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Variational approach for the Holstein molecular-crystal model

V. Cataudella, G. De Filippis, and G. Iadonisi
Dipartimento di Scienze Fisiche, Universita` di Napoli, I-80125 Napoli, Italy

~Received 23 July 1999!

A variational technique is developed to investigate the polaronic features of the Holstein molecular-crystal
model. It is based on a linear superposition of Bloch states that describe large and small polaron wave
functions. It is shown that this method provides a very good description of the regime characterized by
intermediate values of the electron-phonon coupling constant~the so-called intermediate polaron! for any value
of the adiabatic parameterv0 /t. The polaron ground state energy in one and two dimensions is calculated and
successfully compared with the best estimates available providing a clear physical interpretation of the inter-
mediate polaron. The band structure, the spectral weight of the ground state and the lattice displacement
associated to the polaron are also calculated and discussed. The method has the advantage of requiring very
little computational effort.@S0163-1829~99!05545-9#
in
in

i

pe

l
d
e
d

fte
e

te
ro
m
O

o

th
o
la
st
ing

ng
e

or

th
in
ro
ro
l
ic

lec-
his

onte
f

and
nc-
not

lue
out

el
nal

ace
ese
ron
ide
atic
r-
for
n
y
r of
ing

on
and,
non
and
n-

od
nd
ons
ave
nt
of

atial
ice
ion
I. INTRODUCTION

Recently, a large amount of experimental results, rang
from infrared spectroscopy to transport properties involv
the colossal magnetoresistance and high-Tc superconductiv-
ity, has pointed out the presence of polaronic carriers
doped cuprates and in the manganese oxide perovskites.1,2 In
particular several experiments have shown that in doped
ovskite manganites La12xAxMnO3 (A5Sr, Ca) there is a
quite considerable coupling between the charge and the
tice degrees of freedom.2 The lattice distortions associate
with the Mn ions play an important role in determining th
electronic and magnetic properties of these compoun
which have become the focus of the scientific interest a
the discovery of the colossal magnetoresistance phenom
Recently it has been found that in La0.75Ca0.25MnO3 the me-
tallic phase is characterized by homogeneously distribu
intermediate polarons while, above the transition from fer
magnetic metal to paramagnetic insulator, small and inter
diate polarons coexist.3 Also the measurements of the Cu
distances in La1.85Sr0.15CuO4 crystal have pointed out, below
100 K, two conformations of the CuO6 octahedra assigned t
two different types of polarons.4

This large amount of experimental data has renewed
interest in studying the models of the electron-phon
coupled system and in particular the Holstein molecu
crystal model that, for his relative simplicity, is the mo
considered model for the interaction of a single tight-bind
electron coupled to an optical local phonon mode.5

For the Holstein Hamiltonian, beside the weak-coupli
perturbative theory6 an analytical approach is known for th
strong coupling limit in the nonadiabatic regime~small
polaron!.7 It is based on the Lang-Firsov canonical transf
mation and on expansion in powers of 1/l where l
5Ep /zt is the dimensionless coupling constant,Ep , z and t
being, respectively, the small polaron binding energy,
coordination lattice number and the bare effective hopp
integral (l represents the ratio between the small pola
binding energy and the energy gain of an itinerant elect
on a rigid lattice!. It is well known that both these analytica
techniques fail to describe the region, of greatest phys
PRB 600163-1829/99/60~22!/15163~10!/$15.00
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interest, characterized by intermediate couplings and by e
tronic and phononic energy scales not well separated. T
regime has been analyzed in several works based on M
Carlo simulations,8,9 numerical exact diagonalization o
small clusters,10 dynamical mean field theory,11 density ma-
trix renormalization group,12 and variational approaches.13,14

The general conclusion is that the ground state energy
the effective mass in the Holstein model are continuous fu
tions of the electron-phonon coupling and that there is
phase transition in this one-body system.15 In particular
when the interaction strength is greater than a critical va
the ground-state properties change significantly but with
breaking the translational symmetry.

Recently, results for the Holstein molecular crystal mod
have been presented by using the Global-Local variatio
method.13 The comparison of the data obtained in one sp
dimension with the known approaches has shown that th
results seem to provide the best estimates of the pola
ground-state energy. They are highly accurate over a w
range of the polaron parameter space, from the nonadiab
to the adiabatic, from weak to strong coupling limit. Neve
theless, a solution of the Global-Local variational method
any particulark value (k is the wave number of the polaro
Bloch state! is obtained by minimizing with respect to a ver
large number of parameters, that depends on the numbe
lattice sites and that increases dramatically with increas
the number of space dimensions from one to three.

The aim of this paper is to study the Holstein polar
features including ground-state energy, polaron energy b
shape of the lattice distortion induced by the electron-pho
interaction and spectral weight of the coherent polaron b
within a variational approach. It is based on two translatio
ally invariant Bloch wave functions that provide a very go
description of the two asymptotic regimes, the weak- a
strong-coupling regimes. In this paper, these wave functi
are called large and small polaron. In the large polaron w
function the phonon distribution function takes into accou
the average effect of the correlation among the emission
successive virtual phonons by the electron and the sp
extension of the polaron is large compared with the latt
parameter of the crystal. In the small polaron wave funct
15 163 ©1999 The American Physical Society
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the lattice polarization is confined to a region of the order
the unit cell and the polaron radius becomes of the orde
the lattice constant. In this case all momenta of the Brillo
zone contribute to the polaron wave function and in the p
non distribution function the effect of the electron recoil d
to the emission of virtual phonons is negligible.

A careful inspection of these two wave functions poin
out that, far away from the two asymptotic regimes, they
not orthogonal and that the off-diagonal matrix elements
the Holstein Hamiltonian are not zero. It is then straightf
ward to determine variationally the polaron ground-state
ergy by considering as trial state the linear superposition
the large and small polaron wave functions.

The comparison of our results with the Monte Carlo9 data
and the ground state energies of the variational global lo
method13 shows that the proposed method provides a v
good description of the polaron ground-state energy for
value of the parameters of the Holstein model and confi
the existence of three regimes:13 the weak-coupling regime
characterized by polaron masses lightly heavier than the
electron mass and by dimension of the lattice polarizat
large compared with the lattice parameter; the stro
coupling regime where the well-known polaronic band c
lapse takes place and the intermediate regime that is cha
terized by the crossover between the small and large pol
solutions. This regime is, therefore, well described by a w
function that is a linear superposition of Bloch states t
describe the small and large polaron.

We stress that this variational approach provides a c
description of the Holstein polaron features in any regi
and involves, for any particulark value, a very small numbe
of variational parameters, that does not depend on the n
ber of lattice sites.

II. VARIATIONAL WAVE FUNCTION

The model

The Holstein molecular crystal model is described by
Hamiltonian:5

H5Hel1Hph1HI52t(
^ i , j &

ci
†cj1v0(

qW
aqW

†
aqW

1(
i ,qW

ci
†ci@MqeiqW •RW iaqW1H.c.#. ~1!

The units are such that\51. Since we will restrict our-
selves to the single-electron case, we will not consider e
tron spin indices. The symbol^ & in the first term of the sum
in Eq. ~1! means that the summation is to be carried out o
when i and j are nearest neighbors to each other.

In the Eq.~1! ci
† denotes the electron creator operator

site i, the position vector of which is indicated byRW i , aqW
†

represents the creation operator for phonon with wave n
ber qW , t is the transfer integral between nearest-neigh
sites,v0 is the frequency of the optical local phonon mo
andMq indicates the electron-phonon matrix element. In
Holstein model~short-range electron-phonon interaction! Mq
assumes the form
f
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Mq5
g

AN
v0 . ~2!

Here,N is the number of lattice sites.

The small polaron

When the value ofg is sufficiently large the lattice polar
ization cannot follow the electronic oscillations and, the
fore, depends only on the average charge distribution of
electron. The wave function of the system can be factori
into a product of normalized variational functionsuw& and
u f & depending on the electron and phonon coordina
respectively16

uc (s)&5uw&u f & , ~3!

where

uw&5(
RW m

cm
† u0&elf~RW m! ~4!

and u f & has to be determined variationally.
In Eq. ~4! u0&el is the electron vacuum state andf(RW m)

are variational parameters that satisfy the relation

(
RW m

uf~RW m!u251. ~5!

The expectation value of the Hamiltonian~1! on the state
~3! gives

^c (s)uHuc (s)&52t (
RW m ,^dW &

f* ~RW m!f~RW m2dW !

1^ f u(
qW

@v0aqW
†
aqW1rqWaqW1rqW

* aqW
†
#u f & ~6!

with

rqW5Mq(
i

eiqW •RW iuf~RW i !u2. ~7!

In Eq. ~6! the symbol̂ & in the summation means thatdW runs
only over the nearest neighbors.

The variational problem with respect tou f & leads to the
following lowest energy phonon state

u f &5e(
qW

[rqW /v0aqW 2H.c.]u0&ph , ~8!

whereu0&ph is the phonon vacuum state, and to the followi
total energy

E052t (
RW m ,^dW &

f* ~RW m!f~RW m2dW !2(
qW

urqW u2

v0
. ~9!

Even if this self-trapped state provides a good approxim
tion of the ground-state energy of the small polaron it
evident that the true eigenstate of the electron-lattice coup
system has translational symmetry. We construct translat
ally invariant Bloch states by taking a superposition of t
localized states~3! centered on different lattice sites in th
same manner in which one constructs a Bloch wave func
from a linear combination of atomic orbitals. Then the tr
wave function that accounts for the translational symmetr
given by ~see also Ref. 17!
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uckW
(s)

&5
1

AN
(
RW n

eikW•RW nuckW
(s)

~RW n!&, ~10!

where

uckW
(s)

~RW n!&5(
RW m

cm1n
† u0&elfkW~RW m!

3e(
qW

[ f qW (kW )aqWeiqW •RW n2H.c.]u0&ph ~11!

and

f qW~kW !5
rqW~kW !

v0
5

Mq

v0
(
RW m

ufkW~RW m!u2eiqW •RW m. ~12!

This wave function is a sum of coherent states in
phonon coordinates, one for any particular lattice site. Si
in a coherent state the emission of phonons occurs throu
number of independent processes it is evident that in
trial state there is no correlation among the emission of s
cessive virtual phonons. This physical assumption, i.e.,
on every lattice site virtual phonons are emitted indep
dently, is well founded wheng is sufficiently large but it is
questionable for intermediate and small values of
electron-phonon interaction where the electron recoil kine
energy plays an essential role. Moreover, the wave func
~10! does not contain states with real phonons. This indica
that the calculation of the polaron energy provides corr
results only if the effective polaron band widthD and the
phonon energyv0 satisfy the conditionD,v0. As it is well
known, both these approximations limit the validity of th
wave function~10! to the strong coupling limit.

The expectation value of the Hamiltonian~1! on the state
~10! gives

^ckW
(s)uHeluckW

(s)
&52t(

RW n

eikW•RW ne2(
qW

u f qW u2(12e2 iqW •RW n)

3 (
RW m ,^dW &

fkW
* ~RW m!fkW~RW m2RW n2dW !

~13!

^ckW
(s)uHph1HI uckW

(s)
&

5(
RW n

eikW•RW ne2(
qW

u f qW u2(12e2 iqW •RW n)(
RW m

fkW
* ~RW m!

3fkW~RW m2RW n!(
qW

@ u f qW u2v0e2 iqW •RW n

2 f qW
* MqeiqW •(RW m2RW n)2 f qWMq* e2 iqW •RW m#. ~14!

Moreover, the calculation of the normalization fact
^ckW

(s)uckW
(s)

& gives

^ckW
(s)uckW

(s)
&5(

RW n

eikW•RW ne2(
qW

u f qW u2(12e2 iqW •RW n)

3(
RW m

fkW
* ~RW m!fkW~RW m2RW n!. ~15!
e
e
a
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c-
at
-

e
c
n
s
t

The next step is the determination of the variational p
rametersfkW(RW n). We note that if one neglects the spati
broadening of the electronic wave function, i.e.,fkW(RW n)
5dRW n,0 , the Lang Firsov approximation is recovered, i.e., t
exact solution of the Holstein molecular crystal model f
v0 /t→`. When the value of the adiabatic parameterv0 /t
decreases it becomes necessary to go beyond this app
mation. In this paper, we assume

fkW~RW n!5akWdRW n,01bkWdRW n ,dW1gkWdRW n ,zW . ~16!

Here,bkW andgkW are two variational parameters,akW is deter-
mined in such a way the Eq.~5! is satisfied anddW and zW
indicate, respectively, the nearest and the next nearest ne
bors.

This choice of the parametersbkW and gkW that takes into
account the broadening of the electronic wave function
every lattice site to the nearest neighbors and to the n
nearest neighbors allows to obtain a variational estimate
the ground-state energy atkW50 that is lower than the resul
of the second order of the perturbation theory7

E(sc).EpS 11
1

2zl2D , ~17!

whereEp indicates the small polaron binding energy to t
first order of the perturbation theory

Ep52(
qW

uMqu2

v0
~18!

and z is the nearest-neighbor number. In the appendix
calculation of the polaron band within the ansatz~16! for the
variational parametersfkW(RW n) is reported.

We end this section noting that this method can be s
tematically improved by adding further terms in Eq.~16!.
This allows us to obtain better and better estimates of
polaron energy in the strong-coupling limit.

The large polaron

It is well known that when the value ofg is small the
picture is quite different. As the electron moves through
crystal it exerts weak forces upon the ions, which respo
and move. This resultant ionic polarization will, in turn
modify the motion of the electron. Then the particle mu
drag this polarization with it during its motion through th
solid. This affects its effective mass that is weakly larg
than that of a Bloch electron.18 In this weak-coupling regime
it is useful to adopt a variational approach similar to that
Lee, Low, and Pines in the continuum approximation.19 A
possible choice for the trial wave function is

uckW
( l )

&5
1

AN
(
RW n

eikW•RW nuckW
( l )

~RW n!&, ~19!

where

uckW
( l )

~RW n!&5cn
†u0&ele(

qW
[hqW (kW )aqWeiqW •RW n2H.c.]

3F u0&ph1(
qW

dqW
* ~kW !e2 iqW •RW naqW

†u0&phG ~20!

and
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hqW~kW !5
Mq

v01Eb~qW !2Eb~qW 50!
. ~21!

Here,Eb(qW ) is the free electron band energy

Eb~qW !522t(
i 51

d

cos~qia!, ~22!

wherea is the lattice parameter anddqW(kW ) is a variational
function that has to be determined by minimizing the exp
tation value of the Hamiltonian~1! on the state~19!.

uc ( l )(kW )& has the right translational symmetry, i.e., it is
Bloch state with wave numberkW . This wave function repre-
sents an electron dressed by the virtual phonon field
describes the ionic polarization. We note that the term in
square brackets of the Eq.~20! allows a considerable advan
tage over the independent phonon approximation of L
Low, and Pines. In the Lee, Low, and Pines ansatz an
portant physical ingredient is missing: it does not take i
account the fact that the polaron energy can approachv0. On
the contrary the wave function~19! contains this physica
information.20 In particular when the polaron excitation e
ergy becomes equal to the energy of a longitudinal opt
phonon, the band dispersion flattens and becomes horizo
For these values ofkW the band has the bare phononlike b
havior with very small spectral weight. For the same valu
of kW and in particular at the edges of the Brillouin zone t
main part of the spectral weight follows the bare electr
band.21

The two wave functions~10! and~19!, describing respec
tively the small and large polaron, differentiate mainly f
the expression of the phonon distribution function. It is e
dent that, in spite of the assumption of no correlation~sum of
coherent states in the phonon coordinate!, the large polaron
wave function takes into account the average effect of
correlation introduced by the electron recoil@Eq. ~21!#, effect
absent in the small polaron phonon distribution function.

The expectation value of the Hamiltonian~1! on the state
~19! gives

^ckW
( l )uHeluckW

( l )
&52t(̂

dW &

eikW•dWe2(
qW

uhqW u2(12e2 iqW •dW )

3F11(
qW

~hqWdqW
* 1H.c.!~12e2 iqW •dW !

1(
qW

udqW u2e2 iqW •dW1(
qW 1

dqW 1
hqW 1
* ~e2 iqW 1•dW21!

3(
qW 2

dqW 2
* hqW 2

~e2 iqW 2•dW21!G ~23!

^ckW
( l )uHph1HI uckW

( l )
&5F(

qW
~v0uhqW u22MqhqW

* 2Mq* hqW !G
3^ckW

( l )uckW
( l )

&1(
qW

@v0udqW u2

1~Mq2v0hqW !dqW
* 1~Mq* 2v0hqW

* !dqW #,

~24!
-
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^ckW
( l )uckW

( l )
&511(

qW
udqW u2. ~25!

ThendqW is fixed by the condition

]EkW
( l )

]dqW
*

50. ~26!

Here,EkW
( l ) is the polaron energy in the weak-coupling limi

EkW
( l )

5
^ckW

( l )uHuckW
( l )

&

^ckW
( l )uckW

( l )
&

. ~27!

This procedure provides

dqW5

Mq2v0hqW22te2(
qW

uhqW u2(12cosqxa)hqWAqW~kW !

ykW2BkW12te2(
qW

uhqW u2(12cosqxa)(
i 51

d

cos~ki2qi !a

,

~28!

where

BkW5v01(
qW

@v0uhqW u22MqhqW
* 2Mq* hqW #,

AqW~kW !5(
i 51

d H coskia2cos~ki2qi !a1xi~kW !FcosS ki

2
2qi Da

2cos
ki

2
aG1zi~kW !FsinS ki

2
2qi Da2sin

ki

2
aG J ~29!

andxi(kW ), zi(kW ), y(kW ) are variational parameters.

Intermediate coupling

For any particular value oft there is a value of the
electron-phonon coupling constant (gc) where the ground-
state energies of the two previously discussed solutions
come equal. Nevertheless the two solutions exhibit very
ferent polaron features. In particular, when the coupl
constant is smaller thangc the stable solution~the one with
lowest energy! corresponds to the large polaron while forg
.gc it corresponds to the small polaron. Crossinggc the
mass of the polaronic quasi-particle increases in a disc
tinuous way.14 A more careful inspection shows that in th
range ofg values the wave functions describing the two s
lutions of large and small polaron are not orthogonal a
have nonzero off-diagonal matrix elements. This sugge
that the lowest state of the system is made of a mixture of
large and small polaron solutions.22 Then the idea is to use
variational method to determine the ground-state energy
the Hamiltonian~1! by considering as trial state a linear s
perposition of the wave functions describing the two types
previously discussed polarons

uckW&5
AkWuc̄kW

( l )
&1BkWuc̄kW

(s)
&

AAkW
2
1BkW

2
12AkWBkWSkW

, ~30!

where

uc̄kW
( l )

&5
uckW

( l )
&

A^ckW
( l )uckW

( l )
&

, uc̄kW
(s)

&5
uckW

(s)
&

A^ckW
(s)uckW

(s)
&

~31!
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andSkW is the overlap factor of the two wave functionsuc̄kW
( l )

&

and uc̄kW
(s)

&

SkW5
^c̄kW

( l )uc̄kW
(s)

&1H.c.

2
. ~32!

In Eq. ~30! AkW andBkW are two additional variational param
eters that provide the relative weight of the large and sm
polaron solutions in the ground state of the system for
particular value ofkW .

In this paper, we perform the minimization procedure
two steps. First, the energies of the large and the small
laron wave functions are minimized, then these wave fu
tions are used in the minimization procedure discussed in
present section. This way to proceed simplifies significan
n

ll
y

o-
-
e

y

the computational effort and makes all calculations descri
accessible on a personal computer.

It should be noted that the trial wave function~30! con-
tains correlation between the emission of successive vir
phonons in the field around the electron since the pho
wave function is a linear superposition of coherent states
any particular lattice site. Then the wave function~30! recov-
ers, in the weak- and strong-coupling limit respectively, t
large and small polaron wave function, introduces corre
tion between the emission of successive virtual phonons
the electron and contains the important physical informat
that the quasi-particle becomes unstable when the pola
excitation energy equals the energy of a longitudinal opti
phonon.

The procedure of minimization of the quantit
^ckWuHuckW&/^ckWuckW& with respect toAkW andBkW gives for the
polaron energy
EkW5
EkWm2SkWEkWc2A~EkWm2SkWEkWc!

22~12SkW
2
!~EkW

( l )
EkW

(s)
2EkWc

2
!

12SkW
2 ~33!
e
ng-
ry

ng-
and

AkW

BkW
5

EkWc2EkWSkW

EkW2EkW
( l ) . ~34!

Here, EkWm5(EkW
( l )

1EkW
(s))/2 and EkWc5(^c̄kW

( l )uHuc̄kW
(s)

&
1H.c.)/2. Finally the overlap factor and the matrix eleme
of the Hamiltonian between the two solutionsuc̄kW

( l )
& and

uc̄kW
(s)

& are, respectively

^c̄kW
( l )uc̄kW

(s)
&5(

RW n

eikW•RW n

~^ckW
( l )uckW

( l )
&!1/2

fkW~2RW n!

~^ckW
(s)uckW

(s)
&!1/2

3e2(
qW

[ uhqW u21u f qW u222hqW f
qW
* e2 iqW •RW n]/2

3F11(
qW

dqW~hqW
* 2 f qW

* e2 iqW •RW n!G ~35!

and

^c̄kW
( l )uHeluc̄kW

(s)
&52t(

RW n

eikW•RW n

~^ckW
( l )uckW

( l )
&!1/2

3

e2(
qW

[ uhqW u21u f qW u222hqW f
qW
* e2 iqW •RW n]/2

~^ckW
(s)uckW

(s)
&!1/2

3F11(
qW

dqW~hqW
* 2 f qW

* e2 iqW •RW n!G
3(̂

dW &

fkW~2RW n2dW !, ~36!
t

^c̄kW
( l )uHph1HI uc̄kW

(s)
&5(

RW n

eikW•RW n

~^ckW
( l )uckW

( l )
&!1/2

3

e2(
qW

[ uhqW u21u f qW u222hqW f
qW
* e2 iqW •RW n]/2

~^ckW
(s)uckW

(s)
&!1/2

3fkW~2RW n!H(
qW

dqW~Mq* 2 f qW
* e2 iqW •RW n!

1F11(
qW

dqW~hqW
* 2 f qW

* e2 iqW •RW n!G
3(

qW
~v0f qW

* hqWe
2 iqW •RW n2Mqf qW

* e2 iqW •RW n

2Mq* hqW !J . ~37!

III. NUMERICAL RESULTS

In order to test the validity of our variational approach w
recall the perturbative results both in the weak- and stro
coupling limits. From the weak coupling perturbative theo
we get6

EkW
(wc)

5Eb~kW !1R$S@kW ,Eb~kW !#%, ~38!

where

S~kW ,ikn!5(
qW

uMqu2

ikn2v02Eb~kW1qW !
~39!

while the second-order perturbation theory in the stro
coupling limit gives7
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EkW
(sc).EpS 11

1

4l2D 22te2g2
coskx22

Ep

4l2
e2g2

cos 2kx

~40!

in one dimension and

EkW
(sc).EpS 11

1

8l2D 22te2g2
~coskx1cosky!

22
Ep

8l2
e2g2

~cos 2kx1cos 2ky12 coskx cosky!

~41!

in two dimensions.
In Figs. 1 and 2, we report the polaron ground-state

ergy obtained within our approach@EkW50 in the Eq.~33!# in
one and two dimensions together with large and small

FIG. 1. The polaron ground state energy@EkW50 in the Eq.~33!#
in one dimension~thick solid line! is reported as a function of th
electron-phonon coupling constant for different values of the a
batic parameterv0 /t. The data obtained within the approach d
cussed in this paper are compared with the results of strongE(sc)

@Eq. ~17!, dashed-dotted line# and weak coupling perturbatio
theoryEkW50

(wc)
@Eq. ~38!, thin-solid line# and strong-~dotted line! and

the weak- ~dashed line! coupling variational estimatesEkW
(s)

@Eq.
~A1!# andEkW

( l )
@Eq. ~27!#. The energies are given in units ofv0.
-

-

laron estimates@Eqs. ~27! and ~A1!#, on which our solution
is based, and with the perturbative results. As it is clear fr
the plots, our variational proposal recovers the asympt
perturbative results and improves significantly both var
tional estimates in the intermediate region, where neither
perturbative methods nor the asymptotic variational ans
give a satisfactory description. Moreover, our data in
intermediate region are in very good agreement with the
sults of two of the best methods available in the literatu
~see Fig. 3!: the Global Local variational method13 and the
quantum Monte Carlo calculation.9 The agreement of ou
results with approaches numerically much more sophi
cated indicates that the true wave function is very close t
superposition of the wave functions that we have classi
as large and small polaron solutions. The very accur
choice of the variational wave function has allowed a d
matic simplification of the numerical problem.

-

FIG. 2. The polaron ground state energy@EkW50 in the Eq.~33!#
in two dimensions~thick solid line! is reported as a function of the
electron-phonon coupling constant for different values of the ad
batic parameterv0 /t. The data obtained within the approach di
cussed in this paper are compared with the results of strongE(sc)

@Eq. ~17!, dotted-dashed line# and weak-coupling perturbation
theoryEkW50

(wc)
@Eq. ~38!, thin solid line# and strong~dotted! and the

weak ~dashed line! coupling variational estimatesEkW
(s)

@Eq. ~A1!#

andEkW
( l )

@Eq. ~27!#. The energies are given in units ofv0.
n

-

-

FIG. 3. The variational results obtained withi
the approach discussed in this paper@Eq. ~33!,
solid line# are compared with the data of the Glo
bal Local variational method~Ref. 13! ~dia-
monds!, kindly provided by A. H. Romero, in one
dimension@Fig. 3~a!# and with the energies cal
culated with a Quantum Monte Carlo algorithm
~Ref. 9! ~circles!, kindly provided by P. E. Kor-
nilovitch, in one and two dimensions@Figs. 3~a!
and 3~b!# at v0 /t51. The energies are given in
units of v0.
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FIG. 4. The polaron band structure~solid line!
in one dimension atv0 /t51 is reported for dif-
ferent values of the electron-phonon couplin
constant and it is compared with the wea
~dashed line! and strong-~dotted line! coupling
variational estimates,EkW

( l ) andEkW
(s) . The energies

and the momenta are given in units ofv0 and
p/a, respectively.
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Within our approach we have also studied the pola
band both in one and two dimensions for different values
the electron-phonon coupling constant~Figs. 4 and 5!. As for
the ground-state energy our variational ansatz is able to
cover all the properties expected. In the weak-coupling
gime, increasing the value of the wave number of the pola
Bloch state,EkW increases until the excitation energyEkW

2EkW50 equalsv0. Whenk is greater than this critical mo
mentum the polaron becomes unstable to optical pho
emission and the dispersion curve bends over and beco
horizontal ~this does not happen fort/v0,0.25 in one di-
mension andt/v0,0.125 in two dimensions!. In the oppo-
site regime the well-known polaronic band collapse ta
place. Finally for intermediate values of the electron-phon
coupling constant the polaron band structure deviates sig
cantly from both the dispersion curves. In particular, t
strong-coupling variational result underestimates the ba
width and overestimates significantly the mass enhancem

From our results and in agreement with Romeroet al.13

we find that there is not qualitative difference between
polaron features in one and two dimensions. In both ca
also in the adiabatic regime, there is a range of intermed
values of the electron-phonon coupling constant wher
crossover takes place between the weak-coupling reg
characterized by effective masses lightly heavier than
free electron mass, and the strong-coupling regime in wh
the well-known polaronic band collapse takes place.

Another property of interest in studying the polaron
properties is the ground-state spectral weight

ZkW5u^ckWuck
†u0&u2, ~42!

where u0& is the electronic vacuum state containing
phonons.ZkW is the renormalization coefficient of the on
electron Green function and gives the fraction of the b
n
f

e-
-
n

n
es

s
n
fi-

d-
nt.

e
s,
te
a
e,
e
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e

electron state in the polaronic trial wave function. In Figs
and 7 we report the numerical results ofZkW , at v0 /t51, as
a function of the electron-phonon coupling constant ak
50 and as a function of the polaron Bloch state wave nu
ber for different values ofg. In the weak-coupling regime
ZkW50 is of order of the unity indicating that the polaron
quasiparticle is well defined. The main part of the spec
weight is located at energies that correspond approximativ
to the bare electronic levels. Instead at the edges of the B
louin zoneZkW approaches zero. For these values of the w
number of the polaron Bloch state the main part of the sp
tral weight follows the bare electron band. Increasing
electron-phonon interactionZkW50 decreases and approach
zero in the strong-coupling regime. Here the carrier acqu
large effective mass, the mean number of phonons in
cloud around the electron is very large and the most of sp
tral weight is located at the excited states, indicating that
coherent motion is suppressed rapidly with increasing
temperature.23

Finally, we consider the lattice displacement associate
the polaron formation. An estimate of the average deviat
of the diatomic molecule on the siten1m from the equilib-
rium position, when one electron is on the siten, is given by
the function

DkW~RW m!52g
SkW~RW m!

A2Mv0

, ~43!

where

SkW~RW m!5

(
RW n

GkW~RW n ,RW m!

2g
. ~44!
e

is

-

FIG. 5. The polaron band structure along th
diagonal (kx5ky) of the lattice in two dimen-
sions atv0 /t51 is reported for different values
of the electron-phonon coupling constant and it
compared with the weak-~dashed line! and
strong- ~dotted line! coupling variational esti-
mates,EkW

( l ) and EkW
(s) . The energies and the mo

menta are given in units ofv0 andp/a, respec-
tively.
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Here,M denotes the ionic mass andGkW(RW n ,RW m) represents
the correlation function between the electronic density on
site n and the ionic displacement on the siten1m

GkW~RW n ,RW m!5^ckWucn
†cn~an1m1an1m!uckW&. ~45!

FIG. 7. The spectral weight of the polaronic ground state in t
dimensions as a function of the electron-phonon coupling cons
atk50 @Fig. 7~a!# and as a function of the polaron Bloch state wa
number~in units of p/a) for different values of g@Fig. 7~b!, 7~c!,
and 7~d!# at v0 /t51.

FIG. 6. The spectral weight of the polaronic ground state in o
dimension as a function of the electron-phonon coupling consta
k50 @Fig. 6~a!# and as a function of the polaron Bloch state wa
number~in units of p/a) for different values of g@Figs. 6~b!, 6~c!,
and 6~d!# at v0 /t51.
e In Fig. 8, we report the numerical results of the dime
sionless quantitySkW(RW m), at v0 /t50.5 and in one dimen-
sion, for different values of the electron-phonon coupli
constant atkW50. In the weak-coupling regimeSkW50(RW m)
decreases very slowly with increasing the value ofm. This is
consistent with the assertion that in this regime the extens
of the polaron is large compared with the lattice paramete
the crystal. In the strong-coupling regimeSkW50(RW m) is dif-
ferent from zero only forRW m50, i.e., the lattice displace
ment is different from zero only on the cell where there is t
electron, indicating that the quasi-particle are extremely
calized. Furthermore the crossover from large to small
laron is very smooth.

IV. CONCLUSIONS

In this paper, a variational approach has been develo
to investigate the polaron features of the Holstein molecu
crystal model. It has been found that a simple linear sup
position of Bloch states that describe the small and la
polaron solutions provides an estimate of the ground-s
energy that is in very good agreement with the best res
available. It has been possible to identify a range of interm
diate values of the electron-phonon coupling constant wh
a crossover takes place between the weak- and str
coupling regime. Here, the small and large polaron wa
functions are not orthogonal and both contribute to the f
mation of the so-called intermediate polaron. We stress
this variational approach does not require any signific
computational effort to be implemented and involves, for a
particulark value, a very small number of variational param
eters, that does not depend on the number of lattice site

o
nt

e
at

FIG. 8. The dimensionless quantitySkW(RW m), atv0 /t50.5 and in
one dimension, for different values of the electron-phonon coup

constant atkW50: g51 ~circles!, g52 ~squares!, g52.2 ~dia-
monds!, g52.5 ~triangles!.
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APPENDIX

In the Holstein model (Mq5v0g/AN) the standard trigonometric integrals in the Eqs.~13!–~15! can be performed ana
lytically. In one dimension, the polaron energy in the strong coupling limit assumes the following form (a5v051):

EkW
(s)

5
^ckW

(s)uHuckW
(s)

&

^ckW
(s)uckW

(s)
&

, ~A1!

where

^ckW
(s)uckW

(s)
&5112 coskx~2akWbkW12bkWgkW !e

2g2(a
kW
4
12b

kW
4
12g

kW
4
22a

kW
2
b

kW
2
22b

kW
2
g

kW
2
)12 cos 2kx~bkW

2
12gkWakW !e

2g2(a
kW
4
1b

kW
4
12g

kW
4
22g

kW
2
a

kW
2
)

14 cos 3kxbkWgkWe
2g2(a

kW
4
12b

kW
4
12g

kW
4
22g

kW
2
b

kW
2
)12 cos 4kxgkW

2
e2g2(a

kW
4
12b

kW
4
1g

kW
4
), ~A2!

^ckW
(s)uHeluckW

(s)
&52t~4akWbkW14bkWgkW !22t coskx~2akWgkW1bkW

2
11!e2g2(a

kW
4
12b

kW
4
12g

kW
4
22a

kW
2
b

kW
2
22b

kW
2
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kW
2
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2g2(a
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4
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4
12g
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4
22g
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2
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kW
2
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2
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2
!e2g2(a
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4
12b

kW
4
12g

kW
4
22g

kW
2
b

kW
2
)
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4
12b
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4
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4
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4
12b
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4
12g
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and

^ckW
(s)uHph1HI uckW
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&52g2~akW

4
12bkW

4
12gkW

4
!1g2@~2akWbkW12bkWgkW !~2akW
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2
12bkW

2
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!22akW
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4
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In two dimensions, we have
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