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Brillouin light scattering from quantized spin waves in micron-size magnetic wires
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An experimental study of spin-wave quantization in arrays of micron-size magnggfeehiwires by means

of Brillouin light-scattering spectroscopy is reported. Dipolar-dominated Damon-Eshbach spin-wave modes
laterally quantized in a single wire with quantized wave vector values determined by the width of the wire are
studied. The frequency splitting between quantized modes, which decreases with increasing mode number,
depends on the wire sizes and is up to 1.5 GHz. The transferred wave vector interval, where each mode is
observed, is calculated using a light-scattering theory for confined geometries. The frequencies of the modes
are calculated, taking into account finite-size effects. The results of the calculations are in a good agreement
with the experimental dat§dS0163-182609)00246-5

[. INTRODUCTION fore the understanding of spin-wave quantization in magnetic
wires is a first important step in the investigation of spin-
Miniaturization of magnetic storage devices and sensorgave quantization in more complex geometries.

causes an increasing interest into patterned magnetic films.
Progress achieved in lithographic techniques during the last | gp|N-WAVE SPECTRUM OF MAGNETIC WIRES
decade allows the fabrication of high quality, well-controlled
laterally defined magnetic structures, like, e.g., dots and The problem of the calculation of a spin-wave spectrum
wires, of micron or submicron sizes. Although static proper-for an axially magnetized infinite ferromagnetic wire with a
ties of micron-size magnetic dots and wires have been stud€ctangular cross section has never been solved analytically
ied to some exterlt; their high-frequency dynamic proper- (S€€, €.9., comments in Ref.. However, in a particular case
ties have been rarely investiga®®¥The study of spin waves ©f @ thin wired<w, whered is the thickness of the wire and
is a powerful method for probing the dynamic properties ofW iS its width, the spectrum of long-wave magnetic excita-
magnetic media in general and those of laterally patterneffons can be calculated approximately using the theory of
magnetic structures in particular. From spin-wave measurediPole-exchange spin waves in a magnetic ﬁlm. o
ments basic information on the magnetic properties, such as 'he dipole-exchange spin-wave spectrum in an unlimited
magnetic anisotropy contributions, the homogeneity of thderomagnetic medium is given by the Herring-Kittel
internal field, as well as coupling between magnetic is,Iandsf,Orrnulag
can be extracted. This information is often hard to obtain

with other methods. In addition, dynamic excitations define ¥ | [ 2A o 2A 24 4 Mosiro v
the time scale of a magnetization reversal process, and there-¥~ 2, Mg qu TSI bg !
fore they are of fundamental importance to achieve an un- 1)

derstanding of the time structure of the reversal. When the

size of the object becomes comparable to the wavelength ofherevyis the gyromagnetic ratid\ is the exchange stiffness
a spin wave under investigation, quantizati@r confine- constantH and Mg are the applied magnetic field and the
men) effects appear, which lead to dramatic changes in theaturation magnetization both aligned along #hexis, q is
spin-wave spectrum and the spin-wave density of states. THée three-dimensional wave vectd, is the angle between
spin-wave quantization in magnetic wires differs from that inthe direction of the wave vector and the magnetization.
magnetic dots, since the former addresses the quantization of In a magnetic film with a finite thicknessthe spin-wave
one component of the in-plane wave vedfperpendicular to  spectrum is modified due to the fact that the translational
the wire axig, whereas the latter the quantization of bothinvariance of an unlimited medium is broken in the vicinity
components. If, moreover, the magnetic field is applied alongf the film surfaces. An approximate expression for spin-
the wire axis, the static demagnetization field is negligible wave frequencies of a film can be written in the form, analo-
This makes the analysis even more straightforward. Theregous to Eq(1) [see Eq.(45) in Ref. 8
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% 2A A, 12 the frequencies of the perpendicular standing modes (
v=o | |HT Mo )("H‘ M +47Ms:- Fpp(qd)) , >0) can be approximately calculated from the expression
@ y 2A , 2A|[pm)|?
where Vp= o H+M_Sq”+M_s q
2 2 2
pm pm 2A 47M¢/H
2_ 2,2 (F7) 2, | FY s 2
q qy+qz+( d ) q+( d (3) X[H‘l‘ M_S+H(W) }q
with the normal to the film surface points along thelirec- 2A [pr)2 172
tion. g, is the continuously varying in-plane wave vector, + e T) +47M S} (8
s

Fop(q;,d) is the matrix element of the magnetic dipole in-
teraction, angp=0,1,2 . . . is aquantization number for the which is obtained from E¢2) in the limit gq,d<1 using the
so-called perpendicular standing spin waves. EquaBpiis  expressions for the dipole-dipole matrix elemeRts,(q,d)
obtained for the dynamic pam of the magnetization under calculated in Ref. 8. It is clear from E¢g) that thevy(q)
boundary conditions of “unpinned” spins on the film sur- dependence is rather weak fpr<p/d. In the general case

faces: g;d>1 numerical approach is usually used for the determi-
nation of the spin-wave frequencies in filifs.
a_m -0 (4) Equations(2)—(8) provide a proper description of the
IX| s ap ' spin-wave frequencies apart from the intervals of mode

crossing @o~v,) where an essential mode hybridization
es place. In these regions numerical calculations are also
cessary to obtain the correct spin-wave spectrum of the

For the description of the spin-wave modes in our permallo
samples one can use the above boundary condition instead [
the general oné&’

film.812
om If we consider a magnetic wire magnetized in plane along
F——+Dm|y— =0 (49  thezdirection and having a finite widtiv along they direc-

ay tion as shown in Fig. 1, a boundary condition similar to Eq.
with the “pinning” parameteD determined by the effective (4) at the lateral edges of the wire should be imposed:
surface anisotropks and the exchange stiffness constant
A: D=Kkg/A. The approximatiorD=0 is justified by the a_m =0. (9)
small values of anisotropies in permalloy. Wy vwi

In the case when the spin wave is propagating in the fil
plane, but perpendicular to the bias magnetic fiejd=0,
q,=dy,) the expression for the matrix element of the dipole-
dipole interactionF,,(q,d) has the forrfh

m " o .
An additional quantization of thg component of; is then
obtained:

7 10
Fom1t——Ms o p 5 b
PP H A+ (2AIMg) G2 pel pp): © wheren=0,1,2 ... . Using Egs.(2), (7), and (8) and the

guantization expressiof10) one can calculate the frequen-
cies of width(or laterally quantizedmodes. The profile of
the dynamic part of the magnetizationin thenth mode can
1-exp(—q,d) be written as follows:

Poo=l-—(4 (6)

where the functiorP (g, ,d) for the lowest thickness mode
(p=0) is given by

y+E s —E<y<§ ( )

The explicit expressions fd?,, whenp>0 are also given in Ma(Y)=2n- COS{ Gy.n

Ref. 8[see EQ(ALD) in Ref. . Equation(11) describes a standing mode consisting of two

In a long-wavelengthd;- d<1) neglecting exchange( counterpropagating waves with quantized wave veaiprs

=0) the dispersion equation for the lowest thickness mod(?\I : !
: ; ote here that due to the truncation of the cos function at the
(p=0) obtained from Eqs2), (5), and(6) gives the results wire boundaries, the quantized valugg, andq, , are not

that are very similar to the results obtained from the Damon-

11 true wave vectors.
Eshbach(DE) formula: Calculations of the quantized dipole dominated surface

y modes in an axially magnetized elliptical cylinder have been
vDE=2—-[H-(H+47-rMS)+(27-rMS)2~(1—e‘2qu)]1’2. performed by DeWames and WolfrdrhThey showed that

™ 7) all modes can be characterized by a positive integer and the

wave vector component along the axis of the cylinder

Thus if the film is magnetized in plane arglL Mg, the  The calculated surface mode frequencies are closely related
spin-wave modes described by E@®)—(6) can be divided to the DE modes of an infinite film. Fay,#0 no simple
into the dipole dominated surface modp=0) and ex- quantization scheme can be used, because a quantization pa-
change dominated, thickness or perpendicular standing spimameter cannot be defined independentggf However,
wave(PSSW modes 6>0). The frequency of the former is when q,=0, these modes correspond to DE modes with
determined by either Eq2) (with p=0) or Eq.(7), while  quantized in-plane wave vector. Since the magnetic wires
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FIG. 1. Scanning electron micrographs of the
permalloy wires under investigation. The orienta-
tion of the Cartesian coordinate system used for
calculations is shown as well.

AccV SpotMagn Det WD F——— 2ym AccV SpotMagn Det WD F————] 2m
300kV 1.0 10000x SE 14.8 CNRS/L2M 300KV 1.0 10000x SE 14.8 CNRS/L2M

investigated in the present work are not ellipsoidal, having @ffects’ and which gives rise to the scattering: is propor-
rectangular cross section, the quantitative results as obtaingidnal to the dynamic part of the magnetizationof the spin
in Ref. 13 cannot be used directly. Nevertheless, they araave. The correlation function in the bracket is given by
very useful for a qualitative understanding.
<58*(q)5s(q)>w=J d(tp—t)d3(ra—ry)

I1l. BRILLOUIN LIGHT SCATTERING

ON MAGNETIC WIRES xex] —iot—iq(r,—ry)]

Brillouin light scattering(BLS) has been used since a X(8e* (rq,11) e (rp.tp))
long time ago for the investigation of spin waves in thin L 22

magnetic films and layered structurds® However, this 5
technique is particularly well suited for the investigation of “J d(tz—ty)d>(rp—ra)
spin waves in laterally patterned systems. The main advan-

tages of BLS are a high spatial resolution defined by the size Xexg —iot=iq(ro—ri)]

of the laser beam focus, which is 30— in diameter, and *
the possibility to investigate spin waves with different abso- X(m* (11, t)m(rz, tz)) (14
lute values and orientations of their wave vectors. Thewith (---) the statistical average. If light is scattered from a
former circumstance allows one to investigate small patterspin wave propagating in an infinite medium, the spatial in-
areas, which simplifies the patterning procedure. The lattetegration volume is the entire space. In this case the correla-
provides information on the lateral distribution of the dy- tion function in Eq.(12) is nonzero only if the relations
namic component of the magnetization in a laterally confined= ws— w, andq=qs—q, are fulfilled, yielding the conserva-
island. tion laws of energy and momentum, described by B&).

The Brillouin light-scattering process can be considerecdHowever, since for a spin-wave mode propagating in a film
as a creatioriabsorption of a magnon by a photon. In the the integration volume is bounded by the two film surfaces,
case of magnon absorption the photon increases its energlye conservation conditions are fulfilled only for the two in-

and momentum: plane components of the wave vectyr. In backscattering
geometry, whems=—q,, q, is determined by the angle of
hos=h(w+o), incidence of the light: g,=2q, siné. The third component
(12 perpendicular to the filng, is not well defined by the con-
has=7(q,+q) servation law because the system does not possess the sym-

metry of translational invariance perpendicular to the film.

wheretiw,| , iwg, fiw andfq,, qs, f1q are the energy and Lo . .
o The uncertainty irg, is, apparently, inversely proportional to
the momentum of the incident and scattered photons and (%f the thickness of the film or of the mode localization region,

g:/? digfct)rzzlta(tjhren3vgar:/?an\,/§§tgzs—p(;r,ldtlrrgﬂgfe':rrgcrinir(F?rzeltsfat- or the penetration depth of the light. It is negligible, &g(
tering process, is equal tg. To understand this fact one _q').“t>277‘ L .

should consider the differential light-scattering cross section. Slnge allong magnetic wire ppssesspsplane transla-
d25/dQdws, i.e., the number of photons scattered into the‘uonal invariance only along its axis, the in-plane wave vec-

solid angledQ in the frequency interval betweeng and tor g, is no longer fully conserved in th_e light-scattering
L . . S “ process. The only conserved component is the component of
wst+dwg per unit incident flux density, which can be written

as follows1® g, along the wire axis. It is clear from Eq14) that the
‘ dependence of the differential light-scattering cross section
d2o on the component o, perpendicular to the wires is deter-
dQ—deoc@g*(ql_qS) Se(q—0d9)w,—wg (13 mined by the Fourier component, of m(r;):
2

with 8¢ the dynamic(fluctuating term of the permittivity, 1(qy) d°o o (86 (q) e (q)))o | m, 2. (15
I

which is caused by the spin waves due to magneto-optical dQ dws
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Thus performing the BLS experiment with differegt one K T ‘
can obtain the information of the spatial distribution of the ’ |
magnetizationm in the wire and one can identify the spin-

wave mode unambiguously.

As was already mentioned, there are very few studies of
the dynamic properties of magnetic wires. In early investiga-
tions of BLS from spin waves in an array of permalloy wires
Gurney et al® have observed a splitting of the spin-wave
spectrum into several discrete modes. However, the authors
were not able to identify the nature of the modes. Very re-
cently Mathieuet all® investigated spin wave in arrays of
permalloy wires by BLS. In addition to demagnetization ef-
fects a quantization of the spin-wave mode in several disper-
sionless modes, caused by a confinement effect of the spin FIG. 2. Experimental Brillouin light-scattering spectra obtained
waves, was observed and quantitatively descried. from the sample with a thickness of 40 nm, a wire width of A8,
and separation of the wires of Quin. The applied field was 500 Oe
orientated along the wire axis and the incoming wave vector of the
light was orientated perpendicular to the wires. The transferred

The arrays of wires were made d# 20- and 40-nm-thick ~ Wave vector was) = 0.3x 10° cm™ L. In the region of interes(§—17 _
permalloy (NigFey) films. The films were grown by means GHz) the scanning speed was reduced by a factor of 3 increasing
of elbeam evaporation in an UHV-evaporation system (5the number of recorded photons by the same factor.

X 10 1° mbars base pressureonto chemically cleaned

Si0,/Si(111) substrates. Patterning was performed usingshown in test experiments with a better resolutidr(/3),
x-ray lithography. The patterning masks were fabricated byhat the collection angle was chosen small enough for the
means of a JEOL 5D2U nanopattern generator at 50 ke\studies presented below. At small angles of light incidence
X-ray exposure was performed at the super-ACO faci“tythe directly reflected beam and diffraction reflexes entering
(LURE, Orsay, Frandeusing a negative resist and a liftoff the collection lens were blocked by small blinds inserted into
process with Al coating and ion millind. In this way two  the collection aperture.

types of samples with a wire widtv of 1.8 um and dis- Due to possible variation in the transmission of the inter-
tances between the wires of 0.7 and 22 were prepared. ferometer during the course of measurements, it is, in gen-
The length of the wirebwas 500um; they were arranged in eral, very difficult to measure absolute values of the BLS
an array with the entire patterned area of SEDOumM2 scattering cross secti(_)n. To overcome t_his_problgm, we used
Thus the aspect ratios of the investigated wires are very higthe PSSW mode, registered for the entire investigated range
|/w=220,w/d=45 or 90. Figure 1 presents a scanning elecOf gy, as a reference for relative measurements of the BLS
tron microscope image of two arrays of magnetic wires withScattering cross section. The BLS intensity corresponding to
the same wire widths but with different distances betweerfach in-plane mode was normalized to the intensity of the
the wires. As it is clear from Fig. 1, the used techniquePSSW mode. The relative intensities obtained in this way
guarantees a high quality patterning process, which provide4ere very reproducible and were used for measuring the lat-
a superb flatness of the wire boundaries and reproducibilitgral distribution of the dynamic magnetization through the
of the wire widths. An investigation of the magnetization Wire using the approach discussed above.

reversal behavior of the structures, performed by Kerr mag-
netometry, showed that the magnetic easy axis of the array
was along the wire axis, which is expected from magnetic
shape anisotropy considerations. The demagnetization fac- Figure 2 shows a typical BLS spectrum for the sample
tors of the wires were determined from hard-axis magnetizawith a wire width of 1.8um and a separation between the
tion curves. wires of 0.7 um. A transferred wave vectay,=0.3x 10°

The spin-wave properties were investigated at room temem ! was oriented perpendicular to the wires, while an ex-
perature by means of BLS in a backscattering geometry ugernal field of 500 Oe was applied along the wire axis. As it
ing a computer controlled tandem Fabry-Perot interferometeis seen in Fig. 2, the spectrum contains four distinct modes
which is described elsewhet&?? Laser light of a single near 7.8, 9.3, 10.4, and 14.0 GHz. Note here that in the
moded, frequency stabilized =20 MHz) Ar* laser witha  region of interest(5-17 GH2 the scanning speed of the
wavelength of\ j,=514.5nm and a laser power of 50 mW interferometer was reduced by a factor of 3 to increase the
was focused onto the sample and the frequency spectrum atcumulation time in this region and thus to improve the
the backscattered light was analyzed. An external field wasignal-to-noise ratio. By varying the applied field the spin-
applied along the wires, while the in-plane wave veaipr wave frequency for each mode was measured as a function
=(qs—Qqy);, transferred in the light-scattering process, wasof the field, as displayed in Fig. 3. The observed dependence
oriented perpendicular to the wires, and its value was variedf all frequencies on the field confirms that all detected
by changing the angle of light incidenéemeasured from the modes are magnetic excitations.
surface normalg;= (47/\ase) - SiN6. The collection angle To identify the nature of the observed modes, the disper-
of the scattered light was chosen small enough to ensure sion of the modes was obtained by varying the angle of light
reasonable resolution i of Ag,=*+0.8x10* cm % Itwas  incidenced and thus the magnitude of the transferred wave
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FIG. 3. Frequenciegfor g,=0.3x10° cm™?Y) of the in-plane
quantized spin-wave modes of the wire array with a wire width of FIG. 4. Obtained spin-wave dispersion curves for an array of
1.8 um and a wire thickness 40 nm as a function of the appliedwires with a wire thickness of 40 nm, a wire width of 1u#n, and
field. The lines are calculated using either the DE equation witha separation between the wires of Quih (open symbolsand 2.2
quantized wave vector®-DE) or the Kittel formula[Eq. (17)] as  um (solid symbolg. The external field applied along the wires axis
indicated. The line labeled PSSW shows the frequency of the firstvas 500 Oe. The solid horizontal lines indicate the results of a
perpendicular standing spin wave calculated using a numerical prasalculation using Eq(7) with the quantized values @f; . The dot-
cedure(Ref. 12. ted horizontal line indicates the result of calculations for the mode
n=0 using Eq.(17). The dashed lines, showing the hybridized
vectorq, . The results are displayed in Fig. 4 for two samplesdispersion of the Damon-Eshbach mode and the first perpendicular
with the same wire thickness of 40 nm and width of 48,  standing spin-wave mode were calculated numerically for a con-
but with different wire separations of Ogm (open symbols  tinuous film with a thickness of 40 nm. On the right side the mode
and 2.2um (solid symbol$. The dispersion measured on the profiles are illustrated.
arrays with the same lateral layout but with a wire width of

20 nm is presented in Fig. 5. It is clear from Fig. 4 that onegys film (see dashed lines in Figs. 4 and &i) There is no

of the detected modes presented by cir¢fesar 14 GHxis  noticeable difference for the samples with the same wire
the PSSW mode, correspondingde-1 in Eq.(8) (itis not  width w but different wire separation®.7 and 2.2um).

seen in Fig. 5 due to its much higher frequency caused by the | order to understand the above experimental findings we
smaller wire thicknegs In the region of low wave vectors need(i) to explain why every discrete mode is observed over
the spin-wave modes show a disintegration of the continuoug characteristic continuous range of transferred wave vectors,
dispersion of the Damon-Eshbach mode of an infinite filmand (i) to calculate the frequencies of the observed eigen-
into several discrete, resonancelike modes with a frequengygdes.

spacing between the lowest lying modes of approximately since the discrete, dispersionless spin-wave modes ob-
0.9 GHz ford=20 nm and 1.5 GHz fod=40 nm. As it is
clear from Figs. 4 and 5, there is no significant difference

between the data for the wires with a separation of 0.7 and 14 dm-asr"’
2.2 um. This fact indicates that the mode splitting is purely 13 d=20nm LT .
caused by the quantization of the spin waves in a single wire & 4, [ ﬂ,ﬂcﬁ” ]
due to its finite width. P2y .

As it is seen in Fig. 4, the first PSSW mode=1) was § el - = i
observed in the arrays with a wire thickness of 40 nm for the g 10~ " . n=4 .
entire investigated range gf . It was used as a reference for '-q'; oL = am B w3 i
relative measurements of the BLS scattering cross section, as & 5 il 2
it was described above. The results of these measurements % 'ﬁ“ﬂm-— =t ]
are shown by black squares in Fig. 6. 3 Todfitoomg ™ ]

Having a closer look at the dispersion curves and the BLS 6 : s : '

0.0 0.5 1.0 15 20 25

cross section profiles of the magnetic wires one can summa-
rize the main features as follow§) For low wave vector
values (0—0.& 10° cm %) the discrete modes do not show
any noticeable dispersion, behaving like standing wave resqQy,
nances(ii) Every discrete mode is observed over a continu—a separation between the wires of Quih (open symbolsand 2.2
ous range of the transferred wave vedpr (i) The lowest 1 (solid symbol. The external field applied along the wire’s axis
two modes appear very close to zero wave vector, the highgfas 500 Oe. The solid horizontal lines indicate the results of a
modes appear at higher valués:) The frequency splitting  calculation using Eq(7) with the quantized values af, . The dot-
between two neighboring modes is decreasing for increasingd horizontal line indicates the result of calculations for the mode
mode number.(v) There is a transition regimed{ n=0 using Eq.(17). The dashed line indicates the numerically
=0.8—-1.0<10° cm™ 1) where the well resolved dispersion- calculated dispersion of a continuous film with a thickness of 20
less modes converge towards the dispersion of the continumm. On the right side the mode profiles are illustrated.

q, (10° o)

FIG. 5. Obtained spin-wave dispersion curves for an array of
es with a wire thickness of 20 nm, a wire width of 1u#n, and
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FIG. 6. Measured relative BLS intensitiédack squaresof the
in-plane quantized spin-wave modes as a function of the wave ve
tor g, and the mode numbem in comparison to the calculated
results based on Eq16) (gray colored curves

served for small wave vectors converge towards the dispe
sion of the DE mode of the continuous film, it is natural to

assume that these modes result from a width depende
guantization of the in-plane wave vector of the DE mode,

discussed above. As it was shown, the profile of the dynami
part of the magnetizatiom in the nth mode has a cosinelike
shape[see Eqg.(11)]. On the other hand, the component of
the transferred in-plane wave vector along the wire axis

is fully conserved in the light-scattering process. In our ex-

perimentsq, was oriented perpendicular to the wireg,,
=0. Therefore only the spin-wave modes wih=0, i.e.,

m(z) = const, can take part in the scattering process. This an

the fact thatd<w justify to write Eq. (11) in a one-
dimensional form, wheren is considered to be a function of
y only. In this case Eq(15), which determines the light-
scattering intensity(q), can be essentially simplified:

d2

0 dog (%" (@de(@)

1(q)e

2

ydy| . (16

2 w/2 . .
*[mgl*=| | m(y)-exp(—iqy

Note here that since the integration is performed only within

the wire, the Fourier transformmq iS nonzero over a continu-
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by the solid horizontal lines. For the calculation the geo-
metrical parameteréwire thicknessd=20 or 40 nm, wire
width w=1.8um) and the independently measured material
parameters #M=10.2 kG andy/27=2.95 GHz/kOe were
used. Without any fit parameters the calculation reproduces
all mode frequencies wittn>0 very well, and for then

=0 mode a reasonable agreement is achieved. Since the
group velocity Vy=2mdv/dq of the dipolar surface spin
wave|[cf. Eq.(7)] decreases with increasing wave vector, the
frequency splitting of neighboring, width-dependent discrete
spin-wave modes, which are equally spaceddqirspace
(dy,n=nm/w), becomes smaller with increasing wave vector
Qy,n, until the mode separation is smaller than the frequency
resolution in the BLS experiment and/or the natural line-
width, and the splitting is no longer observable in Figs. 4 and
5. The evolution of the mode frequencies with an increasing
applied field, as illustrated in Fig. 3, can be described as
well. The solid lines marked as “Q-DE" are calculated using

®q. (7) with the quantized values of wave vector. With the

exception of the curve fan=0 they also demonstrate a very
good agreement with the experiment.

Although the spatial distribution and the frequencies of
the observed modes are well reproduced, the above approach
ignores the correction of dynamic dipole fields due to the
inite width of the wires. Since the magnetic dipole interac-
Ejon is a long-range one, the strength of the field at a given
position is determined not only by the amplitude of the dy-
namic magnetization in the vicinity of this position, but also
by the spatial distribution of the dynamic magnetization far
from this position. Therefore, due to finite-size effects caused
by the side walls, the dipole fields accompanying a quantized
mode in the wire differ from those of the DE mode of the
ié1finite film with the same wave vector. This correction,
which is small in any case for the wires with the high aspect
ratio, is negligible for all modes with sufficiently high quan-
tum numbergi.e., for modes with eithep or n larger than
zerg. It is, however, observable for the lowest, uniform
mode p=0,n=0). The finite-size effect can be easily taken
into account for long wires with ellipsoidal cross section
since the dynamic dipole field is homogeneous in this case.
The corresponding frequency is given by the Kittel
formula?®

v= 5 [(H+ Ny M) (H+N,-47M 1%, (17)

ous interval ofq and thus the discrete modes are observedvhereN, andN, are the demagnetization factors along xhe

over a finite interval of the transferred wave veapr Sub-
stituting Eq.(11) in Eq. (16) and using Eq(10), one can
calculate the light-scattering intensity(q,) for each stand-

andy direction in the wire cross sectigmote here that the
demagnetization factor along the wilg, is negligible. In
our particular case of a wire with a rectangular cross section,

ing lateral mode. The results of this calculation for the lowestEg. (17) is not exactly applicable, as the dynamic demagne-

five modes, normalized for the best fit of the=0 mode, are

shown in Fig. 6 by gray colored lines. A very good agree-

tization field is not exactly homogeneous. However, since
the thickness of the wire is much smaller than its width (

ment between the experimental data and the results of th&w), one can consider this field to be approximately homo-
calculation justifies the chosen boundary condition and congeneous in agreement with the analytical solution for demag-
firms that the observed spin-wave modes are in fact the quametizing fields of a rectangular prism found by Joseph and
tized DE modes. Schiamann?* The corresponding demagnetization factors are
The frequency of the observed modes can be derived bi,=2d/7w, N,=1—N,. The calculated value df, is in a
substituting the obtained quantized values of wave vectogood agreement with that obtained from static measure-
dy,n into the dispersion equation of the DE mode, Eq. ments. The frequency of the lowest mode calculated on the
The results of these calculations are shown in Figs. 4 and basis of Eq(17) using the above demagnetization factors is
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shown by a dotted horizontal line in Figs. 4 and 5. Its fieldwaves can form collective excitations under appropriate con-
dependence is illustrated in Fig. 3 by a solid line, marked aslitions in arrays of wires. Investigations of such collective
“Kittel.” The agreement with the experiment is convincing. excitation are the subject of future studies.
It is much more complicated to take into account the finite- In summary, we have observed spin-wave quantization in
size effects for the nonuniform modes. However, from thea periodic array of magnetic wires. The observed discrete
gualitative considerations it is obvious that the correction ofmodes can be understood as the width dependent quantiza-
the demagnetizing field®r demagnetization factorslue to  tion of the dipolar surface spin-wave moda-plane quan-
the finite size of the wire rapidly decreases with increasingized DE modé& An excellent agreement between the calcu-
mode number. Therefore good reproduction of the mode frelated and measured values(ofthe frequency of the modes,
qguencies fon>0 just on the basis of Eq7) is not surpris-  (ii) the wave vector interval, where the modes are observed,
ing. and(iii) the BLS intensity versus wave vector dependence of
As a final remark, let us emphasize the difference betweerach mode support our interpretation. For larger wave vec-
the lateral spin-wave quantization observed in this work andors quantized modes converge towards the dispersion of the
the quantization of perpendicular standing spin waves in thinnfinite continuous film. No indication for zone-folding ef-
magnetic films. The former effect is the quantization of thefects due to the periodicity of the wires was yet found.
dipole dominated spin waves with relatively small in-plane
wave vectors and with frequencies determined by long-range
interacting dipole fields, whereas the latter describes the spin
waves with high wave vectors perpendicular to the film Support by the Deutsche Forschungsgemeinschaft, Euro-
plane, defined by the thickness of the film and with frequenpean Community network “Dynaspin,” and National Sci-
cies determined by the exchange stiffness. Due to the longnce FoundatiofGrant No. DMR-970164)is gratefully ac-
range nature of the dipole fields, the laterally quantized spifknowledged.
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