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Doped bilayer antiferromagnets: Hole dynamics on both sides of a magnetic ordering transition
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The two-layer square lattice quantum antiferromagnet with s%aiabows a magnetic order-disorder transi-
tion at a critical ratio of the interplane to intraplane couplings. We investigate the dynamics of a single hole in
a bilayer antiferromagnet described bytd Hamiltonian. To model the spin background we propose a
ground-state wave function for the undoped system that covers both magnetic phases and includes transverse
as well as longitudinal spin fluctuations. The photoemission spectrum is calculated using the spin-polaron
picture for the whole range of the ratio of the magnetic couplings. This allows for the study of the hole
dynamics on both sides of the magnetic order-disorder transition. For small interplane coupling we find a
quasiparticle with properties known from the single-layer antiferromagnet, e.g., the dispersion minimum is at
(= /2, w/2). For large interplane coupling the hole dispersion is similar to that of a free fer¢wiim
reduced bandwidih The crossover between these two scenarios occurs inside the antiferromagnetic phase,
which indicates that the hole dynamics is governed by the local environment of the hole.
[S0163-18209)04245-9

[. INTRODUCTION operator mean-field theory has recently been applied to the
bilayer Heisenberg AFRef. 10 and gives a transition point
Since the discovery of high-temperature superconductivef (J, /Jj)c~2.3. Note that Schwinger boson mean-field
ity, doped antiferromagnet®AF) have been studied inten- theory predicts a very large value ofJ( 1J))c~4.5, and
sively. It is widely accepted that many properties of the su-also a self-consistent spin-wave the6fy,which yields
perconducting cuprates are determined by the hole-doped, /J).~4.3, fails to reproduce the numerical results. Chu-
CuO, planes. A number of experimehtindicate that the bukov and Morf have pointed out that this discrepancy is
cuprates are near a quantum-critical point of antiferromageue to the neglect of longitudinal spin fluctuations in the
netic instability: The undoped materials are known to be anconventional spin-wave approach.
tiferromagnetic Mott-Hubbard insulators, whereas hole dop- In this paper we discuss the bilayer antiferromagnet at
ing destroys the antiferromagnetic long-range orddRO) zero temperature with hole doping as an additional degree of
and leads to superconductivity. The investigation of the infreedom. We consider the standard model on a bilayer
terplay between long-range magnetic order and quantum disquare lattice consisting dfl sites per plane, so the total

order is therefore of great theoretical interest. number of lattice sites is. Each pair of corresponding
A model system that shows a quantum transition betweesites in different planes is considered to form a rung, so we
an ordered and a disordered magnetic phase iSthé bi-  haveN rungs. More precisely, the Hamiltonian reads

layer antiferromagnét.’ Here each of the two planes is

composed of a nearest-neighbor Heisenberg model with cou-

pling constant)|. The spins of corresponding sites of each

layer are coupled antiferromagnetically with a coupling con- H = —tlz (eiTl (,Eiz,,+ H.c)—t Z (f:iTm (,Ejm +~tH.c)
stantJ, . In the limit of smallJ, /J; the model describes two io S (ijyme ’ '
weakly coupled AF planes. AT=0 this system possesses

AF long-range order and gapless Goldstone excitations. In 1S Ni1Ni2
the opposite case of largk /Jj, pairs of spins interacting T i Si1'S2 4
via J, form spin singlets being weakly coupled By. Then

the spin excitations are gapped triplet modes; there is no NN
magnetic LRO. At a critical ratioJ, /J)) & quantum tran- +3 2 (sm-s,-m— 'm4 'm>. )
sition between the two phases occurs that is believed to be of (ir)m

the Q3) universality clas$™® The bilayer antiferromagnet

has been studied by a number of numerical and analytical

techniques. Quantum Monte Carlo calculatithand series  Here, and in the following, andj denoterungsof the bilayer
expansior® yield an order-disorder transition point of lattice, (ij) denotes a summation over all pairs of nearest-
(3. /3))c~2.5. A similar result has also been obtained ananeighbor rungsm=1,2 is the plane index, san denotes a
lytically using a diagrammatic approach to account for thelattice site.S,, is the electronic spin operator amg,, the
hard-core interaction between triplet excitatién®ond-  electron number operator at site. The electron operators
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6iTm , exclude double occupancies,f:fm (r:CiTm S(1 modified bond-operator representation of the spins on each
~Nim.—,). We choose the axis along the direction of the rung. In the ordered phase one type of triplet bosons con-
rungs, i.e., perpendicular to the planes. denses which will be included in the modified basis opera-

First, we want to comment on the zero-temperature phasrs. SO our excitation operators continuously interpolate be-
diagram of the doped bilayet-J model that has to our tween the triplet excitations of a singlet product state and the
knowledge not been systematically studied up to now. Thdransverse and longitudinal excitations of aeNerdered
following nonthermal control parameters can be considerecftate. The deviations of the spin background caused by the
the ratioJ, /J;, the doping levels, and the relative hopping hole motion are described by a set of path operaots?*
strength t/J. The doped single-layer antiferromagnet is 1" one—hole'spgzc;tral function will be evaluated using a cu-
known to exhibit a strong dependence of magnetic propertiedlulant v8er5|oﬁ “" of the Mori-Zwanzig projection
on the hole concentratiof. With increasing hole concentra- technique’ _ _
tion the staggered magnetization decreases and vanishes at al '€ Paper is organized as follows: In Sec. Il we propose a
critical hole concentrations, of a few percent where the ground-state wave function for the undoped bilayer antifer-

system becomes paramagnéﬁtl_zl (This is consistent with romagnet. In Sec._lll we develop the Hamiltqnian for.the
experiments on high. superconductors:'3 On the other doped system in this new operator representation and discuss
hand. in the undopea limit a large interplane couplihg the various hole motion processes. Section IV focuses on the

also destroys the antiferromagnetic LRO as discussed abov@0tion of a single hole in an otherwise half-filled bilayer
Thus it is likely that the system show® AF LRO accom- antiferromagnet. The one-hole spectral function for this case

panied by spontaneous symmetry breaking and the existen€@"esponds directly to the result of an ARPES experiment
of massless Goldstone modes in the region of very smaff" an'undoped' syste_m. After a brief sketch of t'he prOJectlon
doping and small, . Otherwise it is paramagnetic; here one l€chnique we investigate the spectral properties in depen-
has to distinguish betwesii) a spin-gapped phase that oc- dence of the magnetic background, especially when crossing
curs at smalls, small hoppingt;, and large interplane cou- the phase boundary between gapped paramagnet and antifer-
pling, and iii) a gapless phase at larger doping and smal[omagnet. The results shoyv that the character_ of thg one-hole
interplane coupling. The gapped phd@e is dominated by spectrum is mainly determined by the local spin environment
interplane singlet pairéincompressible spin fluidwhereas of the hole, whereas the spectrum changes only weakly when

the gapless phaséi) shows only weak interplane coupling crossing the order-disorder transition. A conclusion will
and behaves mainly like a single-layer system dat &, close the paper.

(compressible spin fluid (Issues like pseudogap features
and transport properties will not be adressed hdrethe
present work we restrict ourselves to the zero-doping limit
(one holg. So the magneticbulk) properties will not be

affected by the doped hole, i.e., we probe the transition be- To begin with, we consider the case of half-filling. Using
tween the antiferromagneti¢) and the gappedncompress-  pond operators we derive a wave function that describes the
ible) paramagnetic phadé). ground states in both the quantum disordered pketsiarge

The dynamical properties of holes in higl-supercon- 3 ) and the Nel phase(at smallJ,). The wave function
ductors have been subject to a lot of experimental and theqyj|| be constructed within a cumulant formalisth?® It is
retical work. Angle-resolved photoemission spectroscopyhased on an expansion around a product of rung states that
(ARPES experiments at zetd or small doping®*’indicate  are singlets in the disordered phase and sums of singlets and
a quasiparticle band with a small bandwidth providing evi-ztype triplets in the ordered phase. This wave function will

dence for strong electronic correlations in the higheom-  pe used in Sec. IV as “magnetic background” to calculate
pounds. A large number of numerical and analytical studiegiynamical properties of a single hole.

reveal that a single hole in an AF spin background has non-
trivial properties: The spectral function consists of a pro-
nounced coherent peak at the bottom of the spectrum and an
incoherent background at higher energies. The coherent peak A. Rung basis and Hamiltonian
can be associated with the motion of a dressed hole, i.e., a
hole surrounded by spin defeatsspin polaron”).11:12.18-23
The hole motion in bilayer antiferromagnets has been studiea
in a few papers and only for a small parameter range: Usin
self-consistent Born approximatiofSCBA) it has been
showrf* that small interplane coupling only weakly affects
the hole properties. Exact diagonalization stutfiéggve in-
dicated a larger effect of the interplane coupling at finite
doping. However, the system sizes accessible to numeric : . .
methods (28 in Ref. 25 do not allow for the study of %(;gnon of a singlet and three triplet states out of the vacuum
small hole densities and arbitrary momenta. '

In this paper we prefer an analytical approach to the one-
hole problem that is based on the [I)HiSctg?)re of the spin-bag 1
quasiparticle(QP) or magnetic polaron:™=° The magnetic <floy\=— (¢! ¢f —¢of ¢f — -
background for the hole motion will be modeled within aSI 1 \/E(C'mc'z’l C|1,¢C|z,¢)|0> \/5(|Tl> . @

IIl. UNDOPED BILAYER ANTIFERROMAGNET

In the limit of vanishing intraplane coupling,/J, —0,

airs of spins on each rung form a singlet ground state. The
xcitations are localized triplets with an energy g&p.
%Witching onJ; leads to an interaction of triplets on neigh-
boring rungs and to a dispersion of the triplet excitations. To
describe this dimerized phase we employ a bond operator
representatioi! for the spins per rung. For each ruhgon-
tfflining two S=3 spinsS;;, S, we introduce operators for
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-1 .. . PO -1 ~ i0-R: . i0-R:
tiTx|0>:E(CiTl,TCiTZ,T_C?l,lcrz,i)|0>:E(HT>_|ll>), |¢o>~exp(>\2i e'? R'tiTz)|¢o>—1_i[ (s/+ e Rith)[0),
(7)
i .y s i
tiTy|0>:E(CILTCFZJ+CiT1¢CiT2¢)|O>:E(|TT>+HU)’ where the spontaneous staggered magnetization poirgs in

direction. The exponential term accounts for boson conden-
sation, the condensation amplitude is given hy A\=0

1 ., . FUA 1 means rotational symmetry in spin spadcthen |<7>0>
ti/0) ZE(CiTl,TCiTZ,i +Ci1,,Cl2,)|0) ZE“ TH+ILD). =| o)), N#0 breaks this symmetry.= + 1 transforms the
singlet product stathp,) into a Neel state Q= (, ) is the
AF ordering wave vector.

The basic idea for a proper description of the excitations

of the product staté,) (7) is now to transform the basis
¢ = s(sTt ] si—ieptisti,). (3)  states on each rung. We replace the basis operafdisr
singlets and;, for z triplets by

The algebra of the operatofs; ,tjs,tjy ,tj,} has to be speci-

fied to reproduce the correct algebra for the spin operators.

Here bond operators satisfying the usual bosonic commuta- ~ i0-R:
tion relations will be chosetf. In order to ensure that the Si_ﬁ(siﬂ‘e 'tiz),
physical states are either singlets or triplets one has to im-

pose the condition

Then the following representation holtfs:

1 )
= —\elQRic 1t
S?Sﬁ'; t;ratia: 1. (4) Z \/1+—)\2( Ae Sl—*—t|z)- (8)
The singlet product ground state f§/J, — 0 can be written
as The new basis per rung consists of the operators
{si .,z tix,tiy} that still satisfy bosonic commutation rela-
tions. ForA=0 this basis reproduces the usual bond-boson
|#0)=11 sil0). (5) p

basis. For nonzera the states||0) interpolates between the

W bstitute th 4Boi rung singlet and dlocal) Néel state, the state/|0) is or-
e can now substitute the operator representa8pinto ~ -
the Heisenberg Hamiltonian for the bilayer and obtain ihahogonal tosi[0). The product statg¢o) (7) can now be

following HamiltonianH=Hy+H; in the bond(rung op- written as
erator representatiott:>2

Ho=d, > t't,, |Zf’o>=1_i[ s110). 9

3 3 For |\|=1 this state is an antiferromagnetic dlestate. Its
H1=§%‘,& (tfatfasjsiJrH.c.)JrE <%a (t,s/t; s+ H.c) excitations are given byl ths, andZs. Here, ¢,
=+ itiTy)si creates one spin flip in one of the planes and can be
Jj E + ot - rggarded as'transverse spin flucfcuation. The. opeﬁEr
T2 s (tiatjatistis=tiatjgtiatip)- (®)  flips both spins on one rung, which can be interpreted as
longitudinal spin fluctuation. The basis parametdras to be
The sum(ij) runs over pairs of neighboring rungs of the determiped separat'ely, which will bg discussed in the next
lattice. The ground state ®, is given by the product state Subsection. Below it is shown that in the ordered phese
| o) defined in Eqy(5). varies continuously between=1 forJ, =0 and\ =0 at the
Approaching the quantum critical point the triplet excita- transition to the disordered phase. Note that the idea of a
tions will become gapless at momenturn, r), see, e.g., condensate for one type of bosons has also been employed
Refs. 2 and 6. The magnetic quantum phase transition to d Chubukov and Mofrwho applied a modified version of
antiferromagnetically ordered state includes spontaneouonlinear spin-wave theory to the problem of the undoped
symmetry breaking and can be described via the condensﬁﬂfﬂ‘y(?r antiferromagnet. o
tion of triplet bosons in one particular directionhich has to Using Eq.(8) we can reformulate the Hamiltonian for the
be induced by an infinitesimal staggered fielMeglecting ~(undoped bilayer Heisenberg model in terms of the new
fluctuations a symmetry-broken state with a condensate dfasis operatorss; ,z; ,ti ,t;,}. Note that the splitting of the
z-type triplet bosons can be written as Hamiltonian is different from Eq(6):
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~ 1 .
Ho=3, 2 | thtu+ thty + 72 @2 +075]s) |,

. J e
0= Ri(Gla 1215 I Tt gt et _
Hl—JLZ Ty eQRi(ZI5 +5 zi)ﬁtaieAZ’jEB> [+ttt )(55-27) +H.c.]

J J
+0 S (it~ tht byt He)

Tt N2\ et. _OYN ot
2 (icKfem) ixtjytiytix 2(1+\2 I ) {tixsj[(l A )Slt]X 2)\th]x]
( )

- - - J - - -
(L= A2 St — 207t ]+ Hoe b b —— tTZI(1=\2)zt; + 2\sit,
iy J[( ) itjy i Jy] } 2(1+)\2) <ie,gj:eB){ ix J[( ) itjx i ]x]

J|

+tIZI[(1-\¥Zt, +2\st ]+ H.c. )+ ——
L )2ty ] j 2(1+2\2)2 <ieAE,J'eB>

iysj
Jj

t— 1-\)4(ZZ/s's +7/ss2)) + 2n(1-2?)(8[2/ - Zs)ss; + H.c. 1. 10
2(1+)\2)2<iEAZ,jEB>[( ) (ZiZjsisi+Z8)51Z)) ( )(81Z —Zi'S))s;s; ] (10

A and B denote the sublattices of the square lattice, i.eunperturbed ground statep,) of Hy by application of a
e'QRi=+1 fori e A or B, respectively. Foh =0 the Hamil-  so-called wave operatdd that contains the effect dfi;. It
tonian Eq.(10) is identical to Eq.(6) derived with the usual has been shovif that Q can be written in an exponential
bond operators. Fdh|<1 the ground state dfl, defined in ~ form, Q=e®, whereSintroduces fluctuations intao). The

i . o d-state energyE is calculateé® according to E
Eq. (10) is given by the modified product stafe) (9). It ~ 9"0UN ¢ ¢
can be seen thdt, in Eq. (10) contains creation, hopping, =(bo|HO2| o) where( by - -| o) denotes a cumulant ex-

. A ectation value with respect {e).
and conversion terms of the three types of excitations” For the disordered phase of the system it is suitable to

{zi tix tiy}. Contrary to the Hamiltoniaki, in (6) where the  start from the singlet product stalté) given in Eq.(5) and
triplet excitations can only occur in pairs, here also singley include fluctuations in form of pairs of triplet excitations.
z-type excitations can be created and destroyed, e.g., b&n appropriate ansatz for the wave function is

J, (/s +'sz). The effect of these terms is directly related

to the basis parameter and will be used to determine its B B ot

value. Furthermore it can be seen that all terms creating |¢0>—Q|¢0>—6X[<% “iiatiatJaSjSiJrzn: BnSh || bo)-
Z-type excitations out of ) vanish forJ, =0,\|=1. This (12)
means that the ground state in the limit of vanishing inter- ] ) ) ) . )
fluctuations. They will become, however, important for de-(With arbitrary distanceR; —R;). The operatorsS, in the

scribing the destruction of the antiferromagnetism with in-Sécond term represent higher-order fluctuations, e.g., four-
creasingd, . triplet operators. They will be used in Sec. IV. For the de-

h termination of the coefficientg;;, and g, the cumulant

N hat z- ns formall r her wi : . .
ote thatz-type bosons formally occur togethe t method provides a set of nonlinear equatiths,

transverse fluctuations evendat=0,|\|=1. This happens if
a transverse fluctuation created Jyhits a second transverse

_ tof :
fluctuation being already present at the same rung, in other 0= (ol (sS{tjatia) HQ[B0)",

words, if spins on corresponding sites in each of the planes

are flipped independently by . These processes have to be 0=(¢bo|SIHQ| ¢bg)°. (12)

included in an exact treatment of the ground-state wave func-
tion; within the approximation of independent boséwhich ~ The superscripted dot indicates that the quantity inside the
will be described in Sec. Il Cthey are neglected. parentheses has to be treated as a single entity in the cumu-
lant formation. Equation§l2) are derived from the require-
ment thatQ)|¢,) is an eigenstate ofi. From symmetry it
follows that the coefficientg;,= w;; only depend on the

To obtain an approximation for the ground-state wavedifference vectoR;—R; (but not ona). So the staté i)
function we adopt a cumulant approdtthat has been suc- obeys rotational invariance in spin space. When evaluating
cessfully applied to a variety of strongly correlated systemsthe terms in Eqs(12) the exponential series terminates after
One starts from a splitting of the Hamiltonian intkb=H,  a few terms since the exponent contains only operators that
+H, where eigenstates and eigenvaluesHgfare known. create(but do not destroyfluctuations. The resulting nonlin-
The ground staté,) of H can be constructed from the ear coupled equations far;; can be partially decoupled by a

B. Approximation for the ground state
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Fourier transformation to momentum space. The remami”%nction |o) (see Ref. 38 The operatorQe“cTzz can be
set of equations has to be solved self-consistently.

For the ordered phase the treatment is similar, howeve
one has to take care of the broken rotational symmetry. Star = A
ing point is the product wave functiofib,) (9). In the op-  from 0=(cbo|(52;) HOQEMor| )", which is equivalent to
erator O we now explicitly distinguish between pairs of EQ. (15.

Togtet itudinal 2151 e
transverset,t;, .t t;,) and longitudinal ¢ z;) fluctuations:

rinterpreted as new wave operat@pplied to| ¢g)). It now
{iontains the additional parametethat has to be determined

_ e C. Ground-state properties
|'//o>:Q|¢o>:eXF(Z i (it E)S]s,
4 If we restrict the fluctuation operators in the exponential
- of () to excitation pairs as described abdve., neglect fur-
| bo)- (13)  ther operatorsS,) and take fully into account the constraint
(4), we find a critical coupling of I, /J)).~3.2 for the
The operators, again contain higher-order fluctuations and order-disorder transition. At this level of approximation the
will be discussed later. The parametee§, v;, and B,  magnetization in the limit of decoupled plane¥, (~0) is
have to be determined in analogy to E¢E2) by the equa-  around 86% of its classical value being larger than predicted
tions by Monte Carlo and spin-wave calculations. The described
~ o~ _ ~ approximation can be systematically improved by including
0:<¢O|(S§;tjxtix) HQ|$o)", higher-order fluctuations. This behavior is also known from
calculations within the coupled-cluster method for the
Heisenberg modéf It can be shown that in the limit of an
- - infinite set of operators the cumulant method yields exact
0={cho|SIHQ| B0)°, (149 results. For instance, if we include two additional operators
which again reduce to Eq&L2) in the case ok =0. For\ S, with three and four flggtuations on.adjacent sites into the
=0 we expect the transverse and longitudinal fluctuations t@Perator(} (13) the transition point shifts toJ /J)c~2.9.
become equivalenty;; = ;. For [\|=1 the amplitude of However, the gnaly‘ucal apd nume_ncal effort to setup and
the longitudinal fluctuations in the ground state vanishessSolve the nonlinear equations equivalent to EG<) and
v;;=0, if one neglects higher-order processesjiras noted (14) increases drastically with including higher-order fluc-

above. Note thaf) in Eq.(13) does not contain operators for tuations.

the creation of single-type excitationsZ's;) although such The solution of the non-linear Equatiori$2) and (14)

operators are present in the Hamiltonid). The reason is Shows that the absolute values of all coefficientdirare

that such operators change the density of the condensate $hall compared to 1. In the disordered phase the maximum
the z triplet bosons and refer to the same degree of freedori$ taken bypu;4~0.07 (the coefficient for nearest-neighbor
as the parameter in the product statb?ﬁo). The aim here is, triplet pair9 at the po.|nt of -the phasg transition. In the or-
however, to describe the condensation of #gpe bosons dered phase the maximum isBt=0 with u;6~0.14. With
completely via the introduction ok and the transformed increasing distance between the triplets the values decay

basis states. In this wa§) contains only multispin fluctua- duickly; higher-order fluctuations acquire a coefficient being
tions. one or more orders smaller in magnitude. The fact that the

Now we discuss the parameterthat is expected to be Ccoefficients are small is equivalent to the statement that the
zero throughout the disordered phase and to vary contindotal triplet density even at the transition point is small
ously from 0 to 1 with decreasing, in the ordered phase. (~0.1), see Ref. 7.

e~
+% Vijzi Zj SjSi‘f‘; ann

0=(ol(s's/Zz1) HQ[ bo)",

Within the cumulant method can be determined consis- In Fig. 1 we show results for the ground-state eneigy
tently using the identity and the staggered magnetizatibh for the approximation
o _ using triplet pairs only as described above and for the spin-
0=(bol(s/z1) HQ| Bo)°. (15  wave approacltsee below The data are compared with re-

cent series expansions from Ref. 6. It can be seen that all

This can be understood as the condition thatontainsno S . . .
approximations well describe the behavior of the magnetiza-

additional Ferm likeXz;s; in the exponential, i.e., the boson tion that first increases with increasidg and then drops to
condensation is fully accounted for by the transformed bas'?ero at the critical coupling

state|¢p). Within the cumulant formalism this can be seen  Another approximation we want to discuss briefly is to

from the equality neglect the constrair) completely'’ and also the quartic
triplet terms in the Hamitonian®) and(10). The parameter
~ T T i is gi
Q| Bo)°=Q|eMazgg)C= QeMaz| o), th=E elQRit. . \ is simply chosen so that the prefactors of the terms creat-

! ing singlez bosons out of?is()) vanish. One can formally set

16 54 (condensation of boson$; |$) can be considered
Here we have used the fact that a cumulant expectation valug “vacuum.” Neglecting the constraint4) implies that

T, . . .~ .
does not change when the operagdiez is subject to cumu- the three types of excitatiofg; , t;, tiy} are treated as inde-
lant ordering instead of being applied directly to the wavependent bosons. After a Fourier transformation one arrives at
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0.1 T T T T ] approach, e.g., the magnetization takes 60.5% of its classical
— E 1 a) ] ; )
:= 0.15 b ! 3 va!ue, see Fig. 1. Further details on the ground-state calcu-
< 025 T F lations will be published elsewhere.
T ! ]
> a5k : 3 [ll. DESCRIPTION OF HOLE MOTION
o | 3]
E 03F : 3 If we remove one electron from runga single hole state
M g3k : : on this rung is created. Let us denote dqyw the creation
—_—t operator of a hole with spimr on rungi, where the index
0 02 0.4 0.6 03 1 m=1,2 represents the number of the plane. This operator is
S/ V) defined by the equation

ah,o10)=cr7 ,/0), (19

wherem=3—m. This is a fermionic operator that satisfies
the usual anticommutation relations. The hole on the riung
interacts with the triplet excitations on its nearest-neighbor
sites. The interaction Hamiltonian can be easily found by
calculating all possible one-hole matrix elements of the ini-
tial Hamiltonian(1) (see Ref. 32 For the disordered phase
(A=0) the result is

A2/

/) t
¢ Ho=—1t, > (af‘llaaizytﬁrH.c.)+§H
FIG. 1. (a) Rescaled ground-state enerfyand (b) staggered o

magnetizatiorM for different approximation levels of the ground-

state wave functiongll) and (13). Solid lines: Triplet pairs, no X E (alm o8jm, 5] S|+H c.)
additional operatorsS,, constraint exact, J, /J)).=3.2. Dashed (ifymo
lines: Triplet pairs, constraint ignore@pin-wave, (J, /J)).=4
Dashed-dotted lines: Series expansion data taken from Ref. 6 for ” E (t-Tt-aiTm Ajm. o+ H.C.)
comparison, {, /J)).=2.55. The vertical dashed line i@ indi- 2 (iHe
cates the position of the magnetic quantum phase transitiofi) In
the coupling dependence of the basis parametisralso shown. +<E (tThs S]+ SJ S| +H.c. )
i)
oot D (bt thte )I(L+HN2)I, +8N2] t
(14222 G oo aytay il I —tHE (iS[tfxt]+H.c)
+2y(1—>\4)3”1+;2~z*’2 —ﬂZ (iS [tIxt]+H.c) (20)
a (1+2\2)2 G "9 2 ¢ T o
X[(L=AHJ, +1602)+2y4(1-AH)2] Following Refs. 32 and 36 we have introduced the notations

t=(ty,ty,t,) for the triplet vector and

+I12 yo(tht! ettt o+ H.c)
Hq Ya(lgxt = gxFlgyt=qy T H.C. "
,j E ( l) |ma aﬁa]mﬁa (21)
A2 2 e

z,z . ,+H.c 1

e 2 Y&t He), (17 1o
| ) Si=5 2 almaTapling
with y,= 3 (cosg,+cosq,) and map

for generalized hopping operators whereis the vector of
_ /4‘]\\_JL (18) Pauli matrices. In addition, we have to impose the constraint
43+3J, that a hole state and one of the doubly occupied states cannot
coexist on the same rung:

in the ordered phase §4>J,) and A=0 otherwise. The

Hamiltonian (17) can be easily diagonalized by a Bogoliu- . : .

bov transformation. In this case the ground-state wave func- s'si+ > thti,+ 2 al, ,aim =1 (22

tions (11) and(13) (with pairs of triplet excitationsbecome “ me

exact. The described harmonic approximation can be considrhe several terms in the Hamiltonid20) have been dis-
ered as linear spin-wave theory for the bilayer probieith  cussed by Ede¥ They contain hopping without changing
inclusion of longitudinal spin fluctuatiorfsThe critical cou-  the spin backgrounddirect hopping, second and third term
pling here becomesJ( /J|).=4. In the limit of decoupled as well as spin-fluctuation assisted hoppifaurth and fifth
planes the results are equal to that of the linear spin-waveerm) and exchange processes where the hole remains on its
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rung (last two term& Together with the Hamiltonian for the A 1
doubly occupied rungés) thg HamiltoniaerO) contains the Cil,TtiTx|0>: — Tai’fm|o>,
complete one-hole dynamics for the disordered phase. For 2
the case of more than one hole, additional hole interaction _ _ _
processes would have to be considered. However, in thend analogous relations for other basis states and<fé.
present work we restrict ourselves to the discussion of the The hole motion processes will be described in the con-
one-hole problem. cept of path operatot%!®23that create strings of spin fluc-

If we work in the magnetically ordered phase it is conve-tuations attached to the hole. For the application of projec-

nient to use the generalized bafiszt, ,t,} from Sec. Il to  tion technique we define a set of path operatpks; that
represent the states of the doubly occupied rungs. From tHeouple to a hole and create local spin defects wnh_respect to
Hamiltonian(20) and the definitior(8) of the basis operators the undoped ground stafeo). The first operatoR, is the

one can construct a Hamiltonian for an ordered backgrounéNity operator, the second o moves the hole by one
state. It again contains processes proportiona where the ~ atlice spacing creating one spin excitation, and so on. We
hole hops to a neighboring rung and exchanges terms pr&'€ interested in calculating dynamical correlation functions
portional to Jj. To be short we only state some hopping for the operatorgA,c,}:

matrix elements of the resulting Hamiltonian. For that we

symbolically introduce two-rung state$XY)=XY]|0) !
whereX andY are the states on two adjacent rungs with Gio001(2) = tho| (AiCko) ' (AsCior) | tho | . (26)
eA andj eB:
2 The Green’s function(24) for the hole is then given by
1=\
<'§am||_|h|am’§>:ﬂ —, Gos.00(2). Using cumulants the correlation functio@scan
2 1+A be rewritten a&
oo Fhlag )~ 22, 1 e
za ag2)=5 —2,
T2 147 G.U,Jgf<z>=<¢o QT(A.cka)*(;AJckw) Q¢o> :
tH (1+7\)2 (27

(za0i|Hnlagis) =~ 5 5z
The bracketg ¢l - - | )¢ denote cumulant expectation val-
ues with |¢o). The “unperturbed” ground state at half-
(t, a0, [Hy| 2 %)= — f 1+ 23 filling, i.e., one of the product statés) or (9) for the disor-
x0T ni<oT 2 122 dered or ordered system, respectively, will be denoted in the
. ) _ following by | ¢¢) for both phases. The operatfr has been
The first two terms represent processes of hole motion withgescriped above, it transforr,) being the ground state of
out desturbing the spin backgrourido-called direct hop- H, into the full ground statdy,) of H=Hy+H, at half-
ping) whereas the last two terms are examples for hole hopﬁ"ing_ In the following, Q) is approximated by an exponen-
ping with creation of a “spin defect.” It can be seen that {j5) ansatz as described in Sec. II. Since the expred&dn
direct hopping is impossible in the limit 9k [=1, i.e., ina  ¢ontains bot) and Q' the expectation values can be cal-
Neel-ordered background. culated only in the lowest nontrivial order of the fluctuations
in , i.e., the expansion will be restricted to linear fluctua-
IV. SINGLE HOLE DYNAMICS tion terms. In order to correctly describe the short-range spin
To investigate the hole motion we consider a one-particleﬂU(:Fu"".tionS if‘ the sys.tem, operators with up t(.) four tri_plet
Green'’s function describing the creation of a single hole Withﬁ;%agggﬁ \évr':;I?);gzx'lr:nourr?hzlsgsglizgé:]ogfr Jﬁ;‘fiosepfgg;ggfs
momentumk at zero temperature, we have linearized the set of equatidi®) and(14). This is
possible since the absolute values of the coefficients are
¢o>,

G(k,w)=< o (24 small compared to 1 as discussed in Sec. IIC. Therefore
quadratic and higher terms in the fluctuations operators can
where z is the Comp|ex frequency Variab|e,:w+i77, i be negleCtEd. By Comparing the coefficients of the short-
—0. The quantityL denotes the Liouville operator defined range fluctuations obtained in this way with the ones from
by LA=[H,A]_ for arbitrary operatorgy; k= (ky,ky k) is the full (nonl_lnea) ground-state calculation of Sec. I1C we
the hole momentum wittk,=0 or 7 for the bonding or have numerically verified that the error in the matrix ele-
antibonding band, respectivelyy,) is the full ground state ments(30) introduced by this linearization is smaller than a
of the undoped system as described in Sec. II. The effect JEW Percent. Since the linearized equations for the coeffi-

the hole creation operat(irim,(, applied to| o) can be re- cients do not yield a phase-transition point we fix it at the

. PR : value (, /J)).=2.55 known from series expansiGnand
Iateq to the fermpn operatomy, , introduced n the last Monte Carlo calculationd[In the limit of an infinite set of
section. One obtains, for example, fat A sublattice,

operators{S,} within the cumulant method the solution of
the nonlinear equations has to yield the “exact” transition

AN~ 1+\ - .

L sfloy=————__4f t, which wi me to be af (/J)).=2.55] In the
C1+S |0 al. |0, 25 poin C € assume 10 1))

118110 V2(1+\2) |0 (29 ordered phase we set

L1
C,,—C
kUZ_L ko
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a) J /=0 b) J =1 a) J =2 b) J =24
_JL__,_,\_/\” _JL.\__/\___.” (m,0) _J\’\_d———\— —J\‘\—M—, (,0)
= _JL_/_J"\A _A—_A_—A w2,m2) = _J\;__-A—__ _J\\___-z~\_ (w2,m2)
5 _JL,__A_/\ __JL.___,\__ g VAN A
; ) ; )
o e | e DS | i —
L A N Al A (=) _JL____/\___" — N— — ()
j\‘_’% (™/2,7/2) A U A, WS (m/2,7/2)
| Nan_ || oA
A VAV pes — . =N P
-4 2 0 2-4 2 0 2 -4 2 0 2-4 2 0 2
Energy [#] Energy [4]
FIG. 2. One-hole spectral function for=0 (no interplane hop- FIG. 3. Same as Fig. 2, but fof@ J, /Jj=2, (b) J,/J;
ping), (@ J, /3;=0, (b) J, /Jj=1, and different momentak( ,k,). =2.4.

The other parameters adg/t;=0.4; the energies are measured in

its of lati h f a locali hole. . . . .
units oft refative to the energy of a localized hole Figs. 2—4. For zero and smdl| , i.e., in the limit of decou-

3730 =3 73 pled planes, we observe a pronounced quasipartiQle

= w (28) peak and a weak background at higher energies. The QP
(JL et Il peak follows a dispersion with minima at+(r/2,+ 7/2).

which is suggested by the results obtained in Sec. II. These features are well-known from the one-hole problem in

Using the Mori-Zwanzig projection techniqtfeone can  the single-layer antiferromagnet. With increasihgthe dis-
derive a set of equations of motion for the dynamical corre-persion is “washed-out” because the antiferromagnetic cor-

lation functionsG,,, ;,+(z). Neglecting the self-energy terms relations in the background state are weakenedJ AtJ
it reads ~1.5 a crossover to a dispersion with minima at ) and

(0,0) occurs. Note that this crossover point still liaside
E Q.- G . the antiferromagnet phase. Near the phase transition the
T Ko.10(2)G10,30/(2) = XKo,307 » spectral weight of the lowest pole at (0,0) becomes small.
Most of the spectral weight can be found in a band with
71 minimum at (m,7) and maximum at (0,0). The weak band
Q45,30 (2)=26¢38551 = 20 Wk.LoXLgn 30~ (29 visible at the bottom of the spectrum around momentum
Lo” (0,0) can be considered as “shadow band” originating from
Xio.300 @nd @), 5, are the static correlation functions and the antiferromagnetic background, i.e., it is obtained by shift-
frequency terms, respectively. They are given by the follow-ing the band with large weight b@)= (7, 7). Further in-

ing cumulant expressions: creasingd, drives the system into the gapped paramagnetic
; ; (PM) phase. At the phase transition it can be seen that
X030 ={ ol QT (AiCky) T (AsCke) Q| bo)C, shadow bands being present in the AF phase disappear in the

PM phase. At largd, the hole behaves like a free fermion
01,30 = (ol L (A1Cke) T(L(ALCK,1)) Q] B0)°. (30)  with a dispersion proportional t(cosk,+cosk).
These terms describe all dynamic processes within the sub- NOW we consider the effect of interplane hopping. We fix
space of the Liouville space spanned by the operatord'€ ratio of the parameters to
{A|Cy,}- The use of cumulants ensures size consistency, i.e.,
only spin fluctuations connected with the hole enter the final
expressions for the one-hole correlation function.

In the present calculations we have employed up to 160C A N JL =)
projection variables with a maximum path length of 3. The —JL/\ — JL/\
M (n/2,7/2)
A
2 0 2

ay J =27 b) J, =10

O

Cl

(m/2,m)

(m,m)

neglect of the self-energy terms leads to a discrete set oﬁ, A n

poles for the Green’s functions, so the present approach car £ i\ Y N

not account for linewidths. In all figures we have introduced g

an artificial linewidth of 0.2, to plot the spectra. For details A

of the calculational procedure see, e.g., Ref. 23. /Y
_J%

\_
A. One-hole spectrum I (m/2,m2)
Now we turn to the discussion of the final results. First we 4 J} 40/\*2_4 0.0
consider the case of vanishing interplane hopypingO0, i.e., Energy [1]
1l

the hole motion is restricted to one plafiia this casek, can
be dropped. The one-hole spectral function I18(k,w) for FIG. 4. Same as Fig. 2, but fo@) J, /3j=2.7, (b) J, /],
t, =0, Jj/tj=0.4, and various values @f, /J is shown in  =10.
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k,=0 k=m k=0 k,=m
Jk _JL» (n’O) (1‘:,0)
J\__A._L
Y A Y A N
= /\ (7/2,1/2) = (~2,1/2)
.%” _J\_A .%” A N
A\ NSO 1) SN o, Z S NP S — )
E — ] E
3 '\ m/2,m) 3 m/2,m)
JAN_AM_ (1|:,1|:) (1|:,1|:)
== = e
22 A 22
@ ) i ~ [¢ )
— SNSEU FS A . .
-4 2 0 2 -4 2 0 2 4 6 4 2 0 2 4 6 -4 2 0 2 4 6
Energy [1] Energy [4]
FIG. 5. One-hole spectral function fdn /ty=1, J, /J=1, FIG. 7. Same as Fig. 5, but fay /ty=2, J, /Jy=4, andJ/t,

Jj/ty=0.4, and different momenta. The left and right panel show=0.4.
the bonding k,=0) and antibondingl(,= 7) bands, respectively.

Varying the ratioJ; /t; (which is 0.4 for all figures pre-
tf tﬁ U sented henedoes not change the picture qualitatively. Larger
3.3, "2 (3D values ofJ; suppress the incoherent background in all spec-
+ | tra. For very small values df; the spectral functions become
incoherent since the hole is dressed with an increasing num-
which follows from the derivation of the-J model from a  per of spin fluctuations, i.e., the radius of the spin polaron
Hubbard model for the bilayer system with on-site repulsionincreases. Furthermore, the bandwidth of the quasiparticle
U. Spectra for different parameter sets withty=10 are  dispersion at small, is mainly controlled byJ; (instead of
shown in Figs. 5-7. An interplane coupling of/ty=1 has ;). This means that the bandwidth in units tpfdecreases
already changed the character of the bands compared to with decreasing);/t|, see also next subsection. The location
=0 [cf. Fig. 2@)]. Further increasing, /t; to 1.5(Fig. 6)  of the cross-over between the two dispersion forms depends
forms a pronounced band with a free-fermion form at theweakly onJ; /t; which will be discussed below.
bottom of the spectrum in the bonding channle]<0). In
contrast, the antibonding spectrurk,€ =) becomes inco-
herent since spectral weight is transferred to higher energies. B. Quasiparticle bands

Since we are still in the antiferromagnetic phase the lowest Next we are going to examine the properties of the low-
peaks in the antibonding channel appear at the same energigsg bands. Again we first discuss the case of vanishing
as in the bonding channel shifted by momentu@ interplane hoppingt, =0. ForJ, <J; one finds a narrow
= (), i.e., these can again be considered as shado@p band shown in Fig. §top panel. It has minima at
bands. Att, /t|>/2.55 the AF order is destroyed. As shown (+m/2,+ #/2) and a bandwidth of approximately 3,5 It
in Fig. 7 fort, /t|=2 the shadow bands are disappeared, andorresponds to the coherent motion of a dressed hole, i.e., a
in the antibonding channel a pronounced free-fermion bandpin-bag quasiparticléNote that a larger set of path opera-
at high energies is formed. Higher valuestofwill com-  tors would give a larger bandwidth of around;2 which is
pletely suppress the incoherent weight left in the antibondingknown from the calculations for a single-layer
channel. antiferromagnet® However, paths of length four and more
are hard to access for the bilayer system due to the increasing

numerical efforf. The main contribution to the hole motion
k,=m in the AF case can be understood as follows: the hopping
A ®.0) hole locally destroys the antiferromagnetic spin order leaving
_J'L“ e behind a string of spin defects. Quantum spin fluctuations
£ " ﬁ (W2,n/2) can.repa}ir pairs of frustratgd spins, whic_h leads tq a cpherent
) A A 0 motion in one of the antiferromagnetic sublatticespin-
E Y SN fluctuation-assisted hopping-ort;/J;>1 the bandwidth of
3 e A N (w2,m) this coherent hole motion is of ordéy because the spin-flip
] m part of the intraplane Heisenberg interacti§nis necessary
- A ) to remove the spin defects caused by hopping.
LI A A With increasingd, the bandwidth of the dispersion first
S A - decreases; at a value df /Jj~1.5 the minima move to
_'4’“/\_’2‘/\“/\()‘ > 4 '_“4A o 5 (7,7) and (0,0). Slightly Iaﬂger values af, lead to an
Energy [4] increase of the bandwidth, and spectral weight is transferred

to a band that has nearly tight-binding form. So the lowest
FIG. 6. Same as Fig. 5, but far /t;=1.5, J, /Jj=2.25, and  pole atJ, /Jj=2.4 has very small weight around momentum
Jy/y=0.4. (0,0). This shadow band is shown as a dashed line in Fig. 8.
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Energy [4]

0.0 W2w2) mm @2r) Om @2w2) @0)
In-plane momentum

0,00 (n2w2) (mm) @2w) (Om @2,12) (w,0)
In-plane momentum

S _ _ FIG. 9. Quasiparticle dispersion fdf/J, =tf/J;=U/4 with
FIG. 8. Quasiparticle dispersion for =0 (no interplane hop- /4, =10 and different values df, /t;. The in-plane momentum

ping), J;/t=0.4, and different values af, /Jj. The energy zero  (x k) varies along the horizontal axis. Solid/dashed lines corre-
level has been set at the center of mass of the band.JFoj; spond to bonding/antibonding modes, €0 or ).

=2.4 the heavy line shows the dispersion of the peak carrying the

main spectral weight whereas the thin line corresponds to the lowest I . .
: other values of) /t| are qualitatively similar. The minimum
pole in the spectrunishadow band, see text

in the dispersiorti.e., the crossover poinshifts with J; /t:
for J;/ty=0.1 it is located ad, /Jj~1.1, forJ;/ty=10 it is
found atJ, /J;~2.0. This in turn means that the crossover in

behavior follows from the existence of the direct hopping
term with prefactort)/2 in Hy, (20). It leads to a dispersion
proportional tot; the saturation bandwidth equals half of C. Relation to the short-range spin correlations

the bandwidth of the uncorrelated systent}8 In order to understand the behavior of the QP dispersion

_ The results for nonzero interplane hoppingare shown  anq its bandwidth we illustrate in more detail the connec-
in Fig. 9. Again, for smalt, (smallJ,) the dispersion char- tion petween the in-plane hole motion and the short-range

acter is “antiferromagnetic” whereas for large (largeJ,)  jn-plane spin correlations. The basic ingredient for the ob-
the bands have a simple tight-binding form. Boe>J; and

t, >t their dispersion is given by

4—
€x= —1t, cosk,+t|(cosk,+cosk,). (32

The bandwidth for the in-plane motion is reduced by a factor
of 2 compared to a free fermion since the relevant hopping
matrix element igsay|Hp|ag;s) =t/2.

In Fig. 10 we finally show the bandwidth of the QP dis- [
persion for the case of vanishing interplane hopping and 0 2" "‘ ' é ' é ' 1'0 ' 1'2 ' 1'4 ' 1'6 ' 1'8 0
Jj/ty=0.4, i.e., for the dispersions shown in Fig. 8. It can 7T
clearly be seen that the crossover from an “antiferromag- Lo
netic” to a simple tight-binding dispersion occurs &t/J; FIG. 10. Bandwidth of the quasiparticle dispersi@hown in
~1.5 and is connected with a pronOUnced minimum in thQ:|g 8 vs J, /‘JH for t, =0 (no interplane hoppingand J” /t”

QP bandwidth. Fod, /J;>1.5 the bandwidth increases and =0.4. The vertical dashed line again indicates the position of the
saturates for largé, at 4t as discussed above. Results for magnetic phase transition.

Bandwidth [#,]
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served behavior of the QP dispersion is the competition P L L A L T P
between direct hopping that dominates in the dis- = \ N/a=1 11
ordered phase and spin-fluctuation-assisted hopping known T I T I ]

; . 0.1 ¢ S X 0.5
from the single-layer AF. The relevant matrix element % ol I ] L 1o =
for direct hopping between states without spin deviations is o1l | ] | 1 <«

. Iy o , . 01} T 1-0.5
t1:=<'r//O|CjTUHtCiU|'r//O>! wherei,j are nearest-neighbor sites o2l TS0 1g,/4=04)
and | ) denotes the undoped background state. This term osl I T I -1
can be expresséd®® by the static in-plane nearest-neighbor e o ' i : é 4 ; : A'l : o : i : é 4 ; : "1 : 5-1,5
spin correlationSg= (| Sy- Skl o) With R=(1,0) as
J 1, J 1y

ty=2t)(Syot 7). (33 FIG. 11. Left:J, /J; dependence of the equal-time short-range

spin-correlation function$Sy in the spin background state calcu-
Spin-fluctuation-assisted hopping is more complicated sinciated with the Iingarizet_j exponential ansatz used for the description
it involves two hopping steps and one spin-fluctuation pro-°f the hole motion. RightA vs J, /3 from Eqg. (35) for J;/,
cess. The matrix element for the spin-fluctuation procbss =0.4 and 1.0.
ing the most important for not too small valuestgf can be
written as t,:=(o|C/,H ACi,| o), where A, moves the
hole by two hopping step&reating a path of spin defegts
andi,j are now next-nearest neighbors. Transforming the
expectation value into spin-correlation functions one
obtaing®3®

V. CONCLUSIONS

In this paper we have presented for the first time a sys-
tematic analytical study of the one-hole dynamics on both
sides of a magnetic ordering transition in a low-dimensional
antiferromagnet. The system under consideration was a bi-
layer antiferromagnet described byt-d Hamiltonian in the
limit of zero doping. The magnetic background state has

where the average over the possible paths of length 2 h en modeled with modified bond. operators. In the disor-
already been performed. ered phase these operators describe the singlet ground state

The in-plane dispersion shape can be described by th%nd the triplet excitations. In the AF ordered phase they ac-

energy difference = E(r, ) — E(7/2,7/2). ValuesA>0 count for the condensation of one type of triplet bosons and

correspond to an “antiferromagnetic” dispersion whereasqescr'be transverse as well as longitudinal fluctuations. Us-

A <0 occurs for a nearest-neighbor tight-binding dispersion!ng thg spin-polaron concept th.at.descnbes the one-hole
tates in terms of local spin deviations we have calculated

Neglecting longer paths and more complicated contribution§h hol tral function for the whol f
to the hole motion the QP dispersion is given by the sum of Ef[_ one- ol_e spectral function for the whole rahge of mag-
a nearest-neighbor and a next-nearest neighbor dispersi&? IC couplings.

originating from the two processes described above. Then Fpr _the disprdered bgckgroun(lldtrge\]i /3, gapped spin
can be roughly estimated from the matrix elementandt,: excitation$ spin fluctuations around the hole are suppressed.
z The hole motion is dominated by direct hopping processes,

i.e., hopping without disturbing the spin background. In the
ordered phase for very small interplane coupling we recover
the results known from the single-layer hole motion: The
The prefactor ot, arises from the number of nearest neigh-spectrum consists of a coherent QP peak at the bottom and
bors; for thet, prefactor the influence of two hopping steps an incoherent background. The QP can be associated with a
has to be kept in mind, a fit to numerical results for themobile hole dressed by spin fluctuations. The bandwidth of
single-layer problem yields a value of order 1. From this weits coherent motion is controlled k.
see that the crossover phenomenon can be understood in The crossover between these two scenarios odnsige
terms of the interplay between short-range spin correlationthe ordered phase where the antiferromagnetic short-range
and the ratio of) /t. correlations become weakened. The crossover is located be-
Figure 11 shows the values 8f for nearest-neighbor and tween 1<J, /J<2 depending or /| (for J;/tj=0.4 it is
next-nearest-neighbor sites obtained from the present calctound atJ, /J;~1.5). Note that the crossover can also be
lation. With increasing), /J| the absolute values of the in- driven by variations of the hopping strengthat a fixed
plane spin correlation functions decrease from their singlevalue ofJ, /J; well in the antiferromagnetic phase.g., 1.3.
layer values and are weakened within the antiferromagnetiThis behavior follows from the competition between direct
phase. At the transition point the magnitude has dropped byiearest-neighbor hopping and spin-fluctuation-assisted next-

1 S0+2S1
t2=J|| — Eslo-f— T

3

E) , (34)

a factor around 2—3 compared d¢ =0, which again coin-
cides with the fact that the density of sginiplet) excitations

nearest-neighbor hopping. In contrast, when crossing the
magnetic phase boundary &t/J;~2.5 there are no drastic

is small in the disordered phase even at the transition |3ointchanges in the spectruiand therefore in the ARPES re-

We have also plotted the quantify estimated from Eq(35)
for two different values ofl; /t;. One notices a semiquanti-
tative agreement of the zero ik and the dispersion mini-
mum described in Sec. IV B.

sponse of such a systenThe only differences between the
spectra in both phases near the phase transition are weak
shadow bands in some regions of the Brillouin zone in the
AF phase.
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Note that our approximation that describes the hole momagnetic” hole dispersion on both sides of the transition.
tion processes in terms of short-range spin fluctuations iFhis is exactly what was observed in recent wirk? ana-
guestionable in a region in the close vicinity of the phasdytical investigations of one hole in the AF phase as well as
transition due to the existence of long-range critical fluctuaumerical studies of finite systen{gvhich have a singlet
tions. However, it has been argued recefitipat the influ-  ground state without long-range orgléoth show a coherent
ence of the critical modes suppresses the quasiparticle weightle motion with a dispersion of widthJ2and minima at
only in the limit of vanishing hopping/J—0. In contrast, (=% u/2,*=7/2).
for finite hopping the number of spin fluctuations near the It should be pointed out that the above discussion applies
hole remains finite even at the transition point. So we expedo intermediate- and high-energy scalesdert, J) only. Of
the picture presented in this paper to be valid at least in theourse there exist low-energy properties of the spectrum that
regions away from the transition, i.gJ, /J;—2.59>0.1, are expected to be influenced by quantum criticality, e.g., the
which is supported by the fact that our spectral functions orinewidth in a finite-temperature photoemission experiment
both sides of the phase transiti¢e.g., atJ, /Jj=2.4 and  should show scaling behavior in the quantum-critical region
2.7) do not show major differences. associated with the transitidA These features as well as the

So the main result of the present paper can be summarizdwble dynamics in the bilayer system at low but finite doping
as follows: A magnetic phase transition has only weak influ-are beyond the scope of the present study and will be a
ence on the ARPES spectrum of a doped antiferromagnesubject of future research.

The properties of the spectrum are, however, dominated by

the short-range environment of _the_hole. The statement is ACKNOWLEDGMENTS

expected to hold also for the doping-induced phase transition

in the single-layer AF. Here the antiferromagnetic correla- The authors thank E. Dagotto and T. Sommer for useful
tions are strong even in the paramagnetic phase, i.e., fromonversations. M.V. acknowledges support by the OVG

the above considerations one expects to find an “antiferro794/1-1).
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