PHYSICAL REVIEW B VOLUME 60, NUMBER 22 1 DECEMBER 1999-I

Periodic vortex structures in superfluid *He-A

J. M. Karimi" and E. V. Thuneberg
Low Temperature Laboratory, Helsinki University of Technology, 02150 Espoo, Finland
(Received 16 February 1999

We discuss the general properties of periodic vortex arrangements in rotating superfluids. The different
possible structures are classified according to the symmetry space groups and the circulation number. We
calculate numerically several types of vortex structures in superiidA. The calculations are done in the
Ginzburg-Landau region, but the method is applicable at all temperatures. A phase diagram of vortices is
constructed in the plane formed by the magnetic field and the rotation velocity. The characteristics of the six
equilibrium vortex solutions are discussed. The vortex sheet forms the equilibrium state of réitaifgat
rotation velocities exceeding 2.6 rad/s. The results are in qualitative agreement with experiments.
[S0163-182609)00741-9

A superfluid cannot rotate homogeneously. Instead, quan- At the microscopic level, the fluid has the effective
tized vortex lines are present in the equilibrium rotating stateHamiltonian Heg=Ho—Q-J. Here Ho=3;(p?/2m)+V is
of superfluid*He. In superfluid®He the rotating states are the Hamiltonian in a nonrotating system, which consists of a
more diverse. It has been discussed recently by Raras" _kinetic energy term and an interaction energy tefmThe
that four different types of vortices have been found exXperigngular momentuml=3,[(r;Xp;—p;Xr;)+S] consists

mentally in the .superflui_d\ phase oﬁHe. In this Ppaper we OJ an orbital and a spin part. We can writk in the form
present theoretical studies concerning the vortices observe

in SHe-A.
Some of the theoretical results that we presented in Refs. 1 1
1 and 2 were found to be incorrect in further calculations. Heff:z ﬁ(pi—mVn,i)erV—Z 9'3—2 imVﬁ,i,
These errors are corrected here. As a consequence, the ' ' '
; . . . 1)
present phase diagram of vortices differs from the one in
Refs. 1 and 2. In particular, there appears a different vortex
structure, the locked vortex 3, but also the locations of othewherev, ;=QXr; is the “normal fluid” velocity at the lo-
phase boundaries are changed. cation of the particlé. The last term is the centrifugal en-
For introduction to superfluidHe (Refs. 3 and $and its ~ ergy. It causes the pressure to increase with increasing dis-
vorticeS~%2we refer to various review articles. Although not tance from the rotation axis. In principle, this term prohibits
introductory, this paper intends to be a complete expositiora strictly periodic vortex arrangement. However, it is very
of what is needed for understanding the equilibrium vortexsmall at experimentally relevant rotation velocities and con-
structures in bulk superfluidHe-A. tainer sizes, so that we can safely neglect it. We will neglect
We start in Sec. | with the formulation of the vortex prob- also the second-last term because it vanishedHa (S
lem, which is general enough for all superfluids and can be=0), and is very small ir'He, where it corresponds to a
generalized also to superconductors. This gives a generalagnetic field of~0.1uT at a typical() =1 rad/s. Because
classification of vortex states based on space-group symméhe rest of the paper is based on the redudgg, we write it
try and circulation number. The classification is continued inagain:
Sec. |l using properties specific fitle-A. The calculations
of the vortex structures are based on the hydrostatic theory, 1
which is discussed in Sec. lll, and the calculational method D N N2
is described in Sec. IV. Detailed description of the different He“_Ei 2m(p' MV, )=+ V. @
vortex types is given in Sec. V. The correspondence with

experiments is discussed in Sec. VI.
We will classify the rotating states according to their sym-

metries. For that purpose we first list all the symmetries of
I. GENERAL VORTEX PROBLEM the Hamiltonian(2). They are(i) arbitrary translationsii)
arbitrary rotations aroun€ (e,), (iii) the combination (2)

Let us consider an uncharged fldid practice liquid®*He,  of time inversion () and rotation by the angle (2) around
%He, or a quantum gasn a container rotating at angular an axis perpendicular t62, (iv) the reflection (n,) in the
velocity 2. We will neglect all complications arising from plane perpendicular t6, (v) the combination ifh,) of time
the finite size of the container. Although we will not discussinversion and reflection in a plane containifyy and(vi) all
the detailed correspondence, the analysis in this section ombinations of these operations. For each operation we
also applicable to a charged flu{duperconductgorwhen Q have indicated a symbol in parentheses. They follow the in-
is replaced by the averaged magnetic fiBld ternational notation of crystallograptwith a prime added
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to denote time inversioht Throughout this paper we use a operations it appears in combinations withy and 2., and
rectangular coordinate systenyz where thez axis is paral-  only with them. Thus, by simply ignoring the time inversion,
lel to €. one can construct a one-to-one mapping from symmetry op-
It is not completely obvious that the translations perpen-erations of a rotating fluid into symmetry operations that do
dicular toQ are symmetry operations &f. (2). This prob-  not contain the time inversiolf. Thus it is sufficient to limit
lem is equivalent to the case of electrons in uniform mag+to the 230 crystallographic space groups, which do not in-
netic field!? and the corresponding problem for superfluid clude the time-inversion operation. Second, the number of
order parameter is discussed below. Another noteworthy feaelevant groups is further reduced because a rotation axis
ture is that bothm, and 2, appear in combination with the higher than 2 is allowed in the direction & only. This
time inversion. Otherwise these operations would not preimplies that cubic groups are not acceptable. The remaining
serve the direction of the axial vectér. 194 space groups each give rise to 1, 2, or 3 different sym-
Generally, the physical system either has all the symmemetry groups of rotating fluids. This is because some of the
tries of the Hamiltonian, or alternatively, one or more of thecrystal groups can be oriented in different ways relative to
symmetries are broken. An ordinary fluid would preserve allthe € direction.
the symmetries of the rotating Hamiltoni&®). This is not What has been said above about symmetry does not di-
the case for a superfluid. We will show below that at leastrectly apply to the order paramet&r). The reason is that
part of the translation symmetry is broken in the superfluidthis complex quantity has phagf which is not an observ-
state wher(2+#0. able quantity. Therefore, instead of being strictly periodic,
The fundamental property of superfluidity is that oneA(r) is only quasiperiodic:
guantum state becomes macroscopically occupied. This con- )
densate is described by an order paramate). The order A(r +a) =exdigy(r) JA(r). ()

parameter can be a scalar, 5‘_§H?' or & more complicated ere o, are three linearly independent translation vectors
object. We associate a velocity fieldto th(_e particles in the k=1, 2, and 3 and ¢(r) are the corresponding phase
cond(_ansatg. There is no general expression for the SUDe_fﬂUéﬂi]ifts, Similar phase factors occur also in rotations, reflec-
velocity vs in terms of A(r). Also, several different veloci- {ions and time inversions. The quantity that has to be peri-
tiesvs can exist, for example, one for spin-up and another forfygic in Jattice translations is.—v,,. This gives a constraint
spin-down particles. Irrespective of the precise definition, weg, the phase shiftgs,(r). Using the gauge invariance for
only need to know howy changes in a gauge transforma- ) = S

tion. We require that the velocity associated with the order’s’ O"¢ f'”d37 $i(r) = QX a. In order to s_@phfy the for-
parameter edpa(r)JAQ(r) is vs=(ﬁ/M)V¢(r)+vg0), mulas, we will repeat.eQIy use the nota‘tlld’m:(M/ﬁ)Q.
wherev") is the velocity corresponding t(%(r). HereM The gradient ofy, is trivially integrated t

is a mass that depends on the particular system. It equals the
atomic mass fofHe (M =m,) and twice the atomic mass for
*He (M =2ms,). where C, are constants of integration. An implicit require-

It is now obvious tha#\(r) cannot be constant and also a ment here is that is defined on the path of integration. We
phase factor eXp¢(r) ] times a constant is not allowed. The assume that the regions whergis undefined are at most
reason is that the kinetic energy term in the Hamiltor@n  one-dimensional. In this case it seems possible to choose the
would grow faster than linearly with the volume of the sys-unit cell of the translation lattice so that is well defined
tem becausevs would be constrained byvs-dr=0 and along all its edges.
could not imitatev,= QXr on a large scale. An important requirement is that the lattice-translation

Our basic assumption is that the equilibrium structure ofrule (3) is consistent with a uniquely defing&(r). We ex-
the rotating superfluid is periodic in space. It follows from pressA(r+a+a;) as a function ofA(r) using the transla-
above that the minimum period has to be finite at least in on@ion rule twice. The result should be independent of the order
direction, which is not parallel t62. We do not make here in which the two translations bg, and a are done. This
any assumption whether the translation symmetry is discretgives the condition
or continuous in the two other linearly independent direc-
tions. ~
Crystalline materials are classified according to their sym- Q-5 xa= Wzk €ijkNi. )
metry into 1651 magnetic space groups. The most effective
way to label these is the international crystallographicwhereN are integers ane the fully antisymmetric tensor.
notation'®!! We use the same notation to label the space The lattice translation vectogg can be chosen in several
groups of rotating superfluids. This is possible because codifferent ways. Next we want to redefine the &at; so that
responding to every rotating state there exists at least oniéis optimal for further analysis. The neas can always be
space group of a crystal. The reasons for this are(théhe  chosen parallel t€2. Namely, settingag= 3N, a2, it fol-
symmetries of the rotating-fluid problem listed above are dows from Eq.(5) thatazx Q=0. Applying Eq.(5) to a new
subgroup of those possible for a crystal, afid no new linearly independent sdfa,}, we find thatN,;=N,=0 but
symmetry groups appear even if one or two of the translatioN;+# 0. The nonzero integer value df; implies that a con-
symmetries in a rotating superfluid were continuous. tinuous translation symmetry can exist only in the direction

Not all the 1651 magnetic space groups are relevant foof 2. We can therefore additionally require thet and a,
rotating fluids. First, the time inversion is present in a rotat-are primitive translation vectors, i.e., they correspond to the
ing superfluid in a trivial way. In the generating symmetry minimum (positive) value of Q-a; X a,.

(1) =Cy+Dxa-r, (4
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We define the circulation numbeét as equal taN; (5) (eo/m)(2'/m") arises from the core of each vortex. When

corresponding to primitivey, anday: these vortices form a lattice, the simplest possible structures
haveN=1, and the space groups &#ém’'m’ andCm’'m’2,
0. a; X a,=7N. (6) respectively. The lattice breaks the rotating symmetry of the

A-phase-core vortex to sixfold, and the twofold rotation sym-
Similar to the symmetry groups, the different valuedNofan  metry of the double-core vortex breaks the hexagonal lattice
be used to classify the rotating statdsis called the circu- symmetry to centered rectangular. Both these effects are in
lation number because it is related to the circulation of thepractice very weak because the core sizes of the vortices in

superfluid velocity around a primitive cell He-B are much smaller than the distance between vortices.
The symmetry classification of vortices has previously

1 ~ been made only for point groups. This means that all the

N:ﬂ primitive Ce”dr-vs, (7 translations in the space group are ignored. Although this

does not describe the whole lattice symmetry, there are sev-
where V.= (M/%)vs. We note that the limitation to the eral physical properties for which the point group gives a
boundary of the primitive cell in E7) is crucial in3He-A,  sufficient descriptior:*® We also comment on the notation.
where the circulation is not generally quantized. The symmetries 1mJ, 2, often appear in dealing with vor-

Let us consider the case that there is a continuous trangizes of 3He. Here 1is the inversion and the subindexes in
lation symmetry alond2. This is an important case because ' and % denote that they refer to the same axis. These
all known vortex types belong to this category. However, Y

very few general properties can be listed in addition to thos@peratloqs give rise to five symmetry classes 1”1’ 2",
ones already mentioned above. The main simplification i&"d 2/m’. Here the first one contains only the unit element,
that the primitive translation vectoes anda, can be chosen the three middle ones have each one symmetry operation 1
perpendicular td2. These generate a two dimensional Bra-my, or 2, respectively, and the last one has all the three
vais lattice. Thus these rotating states can be classified int®ecause two of them imply the thjcdin Ref. 6, the same
five categories according to the symmetry of the two-groups were labeled by lettees u, v, w, anduvw, respec-
dimensional (2D) latticel® oblique, square, hexagonal, tively. Still another notation is due to Sahities, and this
primitive rectangular, and centered rectangular. The numberas used to denote the same classes in Ref. 18. Contrary to
of possible space groups is considerably larger. In particulaithe international crystallographic symbols, these other nota-
the 17 two-dimensional space groups listed in Ref. 10 are ndions do not allow a meaningful generalization to space
sufficient for rotating states because they lack the operatiogroups.

m,. Let us study the meaning of the consta@isin Eq. (4).

We illustrate the classification of vortices with known ex- We will show thatC, and C, can be put to zero without
ample cases. For a scalar order paramélide) the Bravais losing generality. We consider an arbitrary order parameter
lattice is hexagonal anM= 1.5 It has the symmetry group field A(r). We construct from it another fiel&\(r) by
P(6/m)(2'/m’)(2'/m’), or shortly P6/mm'm’. Generally, doing a translation by an arbitrary vectoras follows:
the international symbols consist of a letter followed by three
symbol setg? The letter shows the basis of the lattice, for
example,P denotes a primitive an@ a centered unit cell. A(r)=exm(~2>< b-r)AQ(r—b). (8)

The following three symbol sets describe symmetries with

respect to three different inequivalent axes, respectively. The = ) .
first 6/m indicates that there is a sixfold rotation symmetry | NiS field obviously has the same energy as the original one
and a reflection symmetm, both with respect to the same because the phase factor takes care that the counterflow ve-

; - . . — 0
axis. Here the sixfold axis has to be parallel®and thus 0CIy V=Vs—V, is unchanged: v(r)=v(r—b). By

the reflection plane is perpendicular €. The second set straightforward calculation one can verify that the coeffi-
2'/m’ describes a 2 symmetry and am’ symmetry with cientsC, andC, for the new field are related to the old ones

respect to an axis perpendicular @ Finally, the third set by C=C{®¥+20xb-a,. Choosingb appropriately, one
2'/m’ describes the same symmetries around the third incan putC, andC, to zero. Thus the significance @f; and
equivalent axis of the hexagonal lattice. C, is that their values fix the position of the vortex solution
The relative orientation of the space group dds usu-  relative to the rotation center.
ally revealed by the primes because the primed axes are al- The coefficientC; in Eq. (4) is the phase shift in transla-
ways perpendicular t€2. For some structure€C12'1, for  tions parallel to€2. It is related to the superfluid velocity
example pure symmetry considerations are insufficient to fix parallel to€2. It often vanishes for symmetry reasons, but it
the direction ofQ2. However, as proved below E¢p), theQ2  can be nonzero for vortices of low symmetry. For example,
axis always coincides with one direction of translation sym-consider a vortex with the symmetry groipl2'l and a
metry. This is not a consequence of symmetry but arisesontinuous translation symmetry in taelirection. The only
from the divergent rigidity of the vortex lattice against tilt point symmetry operation 2leaves thez component of the
deformation at long wavelengthg. current unchanged. Thus such a vortex generally has a non-
As another example, we consider vorticesSlde-B. Two  zero net superfluid current in the direction even though
types of fully stable vortices are known. An isolatéephase v4,=0. Depending on the boundary conditionszat =,
core vortex has symmetry clagsn’, and a double-core vor- this current may be compensated by a current arising from a
tex 2m'm’." Here the symmetry breaking relative to nonzerdv,=Cs/as.
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Il. SUPERFLUID °*He-A =—T In[Trexp(—Hegx/T)]. This is a functional ofA(r) be-

The previous section showed that the vortex structures if2US€ the traceTr) is restricted to states h?vmg a given
any superfluid can be classified according to the circulatiof@CrOSCOPICA(r). Various approximations foF(A) are

number and the space group. In this section we continue thzévailable: quasiclassical Weak-cou_pling and_weak-coupling-
classification using properties specific ¥de-A plus models, and phenomenological theories such as the

The order parameter of bulk superfiitle-A is a com- Ginzburg-Landau theory and the hydrodynamic theory.
plex 3x 3 matrix of the forni* The basic assumption of the hydrodynamic theory is that

the deviation of the order parameiﬁrfrom the bulk form(9)

A=Ad(m+in). (9) s small. For this we have to require two conditiofig.The
magnetic fieldH should not be too large. In practice this
Hered, i, andf are unit vectors anch L A. The ampli- condition excludes only a small region near the superfluid

tudeA is a temperature- and pressure-dependent constant. {fgnsition temperaturd., where theA phase is distorted
is conventional to defind=rmx A, so thatrh, A, andi form  towards theA; phasé’ (i) The vectorsl(r), m(r), andf(r)
an orthonormal set. are sufficiently slowly varying functions of the location

As a first step, the vortices are classified to “continuous” This implies that the hydrodynamic approach can be used for
and “singular.” The former alternative means that the bulk continuous vortices, but it is insufficient for singular ones.
form (9) with constantA forms a good approximation to the Because of the slow vaAriation, only terms up to the second
order parameter everywhere in the primitive cell. The latterorder in the gradients ofl, m, and i are needed in the
alternative means that this is not the case. This classificatioanergy functional. The functional can be written as
may not be precise in general, but there is no difficulty for
the six vortex types to be considered here: only the “singular
vortex” is singular, the other four are continuous.

We note that only singular vortices exist for a scafar
because the amplitude &f has to vanish somewhere within Here the volumé/ of integration is assumed to consist of an
the primitive cell of N=1. Continuous vortices are possible (arbitrary integral number of unit cells. The magnetic
in 3He-A because nonzero circulation can be generated blipole-dipole interactiorf is given by
appropriateh(r) andi(r) fields.

1
F=vad3r(fd+fh+fg). (15)

. .pu 1 " .
The continuous structures can be further classified by the fy= 7 gq dxT12. (16)
numbers 2
1 . ad ad The magnetic anisotropy term is
Vd:_j dx dyd: —X—, (10
4 primitive cell ax ay 1
.. fhzzgh(d' H)2, 17
1 dx dyl AV 11
77 ) primitve el XAYE ox ay’ 1D and the gradient energy
These num_bers are integgrs becaﬂsandlf are periodic.. _ 2fg:plvz—{—(p”—pl)(’l\.v)z—{—zcv.VXT
They describe how many times the mapping from the primi- L . . . .
tive cell to the vectorsl and covers the unit spheres. —2Co(I-V)(I- VXD + KV - D)2+ K(1- V x1)?

The numbers\ and v, are not independent. This follows N ~2 S A2
from the definition of the superfluid velocity, + KX (VXD)[*+Ks|(I- V)d|

%S mvn. 12 +K6%‘, [(TxV)d;]2. (18)

[As above, we us&=(2ms/#)v, wherems is the mass of a The gradient term includes also the kinetic energy, which

3He atom] This implies the Mermin-Ho relatioft’ is a function of the counterflow velocity=vs—v,. It fol-
lows from the structure of the functional that(H,(2) of

21 the equilibrium state is a nondecreasing function of ldth
VX"S:_Z Eijkli VI X Vi, (13 and Q. The zero of the energy is chosen so tRat(H,0)
2 1jk -0
which together with Eqs(7) and (11) gives It should be noted that, andi=rhx fi are not completely

independent variables but are constrained by the Mermin-Ho
relation(13). In order to avoid such complicated constraints,

we used, m, andf as the basic variables. With these vari-
ables the constraints are simpldr:rh, andf have to be unit
For a quantitative determination of the vortex structuresvectors and® L. The energy functional15) can be ex-

we use an energy function&l(A). In principle, it can be pressed as a function df rh, andf. Only the gradient terms
calculated from the effective Hamiltoniaf?) as F(A) require some calculation, and we get

N=2v,. (14)

lIl. HYDROSTATIC THEORY
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2fg=(FH+2K7)Z (m~Diﬁ)2+(KS+K7)Ei [(rﬁ-Dmi)2+(ﬁ~Dﬁi)Z]+2KSEi (th- Drin)A- DAy,
+(Kt+K7)2i [(ﬁ.Drni)2+(rﬁ.Dﬁi)z]—thEi (A- D) M- DA+ (Ky+ C— Co+ K4)[(D-m)2+(D-A)?]
+2(Kb—60+K7)§i: [(D.m)r‘niﬁ.Dﬁi—(D.ﬁ)mim-Dﬁi]Jr(Eo—E)i}k) [(D;f) Dy + (D;f) Dy ]

—K@ [(Dimk>2+<Diﬁk)2]+K5§ (vi6|k>2+<r<6—r<5>2i [(fh-Vd)2+(A-Vd;)?]. (19

Here we use gauge-invariant derivativegy, = Vi, +V,f;

and Diy; = VA;— 7,/ . We have also used the notaticis +Ei ('”Aﬂ-Vai)zﬂLEi (h-vd;)? +2% (Vidy)?
=(2m3/h)Qxr, p=(A/2m3)°p, C=(fi/2mg)C, and K
=p. —p|—Ks— K+ Kp—2Cy. +4(2p—1)mXn-Q, (20)

One can transform the gradient enefd®) by partial in-
tegration. For example [d3r (Vi) VM= [d3r (V-m)?
plus a surface term. For the present purposes such partialherev,=QXr. We have used “dipole units” for length
integrations can be done without paying attention to the surt&y=(%/2mg)\p;/gql, field (Hq=\gq/gn), angular velocity
face terms. The reasons are tligtthe surface terms can (Qg4= ﬁ/gmsgg), and energy densitygy).
affect the equilibrium configuration only near surfaces, if |t should be noted that the functioné20) is based on
anywhere, and(ii) although the local energy density iS pyrely phenomenological considerations. These leave open
changed in the partial integration, all the energies of vortlce%my two dimensionless parameteysnd 7. (In the notation
are unchanged because of the periodic boundary conditiongf Ref. 22,y=K /K; and =K< /K+.) They can be calcu-

de::]oe(;glr!ngrnas(:'r(;?é ?ﬁaetr%ﬂrg():gcwlg?gQa?or‘r'lvgthhoedr?s'r}e‘;;.blIated in the quasiclassical theory. In the weak-coupling ap-
u vatl : D Sroximation vy=3 and »=1. A more complicated weak-

whenever the hydrodynamic approximation is valid. In par_coupling-plus model giveg~3.1, buty is unchanged? We

ticular, the theory applies to all temperatuiles T, except a ”
y app P N P have made a few tests that our results are not sensitive to the

small region neafl; (due to theA; phasé and another re- _ . .
gion aroundT=0. However, the present numerical calcula- value of y, so we will use the weak-coupling values in the
| following.

tions are made in the Ginzburg-LandésL) region!’ This
means temperatures only nedy (T,—T<T.), but this
range is still wider than the one that has to be excluded

because of distortion towards thg phase. In this region the IV. NUMERICAL CALCULATION

GL theory is more general than the hydrodynamic one. If . . .
one makes the hydrodynamic approximation in the For numerical computation the energy functio(20) was

GL theory, one arrives at the set of equations presentegiscretized on a lattice. W_e assume that there i_s no depen-
above, but with certain restrictions on the coefficients.2¢NC¢€ O, SO that_a two_-d|n_1en5|onal square Iattqu,@k)
Th e v+ 1) = Cly—2 1) = Co/(v—1)= K is sufficient. The first thing in the numerical program is to
_ Key: ire/p“: '2’/%:(&’ I ); 1)(7The757()a_coonc§i%/ions) _imSIy specify the magnetic field, the rotation velociy the circu-
thatt all '?eryms t%at arg hiy her .than second ordemiror A lation numbemM and the Bravais lattice. For rectangular lat-
disappear from the gradignt enerth9) tices one needs to specify the ralita, wherea denotes the
Collecting all simplifications and reducing units, we can Iength of the shc_)rtest possible P“m'“"? ve.ctorz dnis the
write the energy terms as lattice constant in the perpendicular direction in the rectan-
gular cell. No oblique lattices were found. The area of the
1 primitive cell was then determined from E@). For simplic-
fg==[(d-m)2+(d-H)?] ity of boundary conditions, it was useful to choose the lattice
2 constant of the calculational lattice commensurate with the
1 primitive cell of the vortex lattice. The last preparatory step
fh=§(a- H)2, was to give an initial guess for the fields rh, andf. Then
the valuesa(xj i), M(X;,yi), andi(x;,y,) were changed
) ) iteratively. At each lattice pointq,yy) in the primitive cell,
4fg:% [Vifit (Va)ingd +%: [Vife= (vn)imy] a torque acting on the spin vectod)(and on the orbital
vectors (h andi) was calculated, and the vectors were ro-

tated proportionally to the torqfé.The proportionality co-

—_— . 2 . A 2 . A— . 3 2 . . . .
Hy= D] (V- )7+ (V- A=V, ) efficient was chosen experimentally to achieve fast conver-
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gence. The values of the fields outside the primitive cell were 0.25 05 H(mT)

determined from the periodic boundary conditioi® and
(4). As discussed above, the coefficies andC, are ar- 0.06
bitrary but it was natural to choose them consistent with the £
initial guess in order to avoid unnecessary motion of the €
vortex. We assum€;=0. The iteration was continued until 0.04
the energy converged, and the torques approached zero.
For rectangular lattices, the energ§yneeds to be mini-
mized also with respect to the ratio of the lattice constants
u=b/a. This process is considerably simplified by noting
that a calculation at a given value ofnot only givesF(u),
but also the first derivativd F(u)/du at constant areab. It
follows from the stationarity of the energy functional that 0.00

0.02

0.0 02 T o4 06 .
dF(u) 1 ¥ ot LV2 a
du  2uVv Vd ' T | ID,A; DA FIG. 1. The phase diagram of vortices in the plane formed by

the magnetic fieldH and the rotation velocitf2||H. The calculation
g is done using the dimensionless units given below ). The
- mDyAij +c.c.|. (21 solid lines denote phase boundaries between different continuous
i vortices[locked vortices(LV1, LV3), continuous unlocked vortex
Here A;; is the general order-parameter matrix in superfluid(CUV), and vortex sheetvS)]. The LV2 should become the equi-
®He and c.c. the complex conjugate. Application to func-librium locked vortex at very lowf2=<0.00084. The dashed lines
tional (20) gives denote the phase boundaries of the singular vdi$44 against the
LV3 and the CUV. These are calculated using two values of the SV

dF(u) 1 3 energy parameterc=2.6 (upper dashed lineand c=3.1 (lower
“du _ uVv fvd r(T=Ty), (22) dashed ling The real units forX) andH are calculated usin€4
=120rad/s andH4=2.0 mT, which are estimated for the pressure
where of 29 bars.

vortex types, which are discussed separately below. In the
4T, = E (Vi +vgif )2+ 2 (Vif—vim)2+(y—1) names of the vortices, we follow Ref. 1. The energy densities
K K F (15 of the vortices are expressed in reduced units defined
under Eq.(20). We chose thex axis parallel to the shortest
(Vimi+ vt (V-m+ v n) + (Vi — v primitive vector of the two-dimensional Bravais lattice.
(i) The locked vortex XLV1) has the quantum numbers
N=4 and v = rq=21*?*"28|ts most distinguishing feature
X(V-A—Vy- m)+2 (miviak)m. Vak is the square Bravais lattice. The space group is
K P(4n)(2'/b")(2'/m"), or shortly,P4/nb’'m’. The symme-
try operations of this as well as other space groups are listed
+2 (Vidp)2 (23)  in Ref. 10.
k Qualitatively the structure can be understood so that the
) ) ) first thing to minimize is the dipole enerd$6). This gives a
The iteration was often started with a rather small numbet, ;¢ configuration whered=1 everywhere. If the field
of lattice points ¢-1000), and this was iterated to conver- is zero, then the energy of this structure arises solely from

gence. Then new lattice points were added in between thfﬁe gradient term¢18). These are minimized by a smooth

old ones, and the iteration was continued. The maximum ~ = " i -
final lattices contained around 100 000 points. distribution where the gradient df has the same order of

The procedure was repeated for several different initiaf@gnitude everywhere. Numerical calculations show that

guesses and values of magnetic field and rotation velocityNiS IS achieved in a square lattice with=4; see Fig. 2.
Although the finding of the minimum-energy structures is a The structure can be interpreted to consist of four elemen-

well defined mathematical problem, physical intuition is (7Y units. These units are called Mermin-Ho vortices be-
needed in inventing the initial guesses. Particularly good@use of a resembling structure first described in a cylindrical

guesses are the models used in previous investigations 6pntainer:® The boundary of each unit can be definediby
vortices. In addition, we tried several variants of these. The=0. Two of the four units have a circular distribution lof

initial guesses leading to the different structures are listed ing{,>0 (. Q>0). The other two have a hyperbolic dis-
the Appendix. tribution andi,<O. It follows from Eq.(13) that each el-

ementary vortex contributes a unity db=4. A finite axial
V. RESULTS field makes the cores of the Mermin-Ho vortices shrink be-

In all calculationsT~T, and the fieldH was chosen par- cause the field favors the orientatidnL 2 at the borders of

allel to the rotation axigz. The phase diagram of vortices in the elementary vortices. 007
the plane formed by the magnetic fieitl and the rotation At H=0 we find the energy=4.72)"""in the range
velocity Q is shown in Fig. 1. There are six equilibrium =0.005-0.04. In the case of perfect locking=l), the

X

+; (A V;d)h-Vd,
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energy would be strictly linear if. We find that this is only and reaches 3.4 at our loweQt=0.001 atH=0.6. We fit
an approximation because with increasiidghe kinetic en- F=0(3.62+0.370"%%% at H=0.3 in the range Q
ergy (18) is reduced at the expense of the dipole endid).  =0.001-0.008. Here all three parameters are free in the fit.
Our energy can be compared with Ref. 14, where a varia- |t was demonstrated by Fujita and Ohmi that the LV1 is
tional calculation gives a 30% and a model based on isolategnstable to a deformatiofl. They found a structure where
Mermin-Ho vortices a 6% larger value. _ four Mermin-Ho vortices form a unit that is separated by
A possible competitor to the LV1 structure is a hexagonalsome distance from the other units. We find that this struc-
lattice with N=2V|=2vd=2.29 The ansatz form haﬁﬂ at ture has higher energy than the LV3.
the borders of the Wigner-Seitz cell. The space group is ei- (jii) The locked vortex 2LV2) (Ref. 27 is defined by
ther P6mA’m’ for a radial andP62'2’ for a circular distri- N=2 and »,=v4=1. The space group 612’1, or shortly,
bution ofl. In agreement with previous authors, we find thatC2’, whereC denotes the centering of the rectangular lat-
this structure does not correspond to the minimum energy aice. The LV2 represent an alternative deformation of the
any values of) andH.'**>?8 LV1 when the cores of the elementary vortices shrink in
(i) The locked vortex 3LV3) has the same quantum jncreasing magnetic field. Here the Mermin-Ho vortices
numbersN=4 andw=vy=2 as LV1. The main difference form pairs. Each pair consists of one circular and one hyper-
Ias tgalig:s I"’}Ftr:(;e :tr:ccéurer(l)suprlﬁrr;g\,//ebr’()a((:é&}l;g}l)l?zr /Le;th%rrtharbolic unit; see Fig. 4. Outside such a pair, thel fields are
q ' b group ' nearly constant and parallel to. This special direction

isehdogg)f[ﬁ: ISe?étIPels structure has not been previously StUd_breaks the hexagonal lattice symmetry, which otherwise
i Fould apply to such well separated vortices. Therefore we

The LV3 structure can be understood as a modification o . : X
the LV1 structure. When the cores of the Mermin-Ho vorti- €XPect the lattice structure is centered rectangular. We find

ces shrink with increasing magnetic field, there remains dhat the ratio of the two lattice constartiga~1.8. This is
large bending ofi~1 outside of the cores. The gradient en- Ies§ thanb_/a= V6, which is o_btalned from the_hexagonal
ergy in this region can be reduced by rearranging théattice (havingb/a=v3) by scalingx andy according to the
Mermin-Ho vortices. In LV3 the Mermin-Ho vortices form anisotropy of the superfluid density (=2p)).
infinite chains, as visible in Fig. 3. The chains, or sheets The LV2 has only one point symmetry, 2 which means
consist of alternating circular and hyperbolic units. Outside? rotation by around they axis combined with time inver-
the sheets, thd~1 fields are nearly constant and paraliet sion. In previousHe literature the 2Asymm§try was denoted
antiparalle) to x. by w.® The symmetry implies thad, andl, change signs
In contrast to all other vortex transitions, the change bewhen x— —x in Fig. 4, and other components df and |
tween LV1 and LV3 seems to be of the second order. Theemain unchanged. The symmetry transformatiomaindf
lattice ratiob/a grows continuously from unity at the transi- depends on the specific choice of the phase factors.
tion. At constantH, the b/a ratio grows with decreasing The LV2 is doubly degenerate. The degenerate forms are
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FIG. 4. Locked vortex 2(LV2) for H=0.4H; and Q

=0.00214. The notation is the same as in Fig. 2. The LV2 has the

centered rectangular Bravais lattice and the space g&&ip The
spacing of the plotted vectors is 1.9%,.
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where the cores of the vortices start to overlap. In the range
of our calculation the LV2 has higher energy than LV3.
However, it is expected that the LV2 becomes absolutely

NNNNNNSN~——rr /) /7 7777 m—=~~NANNN\N\N . S € : .
NN\NNNNSNS—vvy 2/ /117777 772=~~NNN\N\\\ stable in the limitQ) — 0. Extrapolating the expressions of the
\\\H}::?:;‘”//”/“777::}}}\\\ energies we can estimate that this takes placeQat
P ] oo

7 s =N\ \N~e2 . . .
17107777~~~ N\N\N\NN\\N\N\NN~——vr/ /) )] (iv) The continuous unlocked vortefCUV) hasN=2,
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CUV is similar to the LV2 with respect td, v, and the
space group, see Fig. 5. The crucial difference compared to
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FIG. 3. Locked vortex 3(LV3) for H=0.3H; and Q
=0.00414. The notation is the same as in Fig. 2. The LV3 has the
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obtained from each other by exchanging the positions of the————————~~/ | \ N\~~~ / \ \N\~N~—mereeo—
circular and hyperbolic Mermin-Ho vortices. Formally this —_——————~777/ 5 ki::;f { NN
can be done by the operatim(,. In the calculation we have ——-—:::::;;;; l DN l lii::::::‘———
only studied the simplest case where all LV2 vortices have S T NN NN —
the same orientation. If both degenerate forms are preser——— -
simultaneously, it would lead to a larger primitive cell or, in

an extreme case, absence of periodicity.

We find the energy F=Q[—-1.14+1.37In(1L)
+1/0.00412] at H=0.3 in the range2=0.001-0.008. In
this fit we kept the constant 1.37 multiplying the logarithm
fixed. This constant arises from the flow far from the vortex
cores, and it should become exact in the liflit-0. The FIG. 5. Continuous unlocked vortg€UV) for H=0.3H, and
numerical value 1.37 is calculated in Ref. 31. The constanfl=0.02),. The notation is the same as in Fig. 2. Similar to LV2,
—1.14 can be interpreted as the core energy of the vortethe CUV has the centered rectangular Bravais lattice and the space

line. The constant 0.004 12 describes the angular velocitgroupC2'. The spacing of plottedl vectors is 0.58,.
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the LV2 is thatvy vanishes. Vortices where and 1 differ = == =
essentially from each othew{# v|) are called “unlocked.”
The principle in all unlocked vortices is to minimize the
field energy(17) in the first place, and therefore they are
more economical in large fieldsi=Hy than the locked
structures. In the CUV is approximately constant and par-
allel to x everywhere. The region wheteandi differ from = e
each other is called a “soft core.” Its size&, is determined RN st
by the balance of the kinetic energy wi(18) outside of the NNttt AR At
soft core and the dipole enerdg6) inside. (Note that the AR R DD PP E R N N R R
total gradient energy df in the core is approximately inde- Efffééééffffi:;EEESSSSSEEEE::
pendent of the sizg. T e I N N T
The first suggestion for CUV had the’ symmetry®? i i
Similar to several previous calculations, we find that the 2
symmetric form has a lower free energy at all valuesof
andH.33363840The m’ symmetric form seems to correspond
to a saddle point of the free energy.
Similar to the LV2, the CUV probably has the centered
rectangular lattice, and we find thata~2. The energy of
the CUV depends surprisingly much on the magnetic field.
At H=0 we fit F= Q[ —0.728+ 1.37 In(102 + 1/0.219) but =
at H=06 we find F=Q[-0.591+1.37In(1L)
+1/0.0894). The expressions are most accurate in the range
(=0.008-0.03. Similar to the LV2, the value 1.37 is kept
fixed in fitting the two other parameters. The interpretation
of the other parameters is the same as for LV2. The curving
of the phase boundary between CUV and . 1) arises
from the field dependence of CUV, as VS seems to be rather - =
insensitive toH. T T T T T T I S T
According to our earlier calculation, the transition be- ;E;;;;;g;%;g;;§§§§§§§§§§§Eg
tween the CUV and the LV2 takes placett=0.4 in the NS E NSRS D2 DR DD
limit Q— 0.2 This agrees with the present calculation. We AN A AN A A S A At
find the triple point between the LV1, the LV3, and the CUV RNttt
atH=0.29 and()=0.014. T

(v) The vortex sheet(VS) has N=4, »=2, and
vg=0.41942The likely space group iBb’a’n, similar to the
LV3. HereN, v, and vy are all the same as for the CUV
except multiplication by 2. The crucial difference between
the VS and the CUV becomes evident when their primitive
cells are stacked one after another: in the CUV the soft cores
form a two-dimensional lattice of lines while in the VS they
form a series of equidistant planes paralleixtosee Fig. 6. . == s

The d vector is approximately constant and parallel %o FIG. 6. Vortex sheetVS) for H=0.2H, and 2 =0.032,. The

everywhere. o notation is the same as in Fig. 2. The VS has the primitive rectan-
The close similarity of the CUV and the VS is illuminated gular Bravais lattice and the space groBp’a’n. The primitive

if one thinks bending a VS and closing it to a cylinder. Thecell contains two vortex sheets parallelxoThe arrows denote the

CUV represents the smallest among such cylinders becauggnsite directions dfon different sides of the sheets. The spacing
it contains just one periodic unit of a vortex sheet. This re-

lationship is also evident in the ansatz forms given in theOf plotted] vectors s 0.3
Appendix. R
We have discussed above how the LV1 is transformed to The | vector in the VS is approximately parallel to
the LV2 by pairing the Mermin-Ho units. Then the CUV outside of the soft cores, but it has opposite directions on the
evolved from the LV2 when the dipole locking was re- two sides of the sheet. This implies that the primitive cell
moved. After that the VS was developed by opening themust contain(at least two neighboring sheets. This is the
cylindrical structure of the CUV. We can now return to the reason for the double size of the primitive cell compared to
starting point by noting that forcing dipole locking in the VS the simplest lattice structure of the CUV. The surface tension
gives the structure of LV1 and LV3. The close similarity of of the sheet makes the primitive cell rather short in ¥he
the VS and the LV3 is evident from the symmetry groupsdirection. We note that the present definitionbo&ccording
and from Figs. 2 and 3. to the primitive rectangular Bravais lattice is twice as large
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as in Refs. 9, 41, and 42, whebedenotes the distance be- - hard core

tween neighboring sheets. Because the sheets are far from — soft core
each other, the sliding of the sheets relative to each other . = =
1 field: @ @
= il
':O .:@

probably leads to a negligible change in the energy. s i =
The properties of the VS depend very weakly on the mag- B -g\&é @)

netic field in the studied regioRl <0.6. The results of our O C»&’\:(}

calculations can be represented iha=1.2) " %?° andF ‘:Od =

=1.350%5%for (1=0.016—-0.07. Both these quantities are < X
¥ d ~ constant

slightly larger than obtained from the twist-section motel,

which givesb/a= (1/) (18/Q0)Y2andF =  (1802)*3. The

uniform winding model is a slightly more complicated varia-  FIG. 7. Sketch of the core of the singular vorté&V). The

tional ansatZ:*? It gives an upper bound for the energy that arrows denoté andd. The soft core, wherd and differ consid-

is 10% higher af)=0.016 and 3% higher & =0.07. Inthe erably, appears as shaded.

limit H>1 we find the transition between CUV and VS at

0=0.022. Similar to the LV2 and the CUV, this gives rise to a centered
An interesting feature in the phase diagram is that botfectangular lattice. o _

the CUV and the VS are stable also in zero field. Although it _ 1he hydrodynamic approximation used for the calculation

has not been stated explicitly, the crossing of the energies &f the continuous vortices is insufficient in the hard core. of

the LV1 and the CUV atH=0 appears also in previous the SV. Therefore we have not calculated the function

literature. Comparison of the energies given in Refs. 14 an(t:L(H'T) in the energy-. Contrary to the continuous vortices,

40, for example, gives it af=0.023. It was calculated in +%“79| isl_a_lr.j,_cF ab temper?}ure. depf?hdert:l(d;':j,T)NCéH) d
Ref. 25 that there is a transition from the LV1 to a sing@ar 71n( o) because the size of the hard core depends

vortex when()=0.11. This prediction has to be revised be- ?neThr:gs%rdb(Zrutr? d%?)t/ %? Lﬂgas(i; tizeincccl)lrjrszggt(ianp'?&z;g;]aegdram,

cause bqth the CL.JV and the .VS have f"‘_m“‘*‘ lower energy 4 es) by two arbitrarily chosen constant valuesafH,T).

this rotation velocity. If there is a transition to thevortex, it The core structure of the SV can in principle be calculated

takes place at a much high@rthan expected in Ref. 25.qing the Ginzburg-Landau theory, but there are two diffi-
The energy difference of the CUV and the VS relative to¢yties, First, this theory introduces additional parameters

the LV1 atH=0 arises from competition of the dipole en- (sych as the coefficients of the five energy terms that are of

ergy and the gradient energy @f The LV1 is stable at a low the fourth order in the order-parameter matmwhose values

Q) because the dipole energy is minimized in the first placegare not well known. So the accuracy of the results would be

and the gradient energy associated witfis not important. less than in the hydrodynamic theory of continuous vortices.

With increasing() the gradient energy becomes larger. At Second, the numerical calculation is difficult because the
. L . ~ length scales associated with the s@fj=10um) and hard
the transition point, it becomes more economic to arrashge

approximately constant although it means increased di Olgores ¢~ 10nm) are very different.
PP y 9 P We have made numerical simulations with Ginzburg-

energy n the .SOft core Qf the. CUV or the VS. Based " andau theory where the difference in the soft- and hard-
purely dimensional considerations, this transition was ex-

pected at~1 ((~Q4~120 rad/s in real unijs* How- core scales is arbitrarily reduced. We cannot expect any

ever, the present calculation gives the transition between tht uantitative results from such a calculation, but we believe

~ o at the following qualitative results are valid independently
cuv an(_j the LV1 at) =0.019, Wh'Ch IS almogt two orders of our approximation. The structure around the hard core is
of magnitude smaller than the naive expectation.

(vi) The singular vortexSV) hasN=1 and the space
group C1m’1, or shortlyCm’.%23440No other vortex con-
sidered here had=1 because it is not possible for the con- where 7 is a constant angle, see Fig. 7 for illustration. The
tinuous vortices as a I’esy|t of aq.4) TheQ dependence of Origina' Suggestioﬁ has n= /2 whereas the minimum en-
the energy can be writtefr=Q[c(H,T)—0.70InQ] at  ergy of the structuré24) prefersy=02° The true structure is
small (). Here the factor 0.70 arises from the flow field far |ikely to fall between these limits becauge= 0 would imply

of the value for aN=2 vortex line. Therefore the singular Wwith the constant outside of the soft core.

vortex is favored over the CUV at a loR. There is no circulation around the hard core. Thus all the
. Based on topological arguments alone, the structur(.aAof thSirculation arises from the soft core, which is qualitatively

singular vortex COUIq b? very simple. For exampies-in described by the numbers=1/2 andvy=0. The centers of
=exp(i}) (Y +iz) andd=1 everywhere except at the singular the hard and soft cores are displaced from each other i the

“hard core,” where these quantities are not defined. Hére irection. The vortex has symmetny.,, which in previous

is the azimuthal angle. However, energetics prefers a morgq jiterature was called/. In terms of the vectors this

complicated structure that has a soft core in addition to the, ..o thatl, and, change signs whep— —y, and other

2 Thic i ; P - N
hard corf?. This is because a structure _W'th radiaBnd  components off andi remain unchanged. The SV is doubly
constanih=z has lower energy than the simple vortex. Out- degenerate. The two forms are obtained from each other by
side of the soft cored and| are both nearly parallel tg. the symmetry operation;z

X

==y sing+cosp(Xcosy+zsiny), (24)
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All the discussion above was for the case where the fielgprobably unstable, as pointed out in Ref. 47. The present
H is parallel toQ. As far as we know, other directions are calculation now gives the possibility that the transition could
considered only for the CUVRefs. 39 and 3band the VS¥? be from the LV1 to either the CUV or the VS. Unfortunately,
Generally, it can be expected that the effect of field directiorthe collected experimental data does not seem sufficient to

. . . . . g 47,28
is not large in unlocked vortices, whedeis approximately ~identify the structure at larg@.
constant, and thus, (17) can equally be minimized for ar-

bitrary direction ofH. VIl. CONCLUSION

We have presented numerical calculations of the vortex
structures in the Ginzburg-Landau region, and constructed a

In order to compare the calculated phase diagram witfPhase diagram in thel—() plane. There is in principle no
measurements, one needs to know how to prepare the eqlql.fﬂculty in eXtending these calculations to lower tempera-
librium state in experiments. This is not simple because théures. Although the phase diagram is not accessible experi-
energy barriers separating the different vortex types are gerfitentally at low temperatures, the calculation of the vortex
erally so large that it is difficult to induce any transitionSo ~ Structure would form the basis for a calculation of the NMR
the decay of a metastable vortex type to the equilibrium typdrequency shifts, which have been measured accurately.
may be so slow that it cannot be observed. Also, if the rota- Our search of vortex types was based on previous sugges-
tion is started in the superfluid state, the vortex type thations. There may well be structures which could not have
nucleates is generally not the equilibrium one. For examplegVvolved from the initial guesses we have used. In particular,
only continuous vortices are nucleated if the rotation isOnly the simplest periodic structures were tested. From the
started in the superfluid state; no singular vortex has beefXperimental point of view, it seems that there is at present
observed by this method. no need to introduce new types of vortices that are stable in

The only exception to the above seems to be the regioRulk He-A. That may change, however, when new regions
very near the superfluid transition temperatlige There the are studied and more accurate measurements are done. In
energy barriers Separating the different vortex types ar@articular, low temperatures, hlgh rotation VelOCitieS, hlgh
smallest. A practical way to perform the experiment is tomagnetic fields, the neighborhood of the phase, and re-

cool slowly from the normal stateT¢>T,) to the superfluid ~ Stricted geometries could be studied. The studies could also
state at constanf) and H. This procedure is expected to be extended to metastable structures. For example, the LV

y|e|d a state near the equ”ibrium one. It is important to re_WaS identified from its metastable modification in h|gh f|e|d,
member, however, that the details of the transition in thevhich more appropriately should be classified as a different
presence of a thermal gradient and a magnetic field may bpe of vortex.

rather complicated Another limitation of the experiments is

VI. COMPARISON WITH EXPERIMENTS

that they do not resolve the difference between the three ACKNOWLEDGMENTS
types of the LV. i ,
Also needed for the comparison are the value§)gfand We wish to thank A. Borovik-Romanov, P. Hakonen, M.

H4. We estimate) s~ 120 rad/s, andi~2.0mT at 29 bars Krusius, O Nevanlinng, B. PJats, J. Simqla,_E. Sonin, and
pressure. These are based on a weak-coupling analysis c&; VOIOV|k_ for useful discussions, and R. Atanen for help
rected by the enhancement of the energy gap according 18 calculations.

Ref. 43. In addition, we have used the measured shift of the

transverse NMR resonance frequency in &éRef. 44 or APPENDIX

the B phasée®® both of which give essentially the same resuilt. _ _ .

The gap enhancement, which in Ref. 43 is given for Ehe We give approximate expressions for the order parameter

hase as a function of the specific-heat jut®g , is applied in different vortex structures. The;e can be usedi as initial
Fo the A phage bly replacinngBII;y 6/5AJCA B 1S 3PP guesses to produce the stable vortices discussed in Sec. V.

The comparison of the experimental and theoretical phase Allstructures can be_ simply represent_ed using Euler
diagrams is shown in Fig. 3 of Ref. 1. The qualitative agree-2N9!€s(a; B, ¥) but choosingk as the polar direction:
ment is good. A slight difference is that the vortex sheet is
not observed in the experiments at the maximal angular ve- =X cosB+sinB(§ cosa+2zsina), (A1)
locity 3 rad/s although according to the present calculation it

should show up above 2.6 rad/s, assumibg= 120 rad/s.

Possible explanations are tHay is larger than we estimated M+ifi=[ — X sinB+cosB(y cosa+2sina)
or the cooling throughl. does not accurately produce the o . _
equilibrium state. +i(—ysina+2zcosa)lexp —iy). (A2)

The six vortex types discussed above seem to be able to

explain all the experiments that have been made in rotatingh these coordinates the superfluid velodity) is
bulk ®He-A. We comment here on one controversial experi-
ment. Torizukaet al*® observe a transition in the rotating
state at() =3 rad/s when the rotation velocity was varied at
constantd=0. The original interpretation in the same refer-
ence postulated a layer of vortices on the container wall. W®epending on the vortex type, we present the Euler angles as
consider this interpretation unlikely because such a layer ifunctions of either rectangul@x, y, z) or cylindrical coordi-

Ve=—Vy—cosBVa. (A3)
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nates(r, ¢, z). Unless explicitly stated otherwise, the ansatz=b and nearly linearB(y). In spite of these choices, this
forms have the same symmetries as the vortices that thednsatz has less symmetry than the converged solution for

represent. LV1. A symmetric but more complicated Ansatz was sug-
The VS hasd=%X and a=—y=m/2—2mxsgnf)/a, gested in Ref. 14. A third alternative is to glue together An-

where sgny) denotes the sign of. 8 is a monotonic func-
tion of y so that 8(—b/2)=—=, B(0)=0, and B(b/2)

satze of four Mermin-Ho vortices.
The CUV hasd=% and a= —7y=¢. B is a monotonic

= . Especially at low velocities this function is strongly function of the radiug, which hasB(0)=0 and3(r)~=

nonlinear so that all the change @ftakes place in narrow

for r>r,. Here the radius, is of the order of a few units of

regions(thickness~1) at the two vortex sheets, which are length ().

located aty= *+b/4. This form of the order parameter is for

a gauge wherg,= —2QyX. The transformation to the more
usual gauge,= QX is obtained by including an extra fac-
tor exp(£2xy) multiplying the right-hand side of EqA2).
The lattice constants are constraineddiy= 4=/} (6).

The LV2 is similar to CUV except thal=1. r is of the
order ofH ™! in dimensionless units. The SV can be gener-
ated byd=%, y=0, anda = m/2+ ¢. B is a monotonic func-
tion of r, which hasg(0)=m/2 and B(r)~m for r>ry.

An approximation to LV1 and LV3 is the same as for VS Hererg is approximately unity. This Ansatz form has more

except thatd=1. The best guess for LV1 correspondsato

symmetry than is present in a converged solution.

*Present address: Department of Physics, P.O. Box 9, 00014 Unf>A.L. Fetter, J.A. Sauls, and D.L. Stein, Phys. Rev2& 5061
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