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Doped bilayer antiferromagnets: Hole dynamics on both sides of a magnetic ordering transition
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The two-layer square lattice quantum antiferromagnet with spins1
2 shows a magnetic order-disorder transi-

tion at a critical ratio of the interplane to intraplane couplings. We investigate the dynamics of a single hole in
a bilayer antiferromagnet described by at-J Hamiltonian. To model the spin background we propose a
ground-state wave function for the undoped system that covers both magnetic phases and includes transverse
as well as longitudinal spin fluctuations. The photoemission spectrum is calculated using the spin-polaron
picture for the whole range of the ratio of the magnetic couplings. This allows for the study of the hole
dynamics on both sides of the magnetic order-disorder transition. For small interplane coupling we find a
quasiparticle with properties known from the single-layer antiferromagnet, e.g., the dispersion minimum is at
(6p/2,6p/2). For large interplane coupling the hole dispersion is similar to that of a free fermion~with
reduced bandwidth!. The crossover between these two scenarios occurs inside the antiferromagnetic phase,
which indicates that the hole dynamics is governed by the local environment of the hole.
@S0163-1829~99!04245-9#
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I. INTRODUCTION

Since the discovery of high-temperature superconduc
ity, doped antiferromagnets~AF! have been studied inten
sively. It is widely accepted that many properties of the
perconducting cuprates are determined by the hole-do
CuO2 planes. A number of experiments1 indicate that the
cuprates are near a quantum-critical point of antiferrom
netic instability: The undoped materials are known to be
tiferromagnetic Mott-Hubbard insulators, whereas hole d
ing destroys the antiferromagnetic long-range order~LRO!
and leads to superconductivity. The investigation of the
terplay between long-range magnetic order and quantum
order is therefore of great theoretical interest.

A model system that shows a quantum transition betw
an ordered and a disordered magnetic phase is theS5 1

2 bi-
layer antiferromagnet.2–9 Here each of the two planes
composed of a nearest-neighbor Heisenberg model with
pling constantJi . The spins of corresponding sites of ea
layer are coupled antiferromagnetically with a coupling co
stantJ' . In the limit of smallJ' /Ji the model describes two
weakly coupled AF planes. AtT50 this system possesse
AF long-range order and gapless Goldstone excitations
the opposite case of largeJ' /Ji , pairs of spins interacting
via J' form spin singlets being weakly coupled byJi . Then
the spin excitations are gapped triplet modes; there is
magnetic LRO. At a critical ratio (J' /Ji)c a quantum tran-
sition between the two phases occurs that is believed to b
the O~3! universality class.2–5 The bilayer antiferromagne
has been studied by a number of numerical and analy
techniques. Quantum Monte Carlo calculations3,4 and series
expansions6 yield an order-disorder transition point o
(J' /Ji)c;2.5. A similar result has also been obtained a
lytically using a diagrammatic approach to account for
hard-core interaction between triplet excitations.7 Bond-
PRB 600163-1829/99/60~22!/15201~13!/$15.00
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operator mean-field theory has recently been applied to
bilayer Heisenberg AF~Ref. 10! and gives a transition poin
of (J' /Ji)c;2.3. Note that Schwinger boson mean-fie
theory9 predicts a very large value of (J' /Ji)c;4.5, and
also a self-consistent spin-wave theory,2,8 which yields
(J' /Ji)c;4.3, fails to reproduce the numerical results. Ch
bukov and Morr2 have pointed out that this discrepancy
due to the neglect of longitudinal spin fluctuations in t
conventional spin-wave approach.

In this paper we discuss the bilayer antiferromagnet
zero temperature with hole doping as an additional degre
freedom. We consider the standardt-J model on a bilayer
square lattice consisting ofN sites per plane, so the tota
number of lattice sites is 2N. Each pair of corresponding
sites in different planes is considered to form a rung, so
haveN rungs. More precisely, the Hamiltonian reads

H52t'(
is

~ ĉi1,s
† ĉi2,s1H.c.!2t i (

^ i j &ms
~ ĉim,s

† ĉ jm,s1H.c.!

1J'(
i

S Si1•Si22
ni1ni2

4 D
1Ji (

^ i j &m
S Sim•Sjm2

nimnjm

4 D . ~1!

Here, and in the following,i andj denoterungsof the bilayer
lattice, ^ i j & denotes a summation over all pairs of neare
neighbor rungs.m51,2 is the plane index, soim denotes a
lattice site.Sim is the electronic spin operator andnim the
electron number operator at siteim. The electron operators
15 201 ©1999 The American Physical Society
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ĉim,s
† exclude double occupancies, ĉim,s

† 5cim,s
† (1

2nim,2s). We choose thez axis along the direction of the
rungs, i.e., perpendicular to the planes.

First, we want to comment on the zero-temperature ph
diagram of the doped bilayert-J model that has to ou
knowledge not been systematically studied up to now. T
following nonthermal control parameters can be conside
the ratioJ' /Ji , the doping leveld, and the relative hopping
strength t/J. The doped single-layer antiferromagnet
known to exhibit a strong dependence of magnetic proper
on the hole concentrationd. With increasing hole concentra
tion the staggered magnetization decreases and vanishe
critical hole concentrationdc of a few percent where the
system becomes paramagnetic.11–14 ~This is consistent with
experiments on high-Tc superconductors.11,12! On the other
hand, in the undoped limit a large interplane couplingJ'

also destroys the antiferromagnetic LRO as discussed ab
Thus it is likely that the system shows~i! AF LRO accom-
panied by spontaneous symmetry breaking and the exist
of massless Goldstone modes in the region of very sm
doping and smallJ' . Otherwise it is paramagnetic; here on
has to distinguish between~ii ! a spin-gapped phase that o
curs at smalld, small hoppingt i , and large interplane cou
pling, and ~iii ! a gapless phase at larger doping and sm
interplane coupling. The gapped phase~ii ! is dominated by
interplane singlet pairs~incompressible spin fluid! whereas
the gapless phase~iii ! shows only weak interplane couplin
and behaves mainly like a single-layer system atd.dc
~compressible spin fluid!. ~Issues like pseudogap featur
and transport properties will not be adressed here.! In the
present work we restrict ourselves to the zero-doping li
~one hole!. So the magnetic~bulk! properties will not be
affected by the doped hole, i.e., we probe the transition
tween the antiferromagnetic~i! and the gapped~incompress-
ible! paramagnetic phase~ii !.

The dynamical properties of holes in high-Tc supercon-
ductors have been subject to a lot of experimental and th
retical work. Angle-resolved photoemission spectrosco
~ARPES! experiments at zero15 or small doping16,17 indicate
a quasiparticle band with a small bandwidth providing e
dence for strong electronic correlations in the high-Tc com-
pounds. A large number of numerical and analytical stud
reveal that a single hole in an AF spin background has n
trivial properties: The spectral function consists of a p
nounced coherent peak at the bottom of the spectrum an
incoherent background at higher energies. The coherent
can be associated with the motion of a dressed hole, i.e
hole surrounded by spin defects~‘‘spin polaron’’!.11,12,18–23

The hole motion in bilayer antiferromagnets has been stud
in a few papers and only for a small parameter range: Us
self-consistent Born approximation~SCBA! it has been
shown24 that small interplane coupling only weakly affec
the hole properties. Exact diagonalization studies25 have in-
dicated a larger effect of the interplane coupling at fin
doping. However, the system sizes accessible to nume
methods (238 in Ref. 25! do not allow for the study of
small hole densities and arbitrary momenta.

In this paper we prefer an analytical approach to the o
hole problem that is based on the picture of the spin-
quasiparticle~QP! or magnetic polaron.18–23 The magnetic
background for the hole motion will be modeled within
se
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modified bond-operator representation of the spins on e
rung. In the ordered phase one type of triplet bosons c
denses which will be included in the modified basis ope
tors. So our excitation operators continuously interpolate
tween the triplet excitations of a singlet product state and
transverse and longitudinal excitations of a Ne´el-ordered
state. The deviations of the spin background caused by
hole motion are described by a set of path operators.18,19,22,23

The one-hole spectral function will be evaluated using a
mulant version26,27 of the Mori-Zwanzig projection
technique.28

The paper is organized as follows: In Sec. II we propos
ground-state wave function for the undoped bilayer antif
romagnet. In Sec. III we develop the Hamiltonian for t
doped system in this new operator representation and dis
the various hole motion processes. Section IV focuses on
motion of a single hole in an otherwise half-filled bilay
antiferromagnet. The one-hole spectral function for this c
corresponds directly to the result of an ARPES experim
on an undoped system. After a brief sketch of the project
technique we investigate the spectral properties in dep
dence of the magnetic background, especially when cros
the phase boundary between gapped paramagnet and an
romagnet. The results show that the character of the one-
spectrum is mainly determined by the local spin environm
of the hole, whereas the spectrum changes only weakly w
crossing the order-disorder transition. A conclusion w
close the paper.

II. UNDOPED BILAYER ANTIFERROMAGNET

To begin with, we consider the case of half-filling. Usin
bond operators we derive a wave function that describes
ground states in both the quantum disordered phase~at large
J') and the Ne´el phase~at small J'). The wave function
will be constructed within a cumulant formalism.26,29 It is
based on an expansion around a product of rung states
are singlets in the disordered phase and sums of singlets
z-type triplets in the ordered phase. This wave function w
be used in Sec. IV as ‘‘magnetic background’’ to calcula
dynamical properties of a single hole.

A. Rung basis and Hamiltonian

In the limit of vanishing intraplane coupling,Ji /J'→0,
pairs of spins on each rung form a singlet ground state.
excitations are localized triplets with an energy gapJ' .
Switching onJi leads to an interaction of triplets on neigh
boring rungs and to a dispersion of the triplet excitations.
describe this dimerized phase we employ a bond oper
representation30 for the spins per rung. For each rungi con-
taining two S5 1

2 spinsSi1 , Si2 we introduce operators fo
creation of a singlet and three triplet states out of the vacu
u0&:

si
†u0&5

1

A2
~ ĉi1,↑

† ĉi2,↓
† 2 ĉi1,↓

† ĉi2,↑
† !u0&5

1

A2
~ u↑↓&2u↓↑&), ~2!
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t ix
† u0&5

21

A2
~ ĉi1,↑

† ĉi2,↑
† 2 ĉi1,↓

† ĉi2,↓
† !u0&5

21

A2
~ u↑↑&2u↓↓&),

t iy
† u0&5

i

A2
~ ĉi1,↑

† ĉi2,↑
† 1 ĉi1,↓

† ĉi2,↓
† !u0&5

i

A2
~ u↑↑&1u↓↓&),

t iz
† u0&5

1

A2
~ ĉi1,↑

† ĉi2,↓
† 1 ĉi1,↓

† ĉi2,↑
† !u0&5

1

A2
~ u↑↓&1u↓↑&).

Then the following representation holds:30

Si1,2
a 5 1

2 ~6si
†t ia6t ia

† si2 i eabgt ib
† t ig!. ~3!

The algebra of the operators$si ,t ix ,t iy ,t iz% has to be speci-
fied to reproduce the correct algebra for the spin operat
Here bond operators satisfying the usual bosonic comm
tion relations will be chosen.30 In order to ensure that th
physical states are either singlets or triplets one has to
pose the condition

si
†si1(

a
t ia
† t ia51. ~4!

The singlet product ground state forJi /J'→0 can be written
as

uf0&5)
i

si
†u0&. ~5!

We can now substitute the operator representation~3! into
the Heisenberg Hamiltonian for the bilayer and obtain
following HamiltonianH5H01H1 in the bond~rung! op-
erator representation:31,32

H05J'(
ia

t ia
† t ia ,

H15
Ji

2 (
^ i j &a

~ t ia
† t j a

† sjsi1H.c.!1
Ji

2 (
^ i j &a

~ t ia
† sj

†t j asi1H.c.!

2
Ji

2 (
^ i j &ab

~ t ia
† t j a

† t j bt ib2t ia
† t j b

† t j at ib!. ~6!

The sum^ i j & runs over pairs of neighboring rungs of th
lattice. The ground state ofH0 is given by the product stat
uf0& defined in Eq.~5!.

Approaching the quantum critical point the triplet excit
tions will become gapless at momentum (p,p), see, e.g.,
Refs. 2 and 6. The magnetic quantum phase transition t
antiferromagnetically ordered state includes spontane
symmetry breaking and can be described via the conde
tion of triplet bosons in one particular direction~which has to
be induced by an infinitesimal staggered field!. Neglecting
fluctuations a symmetry-broken state with a condensate
z-type triplet bosons can be written as
s.
a-

-

e

an
us
a-

of

uf̃0&;expS l(
i

eiQ•Ri t iz
† D uf0&5)

i
~si

†1leiQ•Ri t iz
† !u0&,

~7!

where the spontaneous staggered magnetization pointsz
direction. The exponential term accounts for boson cond
sation, the condensation amplitude is given byl. l50

means rotational symmetry in spin space~then uf̃0&
5uf0&), lÞ0 breaks this symmetry.l561 transforms the
singlet product stateuf0& into a Néel state.Q5(p,p) is the
AF ordering wave vector.

The basic idea for a proper description of the excitatio
of the product stateuf̃0& ~7! is now to transform the basi
states on each rung. We replace the basis operatorssi for
singlets andt iz for z triplets by

s̃i5
1

A11l2
~si1leiQ•Ri t iz!,

z̃i5
1

A11l2
~2leiQ•Risi1t iz!. ~8!

The new basis per rung consists of the operat

$s̃i ,z̃i ,t ix ,t iy% that still satisfy bosonic commutation rela
tions. Forl50 this basis reproduces the usual bond-bos
basis. For nonzerol the states̃i

†u0& interpolates between th

rung singlet and a~local! Néel state, the statez̃i
†u0& is or-

thogonal tos̃i
†u0&. The product stateuf̃0& ~7! can now be

written as

uf̃0&5)
i

s̃i
†u0&. ~9!

For ulu51 this state is an antiferromagnetic Ne´el state. Its
excitations are given byt ix

† s̃i , t iy
† s̃i , and z̃i

†s̃i . Here, (t ix
†

6 i t iy
† ) s̃i creates one spin flip in one of the planes and can

regarded as transverse spin fluctuation. The operatorz̃i
†s̃i

flips both spins on one rung, which can be interpreted
longitudinal spin fluctuation. The basis parameterl has to be
determined separately, which will be discussed in the n
subsection. Below it is shown that in the ordered phasel
varies continuously betweenl51 for J'50 andl50 at the
transition to the disordered phase. Note that the idea o
condensate for one type of bosons has also been empl
by Chubukov and Morr2 who applied a modified version o
nonlinear spin-wave theory to the problem of the undop
bilayer antiferromagnet.

Using Eq.~8! we can reformulate the Hamiltonian for th
~undoped! bilayer Heisenberg model in terms of the ne
basis operators$s̃i ,z̃i ,t ix ,t iy%. Note that the splitting of the
Hamiltonian is different from Eq.~6!:
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H̃05J'(
i

S t ix
† t ix1t iy

† t iy1
1

11l2 ~ z̃i
†z̃i1l2s̃i

†s̃i ! D ,

H̃15J'(
i

l

11l2 eiQ–Ri~ z̃i
†s̃i1 s̃i

†z̃i !1
Ji

2 (
^ i PA, j PB&

@~ t ix
† t jx

† 1t iy
† t jy

† !~ s̃i s̃j2 z̃i z̃j !1H.c. #

1
Ji

2 (
^ i PA, j PB&

~ t ix
† t jx

† t iyt jy2t ix
† t jy

† t iyt jx1H.c.!1
Ji

2~11l2!
(

^ i PA, j PB&
$t ix

† s̃j
†@~12l2!s̃i t jx22l z̃i t jx#

1t iy
† s̃j

†@~12l2!s̃i t jy22l z̃i t jy#1H.c. %1
Ji

2~11l2!
(

^ i PA, j PB&
$t ix

† z̃j
†@~12l2!z̃i t jx12l s̃i t jx#

1t iy
† z̃j

†@~12l2!z̃i t jy12l s̃i t jy#1H.c. %1
Ji

2~11l2!2 (
^ i PA, j PB&

4l2~2 s̃i
†s̃j

†s̃j s̃i2 z̃i
†z̃j

†z̃j z̃i1 z̃i
†s̃j

†s̃j z̃i1 s̃i
†z̃j

†z̃j s̃i !

1
Ji

2~11l2!2 (
^ i PA, j PB&

@~12l2!2~ z̃i
†z̃j

†s̃i s̃j1 z̃i
†s̃j

†s̃i z̃j !12l~12l2!~ s̃i
†z̃j

†2 z̃i
†s̃j

†!s̃i s̃j1H.c. #. ~10!
i.e

l

,
n
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A and B denote the sublattices of the square lattice,
eiQ•Ri561 for i PA or B, respectively. Forl50 the Hamil-
tonian Eq.~10! is identical to Eq.~6! derived with the usua
bond operators. Forulu<1 the ground state ofH̃0 defined in
Eq. ~10! is given by the modified product stateuf̃0& ~9!. It
can be seen thatH̃1 in Eq. ~10! contains creation, hopping
and conversion terms of the three types of excitatio

$z̃i ,t ix ,t iy%. Contrary to the HamiltonianH1 in ~6! where the
triplet excitations can only occur in pairs, here also sin
z̃-type excitations can be created and destroyed, e.g.
J'( z̃i

†s̃i1 s̃i
†z̃i). The effect of these terms is directly relate

to the basis parameterl and will be used to determine it
value. Furthermore it can be seen that all terms crea
z̃-type excitations out ofuf̃0& vanish forJ'50,ulu51. This
means that the ground state in the limit of vanishing int
plane couplingJ' does not contain single longitudinal sp
fluctuations. They will become, however, important for d
scribing the destruction of the antiferromagnetism with
creasingJ' .

Note that z̃-type bosons formally occur together wit
transverse fluctuations even atJ'50,ulu51. This happens if
a transverse fluctuation created byJi hits a second transvers
fluctuation being already present at the same rung, in o
words, if spins on corresponding sites in each of the pla
are flipped independently byJi . These processes have to
included in an exact treatment of the ground-state wave fu
tion; within the approximation of independent bosons~which
will be described in Sec. II C! they are neglected.

B. Approximation for the ground state

To obtain an approximation for the ground-state wa
function we adopt a cumulant approach26 that has been suc
cessfully applied to a variety of strongly correlated system
One starts from a splitting of the Hamiltonian intoH5H0
1H1 where eigenstates and eigenvalues ofH0 are known.
The ground stateuc0& of H can be constructed from th
,

s

e
by

g

-

-
-

er
s

c-

e

s.

unperturbed ground stateuf0& of H0 by application of a
so-called wave operatorV that contains the effect ofH1. It
has been shown29 that V can be written in an exponentia
form, V5eS, whereS introduces fluctuations intouf0&. The
ground-state energyE is calculated26 according to E
5^f0uHVuf0&

c where^f0u•••uf0&
c denotes a cumulant ex

pectation value with respect touf0&.
For the disordered phase of the system it is suitable

start from the singlet product stateuf0& given in Eq.~5! and
to include fluctuations in form of pairs of triplet excitation
An appropriate ansatz for the wave function is

uc0&5Vuf0&5expS (
i j a

m i j at ia
† t j a

† sjsi1(
n

bnSnD uf0&.

~11!

The first term in the exponential contains pairs of triple
~with arbitrary distanceRi2Rj ). The operatorsSn in the
second term represent higher-order fluctuations, e.g., f
triplet operators. They will be used in Sec. IV. For the d
termination of the coefficientsm i j a and bn the cumulant
method provides a set of nonlinear equations,29

05^f0u~si
†sj

†t j at ia!•HVuf0&
c,

05^f0uSn
†HVuf0&

c. ~12!

The superscripted dot indicates that the quantity inside
parentheses has to be treated as a single entity in the cu
lant formation. Equations~12! are derived from the require
ment thatVuf0& is an eigenstate ofH. From symmetry it
follows that the coefficientsm i j a5m i j only depend on the
difference vectorRi2Rj ~but not ona). So the stateuc0&
obeys rotational invariance in spin space. When evalua
the terms in Eqs.~12! the exponential series terminates aft
a few terms since the exponent contains only operators
create~but do not destroy! fluctuations. The resulting nonlin
ear coupled equations form i j can be partially decoupled by
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Fourier transformation to momentum space. The remain
set of equations has to be solved self-consistently.

For the ordered phase the treatment is similar, howe
one has to take care of the broken rotational symmetry. S
ing point is the product wave functionuf̃0& ~9!. In the op-
erator V we now explicitly distinguish between pairs o
transverse (t ix

† t jx
† ,t iy

† t jy
† ) and longitudinal (z̃i

†z̃j
†) fluctuations:

uc0&5Vuf̃0&5expS (
i j

m i j ~ t ix
† t jx

† 1t iy
† t jy

† !s̃j s̃i

1(
i j

n i j z̃i
†z̃j

†s̃j s̃i1(
n

bnSnD uf̃0&. ~13!

The operatorsSn again contain higher-order fluctuations a
will be discussed later. The parametersm i j , n i j , and bn
have to be determined in analogy to Eqs.~12! by the equa-
tions

05^f̃0u~ s̃i
†s̃j

†t jxt ix!•HVuf̃0&
c,

05^f̃0u~ s̃i
†s̃j

†z̃j z̃i !
•HVuf̃0&

c,

05^f̃0uSn
†HVuf̃0&

c , ~14!

which again reduce to Eqs.~12! in the case ofl50. For l
50 we expect the transverse and longitudinal fluctuation
become equivalent,m i j 5n i j . For ulu51 the amplitude of
the longitudinal fluctuations in the ground state vanish
n i j 50, if one neglects higher-order processes inJi as noted
above. Note thatV in Eq. ~13! does not contain operators fo
the creation of singlez̃-type excitations (z̃i

†s̃i) although such
operators are present in the Hamiltonian~10!. The reason is
that such operators change the density of the condensa
the z triplet bosons and refer to the same degree of freed
as the parameterl in the product stateuf̃0&. The aim here is,
however, to describe the condensation of thez-type bosons
completely via the introduction ofl and the transformed
basis states. In this wayV contains only multispin fluctua
tions.

Now we discuss the parameterl that is expected to be
zero throughout the disordered phase and to vary cont
ously from 0 to 1 with decreasingJ' in the ordered phase
Within the cumulant methodl can be determined consis
tently using the identity

05^f̃0u~ s̃i
†z̃i !

•HVuf̃0&
c. ~15!

This can be understood as the condition thatV containsno

additional term like( i z̃i
†s̃i in the exponential, i.e., the boso

condensation is fully accounted for by the transformed ba
stateuf̃0&. Within the cumulant formalism this can be se
from the equality

Vuf̃0&
c5VueltQz

†
f0&

c5VeltQz
†

uf0&
c, tQz5(

i
eiQ•Ri t iz .

~16!

Here we have used the fact that a cumulant expectation v

does not change when the operatoreltQz
†

is subject to cumu-
lant ordering instead of being applied directly to the wa
g

r,
rt-

to

s,

of
m

u-

is

ue

function uf0& ~see Ref. 33!. The operatorVeltQz
†

can be
interpreted as new wave operator~applied touf0&). It now
contains the additional parameterl that has to be determine

from 05^f0u( s̃i
†z̃i)

•HVeltQz
†

uf0&
c, which is equivalent to

Eq. ~15!.

C. Ground-state properties

If we restrict the fluctuation operators in the exponent
of V to excitation pairs as described above~i.e., neglect fur-
ther operatorsSn) and take fully into account the constrain
~4!, we find a critical coupling of (J' /Ji)c;3.2 for the
order-disorder transition. At this level of approximation th
magnetization in the limit of decoupled planes (J'→0) is
around 86% of its classical value being larger than predic
by Monte Carlo and spin-wave calculations. The describ
approximation can be systematically improved by includi
higher-order fluctuations. This behavior is also known fro
calculations within the coupled-cluster method for t
Heisenberg model.34 It can be shown that in the limit of an
infinite set of operators the cumulant method yields ex
results. For instance, if we include two additional operat
Sn with three and four fluctuations on adjacent sites into
operatorV ~13! the transition point shifts to (J' /Ji)c;2.9.
However, the analytical and numerical effort to setup a
solve the nonlinear equations equivalent to Eqs.~12! and
~14! increases drastically with including higher-order flu
tuations.

The solution of the non-linear Equations~12! and ~14!
shows that the absolute values of all coefficients inV are
small compared to 1. In the disordered phase the maxim
is taken bym10;0.07 ~the coefficient for nearest-neighbo
triplet pairs! at the point of the phase transition. In the o
dered phase the maximum is atJ'50 with m10;0.14. With
increasing distance between the triplets the values de
quickly; higher-order fluctuations acquire a coefficient bei
one or more orders smaller in magnitude. The fact that
coefficients are small is equivalent to the statement that
total triplet density even at the transition point is sma
(;0.1), see Ref. 7.

In Fig. 1 we show results for the ground-state energyE
and the staggered magnetizationM for the approximation
using triplet pairs only as described above and for the sp
wave approach~see below!. The data are compared with re
cent series expansions from Ref. 6. It can be seen tha
approximations well describe the behavior of the magnet
tion that first increases with increasingJ' and then drops to
zero at the critical coupling.

Another approximation we want to discuss briefly is
neglect the constraint~4! completely2,7 and also the quartic
triplet terms in the Hamitonians~6! and~10!. The parameter
l is simply chosen so that the prefactors of the terms cr
ing singlez̃ bosons out ofuf̃0& vanish. One can formally se
s̃51 ~condensation ofs̃ bosons!; uf̃0& can be considered
s ‘‘vacuum.’’ Neglecting the constraint~4! implies that
the three types of excitations$z̃i ,t ix ,t iy% are treated as inde
pendent bosons. After a Fourier transformation one arrive
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H (sw)5
1

~11l2!2 (
q

~ tqx
† tqx1tqy

† tqy!@~11l2!J'18l2Ji

12gq~12l4!Ji#1
1

~11l2!2 (
q

z̃q
†z̃q

3@~12l4!J'116l2Ji12gq~12l2!2Ji#

1Ji(
q

gq~ tqx
† t2qx

† 1tqy
† t2qy

† 1H.c.!

1Ji
~12l2!2

~11l2!2 (
q

gq~ z̃q
†z̃2q

† 1H.c.!, ~17!

with gq5 1
2 (cosqx1cosqy) and

l5A4Ji2J'

4Ji1J'

~18!

in the ordered phase (4Ji.J') and l50 otherwise. The
Hamiltonian ~17! can be easily diagonalized by a Bogoli
bov transformation. In this case the ground-state wave fu
tions ~11! and~13! ~with pairs of triplet excitations! become
exact. The described harmonic approximation can be con
ered as linear spin-wave theory for the bilayer problemwith
inclusion of longitudinal spin fluctuations.2 The critical cou-
pling here becomes (J' /Ji)c54. In the limit of decoupled
planes the results are equal to that of the linear spin-w

FIG. 1. ~a! Rescaled ground-state energyE and ~b! staggered
magnetizationM for different approximation levels of the ground
state wave functions~11! and ~13!. Solid lines: Triplet pairs, no
additional operatorsSn , constraint exact, (J' /Ji)c53.2. Dashed
lines: Triplet pairs, constraint ignored~spin-wave!, (J' /Ji)c54.
Dashed-dotted lines: Series expansion data taken from Ref. 6
comparison, (J' /Ji)c52.55. The vertical dashed line in~a! indi-
cates the position of the magnetic quantum phase transition. In~b!
the coupling dependence of the basis parameterl is also shown.
c-

id-

e

approach, e.g., the magnetization takes 60.5% of its class
value, see Fig. 1. Further details on the ground-state ca
lations will be published elsewhere.

III. DESCRIPTION OF HOLE MOTION

If we remove one electron from rungi a single hole state
on this rung is created. Let us denote byaim,s

† the creation
operator of a hole with spins on rung i, where the index
m51,2 represents the number of the plane. This operato
defined by the equation

aim,s
† u0&5cim̄,s

† u0&, ~19!

wherem̄532m. This is a fermionic operator that satisfie
the usual anticommutation relations. The hole on the runi
interacts with the triplet excitations on its nearest-neigh
sites. The interaction Hamiltonian can be easily found
calculating all possible one-hole matrix elements of the i
tial Hamiltonian~1! ~see Ref. 32!. For the disordered phas
(l50) the result is

Hh52t'(
is

~ai1,s
† ai2,s1H.c.!1

t i

2

3 (
^ i j &ms

~aim,s
† ajm,ssj

†si1H.c.!

1
t i

2 (
^ i j &s

~ t i
†t jaim,s

† ajm,s1H.c.!

1 (
^ i j &s

S t i
†F t iSi , j sj1

Ji

2
Sj , j si G1H.c. D

2t i(̂
i j &

~ i S̄j ,i@ t i
†3t j #1H.c.!

2
Ji

2 (̂
i j &

~ i S̄i ,i@ t j
†3t j #1H.c.!. ~20!

Following Refs. 32 and 36 we have introduced the notatio
t5(tx ,ty ,tz) for the triplet vector and

Si , j5
1

2 (
mab

~21!maim,a
† sW abajm,b , ~21!

S̄i , j5
1

2 (
mab

aim,a
† sW abajm,b

for generalized hopping operators wheresW is the vector of
Pauli matrices. In addition, we have to impose the constr
that a hole state and one of the doubly occupied states ca
coexist on the same rung:

si
†si1(

a
t ia
† t ia1(

ms
aim,s

† aim,s51. ~22!

The several terms in the Hamiltonian~20! have been dis-
cussed by Eder.32 They contain hopping without changin
the spin background~direct hopping, second and third term!
as well as spin-fluctuation assisted hopping~fourth and fifth
term! and exchange processes where the hole remains o

or
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rung ~last two terms!. Together with the Hamiltonian for the
doubly occupied rungs~6! the Hamiltonian~20! contains the
complete one-hole dynamics for the disordered phase.
the case of more than one hole, additional hole interac
processes would have to be considered. However, in
present work we restrict ourselves to the discussion of
one-hole problem.

If we work in the magnetically ordered phase it is conv
nient to use the generalized basis$s̃,z̃,tx ,ty% from Sec. II to
represent the states of the doubly occupied rungs. From
Hamiltonian~20! and the definition~8! of the basis operator
one can construct a Hamiltonian for an ordered backgro
state. It again contains processes proportional tot i where the
hole hops to a neighboring rung and exchanges terms
portional to Ji . To be short we only state some hoppin
matrix elements of the resulting Hamiltonian. For that w
symbolically introduce two-rung statesuXY&5Xi

†Yj
†u0&

whereX and Y are the states on two adjacent rungs withi
PA and j PB:

^ s̃a0↑uHhua0↑s̃&5
t i

2

12l2

11l2 ,

^ z̃a0↑uHhua0↑z̃&5
t i

2

12l2

11l2 ,

^z̃a0↑uHhua0↑s̃&52
t i

2

~11l!2

11l2 ,

^txa0↓uHhua0↑s̃&52
t i

2

11l

A11l2
. ~23!

The first two terms represent processes of hole motion w
out desturbing the spin background~so-called direct hop-
ping! whereas the last two terms are examples for hole h
ping with creation of a ‘‘spin defect.’’ It can be seen th
direct hopping is impossible in the limit ofulu51, i.e., in a
Néel-ordered background.

IV. SINGLE HOLE DYNAMICS

To investigate the hole motion we consider a one-part
Green’s function describing the creation of a single hole w
momentumk at zero temperature,

G~k,v!5 K c0Uĉks
† 1

z2L
ĉksUc0L , ~24!

where z is the complex frequency variable,z5v1 ih, h
→0. The quantityL denotes the Liouville operator define
by LA5@H,A#2 for arbitrary operatorsA; k5(kx ,ky ,kz) is
the hole momentum withkz50 or p for the bonding or
antibonding band, respectively.uc0& is the full ground state
of the undoped system as described in Sec. II. The effec
the hole creation operatorĉim,s applied touc0& can be re-
lated to the fermion operatorsaim,s

† introduced in the last
section. One obtains, for example, fori PA sublattice,

ĉi1,↑s̃i
†u0&5

11l

A2~11l2!
ai1,↓

† u0&, ~25!
or
n
e
e

-

he

d

o-

-

p-

e
h

of

ĉi1,↑t ix
† u0&52

1

A2
ai1,↑

† u0&,

and analogous relations for other basis states and fori PB.
The hole motion processes will be described in the c

cept of path operators18,19,23that create strings of spin fluc
tuations attached to the hole. For the application of proj
tion technique we define a set of path operators$AI% that
couple to a hole and create local spin defects with respec
the undoped ground stateuc0&. The first operatorA0 is the
unity operator, the second oneA1 moves the hole by one
lattice spacing creating one spin excitation, and so on.
are interested in calculating dynamical correlation functio
for the operators$AIcks%:

GIs,Js8~z!5 K c0U~AIcks!†
1

z2L
~AJcks8!Uc0L . ~26!

The Green’s function~24! for the hole is then given by
G0s,0s(z). Using cumulants the correlation functionsG can
be rewritten as27

GIs,Js8~z!5 K f0UV†(AIcks)†S 1

z2L
AJcks8D •VUf0L c

.

~27!

The bracketŝf0u•••uf0&
c denote cumulant expectation va

ues with uf0&. The ‘‘unperturbed’’ ground state at half
filling, i.e., one of the product states~5! or ~9! for the disor-
dered or ordered system, respectively, will be denoted in
following by uf0& for both phases. The operatorV has been
described above, it transformsuf0& being the ground state o
H0 into the full ground stateuc0& of H5H01H1 at half-
filling. In the following, V is approximated by an exponen
tial ansatz as described in Sec. II. Since the expression~27!
contains bothV and V† the expectation values can be ca
culated only in the lowest nontrivial order of the fluctuatio
in V, i.e., the expansion will be restricted to linear fluctu
tion terms. In order to correctly describe the short-range s
fluctuations in the system, operators with up to four trip
excitations with a maximum distance of four lattice spacin
have been employed. For the evaluation of their coefficie
we have linearized the set of equations~12! and~14!. This is
possible since the absolute values of the coefficients
small compared to 1 as discussed in Sec. II C. There
quadratic and higher terms in the fluctuations operators
be neglected. By comparing the coefficients of the sho
range fluctuations obtained in this way with the ones fro
the full ~nonlinear! ground-state calculation of Sec. II C w
have numerically verified that the error in the matrix e
ments~30! introduced by this linearization is smaller than
few percent. Since the linearized equations for the coe
cients do not yield a phase-transition point we fix it at t
value (J' /Ji)c52.55 known from series expansions6 and
Monte Carlo calculations.3 @In the limit of an infinite set of
operators$Sn% within the cumulant method the solution o
the nonlinear equations has to yield the ‘‘exact’’ transiti
point, which we assume to be at (J' /Ji)c52.55.# In the
ordered phase we set
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l5A~J' /Ji!c2J' /Ji

~J' /Ji!c1J' /Ji
, ~28!

which is suggested by the results obtained in Sec. II.
Using the Mori-Zwanzig projection technique28 one can

derive a set of equations of motion for the dynamical cor
lation functionsGIs,Js8(z). Neglecting the self-energy term
it reads

(
Is

VKs̃,Is~z!GIs,Js8~z!5xKs̃,Js8 ,

VKs̃,Js8~z!5zdKJds̃s82(
Ls9

vKs̃,Ls9xLs9,Js8
21 . ~29!

x Is,Js8 and v Is,Js8 are the static correlation functions an
frequency terms, respectively. They are given by the follo
ing cumulant expressions:

x Is,Js85^f0uV†~AIcks!•†~AJcks8!
•Vuf0&

c,

v Is,Js85^f0uV†~AIcks!•†
„L~AJcks8!…

•Vuf0&
c. ~30!

These terms describe all dynamic processes within the
space of the Liouville space spanned by the opera
$AIcks%. The use of cumulants ensures size consistency,
only spin fluctuations connected with the hole enter the fi
expressions for the one-hole correlation function.

In the present calculations we have employed up to 1
projection variables with a maximum path length of 3. T
neglect of the self-energy terms leads to a discrete se
poles for the Green’s functions, so the present approach
not account for linewidths. In all figures we have introduc
an artificial linewidth of 0.2t i to plot the spectra. For detail
of the calculational procedure see, e.g., Ref. 23.

A. One-hole spectrum

Now we turn to the discussion of the final results. First
consider the case of vanishing interplane hoppingt'50, i.e.,
the hole motion is restricted to one plane.~In this casekz can
be dropped.! The one-hole spectral function ImG(k,v) for
t'50, Ji /t i50.4, and various values ofJ' /Ji is shown in

FIG. 2. One-hole spectral function fort'50 ~no interplane hop-
ping!, ~a! J' /Ji50, ~b! J' /Ji51, and different momenta (kx ,ky).
The other parameters areJi /t i50.4; the energies are measured
units of t i relative to the energy of a localized hole.
-

-

b-
rs
e.,
l

0

of
n-

Figs. 2–4. For zero and smallJ' , i.e., in the limit of decou-
pled planes, we observe a pronounced quasiparticle~QP!
peak and a weak background at higher energies. The
peak follows a dispersion with minima at (6p/2,6p/2).
These features are well-known from the one-hole problem
the single-layer antiferromagnet. With increasingJ' the dis-
persion is ‘‘washed-out’’ because the antiferromagnetic c
relations in the background state are weakened. AtJ' /Ji
;1.5 a crossover to a dispersion with minima at (p,p) and
(0,0) occurs. Note that this crossover point still liesinside
the antiferromagnet phase. Near the phase transition
spectral weight of the lowest pole at (0,0) becomes sm
Most of the spectral weight can be found in a band w
minimum at (p,p) and maximum at (0,0). The weak ban
visible at the bottom of the spectrum around moment
(0,0) can be considered as ‘‘shadow band’’ originating fro
the antiferromagnetic background, i.e., it is obtained by sh
ing the band with large weight byQ5(p,p). Further in-
creasingJ' drives the system into the gapped paramagn
~PM! phase. At the phase transition it can be seen t
shadow bands being present in the AF phase disappear i
PM phase. At largeJ' the hole behaves like a free fermio
with a dispersion proportional tot i(coskx1cosky).

Now we consider the effect of interplane hopping. We
the ratio of the parameters to

FIG. 3. Same as Fig. 2, but for~a! J' /Ji52, ~b! J' /Ji
52.4.

FIG. 4. Same as Fig. 2, but for~a! J' /Ji52.7, ~b! J' /Ji
510.
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t'
2

J'

5
t i
2

Ji
5

U

4
, ~31!

which follows from the derivation of thet-J model from a
Hubbard model for the bilayer system with on-site repuls
U. Spectra for different parameter sets withU/t i510 are
shown in Figs. 5–7. An interplane coupling oft' /t i51 has
already changed the character of the bands comparedt'
50 @cf. Fig. 2~a!#. Further increasingt' /t i to 1.5 ~Fig. 6!
forms a pronounced band with a free-fermion form at
bottom of the spectrum in the bonding channel (kz50). In
contrast, the antibonding spectrum (kz5p) becomes inco-
herent since spectral weight is transferred to higher energ
Since we are still in the antiferromagnetic phase the low
peaks in the antibonding channel appear at the same ene
as in the bonding channel shifted by momentumQ
5(p,p,p), i.e., these can again be considered as sha
bands. Att' /t i.A2.55 the AF order is destroyed. As show
in Fig. 7 for t' /t i52 the shadow bands are disappeared,
in the antibonding channel a pronounced free-fermion b
at high energies is formed. Higher values oft' will com-
pletely suppress the incoherent weight left in the antibond
channel.

FIG. 5. One-hole spectral function fort' /t i51, J' /Ji51,
Ji /t i50.4, and different momenta. The left and right panel sh
the bonding (kz50) and antibonding (kz5p) bands, respectively.

FIG. 6. Same as Fig. 5, but fort' /t i51.5, J' /Ji52.25, and
Ji /t i50.4.
n

e

s.
st
ies

w

d
d

g

Varying the ratioJi /t i ~which is 0.4 for all figures pre-
sented here! does not change the picture qualitatively. Larg
values ofJi suppress the incoherent background in all sp
tra. For very small values ofJi the spectral functions becom
incoherent since the hole is dressed with an increasing n
ber of spin fluctuations, i.e., the radius of the spin polar
increases. Furthermore, the bandwidth of the quasipar
dispersion at smallJ' is mainly controlled byJi ~instead of
t i). This means that the bandwidth in units oft i decreases
with decreasingJi /t i , see also next subsection. The locati
of the cross-over between the two dispersion forms depe
weakly onJi /t i which will be discussed below.

B. Quasiparticle bands

Next we are going to examine the properties of the lo
lying bands. Again we first discuss the case of vanish
interplane hopping,t'50. For J'!Ji one finds a narrow
QP band shown in Fig. 8~top panel!. It has minima at
(6p/2,6p/2) and a bandwidth of approximately 1.5Ji . It
corresponds to the coherent motion of a dressed hole, i.
spin-bag quasiparticle.~Note that a larger set of path oper
tors would give a larger bandwidth of around 2Ji , which is
known from the calculations for a single-laye
antiferromagnet.23 However, paths of length four and mor
are hard to access for the bilayer system due to the increa
numerical effort.! The main contribution to the hole motio
in the AF case can be understood as follows: the hopp
hole locally destroys the antiferromagnetic spin order leav
behind a string of spin defects. Quantum spin fluctuatio
can repair pairs of frustrated spins, which leads to a cohe
motion in one of the antiferromagnetic sublattices~spin-
fluctuation-assisted hopping!. For t i /Ji.1 the bandwidth of
this coherent hole motion is of orderJi because the spin-flip
part of the intraplane Heisenberg interactionJi is necessary
to remove the spin defects caused by hopping.

With increasingJ' the bandwidth of the dispersion firs
decreases; at a value ofJ' /Ji;1.5 the minima move to
(p,p) and (0,0). Slightly larger values ofJ' lead to an
increase of the bandwidth, and spectral weight is transfe
to a band that has nearly tight-binding form. So the low
pole atJ' /Ji52.4 has very small weight around momentu
(0,0). This shadow band is shown as a dashed line in Fig

FIG. 7. Same as Fig. 5, but fort' /t i52, J' /Ji54, andJi /t i
50.4.
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In the paramagnetic phase for largerJ' the shadow band
disappears. The QP peak has a dispersion being nearly
one of a free fermion but with a reduced bandwidth. T
behavior follows from the existence of the direct hoppi
term with prefactort i/2 in Hh ~20!. It leads to a dispersion
proportional tot i ; the saturation bandwidth equals half
the bandwidth of the uncorrelated system (8t i).

The results for nonzero interplane hoppingt' are shown
in Fig. 9. Again, for smallt' ~smallJ') the dispersion char
acter is ‘‘antiferromagnetic’’ whereas for larget' ~largeJ')
the bands have a simple tight-binding form. ForJ'@Ji and
t'@t i their dispersion is given by

ek52t'coskz1t i~coskx1cosky!. ~32!

The bandwidth for the in-plane motion is reduced by a fac
of 2 compared to a free fermion since the relevant hopp
matrix element iŝ sa0↑uHhua0↑s&5t i/2.

In Fig. 10 we finally show the bandwidth of the QP di
persion for the case of vanishing interplane hopping a
Ji /t i50.4, i.e., for the dispersions shown in Fig. 8. It c
clearly be seen that the crossover from an ‘‘antiferrom
netic’’ to a simple tight-binding dispersion occurs atJ' /Ji
;1.5 and is connected with a pronounced minimum in
QP bandwidth. ForJ' /Ji.1.5 the bandwidth increases an
saturates for largeJ' at 4t i as discussed above. Results f

FIG. 8. Quasiparticle dispersion fort'50 ~no interplane hop-
ping!, Ji /t i50.4, and different values ofJ' /Ji . The energy zero
level has been set at the center of mass of the band. ForJ' /Ji
52.4 the heavy line shows the dispersion of the peak carrying
main spectral weight whereas the thin line corresponds to the lo
pole in the spectrum~shadow band, see text!.
the
s

r
g

d

-

e

other values ofJi /t i are qualitatively similar. The minimum
in the dispersion~i.e., the crossover point! shifts with Ji /t i :
for Ji /t i50.1 it is located atJ' /Ji;1.1, for Ji /t i510 it is
found atJ' /Ji;2.0. This in turn means that the crossover
the shape of the single-hole dispersion can be driven
varying Ji /t i at fixed J' /Ji .

C. Relation to the short-range spin correlations

In order to understand the behavior of the QP dispers
and its bandwidth we illustrate in more detail the conne
tion between the in-plane hole motion and the short-ra
in-plane spin correlations. The basic ingredient for the o

e
st

FIG. 9. Quasiparticle dispersion fort'
2 /J'5t i

2/Ji5U/4 with
U/t i510 and different values oft' /t i . The in-plane momentum
(kx ,ky) varies along the horizontal axis. Solid/dashed lines cor
spond to bonding/antibonding modes (kz50 or p).

FIG. 10. Bandwidth of the quasiparticle dispersion~shown in
Fig. 8! vs J' /Ji for t'50 ~no interplane hopping! and Ji /t i
50.4. The vertical dashed line again indicates the position of
magnetic phase transition.
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served behavior of the QP dispersion is the competit
between direct hopping that dominates in the d
ordered phase and spin-fluctuation-assisted hopping kn
from the single-layer AF. The relevant matrix eleme
for direct hopping between states without spin deviation
t1ª^c0uĉ j s

† Htĉisuc0&, where i , j are nearest-neighbor site
and uc0& denotes the undoped background state. This t
can be expressed23,35 by the static in-plane nearest-neighb
spin correlationSR5^c0uS0•SRuc0& with R5(1,0) as

t152t i~S101
1
4 !. ~33!

Spin-fluctuation-assisted hopping is more complicated si
it involves two hopping steps and one spin-fluctuation p
cess. The matrix element for the spin-fluctuation process~be-
ing the most important for not too small values oft i) can be
written as t2ª^c0uĉ j s

† HJA2ĉisuc0&, where A2 moves the
hole by two hopping steps~creating a path of spin defects!
and i , j are now next-nearest neighbors. Transforming
expectation value into spin-correlation functions o
obtains23,35

t25JiS 2
1

2
S101

S2012S11

4
1

3

16D , ~34!

where the average over the possible paths of length 2
already been performed.

The in-plane dispersion shape can be described by
energy differenceD5E(p,p)2E(p/2,p/2). ValuesD.0
correspond to an ‘‘antiferromagnetic’’ dispersion where
D,0 occurs for a nearest-neighbor tight-binding dispersi
Neglecting longer paths and more complicated contributi
to the hole motion the QP dispersion is given by the sum
a nearest-neighbor and a next-nearest neighbor dispe
originating from the two processes described above. TheD
can be roughly estimated from the matrix elementst1 andt2:

D;24t11t2 . ~35!

The prefactor oft1 arises from the number of nearest neig
bors; for thet2 prefactor the influence of two hopping ste
has to be kept in mind, a fit to numerical results for t
single-layer problem yields a value of order 1. From this
see that the crossover phenomenon can be understoo
terms of the interplay between short-range spin correlati
and the ratio ofJi /t i .

Figure 11 shows the values ofSR for nearest-neighbor an
next-nearest-neighbor sites obtained from the present ca
lation. With increasingJ' /Ji the absolute values of the in
plane spin correlation functions decrease from their sing
layer values and are weakened within the antiferromagn
phase. At the transition point the magnitude has dropped
a factor around 2–3 compared toJ'50, which again coin-
cides with the fact that the density of spin~triplet! excitations
is small in the disordered phase even at the transition po7

We have also plotted the quantityD estimated from Eq.~35!
for two different values ofJi /t i . One notices a semiquant
tative agreement of the zero inD and the dispersion mini
mum described in Sec. IV B.
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V. CONCLUSIONS

In this paper we have presented for the first time a s
tematic analytical study of the one-hole dynamics on b
sides of a magnetic ordering transition in a low-dimensio
antiferromagnet. The system under consideration was a
layer antiferromagnet described by at-J Hamiltonian in the
limit of zero doping. The magnetic background state h
been modeled with modified bond operators. In the dis
dered phase these operators describe the singlet ground
and the triplet excitations. In the AF ordered phase they
count for the condensation of one type of triplet bosons a
describe transverse as well as longitudinal fluctuations.
ing the spin-polaron concept that describes the one-h
states in terms of local spin deviations we have calcula
the one-hole spectral function for the whole range of m
netic couplings.

For the disordered background~largeJ' /Ji , gapped spin
excitations! spin fluctuations around the hole are suppress
The hole motion is dominated by direct hopping process
i.e., hopping without disturbing the spin background. In t
ordered phase for very small interplane coupling we reco
the results known from the single-layer hole motion: T
spectrum consists of a coherent QP peak at the bottom
an incoherent background. The QP can be associated w
mobile hole dressed by spin fluctuations. The bandwidth
its coherent motion is controlled byJi .

The crossover between these two scenarios occursinside
the ordered phase where the antiferromagnetic short-ra
correlations become weakened. The crossover is located
tween 1,J' /Ji,2 depending onJi /t i ~for Ji /t i50.4 it is
found at J' /Ji;1.5). Note that the crossover can also
driven by variations of the hopping strengtht i at a fixed
value ofJ' /Ji well in the antiferromagnetic phase~e.g., 1.3!.
This behavior follows from the competition between dire
nearest-neighbor hopping and spin-fluctuation-assisted n
nearest-neighbor hopping. In contrast, when crossing
magnetic phase boundary atJ' /Ji;2.5 there are no drastic
changes in the spectrum~and therefore in the ARPES re
sponse of such a system!. The only differences between th
spectra in both phases near the phase transition are w
shadow bands in some regions of the Brillouin zone in
AF phase.

FIG. 11. Left:J' /Ji dependence of the equal-time short-ran
spin-correlation functionsSR in the spin background state calcu
lated with the linearized exponential ansatz used for the descrip
of the hole motion. Right:D vs J' /Ji from Eq. ~35! for Ji /t i
50.4 and 1.0.
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Note that our approximation that describes the hole m
tion processes in terms of short-range spin fluctuation
questionable in a region in the close vicinity of the pha
transition due to the existence of long-range critical fluct
tions. However, it has been argued recently36 that the influ-
ence of the critical modes suppresses the quasiparticle we
only in the limit of vanishing hoppingt/J→0. In contrast,
for finite hopping the number of spin fluctuations near t
hole remains finite even at the transition point. So we exp
the picture presented in this paper to be valid at least in
regions away from the transition, i.e.,uJ' /Ji22.55u.0.1,
which is supported by the fact that our spectral functions
both sides of the phase transition~e.g., atJ' /Ji52.4 and
2.7! do not show major differences.

So the main result of the present paper can be summar
as follows: A magnetic phase transition has only weak in
ence on the ARPES spectrum of a doped antiferromag
The properties of the spectrum are, however, dominated
the short-range environment of the hole. The statemen
expected to hold also for the doping-induced phase trans
in the single-layer AF. Here the antiferromagnetic corre
tions are strong even in the paramagnetic phase, i.e., f
the above considerations one expects to find an ‘‘antife
J.
.
o

. B

ys

s.

-

.

-
is
e
-

ht

ct
e

n

ed
-
et.
y
is
n
-
m
-

magnetic’’ hole dispersion on both sides of the transitio
This is exactly what was observed in recent work:11,12 ana-
lytical investigations of one hole in the AF phase as well
numerical studies of finite systems~which have a singlet
ground state without long-range order! both show a coheren
hole motion with a dispersion of width 2J and minima at
(6p/2,6p/2).

It should be pointed out that the above discussion app
to intermediate- and high-energy scales~order t, J) only. Of
course there exist low-energy properties of the spectrum
are expected to be influenced by quantum criticality, e.g.,
linewidth in a finite-temperature photoemission experim
should show scaling behavior in the quantum-critical reg
associated with the transition.37 These features as well as th
hole dynamics in the bilayer system at low but finite dopi
are beyond the scope of the present study and will b
subject of future research.
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