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Periodic vortex structures in superfluid 3He-A

J. M. Karimäki* and E. V. Thuneberg
Low Temperature Laboratory, Helsinki University of Technology, 02150 Espoo, Finland

~Received 16 February 1999!

We discuss the general properties of periodic vortex arrangements in rotating superfluids. The different
possible structures are classified according to the symmetry space groups and the circulation number. We
calculate numerically several types of vortex structures in superfluid3He-A. The calculations are done in the
Ginzburg-Landau region, but the method is applicable at all temperatures. A phase diagram of vortices is
constructed in the plane formed by the magnetic field and the rotation velocity. The characteristics of the six
equilibrium vortex solutions are discussed. The vortex sheet forms the equilibrium state of rotating3He-A at
rotation velocities exceeding 2.6 rad/s. The results are in qualitative agreement with experiments.
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A superfluid cannot rotate homogeneously. Instead, qu
tized vortex lines are present in the equilibrium rotating st
of superfluid 4He. In superfluid3He the rotating states ar
more diverse. It has been discussed recently by Partset al.1

that four different types of vortices have been found exp
mentally in the superfluidA phase of3He. In this paper we
present theoretical studies concerning the vortices obse
in 3He-A.

Some of the theoretical results that we presented in R
1 and 2 were found to be incorrect in further calculatio
These errors are corrected here. As a consequence
present phase diagram of vortices differs from the one
Refs. 1 and 2. In particular, there appears a different vo
structure, the locked vortex 3, but also the locations of ot
phase boundaries are changed.

For introduction to superfluid3He ~Refs. 3 and 4! and its
vortices5–9,2we refer to various review articles. Although n
introductory, this paper intends to be a complete exposi
of what is needed for understanding the equilibrium vor
structures in bulk superfluid3He-A.

We start in Sec. I with the formulation of the vortex pro
lem, which is general enough for all superfluids and can
generalized also to superconductors. This gives a gen
classification of vortex states based on space-group sym
try and circulation number. The classification is continued
Sec. II using properties specific to3He-A. The calculations
of the vortex structures are based on the hydrostatic the
which is discussed in Sec. III, and the calculational meth
is described in Sec. IV. Detailed description of the differe
vortex types is given in Sec. V. The correspondence w
experiments is discussed in Sec. VI.

I. GENERAL VORTEX PROBLEM

Let us consider an uncharged fluid~in practice liquid4He,
3He, or a quantum gas! in a container rotating at angula
velocity V. We will neglect all complications arising from
the finite size of the container. Although we will not discu
the detailed correspondence, the analysis in this sectio
also applicable to a charged fluid~superconductor! whenV
is replaced by the averaged magnetic fieldB.
PRB 600163-1829/99/60~22!/15290~12!/$15.00
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At the microscopic level, the fluid has the effectiv
Hamiltonian Heff5H02V•J. Here H05( i(pi

2/2m)1V is
the Hamiltonian in a nonrotating system, which consists o
kinetic energy term and an interaction energy termV. The

angular momentumJ5( i@
1
2 (r i3pi2pi3r i)1Si # consists

of an orbital and a spin part. We can writeHeff in the form

Heff5(
i

1

2m
~pi2mvn,i !

21V2(
i

V•Si2(
i

1

2
mvn,i

2 ,

~1!

wherevn,i5V3r i is the ‘‘normal fluid’’ velocity at the lo-
cation of the particlei . The last term is the centrifugal en
ergy. It causes the pressure to increase with increasing
tance from the rotation axis. In principle, this term prohib
a strictly periodic vortex arrangement. However, it is ve
small at experimentally relevant rotation velocities and co
tainer sizes, so that we can safely neglect it. We will negl
also the second-last term because it vanishes in4He (S
50), and is very small in3He, where it corresponds to
magnetic field of'0.1mT at a typicalV51 rad/s. Because
the rest of the paper is based on the reducedHeff , we write it
again:

Heff5(
i

1

2m
~pi2mvn,i !

21V. ~2!

We will classify the rotating states according to their sy
metries. For that purpose we first list all the symmetries
the Hamiltonian~2!. They are~i! arbitrary translations,~ii !
arbitrary rotations aroundV (`z), ~iii ! the combination (2x8)
of time inversion (8) and rotation by the anglep ~2! around
an axis perpendicular toV, ~iv! the reflection (mz) in the
plane perpendicular toV, ~v! the combination (mx8) of time
inversion and reflection in a plane containingV, and~vi! all
combinations of these operations. For each operation
have indicated a symbol in parentheses. They follow the
ternational notation of crystallography10 with a prime added
15 290 ©1999 The American Physical Society
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PRB 60 15 291PERIODIC VORTEX STRUCTURES IN SUPERFLUID3He-A
to denote time inversion.11 Throughout this paper we use
rectangular coordinate systemxyz where thez axis is paral-
lel to V.

It is not completely obvious that the translations perp
dicular toV are symmetry operations ofHeff ~2!. This prob-
lem is equivalent to the case of electrons in uniform m
netic field,12 and the corresponding problem for superflu
order parameter is discussed below. Another noteworthy
ture is that bothmx and 2x appear in combination with the
time inversion. Otherwise these operations would not p
serve the direction of the axial vectorV.

Generally, the physical system either has all the symm
tries of the Hamiltonian, or alternatively, one or more of t
symmetries are broken. An ordinary fluid would preserve
the symmetries of the rotating Hamiltonian~2!. This is not
the case for a superfluid. We will show below that at le
part of the translation symmetry is broken in the superfl
state whenVÞ0.

The fundamental property of superfluidity is that o
quantum state becomes macroscopically occupied. This
densate is described by an order parameterA(r ). The order
parameter can be a scalar, as in4He, or a more complicated
object. We associate a velocity fieldvs to the particles in the
condensate. There is no general expression for the super
velocity vs in terms ofA(r ). Also, several different veloci-
tiesvs can exist, for example, one for spin-up and another
spin-down particles. Irrespective of the precise definition,
only need to know howvs changes in a gauge transform
tion. We require that the velocity associated with the or
parameter exp@if(r )#A(0)(r ) is vs5(\/M )“f(r )1vs

(0) ,
wherevs

(0) is the velocity corresponding toA(0)(r ). HereM
is a mass that depends on the particular system. It equal
atomic mass for4He (M5m4) and twice the atomic mass fo
3He (M52m3).

It is now obvious thatA(r ) cannot be constant and also
phase factor exp@if(r )# times a constant is not allowed. Th
reason is that the kinetic energy term in the Hamiltonian~2!
would grow faster than linearly with the volume of the sy
tem becausevs would be constrained byrvs•dr50 and
could not imitatevn5V3r on a large scale.

Our basic assumption is that the equilibrium structure
the rotating superfluid is periodic in space. It follows fro
above that the minimum period has to be finite at least in
direction, which is not parallel toV. We do not make here
any assumption whether the translation symmetry is disc
or continuous in the two other linearly independent dire
tions.

Crystalline materials are classified according to their sy
metry into 1651 magnetic space groups. The most effec
way to label these is the international crystallograp
notation.10,11 We use the same notation to label the spa
groups of rotating superfluids. This is possible because
responding to every rotating state there exists at least
space group of a crystal. The reasons for this are that~i! the
symmetries of the rotating-fluid problem listed above ar
subgroup of those possible for a crystal, and~ii ! no new
symmetry groups appear even if one or two of the transla
symmetries in a rotating superfluid were continuous.

Not all the 1651 magnetic space groups are relevant
rotating fluids. First, the time inversion is present in a rot
ing superfluid in a trivial way. In the generating symmet
-

-

a-

-

e-

ll

t
d

n-

uid

r
e

r

the

f

e

te
-

-
e

c
e
r-
ne

a

n

r
-

operations it appears in combinations withmx and 2x , and
only with them. Thus, by simply ignoring the time inversio
one can construct a one-to-one mapping from symmetry
erations of a rotating fluid into symmetry operations that
not contain the time inversion.13 Thus it is sufficient to limit
to the 230 crystallographic space groups, which do not
clude the time-inversion operation. Second, the numbe
relevant groups is further reduced because a rotation
higher than 2 is allowed in the direction ofV only. This
implies that cubic groups are not acceptable. The remain
194 space groups each give rise to 1, 2, or 3 different s
metry groups of rotating fluids. This is because some of
crystal groups can be oriented in different ways relative
the V direction.

What has been said above about symmetry does no
rectly apply to the order parameterA(r ). The reason is tha
this complex quantity has phasef, which is not an observ-
able quantity. Therefore, instead of being strictly period
A(r ) is only quasiperiodic:

A~r1ak!5exp@ ifk~r !#A~r !. ~3!

Here ak are three linearly independent translation vect
(k51, 2, and 3! and fk(r ) are the corresponding phas
shifts. Similar phase factors occur also in rotations, refl
tions, and time inversions. The quantity that has to be p
odic in lattice translations isvs2vn . This gives a constrain
for the phase shiftsfk(r ). Using the gauge invariance fo
vs, one finds“fk(r )5Ṽ3ak . In order to simplify the for-
mulas, we will repeatedly use the notationṼ5(M /\)V.
The gradient offk is trivially integrated to14

fk~r !5Ck1Ṽ3ak•r , ~4!

whereCk are constants of integration. An implicit require
ment here is thatvs is defined on the path of integration. W
assume that the regions wherevs is undefined are at mos
one-dimensional. In this case it seems possible to choose
unit cell of the translation lattice so thatvs is well defined
along all its edges.

An important requirement is that the lattice-translati
rule ~3! is consistent with a uniquely definedA(r ). We ex-
pressA(r1ai1aj ) as a function ofA(r ) using the transla-
tion rule twice. The result should be independent of the or
in which the two translations byai and aj are done. This
gives the condition

Ṽ•ai3aj5p(
k

ei jkNk , ~5!

whereNk are integers andei jk the fully antisymmetric tensor
The lattice translation vectorsak can be chosen in severa

different ways. Next we want to redefine the set$ak% so that
it is optimal for further analysis. The newa3 can always be
chosen parallel toV. Namely, settinga35(kNkak

old , it fol-
lows from Eq.~5! thata33V50. Applying Eq.~5! to a new
linearly independent set$ak%, we find thatN15N250 but
N3Þ0. The nonzero integer value ofN3 implies that a con-
tinuous translation symmetry can exist only in the directi
of V. We can therefore additionally require thata1 and a2
are primitive translation vectors, i.e., they correspond to
minimum ~positive! value ofV•a13a2 .
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We define the circulation numberN as equal toN3 ~5!
corresponding to primitivea1 anda2 :

Ṽ•a13a25pN. ~6!

Similar to the symmetry groups, the different values ofN can
be used to classify the rotating states.N is called the circu-
lation number because it is related to the circulation of
superfluid velocity around a primitive cell

N5
1

2p R
primitive cell

dr• ṽs, ~7!

where ṽs5(M /\)vs. We note that the limitation to the
boundary of the primitive cell in Eq.~7! is crucial in3He-A,
where the circulation is not generally quantized.

Let us consider the case that there is a continuous tr
lation symmetry alongV. This is an important case becau
all known vortex types belong to this category. Howev
very few general properties can be listed in addition to th
ones already mentioned above. The main simplification
that the primitive translation vectorsa1 anda2 can be chosen
perpendicular toV. These generate a two dimensional Br
vais lattice. Thus these rotating states can be classified
five categories according to the symmetry of the tw
dimensional ~2D! lattice:10 oblique, square, hexagona
primitive rectangular, and centered rectangular. The num
of possible space groups is considerably larger. In particu
the 17 two-dimensional space groups listed in Ref. 10 are
sufficient for rotating states because they lack the opera
mz .

We illustrate the classification of vortices with known e
ample cases. For a scalar order parameter (4He) the Bravais
lattice is hexagonal andN51.15 It has the symmetry group
P(6/m)(28/m8)(28/m8), or shortly P6/mm8m8. Generally,
the international symbols consist of a letter followed by th
symbol sets.10 The letter shows the basis of the lattice, f
example,P denotes a primitive andC a centered unit cell.
The following three symbol sets describe symmetries w
respect to three different inequivalent axes, respectively.
first 6/m indicates that there is a sixfold rotation symme
and a reflection symmetrym, both with respect to the sam
axis. Here the sixfold axis has to be parallel toV and thus
the reflection plane is perpendicular toV. The second se
28/m8 describes a 28 symmetry and anm8 symmetry with
respect to an axis perpendicular toV. Finally, the third set
28/m8 describes the same symmetries around the third
equivalent axis of the hexagonal lattice.

The relative orientation of the space group andV is usu-
ally revealed by the primes because the primed axes ar
ways perpendicular toV. For some structures~C1281, for
example! pure symmetry considerations are insufficient to
the direction ofV. However, as proved below Eq.~5!, theV
axis always coincides with one direction of translation sy
metry. This is not a consequence of symmetry but ari
from the divergent rigidity of the vortex lattice against t
deformation at long wavelengths.16

As another example, we consider vortices of3He-B. Two
types of fully stable vortices are known. An isolatedA-phase
core vortex has symmetry class̀m8, and a double-core vor
tex 2m8m8.17 Here the symmetry breaking relative
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(`/m)(28/m8) arises from the core of each vortex. Whe
these vortices form a lattice, the simplest possible structu
haveN51, and the space groups areP6m8m8 andCm8m82,
respectively. The lattice breaks the rotating symmetry of
A-phase-core vortex to sixfold, and the twofold rotation sy
metry of the double-core vortex breaks the hexagonal lat
symmetry to centered rectangular. Both these effects ar
practice very weak because the core sizes of the vortice
3He-B are much smaller than the distance between vortic

The symmetry classification of vortices has previou
been made only for point groups. This means that all
translations in the space group are ignored. Although
does not describe the whole lattice symmetry, there are
eral physical properties for which the point group gives
sufficient description.6,18 We also comment on the notation
The symmetries 1̄, my8 , 2y8 often appear in dealing with vor

tices of 3He. Here 1̄is the inversion and the subindexes
my8 and 2y8 denote that they refer to the same axis. The

operations give rise to five symmetry classes 1, 1,̄ m8, 28,
and 28/m8. Here the first one contains only the unit eleme
the three middle ones have each one symmetry operatio,̄
my8 , or 2y8 , respectively, and the last one has all the th
~because two of them imply the third!. In Ref. 6, the same
groups were labeled by letterso, u, v, w, anduvw, respec-
tively. Still another notation is due to Scho¨nflies, and this
was used to denote the same classes in Ref. 18. Contra
the international crystallographic symbols, these other no
tions do not allow a meaningful generalization to spa
groups.

Let us study the meaning of the constantsCk in Eq. ~4!.
We will show thatC1 and C2 can be put to zero withou
losing generality. We consider an arbitrary order parame
field A(0)(r ). We construct from it another fieldA(r ) by
doing a translation by an arbitrary vectorb as follows:

A~r !5exp~ iṼ3b•r !A(0)~r2b!. ~8!

This field obviously has the same energy as the original
because the phase factor takes care that the counterflow
locity v5vs2vn is unchanged: v(r )5v(0)(r2b). By
straightforward calculation one can verify that the coe
cientsC1 andC2 for the new field are related to the old one
by Ck5Ck

(0)12Ṽ3b•ak . Choosingb appropriately, one
can putC1 andC2 to zero. Thus the significance ofC1 and
C2 is that their values fix the position of the vortex solutio
relative to the rotation center.

The coefficientC3 in Eq. ~4! is the phase shift in transla
tions parallel toV. It is related to the superfluid velocity
parallel toV. It often vanishes for symmetry reasons, but
can be nonzero for vortices of low symmetry. For examp
consider a vortex with the symmetry groupC1281 and a
continuous translation symmetry in thez direction. The only
point symmetry operation 2x8 leaves thez component of the
current unchanged. Thus such a vortex generally has a
zero net superfluid current in thez direction even though
vs,z50. Depending on the boundary conditions atz56`,
this current may be compensated by a current arising fro
nonzeroṽs,z5C3 /a3 .
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II. SUPERFLUID 3He-A

The previous section showed that the vortex structure
any superfluid can be classified according to the circula
number and the space group. In this section we continue
classification using properties specific to3He-A.

The order parameter of bulk superfluid3He-A is a com-
plex 333 matrix of the form3,4

AJ5Dd̂~m̂1 in̂!. ~9!

Hered̂, m̂, andn̂ are unit vectors andm̂ 'n̂. The ampli-
tudeD is a temperature- and pressure-dependent consta
is conventional to definel̂5m̂3n̂, so thatm̂, n̂, and l̂ form
an orthonormal set.

As a first step, the vortices are classified to ‘‘continuou
and ‘‘singular.’’ The former alternative means that the bu
form ~9! with constantD forms a good approximation to th
order parameter everywhere in the primitive cell. The lat
alternative means that this is not the case. This classifica
may not be precise in general, but there is no difficulty
the six vortex types to be considered here: only the ‘‘singu
vortex’’ is singular, the other four are continuous.

We note that only singular vortices exist for a scalarA
because the amplitude ofA has to vanish somewhere withi
the primitive cell ofN51. Continuous vortices are possib
in 3He-A because nonzero circulation can be generated
appropriatem̂(r ) and n̂(r ) fields.

The continuous structures can be further classified by
numbers

nd5
1

4p E
primitive cell

dx dyd̂•
]d̂

]x
3

]d̂

]y
, ~10!

n l5
1

4p E
primitive cell

dx dy l̂•
] l̂

]x
3

] l̂

]y
. ~11!

These numbers are integers becaused̂ and l̂ are periodic.
They describe how many times the mapping from the pri
tive cell to the vectorsd̂ and l̂ covers the unit spheres.

The numbersN andn l are not independent. This follow
from the definition of the superfluid velocity,

ṽs5(
i

mi“ni . ~12!

@As above, we useṽ5(2m3 /\)v, wherem3 is the mass of a
3He atom.# This implies the Mermin-Ho relation:19

“3 ṽs5
1

2 (
i jk

ei jk l i“ l j3“ l k , ~13!

which together with Eqs.~7! and ~11! gives

N52n l . ~14!

III. HYDROSTATIC THEORY

For a quantitative determination of the vortex structu
we use an energy functionalF(A). In principle, it can be
calculated from the effective Hamiltonian~2! as F(A)
in
n
he

. It

’

r
on
r
r

y

e

i-

s

52T ln@Tr exp(2Heff /T)#. This is a functional ofA(r ) be-
cause the trace~Tr! is restricted to states having a give
macroscopicA(r ). Various approximations forF(A) are
available: quasiclassical weak-coupling and weak-coupli
plus models, and phenomenological theories such as
Ginzburg-Landau theory and the hydrodynamic theory.

The basic assumption of the hydrodynamic theory is t
the deviation of the order parameterAJ from the bulk form~9!
is small. For this we have to require two conditions.~i! The
magnetic fieldH should not be too large. In practice th
condition excludes only a small region near the superfl
transition temperatureTc , where theA phase is distorted
towards theA1 phase.4 ~ii ! The vectorsd̂(r ), m̂(r ), andn̂(r )
are sufficiently slowly varying functions of the locationr .
This implies that the hydrodynamic approach can be used
continuous vortices, but it is insufficient for singular ones

Because of the slow variation, only terms up to the seco
order in the gradients ofd̂, m̂, and n̂ are needed in the
energy functional. The functional can be written as

F5
1

V E
V
d3r ~ f d1 f h1 f g!. ~15!

Here the volumeV of integration is assumed to consist of a
~arbitrary! integral number of unit cells. The magnet
dipole-dipole interactionf d is given by20

f d5
1

2
gdud̂3 l̂ u2. ~16!

The magnetic anisotropy term is

f h5
1

2
gh~ d̂•H!2, ~17!

and the gradient energy21

2 f g5r'v21~r i2r'!~ l̂•v!212Cv•“3 l̂

22C0~ l̂•v!~ l̂•“3 l̂ !1Ks~“• l̂ !21K t~ l̂•“3 l̂ !2

1Kbu l̂3~“3 l̂ !u21K5u~ l̂•“ !d̂u2

1K6(
i j

@~ l̂3“ ! i d̂j #
2. ~18!

The gradient term includes also the kinetic energy, wh
is a function of the counterflow velocityv5vs2vn . It fol-
lows from the structure of the functional thatFeq(H,V) of
the equilibrium state is a nondecreasing function of bothH
and V. The zero of the energy is chosen so thatFeq(H,0)
50.

It should be noted thatvs and l̂5m̂3n̂ are not completely
independent variables but are constrained by the Mermin
relation~13!. In order to avoid such complicated constrain
we used̂, m̂, and n̂ as the basic variables. With these va
ables the constraints are simpler:d̂, m̂, andn̂ have to be unit
vectors andm̂ 'n̂. The energy functional~15! can be ex-
pressed as a function ofd̂, m̂, andn̂. Only the gradient terms
require some calculation, and we get



15 294 PRB 60J. M. KARIMÄKI AND E. V. THUNEBERG
2 f g5~ r̄ i12K7!(
i

~m̂•Di n̂!21~Ks1K7!(
i

@~m̂•Dm̂i !
21~ n̂•Dn̂i !

2#12Ks(
i

~m̂•Dm̂i !n̂•Dn̂i

1~K t1K7!(
i

@~ n̂•Dm̂i !
21~m̂•Dn̂i !

2#22K t(
i

~ n̂•Dm̂i !m̂•Dn̂i1~Kb1C̄2C̄01K7!@~D•m̂!21~D•n̂!2#

12~Kb2C̄01K7!(
i

@~D•m̂!m̂i n̂•Dn̂i2~D•n̂!m̂im̂•Dn̂i #1~C̄02C̄!(
ik

@~Dim̂k!Dkm̂i1~Din̂k!Dkn̂i #

2K7(
ik

@~Dim̂k!
21~Din̂k!

2#1K5(
ik

~¹ i d̂k!
21~K62K5!(

i
@~m̂•“d̂i !

21~ n̂•“d̂i !
2#. ~19!
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Here we use gauge-invariant derivativesDm̂i5“m̂i1 ṽnn̂i
and Dn̂i5“n̂i2 ṽnm̂i . We have also used the notationsṽn

5(2m3 /\)V3r , r̄5(\/2m3)2r, C̄5(\/2m3)C, and K7

5 r̄'2 r̄ i2Ks2K t1Kb22C̄0 .
One can transform the gradient energy~19! by partial in-

tegration. For example,*d3r (¹ i m̂k)¹km̂i5*d3r (“•m̂)2

plus a surface term. For the present purposes such pa
integrations can be done without paying attention to the s
face terms. The reasons are that~i! the surface terms can
affect the equilibrium configuration only near surfaces,
anywhere, and~ii ! although the local energy density i
changed in the partial integration, all the energies of vorti
are unchanged because of the periodic boundary conditi

The full gradient energy~19! is written down here in or-
der to demonstrate that our calculational method is feas
whenever the hydrodynamic approximation is valid. In p
ticular, the theory applies to all temperaturesT,Tc except a
small region nearTc ~due to theA1 phase! and another re-
gion aroundT50. However, the present numerical calcul
tions are made in the Ginzburg-Landau~GL! region.17 This
means temperatures only nearTc (Tc2T!Tc), but this
range is still wider than the one that has to be exclud
because of distortion towards theA1 phase. In this region the
GL theory is more general than the hydrodynamic one
one makes the hydrodynamic approximation in t
GL theory, one arrives at the set of equations presen
above, but with certain restrictions on the coefficien
They are r̄ i/25 r̄' /(g11)5C̄/(g22h)5C̄0 /(g21)5Ks
5K t5Kb /g5K5/25K6 /(g11). These conditions imply
that all terms that are higher than second order inm̂ or n̂
disappear from the gradient energy~19!.

Collecting all simplifications and reducing units, we ca
write the energy terms as

f d5
1

2
@~ d̂•m̂!21~ d̂•n̂!2#

f h5
1

2
~ d̂•H!2,

4 f g5(
ik

@¹ i m̂k1~vn! ink#
21(

ik
@¹ i n̂k2~vn! imk#

2

1~g21!F ~“•m̂1vn•n̂!21~“•n̂2vn•m̂!2
tial
r-

f

s
s.

le
-

d

If

d
.

1(
i

~m̂•“d̂i !
21(

i
~ n̂•“d̂i !

2G12(
ik

~¹ i d̂k!
2

14~2h21!m3n•V, ~20!

wherevn5V3r . We have used ‘‘dipole units’’ for length
@jd5(\/2m3)Ar i /gd#, field (Hd5Agd /gh), angular velocity
(Vd5\/2m3jd

2), and energy density (gd).
It should be noted that the functional~20! is based on

purely phenomenological considerations. These leave o
only two dimensionless parametersg andh. ~In the notation
of Ref. 22,g5KL /KT andh5KC /KT .! They can be calcu-
lated in the quasiclassical theory. In the weak-coupling
proximation g53 and h51. A more complicated weak
coupling-plus model givesg'3.1, buth is unchanged.22 We
have made a few tests that our results are not sensitive to
value of g, so we will use the weak-coupling values in th
following.

IV. NUMERICAL CALCULATION

For numerical computation the energy functional~20! was
discretized on a lattice. We assume that there is no dep
dence onz, so that a two-dimensional square lattice (xj ,yk)
is sufficient. The first thing in the numerical program is
specify the magnetic field, the rotation velocityV, the circu-
lation numberN and the Bravais lattice. For rectangular la
tices one needs to specify the ratiob/a, wherea denotes the
length of the shortest possible primitive vector, andb is the
lattice constant in the perpendicular direction in the rect
gular cell. No oblique lattices were found. The area of t
primitive cell was then determined from Eq.~6!. For simplic-
ity of boundary conditions, it was useful to choose the latt
constant of the calculational lattice commensurate with
primitive cell of the vortex lattice. The last preparatory st

was to give an initial guess for the fieldsd̂, m̂, andn̂. Then

the valuesd̂(xj ,yk), m̂(xj ,yk), and n̂(xj ,yk) were changed
iteratively. At each lattice point (xj ,yk) in the primitive cell,

a torque acting on the spin vector (d̂) and on the orbital
vectors (m̂ and n̂) was calculated, and the vectors were r
tated proportionally to the torque.23 The proportionality co-
efficient was chosen experimentally to achieve fast conv
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gence. The values of the fields outside the primitive cell w
determined from the periodic boundary conditions~3! and
~4!. As discussed above, the coefficientsC1 and C2 are ar-
bitrary but it was natural to choose them consistent with
initial guess in order to avoid unnecessary motion of
vortex. We assumeC350. The iteration was continued unt
the energy converged, and the torques approached zero

For rectangular lattices, the energyF needs to be mini-
mized also with respect to the ratio of the lattice consta
u5b/a. This process is considerably simplified by notin
that a calculation at a given value ofu not only givesF(u),
but also the first derivativedF(u)/du at constant areaab. It
follows from the stationarity of the energy functional that

dF~u!

du
5

1

2uV E
V
d3r(

i j
S ] f g

]DxAi j
DxAi j

2
] f g

]DyAi j
DyAi j 1c.c.D . ~21!

HereAi j is the general order-parameter matrix in superfl
3He and c.c. the complex conjugate. Application to fun
tional ~20! gives

dF~u!

du
5

1

uV E
V
d3r ~Tx2Ty!, ~22!

where

4Ti5(
k

~¹ i m̂k1vni n̂k!
21(

k
~¹ i n̂k2vni m̂k!

21~g21!

3F ~¹ i m̂i1vni n̂i !~“•m̂1vn•n̂!1~¹ i n̂i2vni m̂i !

3~“•n̂2vn•m̂!1(
k

~m̂i¹ i d̂k!m̂•“d̂k

1(
k

~ n̂i¹ i d̂k!n̂•“d̂kG12(
k

~¹ i d̂k!
2. ~23!

The iteration was often started with a rather small num
of lattice points (;1000), and this was iterated to conve
gence. Then new lattice points were added in between
old ones, and the iteration was continued. The maxim
final lattices contained around 100 000 points.

The procedure was repeated for several different ini
guesses and values of magnetic field and rotation veloc
Although the finding of the minimum-energy structures is
well defined mathematical problem, physical intuition
needed in inventing the initial guesses. Particularly go
guesses are the models used in previous investigation
vortices. In addition, we tried several variants of these. T
initial guesses leading to the different structures are liste
the Appendix.

V. RESULTS

In all calculationsT'Tc and the fieldH was chosen par
allel to the rotation axisz. The phase diagram of vortices i
the plane formed by the magnetic fieldH and the rotation
velocity V is shown in Fig. 1. There are six equilibrium
e
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vortex types, which are discussed separately below. In
names of the vortices, we follow Ref. 1. The energy densi
F ~15! of the vortices are expressed in reduced units defi
under Eq.~20!. We chose thex axis parallel to the shortes
primitive vector of the two-dimensional Bravais lattice.

~i! The locked vortex 1~LV1! has the quantum number
N54 andn l5nd52.14,24–28 Its most distinguishing feature
is the square Bravais lattice. The space group
P(4/n)(28/b8)(28/m8), or shortly,P4/nb8m8. The symme-
try operations of this as well as other space groups are li
in Ref. 10.

Qualitatively the structure can be understood so that
first thing to minimize is the dipole energy~16!. This gives a
‘‘locked’’ configuration whered̂5 l̂ everywhere. If the field
is zero, then the energy of this structure arises solely fr
the gradient terms~18!. These are minimized by a smoot
distribution where the gradient ofl̂ has the same order o
magnitude everywhere. Numerical calculations show t
this is achieved in a square lattice withN54; see Fig. 2.

The structure can be interpreted to consist of four elem
tary units. These units are called Mermin-Ho vortices b
cause of a resembling structure first described in a cylindr
container.19 The boundary of each unit can be defined byl̂ z

50. Two of the four units have a circular distribution ofl̂
and l̂ z.0 ( l̂•V.0). The other two have a hyperbolic dis
tribution and l̂ z,0. It follows from Eq. ~13! that each el-
ementary vortex contributes a unity toN54. A finite axial
field makes the cores of the Mermin-Ho vortices shrink b
cause the field favors the orientationd̂ ' ẑ at the borders of
the elementary vortices.

At H50 we find the energyF54.72V0.997 in the range
V50.005– 0.04. In the case of perfect locking (d̂[ l̂), the

FIG. 1. The phase diagram of vortices in the plane formed
the magnetic fieldH and the rotation velocityViH. The calculation
is done using the dimensionless units given below Eq.~20!. The
solid lines denote phase boundaries between different continu
vortices@locked vortices~LV1, LV3!, continuous unlocked vortex
~CUV!, and vortex sheet~VS!#. The LV2 should become the equ
librium locked vortex at very lowV&0.0005Vd . The dashed lines
denote the phase boundaries of the singular vortex~SV! against the
LV3 and the CUV. These are calculated using two values of the
energy parameter:c52.6 ~upper dashed line! and c53.1 ~lower
dashed line!. The real units forV and H are calculated usingVd

5120 rad/s andHd52.0 mT, which are estimated for the pressu
of 29 bars.
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FIG. 2. Locked vortex 1~LV1! in zero field.
In Figs. 2–6, the short lines denote the projecti

of the unit vectorl̂ to thex2y plane. For clarity
of figure, the heads of the arrows are omitte

The componentl̂ z is positive (l̂•V.0) in re-

gions where (l̂ x , l̂ y) has circular appearance, an

negative in regions where (l̂ x , l̂ y) is hyperbolic.
The dots denote equivalent points in the period
lattice. The LV1 has the square Bravais lattic
and the space groupP4/nb8m8.
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energy would be strictly linear inV. We find that this is only
an approximation because with increasingV the kinetic en-
ergy ~18! is reduced at the expense of the dipole energy~16!.
Our energy can be compared with Ref. 14, where a va
tional calculation gives a 30% and a model based on isola
Mermin-Ho vortices a 6% larger value.

A possible competitor to the LV1 structure is a hexago
lattice with N52n l52nd52.29 The ansatz form hasl̂iV at
the borders of the Wigner-Seitz cell. The space group is
ther P6m8m8 for a radial andP62828 for a circular distri-
bution of l̂ . In agreement with previous authors, we find th
this structure does not correspond to the minimum energ
any values ofV andH.14,25,28

~ii ! The locked vortex 3~LV3! has the same quantum
numbersN54 andn l5nd52 as LV1. The main difference
is that the lattice structure is primitive rectangular rather th
a square. The space group isP(28/b8)(28/a8)(2/n), or
shortlyPb8a8n. This structure has not been previously stu
ied in the literature.

The LV3 structure can be understood as a modification
the LV1 structure. When the cores of the Mermin-Ho vor
ces shrink with increasing magnetic field, there remain
large bending ofd̂' l̂ outside of the cores. The gradient e
ergy in this region can be reduced by rearranging
Mermin-Ho vortices. In LV3 the Mermin-Ho vortices form
infinite chains, as visible in Fig. 3. The chains, or she
consist of alternating circular and hyperbolic units. Outs
the sheets, thed̂' l̂ fields are nearly constant and parallel~or
antiparallel! to x.

In contrast to all other vortex transitions, the change
tween LV1 and LV3 seems to be of the second order. T
lattice ratiob/a grows continuously from unity at the trans
tion. At constantH, the b/a ratio grows with decreasingV
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and reaches 3.4 at our lowestV50.001 atH50.6. We fit
F5V(3.6210.37V20.36) at H50.3 in the range V
50.001– 0.008. Here all three parameters are free in the

It was demonstrated by Fujita and Ohmi that the LV1
unstable to a deformation.30 They found a structure wher
four Mermin-Ho vortices form a unit that is separated
some distance from the other units. We find that this str
ture has higher energy than the LV3.

~iii ! The locked vortex 2~LV2! ~Ref. 27! is defined by
N52 andn l5nd51. The space group isC1281, or shortly,
C28, whereC denotes the centering of the rectangular l
tice. The LV2 represent an alternative deformation of t
LV1 when the cores of the elementary vortices shrink
increasing magnetic field. Here the Mermin-Ho vortic
form pairs. Each pair consists of one circular and one hyp

bolic unit; see Fig. 4. Outside such a pair, thed̂' l̂ fields are
nearly constant and parallel tox. This special direction
breaks the hexagonal lattice symmetry, which otherw
could apply to such well separated vortices. Therefore
expect the lattice structure is centered rectangular. We
that the ratio of the two lattice constantsb/a'1.8. This is
less thanb/a5A6, which is obtained from the hexagon
lattice ~havingb/a5)! by scalingx andy according to the
anisotropy of the superfluid density (r'52r i).

The LV2 has only one point symmetry 2y8 , which means
a rotation byp around they axis combined with time inver-
sion. In previous3He literature the 28 symmetry was denoted
by w.6 The symmetry implies thatd̂y and l̂ y change signs
when x→2x in Fig. 4, and other components ofd̂ and l̂
remain unchanged. The symmetry transformation ofm̂ andn̂
depends on the specific choice of the phase factors.

The LV2 is doubly degenerate. The degenerate forms
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obtained from each other by exchanging the positions of
circular and hyperbolic Mermin-Ho vortices. Formally th
can be done by the operationmy8 . In the calculation we have
only studied the simplest case where all LV2 vortices ha
the same orientation. If both degenerate forms are pre
simultaneously, it would lead to a larger primitive cell or,
an extreme case, absence of periodicity.

We find the energy F5V@21.1411.37 ln(1/V
11/0.00412)# at H50.3 in the rangeV50.001– 0.008. In
this fit we kept the constant 1.37 multiplying the logarith
fixed. This constant arises from the flow far from the vort
cores, and it should become exact in the limitV→0. The
numerical value 1.37 is calculated in Ref. 31. The const
21.14 can be interpreted as the core energy of the vo
line. The constant 0.004 12 describes the angular velo

FIG. 3. Locked vortex 3 ~LV3! for H50.3Hd and V
50.006Vd . The notation is the same as in Fig. 2. The LV3 has
primitive rectangular Bravais lattice and the space groupPb8a8n.

The spacing of the plottedl̂ vectors is 1.08jd .
e

e
nt

nt
x

ty

where the cores of the vortices start to overlap. In the ra
of our calculation the LV2 has higher energy than LV
However, it is expected that the LV2 becomes absolut
stable in the limitV→0. Extrapolating the expressions of th
energies we can estimate that this takes place atV
&0.0005.

~iv! The continuous unlocked vortex~CUV! has N52,
n l51, and nd50.26–28,32–40The space group isC28. The
CUV is similar to the LV2 with respect toN, n l , and the
space group, see Fig. 5. The crucial difference compare

e

FIG. 4. Locked vortex 2 ~LV2! for H50.4Hd and V
50.002Vd . The notation is the same as in Fig. 2. The LV2 has
centered rectangular Bravais lattice and the space groupC28. The

spacing of the plottedl̂ vectors is 1.97jd .

FIG. 5. Continuous unlocked vortex~CUV! for H50.3Hd and
V50.02Vd . The notation is the same as in Fig. 2. Similar to LV
the CUV has the centered rectangular Bravais lattice and the s

groupC28. The spacing of plottedl̂ vectors is 0.59jd .
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the LV2 is thatnd vanishes. Vortices whered̂ and l̂ differ
essentially from each other (ndÞn l) are called ‘‘unlocked.’’

The principle in all unlocked vortices is to minimize th
field energy~17! in the first place, and therefore they a
more economical in large fieldsH*Hd than the locked

structures. In the CUV,d̂ is approximately constant and pa

allel to x everywhere. The region whered̂ and l̂ differ from
each other is called a ‘‘soft core.’’ Its size;jd is determined
by the balance of the kinetic energy ofv ~18! outside of the
soft core and the dipole energy~16! inside. ~Note that the

total gradient energy ofl̂ in the core is approximately inde
pendent of the size.!

The first suggestion for CUV had them8 symmetry.32

Similar to several previous calculations, we find that the8
symmetric form has a lower free energy at all values ofV
andH.33,36,38,40Them8 symmetric form seems to correspon
to a saddle point of the free energy.

Similar to the LV2, the CUV probably has the center
rectangular lattice, and we find thatb/a'2. The energy of
the CUV depends surprisingly much on the magnetic fie
At H50 we fit F5V@20.72811.37 ln(1/V11/0.219)# but
at H50.6 we find F5V@20.59111.37 ln(1/V
11/0.0894)#. The expressions are most accurate in the ra
V50.008– 0.03. Similar to the LV2, the value 1.37 is ke
fixed in fitting the two other parameters. The interpretat
of the other parameters is the same as for LV2. The curv
of the phase boundary between CUV and VS~Fig. 1! arises
from the field dependence of CUV, as VS seems to be ra
insensitive toH.

According to our earlier calculation, the transition b
tween the CUV and the LV2 takes place atH50.4 in the
limit V→0.23 This agrees with the present calculation. W
find the triple point between the LV1, the LV3, and the CU
at H50.29 andV50.014.

~v! The vortex sheet~VS! has N54, n l52, and
nd50.41,9,42The likely space group isPb8a8n, similar to the
LV3. Here N, n l , andnd are all the same as for the CU
except multiplication by 2. The crucial difference betwe
the VS and the CUV becomes evident when their primit
cells are stacked one after another: in the CUV the soft co
form a two-dimensional lattice of lines while in the VS the
form a series of equidistant planes parallel tox; see Fig. 6.
The d̂ vector is approximately constant and parallel tox̂
everywhere.

The close similarity of the CUV and the VS is illuminate
if one thinks bending a VS and closing it to a cylinder. T
CUV represents the smallest among such cylinders bec
it contains just one periodic unit of a vortex sheet. This
lationship is also evident in the ansatz forms given in
Appendix.

We have discussed above how the LV1 is transformed
the LV2 by pairing the Mermin-Ho units. Then the CU
evolved from the LV2 when the dipole locking was r
moved. After that the VS was developed by opening
cylindrical structure of the CUV. We can now return to th
starting point by noting that forcing dipole locking in the V
gives the structure of LV1 and LV3. The close similarity
the VS and the LV3 is evident from the symmetry grou
and from Figs. 2 and 3.
.
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The l̂ vector in the VS is approximately parallel tox
outside of the soft cores, but it has opposite directions on
two sides of the sheet. This implies that the primitive c
must contain~at least! two neighboring sheets. This is th
reason for the double size of the primitive cell compared
the simplest lattice structure of the CUV. The surface tens
of the sheet makes the primitive cell rather short in thex
direction. We note that the present definition ofb according
to the primitive rectangular Bravais lattice is twice as lar

FIG. 6. Vortex sheet~VS! for H50.2Hd andV50.03Vd . The
notation is the same as in Fig. 2. The VS has the primitive rec
gular Bravais lattice and the space groupPb8a8n. The primitive
cell contains two vortex sheets parallel tox. The arrows denote the

opposite directions ofl̂ on different sides of the sheets. The spaci

of plotted l̂ vectors is 0.39jd .
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as in Refs. 9, 41, and 42, whereb denotes the distance be
tween neighboring sheets. Because the sheets are far
each other, the sliding of the sheets relative to each o
probably leads to a negligible change in the energy.

The properties of the VS depend very weakly on the m
netic field in the studied regionH<0.6. The results of our
calculations can be represented byb/a51.26V20.255 andF
51.35V0.664 for V50.016– 0.07. Both these quantities a
slightly larger than obtained from the twist-section mode9

which givesb/a5 (1/p) (18/V)1/3 andF5 1
2 (18V2)1/3. The

uniform winding model is a slightly more complicated vari
tional ansatz.9,42 It gives an upper bound for the energy th
is 10% higher atV50.016 and 3% higher atV50.07. In the
limit H@1 we find the transition between CUV and VS
V50.022.

An interesting feature in the phase diagram is that b
the CUV and the VS are stable also in zero field. Although
has not been stated explicitly, the crossing of the energie
the LV1 and the CUV atH50 appears also in previou
literature. Comparison of the energies given in Refs. 14
40, for example, gives it atV50.023. It was calculated in
Ref. 25 that there is a transition from the LV1 to a singulaẑ
vortex whenV50.11. This prediction has to be revised b
cause both the CUV and the VS have a much lower energ
this rotation velocity. If there is a transition to theẑ vortex, it
takes place at a much higherV than expected in Ref. 25.

The energy difference of the CUV and the VS relative
the LV1 at H50 arises from competition of the dipole en

ergy and the gradient energy ofd̂. The LV1 is stable at a low
V because the dipole energy is minimized in the first pla

and the gradient energy associated withd̂ is not important.
With increasingV the gradient energy becomes larger.
the transition point, it becomes more economic to arrangd̂
approximately constant although it means increased dip
energy in the soft core of the CUV or the VS. Based
purely dimensional considerations, this transition was
pected atV;1 (V;Vd'120 rad/s in real units!.14 How-
ever, the present calculation gives the transition between
CUV and the LV1 atV50.019, which is almost two order
of magnitude smaller than the naive expectation.

~vi! The singular vortex~SV! has N51 and the space
group C1m81, or shortlyCm8.32,34,40No other vortex con-
sidered here hasN51 because it is not possible for the co
tinuous vortices as a result of Eq.~14!. TheV dependence o
the energy can be writtenF5V@c(H,T)20.70 lnV# at
small V. Here the factor 0.70 arises from the flow field f
from the vortex line.31 This factor is approximately one ha
of the value for aN52 vortex line. Therefore the singula
vortex is favored over the CUV at a lowV.

Based on topological arguments alone, the structure of
singular vortex could be very simple. For example,m̂1 in̂
5exp(if)( ŷ1 iẑ) andd̂5 l̂ everywhere except at the singul
‘‘hard core,’’ where these quantities are not defined. Heref
is the azimuthal angle. However, energetics prefers a m
complicated structure that has a soft core in addition to
hard core.32 This is because a structure with radiall̂ and
constantm̂5 ẑ has lower energy than the simple vortex. Ou
side of the soft core,d̂ and l̂ are both nearly parallel tox.
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Similar to the LV2 and the CUV, this gives rise to a center
rectangular lattice.

The hydrodynamic approximation used for the calculat
of the continuous vortices is insufficient in the hard core
the SV. Therefore we have not calculated the funct
c(H,T) in the energyF. Contrary to the continuous vortices
there is also a temperature dependencec(H,T)'c(H)
10.7 ln(12T/Tc) because the size of the hard core depe
on T. In order to get an idea of the complete phase diagr
the phase boundary of the SV is included in Fig. 1~dashed
lines! by two arbitrarily chosen constant values ofc(H,T).

The core structure of the SV can in principle be calcula
using the Ginzburg-Landau theory, but there are two di
culties. First, this theory introduces additional paramet
~such as the coefficients of the five energy terms that ar
the fourth order in the order-parameter matrix! whose values
are not well known. So the accuracy of the results would
less than in the hydrodynamic theory of continuous vortic
Second, the numerical calculation is difficult because
length scales associated with the soft (jd'10mm) and hard
cores ('10 nm) are very different.

We have made numerical simulations with Ginzbur
Landau theory where the difference in the soft- and ha
core scales is arbitrarily reduced. We cannot expect
quantitative results from such a calculation, but we belie
that the following qualitative results are valid independen
of our approximation. The structure around the hard core

6 l̂5 ŷ sinf1cosf~ x̂ cosh1 ẑsinh!, ~24!

whereh is a constant angle, see Fig. 7 for illustration. T
original suggestion32 hash5p/2 whereas the minimum en
ergy of the structure~24! prefersh50.6 The true structure is
likely to fall between these limits becauseh50 would imply
a large gradient energy~18! in matching the hard core~24!

with the constantl̂ outside of the soft core.
There is no circulation around the hard core. Thus all

circulation arises from the soft core, which is qualitative
described by the numbersn l51/2 andnd50. The centers of
the hard and soft cores are displaced from each other in tx
direction. The vortex has symmetrymy8 , which in previous
3He literature was calledv. In terms of the vectors this
means thatdy and l y change signs wheny→2y, and other
components ofd̂ and l̂ remain unchanged. The SV is doub
degenerate. The two forms are obtained from each othe
the symmetry operation 2y8 .

FIG. 7. Sketch of the core of the singular vortex~SV!. The

arrows denotel̂ and d̂. The soft core, whered̂ and l̂ differ consid-
erably, appears as shaded.
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All the discussion above was for the case where the fi
H is parallel toV. As far as we know, other directions a
considered only for the CUV~Refs. 39 and 35! and the VS.42

Generally, it can be expected that the effect of field direct
is not large in unlocked vortices, whered̂ is approximately
constant, and thusf h ~17! can equally be minimized for ar
bitrary direction ofH.

VI. COMPARISON WITH EXPERIMENTS

In order to compare the calculated phase diagram w
measurements, one needs to know how to prepare the e
librium state in experiments. This is not simple because
energy barriers separating the different vortex types are g
erally so large that it is difficult to induce any transitions.1 So
the decay of a metastable vortex type to the equilibrium t
may be so slow that it cannot be observed. Also, if the ro
tion is started in the superfluid state, the vortex type t
nucleates is generally not the equilibrium one. For exam
only continuous vortices are nucleated if the rotation
started in the superfluid state; no singular vortex has b
observed by this method.

The only exception to the above seems to be the reg
very near the superfluid transition temperatureTc . There the
energy barriers separating the different vortex types
smallest. A practical way to perform the experiment is
cool slowly from the normal state (T.Tc) to the superfluid
state at constantV and H. This procedure is expected t
yield a state near the equilibrium one. It is important to
member, however, that the details of the transition in
presence of a thermal gradient and a magnetic field ma
rather complicated.1 Another limitation of the experiments i
that they do not resolve the difference between the th
types of the LV.

Also needed for the comparison are the values ofVd and
Hd . We estimateVd'120 rad/s, andHd'2.0 mT at 29 bars
pressure. These are based on a weak-coupling analysis
rected by the enhancement of the energy gap accordin
Ref. 43. In addition, we have used the measured shift of
transverse NMR resonance frequency in theA ~Ref. 44! or
theB phase,45 both of which give essentially the same resu
The gap enhancement, which in Ref. 43 is given for theB
phase as a function of the specific-heat jumpDCB , is applied
to theA phase by replacingDCB by 6/5DCA .

The comparison of the experimental and theoretical ph
diagrams is shown in Fig. 3 of Ref. 1. The qualitative agr
ment is good. A slight difference is that the vortex shee
not observed in the experiments at the maximal angular
locity 3 rad/s although according to the present calculatio
should show up above 2.6 rad/s, assumingVd5120 rad/s.
Possible explanations are thatVd is larger than we estimate
or the cooling throughTc does not accurately produce th
equilibrium state.

The six vortex types discussed above seem to be ab
explain all the experiments that have been made in rota
bulk 3He-A. We comment here on one controversial expe
ment. Torizukaet al.46 observe a transition in the rotatin
state atV53 rad/s when the rotation velocity was varied
constantH50. The original interpretation in the same refe
ence postulated a layer of vortices on the container wall.
consider this interpretation unlikely because such a laye
ld
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probably unstable, as pointed out in Ref. 47. The pres
calculation now gives the possibility that the transition cou
be from the LV1 to either the CUV or the VS. Unfortunatel
the collected experimental data does not seem sufficien
identify the structure at largeV.47,28

VII. CONCLUSION

We have presented numerical calculations of the vor
structures in the Ginzburg-Landau region, and constructe
phase diagram in theH2V plane. There is in principle no
difficulty in extending these calculations to lower tempe
tures. Although the phase diagram is not accessible exp
mentally at low temperatures, the calculation of the vor
structure would form the basis for a calculation of the NM
frequency shifts, which have been measured accurately.

Our search of vortex types was based on previous sug
tions. There may well be structures which could not ha
evolved from the initial guesses we have used. In particu
only the simplest periodic structures were tested. From
experimental point of view, it seems that there is at pres
no need to introduce new types of vortices that are stabl
bulk 3He-A. That may change, however, when new regio
are studied and more accurate measurements are don
particular, low temperatures, high rotation velocities, hi
magnetic fields, the neighborhood of theA1 phase, and re-
stricted geometries could be studied. The studies could
be extended to metastable structures. For example, the
was identified from its metastable modification in high fie
which more appropriately should be classified as a differ
type of vortex.1
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APPENDIX

We give approximate expressions for the order param
in different vortex structures. These can be used as in
guesses to produce the stable vortices discussed in Sec

All structures can be simply represented using Eu
angles~a, b, g! but choosingx as the polar direction:

l̂5 x̂ cosb1sinb~ ŷ cosa1 ẑsina!, ~A1!

m̂1 in̂5@2 x̂ sinb1cosb~ ŷ cosa1 ẑsina!

1 i~2 ŷ sina1 ẑcosa!#exp~2 ig!. ~A2!

In these coordinates the superfluid velocity~12! is

ṽs52“g2cosb“a. ~A3!

Depending on the vortex type, we present the Euler angle
functions of either rectangular~x, y, z! or cylindrical coordi-
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nates~r , f, z!. Unless explicitly stated otherwise, the ans
forms have the same symmetries as the vortices that
represent.

The VS has d̂5 x̂ and a52g5p/222px sgn(y)/a,
where sgn(y) denotes the sign ofy. b is a monotonic func-
tion of y so that b(2b/2)52p, b(0)50, and b(b/2)
5p. Especially at low velocities this function is strong
nonlinear so that all the change ofb takes place in narrow
regions~thickness;1! at the two vortex sheets, which a
located aty56b/4. This form of the order parameter is fo
a gauge wherevn522Vyx̂. The transformation to the mor
usual gaugevn5V3r is obtained by including an extra fac
tor exp(iVxy) multiplying the right-hand side of Eq.~A2!.
The lattice constants are constrained byab54p/V ~6!.

An approximation to LV1 and LV3 is the same as for V
except thatd̂5 l̂ . The best guess for LV1 corresponds toa
f

tz
hey

y

e
r

-

S

5b and nearly linearb(y). In spite of these choices, thi
Ansatz has less symmetry than the converged solution
LV1. A symmetric but more complicated Ansatz was su
gested in Ref. 14. A third alternative is to glue together A
satze of four Mermin-Ho vortices.

The CUV hasd̂5 x̂ and a52g5f. b is a monotonic
function of the radiusr , which hasb(0)50 andb(r )'p
for r .r 0 . Here the radiusr 0 is of the order of a few units of
length (jd).

The LV2 is similar to CUV except thatd̂5 l̂ . r 0 is of the
order ofH21 in dimensionless units. The SV can be gen

ated byd̂5 x̂, g50, anda5p/21f. b is a monotonic func-
tion of r , which hasb(0)5p/2 and b(r )'p for r .r 0 .
Here r 0 is approximately unity. This Ansatz form has mo
symmetry than is present in a converged solution.
-

i,

.

ff,

p.

k,

V.
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36H.K. Seppa¨lä, P.J. Hakonen, M. Krusius, T. Ohmi, M.M. Salo

maa, J.T. Simola, and G.E. Volovik, Phys. Rev. Lett.52, 1802
~1984!.

37P.J. Hakonen, M. Krusius, and H.K. Seppa¨lä, J. Low Temp. Phys.
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