager-Feynman

fluctuations of the local Ginzburg-Landau order parametemechanisnt? suggested for the superfluid-normal fluid tran-

have a large mass at the critical temperature where the suition in “He.2°

perfluid density vanishes. In the insets in the bottom panels of Figs. 3—6, we show
For a more detailed study of the properties of thermallythe vortex line tensior (T) extracted from the vortex loop

induced vortex loops, we now focus on the vortex-loop dis-distribution functionD (p). Regardless of whether the XY

tribution functionD(p) as a function of vortex-loop perim- or the FG models are used, we find that the long-wavelength

eterp at various temperatures. These are shown in Figs. 3—%ortex-line tension vanishes as

and are clearly well approximated by the for(p)

=Ap %% *(MPksT for all temperatures considered. Note

thate(T) is the only temperature-dependent fitting parameter e(T)~|T—T." y=1.45+0.05. (25
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The numerical value of the exponemthas been extracted ductor is increased, is associated with the development of
from the systems with the largest critical regions, i.e. Figslong-range correlations in the two-point correlation function
3-5. The system shown in Fig. 6 does not allow a veryof the dual field,G(x)=(&* (x) #(0)), where on the low-
precise value fory to be obtained, although the qualitative temperature side the dual order parameter has zero expecta-
aspects of the results are clearly precisely the same as thosen value(¢)=0. A scaling ansatz fo&(x) reads

for the 3DXY model and the FG approximation of the GL

model with T},-=1.0. This implies that the typical vortex-

loop perimeter diverges when, is approached from below, _

using Eq.(24), as G() |x[d-2+ 7y G, @7

Lo(T)~[T=T¢[ "7, (26) _ _ : ,
_ ) where n,, is the anomalous dimension of the dual field &
such thatlo(T) is a power of the correlation lengthof the s jts correlation length, and(x/¢€) is some scaling function.

3DXY model. The square of the mass of the dual fiefo, is therefore
_ _ _ naturally mapped to the line tensias(T) of the vortex
C. Anomalous dimension of the dual field loops. This follows from the observation that the dual boson

We next connect the result far(T) to the anomalous system of which thep theory is a field-theory description,
dimension of the dual fields. It is natural, within the for- has a chemical potentia? which in turn is nothing but the
mulation of the problem given in Sec. 11D, to associate theline tensione(T) of the vortex-loop system, when the den-
proliferation of unbound vortex loops with a vortex-loop sus-Sity distribution D(p) is viewed as a partial density in a
ceptibility, or equivalently a susceptibility for the field of  fugacity expansion for the density of the dual Bose system.
Sec. IlE. This is seen as follows. The proliferation of un-The Fourier transfornG(k) =(¢* (k) (—k)) of G(x) may
bounded vortex loops as the temperature of the supercoie written in the form
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G(k)=¢£2" 10 F(Kké), (29)

where F(k&) is some new scaling function. The—0 limit
of this is the static uniform susceptibility,, of the dual field
on the low-temperature side, whete)=0. On the other

Fisher scaling la®’ relating the susceptibility exponent of
the dual fieldy, to v, and »,,

Yo= V(2= 0y)- (30)

hand, as long as the dual field is massive, which it is on théJsing our estimatey,=1.45+0.05 with v,=2/3 gives 7,

low-temperature side, we must have lllm,'é(k)zm,;z.
Hence, we obtain

1 1
~ g2y | | a2 )
X(f) m2 e g |T| (29)

The field ¢ has a correlation length exponent given by
=2/3, the same as for the 3XY model®® This follows

=—0.18+0.07 in close agreement with previous renormal-
ization group calculation®, who found n4=—0.20 to one-
loop order.

The resultn = —0.18+0.07 obtained directly from com-
puting the statistics of the loop excitations of the 3D
model is a truly noteworthy result, when viewed juxtaposed
to the RG calculations of Ref. 81. In Ref. 81, the RG result
for the anomalous dimension of the dual field was obtained
directly from the dual theory. On the other hand, our numeri-

from the fact that it is a thermodynamic exponent describingcal result is obtained directly from the phase-only approxi-
the divergence of one and the same length in the Ginzburgnation to the original Ginzburg-Landau theory. The agree-

Landau theory and dual theory. Very importantlymtistbe

ment shows conclusively, and to our knowledge for the first

equal both for the dual model and its Ginzburg-Landau countime, that viewing the zero-field transition of the 3D

terpart by “strong” duality?>~83 Were thisnot to hold, the

Ginzburg-Landau theory as a vortex-loop unbinding, which

dual of thedual theory would not be the original theory, as it is the phase transition of the dual theorypigciselycorrect,
ought to be. The above of course precisely amounts to theot only qualitatively, buguantitatively?*
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At and belowT,, the order field{y'(r)) develops an 1 TR —
expectation value, and explicitly breaks the global U(1) ;Gz 1/60 ol
symmetry of the GL theory. In contrast to the order field 0sl T=7 v=1200 —o—|
picture, in a description using only topological excitations, Tyr=10 ‘
the global U(1) symmetry is hidden. There does not appeal
to be any symmetry operation involving the phase of a local 06 ’ e
field, that will leave the effective action E¢l1) invariant. & o
Therefore, there is also no obvious local quantity that devel- | J }4
ops an expectation value in the non-symmetric phase. Nev )
ertheless, it is possible to define a global quantity that im- , .
plicitly probes the breaking of the global U(1) symmetry, 02r ; f
namely,O, . Let N, denote the number of “vortex lines” ’ %% 0% o4 Toi os
(percolating directed vortex paths without using BEbng 0 N , , L
the u direction. BelowT,, N, is fixed to zero an®D, =0. 0.251 0.3 0.35 04 0.45! 05 055
Concomitant with the conservation of the global quantity T, T T
N, , the system must exhibit a global U(1) symmetry. At ] .
and aboveT., N, develops an expectation value aGq 1 /i; ----- -

#0. This leads to a broken U(1) symmetry. 0.6 !/"'
0.8 ooz v+","/
V. MONTE CARLO SIMULATIONS B#0 0.98 A f/’/

We next discuss the indications we have of phase transi- %8 [ * //
tions in the vortex system in a finite magnetic field. In addi- S oo 01;44’ o owe
tion to the first order VLL melting transition lind ,(B) sl R 7
which we map out for a large range of filling fractions, we FG
find indications for a new phase transition in the vortex lig- f=1/60 ; PloV=20x24 .,
uid. We emphasize that in all simulations performed in finite %21 T=7 e T
magnetic field, the filling fraction is low enough to ensure mE= P
that there is zero transverse Meissner effect at any tempere ol . . Lt A . .
ture of interest. That is to say, the vortex-line lattice is de- 19-14 0156 o016 017 018 019 02 TO-? 0.22
pinned from the numerical lattice at much lower temperature T T L

than the temperatures where the Bragg peaks in the structure . i
function of the VLL vanishes. Therefore, commensuration F'bG' 7'L T%p pane(l}iolL. as ? function of temperature forwt_hﬁ
effects due to defining the theory on a lattice effectively have_'i'lz6 Our?-_z;n 1‘?,“ Ti’ € |/n a_ ;ozen d%j‘fgggag??;ggnagon_ It
been eliminated at the temperatures of interest. = 1/60, I'=7, Tye=1, &,/¢,=6, andV=20",60°,120". For in-
S . ; . ._creasing system size the largest temperature where0 increases
Before entering into the discussion, a clarifying remark is a .

. o and the smallest temperature wh&e=1 decreases. Thus, in the

appropriate. Note that the phase transition that we sugge'ﬁ#1

. L L ermodynamical limit, there exists a well defined temperaiyre
may be taking place inside the vortex liquid, is not a ransi- pere O, jump sharply from zero to one. If we use the criteria

tion from a disentangled low-temperature vortex liquid t0 ang g g 'to determind, , we find thafT, monotonically decreases
entangled high-temperature vortex liquid, as discussed by, 3 jimiting value for increasing system siz@e inset shows the
numerous previous authors. Such a transition would have hggails ofO, close toT, . Note how the curves foB, all cross at
its hallmark that the superfluid stiffness along the magnetighe same temperature with increasingNote also how the lowedt
field, or equivalently the helicity modulus,, would vanish  at whichO, =1 actuallydecreasesvith L. Bottom panel: Same as
inside the vortex-liquid phase. This has now been conclu<or top panel, but withT;,-=0.3.

sively demonstrated not to be the cds&-®

In Fig. 7 we showO, as a function of temperature for
several system size¥)=20°,60°,120°. We see that for in-

We next discuss in some detail the results obtained for thereasing system sizes, the largest temperature wbereO
quantity O, , which probes the connectivity of the vortex increases, while the smallest temperature wi@re-1 de-
tangle in extreme type-Il superconductors. We will make thecreases.
following point: as for the zero field case, the increasingly If the vortex liquid regime were always describable as a
sharp change D, from zero to one in finite field, with liquid of vortex lines, then an inescapable consequence of
increasing system size, also denotes a phase transition whetas picture would be thal| should shift to higher tempera-
a global U(1) symmetry is broken. This refers to a U(1) ture with increasing system size. This is in clear contrast to
symmetry associated with the vortex-content of thethe finite size effect oD shown in Fig. 7. In the zero field
Ginzburg-Landau theory. As argued in Sec. Il E, this sym-case,O_ =0 indicates that the line tension of vortex loops is
metry of the vortex content of the theory is seen explicitlyfinite, while O=1 indicates that the line tension of vortex
when rewriting it to a gauge-theory involving a local com- loops is zero. The temperature wh&e jumps from zero to
plex matter-field, see Sec. Il E. We also discuss the finite sizene is the critical temperature for the SN phase transition.
effects of O, in systems with slab geometry, i.e. where = We now focus on the inset of Fig. 7. Note how the curves
Ly/L,~L,/L,>1, as well as in cubic systems. for O_ cross, and reach a valug =1 for progressively

A. Change in vortex-tangle connectivity
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lower temperatures dsincreases. If a picture of the vortex- ~ We hereafter focus on simulation results obtained for the
liquid in terms of well-defined vortex lines with nonzero line 3DXY model. There is no qualitative difference between the
tension were applicable to this point, one would expect theaesults for this model, and the Ginzburg-Landau model. In
point T, at whichO, reaches the value 1, to moweono- Fig. 8 we show results for the 3Dy model f=1/90, I'
tonically upwith L. The crossings of the curves f@;, ob-  =7. The top panel shows structure factor, superfluid density
served in the inset of Fig. 7 simply would not occur. Notealong the field, specific heat ard, for a system of size
also the similarity of this finite-size effect, and the ones ob-72x 80x 80. The bottom panel shows a sharpenin@epffor
served in Fig. 2 for the zero-field case. There, it was argueéhcreasing system sizes. The trend in the change in the
that such a finite-size effect was strongly indicative of a pervortex-tangle connectivity is precisely the same as that seen
colation threshold for thermally induced unbound vortexfor f=1/60 within the Ginzburg-Landau model including
loops in the thermodynamic limit:"® The crossing point amplitude fluctuations. The lowest temperature at widgh
TerossS€ems a likely candidate for the limiting valueTaf as  rises from zero, increases with system size, but the highest
L—o, see Fig. 10 and the more detailed discussion belowtemperature at which it reaches the valDg=1 decreases
This, in our view, provides strong numerical evidence thatwith system size. Again, we find a feature which indicates
the progressively more abrupt change in the connectivity ofhat the vortex-tangle connectivity is undergoing a change.
the vortex tangle ag& —x, is a real feature of the vortex Note the weak specific heat anomaly in the top of Fig. 8.
system that survives in the thermodynamic limit, also at aWhile have have not carried out a systematic finite-size scal-
finite magnetic field. In other words, the geometric transitioning analysis of this anomaly, we have found that the presence
signaled by the change @, seems to be a real feature and of an anomaly is reproducible for this system. The position
not an artifact of small systems. Whether or not it also cor-of the peak appears lightlgelowthe deviation ofO, from
responds to a finite-field thermodynamic phase transition wilthe value 1, for the system size ¥80x 80. This is entirely
be discussed below. consistent with the finite-size results foy , to be detailed in

In the vortex representation, EL1) the U(1) symmetry the next section, given the fact that the specific heat anomaly

to be broken is hidden, and can only be explored implicitlyls computed for a much larger system. o
using the conservation df,. The connection is made ex- _ Note also that the anomaly is quite sharp, perhaps indica-
r tive of a first order transition, rather than a 2 transition.

plicit by rewriting the vortex Hamiltonian in the disorder- ’ - . ; .

field language, see Eq12) of Sec. IIE. BelowT,, only The issue of determining precisely the universality class of
field induced ;/ortex line percolate the systemL ,ThN§ the transition, whether it is first order, 3 or some other
CN.=0 - . ' 7' universality class, deserves further consideration. In our ex-
=Ny=0andN,=fL,L,. Here,fL,Ly s the number of field erience, a systematic and reliable finite-size scaling analysis
induced vortex lines. Fol>T,, in addition to the field gf this W’eak >;momaly which clearly is of fundame%tal irr)1/
induced vortex lines, thermally excited “vortex lines” also portance, is beyond the computational facilities offered by

exist. Thus, abovd , N, is not a conserved quantity and . : .
. . the Cray T3E or the Cray Origin 2000, and will have to await
the global U(1) symmetry is broken, as for the zero fleldthe next generation of SUpErcomputers.

case.
In Ref. 10 it was claimed that because the longitudinal
superfluid density vanished precisely at the melting line, as
now found by several authdfg®°including the isotropic
case, the vortex lines could not be considered well defined in To further investigate the possibility of a breakdown of
the vortex liquid phase. By itself, this is not a tenable con-vortex-line physics inside the vortex-liquid regime, we con-
clusion. Nor does it follow automatically that the vortex lines sider the crossing feature found @, in more detail for
are entangled and that the mechanism for VLL melting isvarious aspect ratio&,/L, of the systems on which the
entanglemerft® To substantiate such a claim one has to in-Simulations are done. According to the 2D nonrelativistic
vestigate in more detail the geometric properties of the vorboson-analogy of the vortex-liquidl, should be propor-
tex tangle in the liquid phase, as done above and in Refdional to the aspect ratib, /L, .%’
40,11. Even if it should turn out that the loss of longitudinal ~ In this section, we carry out the simulations using the
superfluid density is entanglement it is probably more appro3DXY model with the parameterfs=1/380 andl'=7. We
priate to view the entanglement as triggered by VLL meltinghave varied the field to illustrate that the featureOgfare
transition rather than the converse. However, it is worththe same as for the higher fields, but do become sharper.
while pointing out at this stage that there is now consensukurthermore, comparing the results obtained from the FG
on the fact that at intermediate fields and above, the VLLmModel to the results obtained from the ¥ model, we
melts into an incoherent vortex liquid and that there doesigain find that these models give qualitatively the same re-
exist a regime where the molten phase consists of intact vosults when parameters are comparable.
tex lines, remarks to the contrary in Ref. 10 not withstanding. In Fig. 9, we showO, as a function ofT for the 3DXY
Moreover, various Monte Carlo simulations agree that themodel with parameters=1/380,I'=7, for a system of size
Lindemann-criterion for VLL melting applies in this L,~L,=L, in one case, antl,~L, andL,=0.5_ in the
regime'®544%88|n the low-field regime, far less consensus other case. Using the crossing temperature in the insets as an
has so far been reached. Therefore, the question of whethestimate for the temperatufig in the thermodynamic limit,
vortex loops influence VLL melting or not, and whether as for the zero-field case, we see that this temperature
there exists a genuine transition lifig(B) inside the vortex changes very little when changing the aspect ratio by a factor
liquid, are two separate issues. of 2. This indicates that in the thermodynamic limit there is

B. Effect of varying system aspect ratio
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only oneT_, regardless of the system shape. What these C. Scaling of the melting line T ,(B)

results indicate, is that the expectation one has based on the In Fig. 11, we show data from various simulations, of the
2D nonrelativistic Bose analogy of the vortex liquid, namely'vortex lattice melting linel,,(B). We want to emphasize the

that T, should scale with., /L,, is not borne out. Note that - . : .
the present case is very different from the situation encounf-.aCt that there aréwo distinct scaling regimes for the melting

tered in the 3D Ising model where a percolation threshold forlme Tm(B.)’ one at h'gh fields .Wh'Ch we somewhat arbltra_nly
overturned spins in an ordered spin state is found at a tenf-enOte h!gh-ﬂeld_ sca!mg reginié.and one at low magnetic
perature which is lower than the critical temperat{fre. ields which we identify to be 3RY scaling. o
This may be further illustrated by considering the finite- 1ne dotted straight line is the curve given By
size effect ofT, , for two different aspect ratiok, /L,=1  KeTm(B)/Jo=0.4ly, wherey=1/J/fT. It describes the pub-
andL,/L,=2. We investigate this by defining, by four lished numerically obtained melting lines for large enough
sets of criteria, namely, the temperature at whiéh filling fractionsy<2 or so well, in our case witlh'=7 cor-
=(0.10,0.20,0.90,0.95). If the curves fox_ sharpen up, as responding to approximatelf/>1/200. On the other hand,
seen in the above results, it is ultimately immaterial what setfor y>2, clear deviations from linear behavior is seen.
of criteria are being used. The sets will give converging The melting curves obtained fdr=1 in Ref. 11 shown
curves forT (L), one coming up from below and one com- by the filled circles, and fof’=7 in Ref. 10 shown by the
ing down from above, see Fig. 10. We may use the bedhalf-filled circles saturate at low filling fractiorf¢o the val-
estimate for the crossing temperatures in Fig. 9 as an estites given by the zero-field critical temperaturg. For I’
mate for what the limiting value of, will be in the thermo- =1, we havekgT./J;=2.2, while for '=7 we have
dynamic limit. kgT./Jo=1.12%° The data given by the filled triangfésare
These results illustrate two important points, namély, obtained on the 3RY model with an anisotropy parameter
T, does not move up monotonically with system size, butl’'=3. AsT increases from 1, the zero-field transition tem-
saturates at a specific value bs-« precisely as for the peratureT, rapidly approaches its 2D value, although the
zero-field case andi) the limiting value ofT, is indepen- transition is always 3D in character for finite anisotropy.
dent of aspect ratio. Both of these two points contradict exHence, the results from the anisotropic 20 model with
pectations based on a vortex-line liquid picture of the molterl’=3 (Ref. 14 are very close to those of the XI¥ model
phase of the Abrikosov VLL. with I'=7, see Ref. 10.
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The results of Ref. 89, obtained by fixinfg=1/15 and this line at large fields, but are however starting to be ar-
varying I'e (1, . ..,10), agree entirely with our results of rested in their tracks by the zero-field vortex-loop critical
Refs. 10,11,40 in the low-field regimefl'>2. The sig- fluctuations already at aroung=2, thus crossing over to
nificance of all these three sets of points is that they falBDXY critical scaling, as our Monte Carlo simulations re-
significantly below the straight line obtained from the high- sults show.
field scaling of the melting line. In the top panel of Fig. 11, we have drawn the function

Note also that even if we normalize the melting line Tm(B)/Jo=(T¢/Jo)[1—(Xo/yI')¥*] through the two sets of
Tw(B), quite arbitrarily, with a factor 1/(+T,/T.)?",8  points obtained from Monte Carlo simulations fpr-4 and
this might take out the strong downward curvature of thel’=1,7, given by filled and half-filled circles, respectively.
data in the top panel of Fig. 11, but there is absolutely ndJsing xo=2.70 forI'=1 andx,=6.45 forI'=7, we find
reason for why the slope of the resulting curve in the lowthat the 3IXY scaling function given above fits the Monte
field regime, which would be a straight line, should be theCarlo data well fory>4, while the high-field scaling is ex-
same as in the high-field regime. cellent fory<2. Note how vastly different the scaling of

Assuming 3IXY scaling for the melting line whely  T.(B), in the two regimey<2 andy>4, is.
>2, i.e.B/|1-T/T|?’=B, whereBy is a field-scale that The bottom panel of Fig. 11 shows the low-field melting
depends on anisotropy, we fitgT,(B)/Jo=(kgT./Jo)[1  line T,(B) normalized by the zero-field critical temperature,
—(xo/T'y)¥"] on the melting line, and where the last term is obtained from simulations of the 30¢ model with T
negligible for low fields. Hence, we find that the melting line =1,kgT./Jg=2.2 in Ref. 11,I'=3,kgT./Jg=1.34 in Ref.
saturates to the true critical temperatdig as it obviously 10, andI'=7,kgT./Jg=1.12 in this work and in Ref. 40,
must. The dotted straight linksT,/Jo=0.41y, overshoots plotted in terms of the variable/xo, wherex=1/\/f andx,

T. as the field is lowered. The Monte Carlo results followis a fitting parameter for eachh. The corresponding values
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FIG. 10.  Finite-size effect inT, as obtained for the FIG. 11. Top panel: Melting temperatufié,(B) of the vortex

3DXY-model using four sets of defining criteria foF,, O, lattice as a function of=1/\/fT'. At large enough filling fractions,

=(0.10,0.20,0.90,0.95). Each of the criteria gives convergin , . . . ;
curves forT (L), whose limiting values are estimated by the cross%/<2'o’ Tm(B) obtained from various simulations on the 2%

ing temperatures in the insets of Fig. 9. Top panel: aspect rati(?j1 ode_lbar(ljdbb_?og a_r181I2giy Otfhthz \;?r;e)l(_ syst:tml, agfr_ﬁg anfd is well
L,/L,=1. Bottom panel: aspect ratlg, /L ,=2. Note that the lim- escribed byTy,(B)=0.41y, the dotted line. ow Tifling frac-

iting values forL /L,—1 and 2 differ by about 5%, whereas ac- tions, y>2.0, there is a crossover to XY critical scaling of

cording to a vortex-line liquid picture, they should differ by aboutaTm(B)' T_h_e solid _Ilnes thrqugh the tvv_o set_s of data points are
factor of 2. 3DXY critical-scaling functions, described in the text. Bottom

panel: Normalized melting temperatufe,(B)/T, as a function of
of I' andx, are (1,2.70), (3,4.65), and (7,6.45). Boix, thg variablex/x, wherf.sx=. 1/ﬁ andx, is an an.isotropy erendent
~2 or less, i.e., at large enough fields, we see that deviatiorf§ting pararlwle/ter. Solid line is the 30y scaling functionh(x)
from 3DX scaling occur. FoF =(1,3,7) this corresponds to  — 1~ (*/%o) ", where»=0.67.
1/f=(30,90,160), respectively. The line through the low-

: i ; ; ~1lv ;
field data, is the 3BY scaling function -(x/xo) . No which the melting line enters the critical region, is thus the

tice the sharp bending of the 3@¥-scaling function ag/x, . e ! .
. . flattening of the melting line at low fields, whdhincreases.
increases beyond the value 3, and how the available numeri-

cally obtained melting curves follow this line. This, in our ) .
view, provides strong numerical support for the notion that at D. Phase diagram, clean limit
low filling fractionsfI'>< <1, the melting lin€T ,(B) obeys A summary of all of the above is contained in Fig. 12, we
3DXY critical scaling, while it follows follows a quite dif- have included results from filling fractions f1/
ferent “mean-field” type of scalingl,(B)~1/y/B at large  e[90,...1560. The results we have obtained pertain to an
fields8® extreme type-Il superconductor in the absence of disorder,
We find that the field above which deviations from8®  since we are primarily interested in the intrinsic properties of
critical scaling is seen, decreases with increasing anisotropyhis phase diagram excluding the severe complications due to
recall that the corresponding valueslofind 1f are approxi- disorder. There is a low-temperature vortex-line lattice
mately (1,30), (3,90), and (7,160). This is due to the factphase. When the vortex lattice melts, it melts directly into an
that with increasind”, the melting curve becomes flatter at incoherent vortex liquid with zero longitudinal superfluid
low fields® On the other hand, the width of the zero-field density. The transverse superfluid density has been elimi-
critical region appears to widen only marginally with in- nated at temperature far below those where the VLL melts,

creasingl".*® The dominant effect in determining the field at



TOPOLOGICAL PHASE FLUCTUATIONS, AMPLITULE . . .

15 327
5 ' ! ' L mann criterion with Lindemann number=0.25, estimated
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Incohérent \ crossover Note that the rewriting of the theory Eqéll), (12) is
‘ Vortex,Liquid  line exact. The onset of the expectation valug) takes place
I 1II / Whe_n_vortex—loqp_s unbind. Moreover, the t_heory Eﬂl?) _
?36? I %\ (¥)=0 e’\ Wy=0 | exhibits an explicit U(1) symmetry. When this connection is
| o N (g =0 Lo £0 made, it seems very reasonqble to tie the observed char)ge in
| 2o Y the vortex-tangle connecgwty to a vortex-loop unbinding
yzob ™ | and hence an onset ()fﬁ),_ i.e., the order parameter and the
\% @\ ' symmetry being broken in the transition, have been identi-
1/380} 3DXY R . fied.
1/650 - ?ﬂ; Abrikosov \-‘Q "\‘
s ksT/fy=112  Vortex Lattice % ] VI. SUMMARY AND DISCUSSION
0 1 1 1 1 1 R Y
0.4 0.5 06 0.7 0.8 0.9 T 141 We have explored theB(T) phase diagram for extreme
/T, type-Il superconductors using two simplified versions of the

the Ginzburg-Landau mode(i) The frozen gaugéFG) ap-
FIG. 12. B-T phase diagram for extreme type-Ii superconduct-prOXimation where the gauge-field is fixed, while the phase

ors based on Monte Carlo simulations of theX3Pmodel withB| c and amplitude of the Sl_Jpercond_uctlng order parameter are
andI'=7. The phase diagram splits into three different regimes 12llowed to fluctuate andi) the uniformly frustrated 3IXY
II, and Ill, characterized by the values of the Ginzburg-Landau andnodel where only phase fluctuations are allowed for. The
dual order parameters. former is obviously a more general model than the latter,
while the latter is a commonly accepted model in the studies
: - . . of fluctuation effects in extreme type-Il superconductors. Our
by choosing low enough filling fractions to eliminate an un- results show that in tha—oc limit, where suppression of
Wanteq commensurathn effect due t.o the' presence of th auge fluctuations is an exact feature of a superconductor,
numerical lattice on which the theory is defined. amplitude fluctuations are completely dominated by phase
At zero magnetic field, we have demonstrated that an algciyations over asizeable temperature regim@he local
ternative way of describing the superconductor—normaly der field(y'(r)), as well as the helicity moduluglobal
metal transition, in addition to the phase-disordering picturebhase stiffnegs Y, develop an expectation value foF
using the Ginzburg-Landau order parameter, is in terms of ar- T and explicitly break the usual U(1) symmetry present
unbinding of vortex loops. We emphasize that although then the Ginzburg-Landau theory. In contrast to this, the local
quantityO, we have focused on is not an order parameter, iCooper-pair density|'|?), is finite both above and below

may betied to an order via the discussion in Sec. IlE. By T.. Our precise calculations close To= T, has brought out

including amplitude fluctuations explicitly in the Ginzburg- clearly its singular temperature derivativeTat T,. Below,
Landau theory, it is shown that this vortex-loop unbindingwe list the main results of this paper.
does not lead to critical amplitude fluctuations. A generalized B=0.

. -2l _ In zero field, we have shown that the
“stiffness” characterizing the low-temperature phase whichsuperconducting—normal-metal phase transition is described

vanishes at the transition, is the long-wavelength vortex-lingry a vortex-loop unbinding. This is achieved by correlating a
tensions(T), or equivalently the free energy per unit length detailed study of qualitative changes in the vortex-loop dis-
of the the thermally induced vortex loops of the system.  tribution functionD(p) with calculations of superfluid den-

In a finite magnetic field, we find indications of a changesity, condensate density, specific heat, amplitude fluctua-

in the vortex-tangle connectivity across the system at a temions, and change in vortex-tangle connectivity, both
peratureT, (B), whose zero-field end point i§.. This has including and excluding amplitude fluctuations of the
been done by monitoring the quanti®, in the Ginzburg-

Ginzburg-Landau order parameter. The topological phase
Landau theory or the 3RY model in the same way as for fluctuations destroying the superconducting phase coherence

the zero-field cas€D, has precisely the same characteristicsare thus unambiguously identified as thermally induced vor-
at finite fields and zero field. In the regim&,(B)<T

<T_(B), the connectivity across the system of the vortexitly, they are found to be far from critical. In other words, the
tangle of the molten phase is given entirely by the field in-vortex-loop unbinding mayot be viewed as a reparametri-
duced vortex lines. This appears to change across the lineation of critical amplitude fluctuations of the Ginzburg-
T (B). We have been able to t@®_ to an order parameter Landau order parameter, as is sometimes claimed.

even at finite field, see Sec. Il E, involving a breaking of a The vortex content of the Ginzburg-Landau theory, for-
U(1) symmetry across the ling (B). mulated in Sec. Il E, is characterized by its own U(1) sym-

At low magnetic fields, to the accuracy of our calcula- metry which becomes explicit on a furthexactreformula-

tions, we have found that the VLL melting line and the line tion of the vortex sector in terms of a new gauge-field, see
T, (B) mergeat low fields. Below these low magnetic fields, Sec. Il E. The low-temperature phase of the vortex-sector of
the picture of the molten phase as a vortex-line liquid apthe Ginzburg-Landau theory, where all vortex-loops are con-
pears to be questionable. For fields well above the pointined, exhibits a U(1) symmetry. This symmetry of the vor-
whereT,(B) and T, (B) merge, we have found that the po- tex sector reflects the fact that there is a number conservation
sition of the VLL melting line is well described by a Linde- of vortex loops extending across the entire superconductor.

tex loops. When amplitude fluctuations are included explic-
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In zero magnetic field, the conserved number is zero, and theortex-tangle connectivity changes does not move up with
distribution function for closed vortex loops of perimepeis ~ system size, as it would have done in a vortex-line liquid. In
an exponential function with length scale given by(T) the 2D nonrelativistic boson analogy of vortex liquid, such
=kgT/e(T), wheree(T) is the vortex-line tension. At the vortex configurations are never found. The symmetry broken
zero-field critical temperature, we find vortex loops with anatT, is a global U(1) symmetry, associated with the number
algebraic distribution of perimeters, concomitant with anconservation of vortex paths threading the entire system, the
abrupt change in the connectivity of the vortex tangle inconsiderations are similar to the zero-field case. In a finite
extreme type-Il superconductors. The vortex line tension isnagnetic field, this symmetry is hidden in the usual
found to vanish as a power law &% is approached from Ginzburg-Landau local order field representation, but is
below, e(T)~|T—T¢|”, with y=1.45+0.05. brought out by a dual description of the Ginzburg-Landau
Both the change in the distribution function of closed vor-theory. In zero fieldT, andT, are identical and there is only
tex loops, and the abrupt change in the connectivity of thene phase transition.
vortex tangle, shows that there is a diverging length in the We have found that the vortex-system in the clean limit
problem, i.e.Lo(T)—o; T—T, . At this point, the number appears to be able to exhibit three distinct phases, |, Il, and
of closed vortex loops extending through the system is ndll shown in Fig. 12, characterized by the values of the
longer a conserved number equal to zero, it becomes finit&inzburg-Landau order parametg#) and its dual order pa-
and undergoes thermal fluctuations. Therefore, the U(1yameter(¢). Here, we explicitly utilized the connection of
symmetry characterizing the low-temperature vortex phase iSec. Il E between the vortex-tangle connectivity prabe
broken. and the U(1) ordering in the dual field. We found the
The connection between the power-law behavior close téhree regimes
T. of the vortex-line tension and the anomalous dimension

74 Of the dual fieldg was discussed in Sec. IV C. Relating Region|: ()#0, (¢#)=0,
the power law for the vortex-line tension to the susceptibility . _ _ B
exponenty of the ¢ field, in conjunction with the Fisher Region Il (4)=0, (¢)=0,

scaling lawy=v(2— 7,), allowed us to extract the value . ) _
74=—0.18+0.07. Thig5 result was compared to renormal- Regionlil: (¢)=0, (4)#0.
ization group calculation performed directly on the dualAt low fields, we have found that region Il vanishes. Note
theory, for which the vortex-loop unbinding the phase that the transition lind (B) separating the regions Il and Il
transition, and excellent agreement was found. Note thenside the vortex liquid, was brought out solely through the
negative sign ofy,, in the extreme type-Il case. dual description, it could not have been detected by studying
B+#0. In finite field, we have studied the phase diagramthe Ginzburg-Landau order paramet@f), or any local
over a wide range of filling fraction$§, corresponding to function of it.
1/fe[90,...,1560, the results are summarized in Fig. 12. A few further comments are in order. In the low-field
The VLL is found to melt in a first order phase transition, for regime,within a lines-only picture of the molten phasme
all filling fractions considered, into eompletely incoherent  finds that the longitudinal correlation length of field-induced
vortex liquid characterized by zero global phase coherence ifiortex lines above melting increases, due to the increased
all directions. At intermediate fields, the VLL melts into a distance between field induced lines, being given by
liquid of vortex lines, whose position in theB(T)-phase
diagram is well estimated by the Lindemann criterion with a 1 |®,
Lindemann number=0.25. fzzﬁ B
We have performed a scaling analysis for the melting line
for all filling fractions considered. We find a crossover from |t was therefore pointed out in Ref. 54 that in order to cor-
mean-field type scaling at elevated fields toX3Dscaling  rectly predict the direct transition from the Abrikosov vortex
behavior at small fields, showing that for the anisotropies weattice to a phase-incoherent vortex liquid at low magnetic
have considered, the melting line of the vortex lattice at lowfields, or equivalently predict the direct transition from the
fields is significantly affected by zero-field critical fluctua- crystal phase to the superfluid phase of 2D nonrelativistic
tions in a sizeable region of the phase diagram. bosons af =0 at low magnetic, sufficiently large systems in
Significantly, in addition to the VLL melting transition the z direction must be used. The use of too small systems
line T,(B), we find indications of another transition line could result in observing, merely as a result of a finite-size
T.(B) inside the vortex liquid. This line is the finite-field effect, a normal T=0 2D nonrelativistic Bose fluid, or
extension of the zero-field vortex-loop unbinding, and has arquivalently a disentangled vortex liquid. The former cannot
end point which is the zero-field critical temperatuFg. exist in the thermodynamic limit in the absence of disorder,
Below T, connectivity of the vortex-system is determined on quite general grounds.
exclusively by the field-induced vortex lines. All vortex lines ~ The above is a valid point of concern within the 2D
threading the entire system are field induced. Abdyethis  boson-liquid analogy of the vortex system when looking for
changes, as discussed in Sec. IV B. AbdyéB) there exist entanglement. It is no longer a point of concern if the lines-
vortex lines that thread the system also perpendicular to thenly approximation is abandoned and the connectivity of the
magnetic field, without using periodic boundary conditionsvortex tangle is probed rather than entanglemé®itecisely
along thez axis. how to establish a criterion for when field-induced vortex
We have performed a large-scale study of the finite-sizdines are entangled, also appears to be problematic to say the
effects in T, and found that the temperature where theleast) For all fields we have considered, and for all sample

(31)
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geometries we have used, it is clear from our results that waltimately amounts to computing the helicity modulis,
have been able to correctly predict the direct transition fromwhich cannotvanish above the melting line of the vortex
the Abrikosov vortex lattice to the phase-incoherent vortexattice in the thermodynamic limit, in the absence of disor-
liquid. The onset 0O, and the change in the vortex-tangle der.

connectivity is a separate matter. The vortex configurations The T, (B) line is potentially an important line in the
dominating the contribution to a change@ , are thermally ~ (B.,T) phase diagram. It locates the position in t&T)
induced unbound vortex loops and not field-induced fluxdiagram where the line-only approximation of the vortex lig-
lines. Our results in the low-field regime are therefore notid breaks down. Pinning of vortices by extended objects
artifacts of considering too small systems in thdirection. ~ SUch as columnar pins may very well turn out to be ineffi-
Quite the contrary, since we see the chang®jralso when ~ Ci€nt beyond the lind (B). It also shows that the line-only
making the system flatter, it supports the proposition thafPProximation can be used to describe the vortex-liquid

there exists a regime in th&(T) phase diagram, beyond the phase and the first order_melting _transition Of. the VLL at
line T_(B), where the notion of a vorteline liquid physics Tu(B) only for large and intermediate magnetic induction.

most probably should be revised. In low magnetic fields, on the other hand,(B) andT,,(B)
The U(1)-transition lineT (B) has the zero-field super- qollapse Into a ;lng!e lin€. Here, it WO.UId appear tha.t a
fluid normal state transitioii, as an end point. It is a feature line-only approximation does not describe the vortex liquid

of extreme type-Il superconductors, even homogeneous, is@OPely- The fields where the line-only approximation fails
tropic three-dimensional ones, and should moreover occur iﬁ; the entire liquid regime are expected to be of ordérat

heliunf which is a perfectly three-dimensional, homoge- ss in YBCO™
neous, isotropic superfluid. The proposed transition therefore

is not in any obvious way connected to various previously

proposed quite intriguing scenarios leading to a loslocdl Support from the Research Council of Norwéyorges
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