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Variational approach for the Holstein molecular-crystal model
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A variational technique is developed to investigate the polaronic features of the Holstein molecular-crystal
model. It is based on a linear superposition of Bloch states that describe large and small polaron wave
functions. It is shown that this method provides a very good description of the regime characterized by
intermediate values of the electron-phonon coupling consgtiaatso-called intermediate polajdior any value
of the adiabatic parameter,/t. The polaron ground state energy in one and two dimensions is calculated and
successfully compared with the best estimates available providing a clear physical interpretation of the inter-
mediate polaron. The band structure, the spectral weight of the ground state and the lattice displacement
associated to the polaron are also calculated and discussed. The method has the advantage of requiring very
little computational effort{S0163-18289)05545-9

[. INTRODUCTION interest, characterized by intermediate couplings and by elec-
tronic and phononic energy scales not well separated. This
Recently, a large amount of experimental results, rangingegime has been analyzed in several works based on Monte
from infrared spectroscopy to transport properties involvingCarlo simulation§® numerical exact diagonalization of
the colossal magnetoresistance and higrsuperconductiv-  small clusters® dynamical mean field theory,density ma-
ity, has pointed out the presence of polaronic carriers intrix renormalization group? and variational approaché*
doped cuprates and in the manganese oxide perovsKites. The general conclusion is that the ground state energy and
particular several experiments have shown that in doped pethe effective mass in the Holstein model are continuous func-
ovskite manganites La,A,MnO; (A=Sr, Ca) there is a tions of the electron-phonon coupling and that there is not
quite considerable coupling between the charge and the laphase transition in this one-body syst&inln particular
tice degrees of freedomThe lattice distortions associated when the interaction strength is greater than a critical value
with the Mn ions play an important role in determining the the ground-state properties change significantly but without
electronic and magnetic properties of these compoundsreaking the translational symmetry.
which have become the focus of the scientific interest after Recently, results for the Holstein molecular crystal model
the discovery of the colossal magnetoresistance phenomert@ave been presented by using the Global-Local variational
Recently it has been found that in {.aCa, ,dMnO; the me-  method'® The comparison of the data obtained in one space
tallic phase is characterized by homogeneously distributedimension with the known approaches has shown that these
intermediate polarons while, above the transition from ferroresults seem to provide the best estimates of the polaron
magnetic metal to paramagnetic insulator, small and intermeground-state energy. They are highly accurate over a wide
diate polarons coexistAlso the measurements of the CuO range of the polaron parameter space, from the nonadiabatic
distances in LagsSr, 1CuQ, crystal have pointed out, below to the adiabatic, from weak to strong coupling limit. Never-
100 K, two conformations of the Cyctahedra assigned to theless, a solution of the Global-Local variational method for
two different types of polaron. any particulark value (k is the wave number of the polaron
This large amount of experimental data has renewed thBloch state is obtained by minimizing with respect to a very
interest in studying the models of the electron-phononarge number of parameters, that depends on the number of
coupled system and in particular the Holstein moleculalattice sites and that increases dramatically with increasing
crystal model that, for his relative simplicity, is the most the number of space dimensions from one to three.
considered model for the interaction of a single tight-binding The aim of this paper is to study the Holstein polaron
electron coupled to an optical local phonon méde. features including ground-state energy, polaron energy band,
For the Holstein Hamiltonian, beside the weak-couplingshape of the lattice distortion induced by the electron-phonon
perturbative theofyyan analytical approach is known for the interaction and spectral weight of the coherent polaron band
strong coupling limit in the nonadiabatic regimemall  within a variational approach. It is based on two translation-
polaron.” It is based on the Lang-Firsov canonical transfor-ally invariant Bloch wave functions that provide a very good
mation and on expansion in powers ofAlMhere )\ description of the two asymptotic regimes, the weak- and
=E,/ztis the dimensionless coupling constait,, zandt  strong-coupling regimes. In this paper, these wave functions
being, respectively, the small polaron binding energy, there called large and small polaron. In the large polaron wave
coordination lattice number and the bare effective hoppindgunction the phonon distribution function takes into account
integral (\ represents the ratio between the small polarorthe average effect of the correlation among the emission of
binding energy and the energy gain of an itinerant electrorsuccessive virtual phonons by the electron and the spatial
on a rigid lattice. It is well known that both these analytical extension of the polaron is large compared with the lattice
techniques fail to describe the region, of greatest physicgbarameter of the crystal. In the small polaron wave function
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the lattice polarization is confined to a region of the order of g

the unit cell and the polaron radius becomes of the order of Mq=—"=wq. 2
the lattice constant. In this case all momenta of the Brillouin VN

zone pon'tribgte to thg polaron wave function and in thg phOHere,N is the number of lattice sites.

non distribution function the effect of the electron recoil due
to the emission of virtual phonons is negligible.

A careful inspection of these two wave functions points
out that, far away from the two asymptotic regimes, they are  When the value o§ is sufficiently large the lattice polar-
not orthogonal and that the off-diagonal matrix elements ofzation cannot follow the electronic oscillations and, there-
the Holstein Hamiltonian are not zero. It is then straightfor-fore, depends only on the average charge distribution of the
ward to determine variationally the polaron ground-state enelectron. The wave function of the system can be factorized
ergy by considering as trial state the linear superposition ointo a product of normalized variational functiohg) and

The small polaron

the large and small polaron wave functions. |f) depending on the electron and phonon coordinates,
The comparison of our results with the Monte Cadata  respectively®
and the ground state energies of the variational global local [y =|@)|f), (3)

method® shows that the proposed method provides a very

good description of the polaron ground-state energy for anyvhere

value of the parameters of the Holstein model and confirms B + >

the existence of three regim&sthe weak-coupling regime, |QD>_§E Cr|0)ei(Rrm) (4)
characterized by polaron masses lightly heavier than the free "

electron mass and by dimension of the lattice polarizatiorand|f) has to be determined variationally.

|arge Compared with the lattice parameter; the Strong' In Eq (4) |0>e| is the electron vacuum state amﬁm)

coupling regime where the well-known polaronic band col-are variational parameters that satisfy the relation
lapse takes place and the intermediate regime that is charac-

terized by the crossover between the small and large polaron 2 |p(Ry)|2=1. (5

solutions. This regime is, therefore, well described by a wave Rm

function that is a linear superposition of Bloch states that . o

describe the small and large polaron. The expectation value of the Hamiltoni&h) on the state
We stress that this variational approach provides a cledd) gives

description of the Holstein polaron features in any regime ) (S _ = > 2

and involves, for any particuldrvalue, a very small number (PPIH[g) = _téZ@ ¢” (Rm) $(Rm= )

of variational parameters, that does not depend on the num- m

ber of lattice sites. + . 1
+(f| > [woazag+ pgag+pgagllf) (6)
q

IIl. VARIATIONAL WAVE FUNCTION with

The model iq-R: 3
. j . pi=Mq2 €9 H(R)|% W)
The Holstein molecular crystal model is described by the :

. . 5 N
Hamiltonian: In Eqg. (6) the symbok ) in the summation means thatruns

only over the nearest neighbors.
H=He+Hyn+H = —t>, c?cj+woz agad The variational problem with respect {6) leads to the
(Y q following lowest energy phonon state
. o, [pglwgag—Hel
+2 ciTci[qu'q'Ria(ﬁ— H.cl]. 1 f)=e q e |0>ph’ ®)
b where|0), is the phonon vacuum state, and to the following
total energy

The units are such thdt=1. Since we will restrict our- . L lpq 2
selves to the single-electron case, we will not consider elec- Eo=—t E ¢* (Ry) d(Ry— 6) — E - 9
tron spin indices. The symbdly in the first term of the sum Rm (9 q @o
in Eq. (1) means that the summation is to be carried out only o ) )
wheni andj are nearest neighbors to each other. Even if this self-trapped state provides a good approxima-

In the Eq.(1) ¢! denotes the electron creator operator ation Of the ground-state energy of the small polaron it is
o o L - t evident that the true eigenstate of the electron-lattice coupled
site i, the position vector of which is indicated ¥, a-

; . q system has translational symmetry. We construct translation-
represents the creation operator for phonon with wave numyjly invariant Bloch states by taking a superposition of the
ber g, t is the transfer integral between nearest-neighbotocalized state$3) centered on different lattice sites in the
sites, wq is the frequency of the optical local phonon mode same manner in which one constructs a Bloch wave function
andM, indicates the electron-phonon matrix element. In thefrom a linear combination of atomic orbitals. Then the trial
Holstein modelshort-range electron-phonon interactidh,  wave function that accounts for the translational symmetry is
assumes the form given by (see also Ref. )7
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1 . The next step is the determination of the variational pa-
|l//(;zs)>: _N 2 e'k'R”|l/f(|zs)(§n)>, (10 rameters¢i(R,). We note that if one neglects the spatial
Rn broadening of the electronic wave function, i.eg(R,)
where =6R 0 the Lang Firsov approximation is recovered, i.e., the
exact solution of the Holstein molecular crystal model for
[P (R)Y=2 el nl0)erdi( R wo/t—o. When the value of the adiabatic parametgy/t
Rm decreases it becomes necessary to go beyond this approxi-
XeE [fa(ﬁ)adei‘i'éan.c.”O) a1 mation. In thisepaper, we assume
a P (R = agdr ot Bidr 5+ YidR, .- (16)
and Here, By and yi are two variational parameterasy is deter-
. pgk) My [P mined in such a way the Ed5) is satisfied and> and ¢ '
fq(k) = Twy o ﬁE | pk(Rp) 7€' Fm. (12 g1d|cate, respectively, the nearest and the next nearest neigh-
m ors.

hi ¢ L ¢ coh in th This choice of the parametefs; and y; that takes into
This wave function is a sum of coherent states in e, nt the broadening of the electronic wave function in

phonon coordinates, one f_or any particular lattice site. Si”C%very lattice site to the nearest neighbors and to the next
in a coherent state the emission of phonons occurs trough Q.4 et neighbors allows to obtain a variational estimate of
number of independent processes it is evident that in thi

trial state there is no correlation among the emission of suc-
cessive virtual phonons. This physical assumption, i.e., tha
on every lattice site virtual phonons are emitted indepen-
dently, is well founded wheg is sufficiently large but it is
qguestionable for intermediate and small values of the
electron-phonon interaction where the electron recoil kinetisvhereE, indicates the small polaron binding energy to the
energy plays an essential role. Moreover, the wave functiofirst order of the perturbation theory

(10) does not contain states with real phonons. This indicates |Mq|2

that the calculation of the polaron energy provides correct Ep=—2 w—o (18)
results only if the effective polaron band width and the q

phonon energyv, satisfy the conditiol <w,. As itis well —andz is the nearest-neighbor number. In the appendix the
known, both these approximations limit the validity of the calculation of the polaron band within the ans¢it@) for the

e ground-state energy k&0 that is lower than the result
f the second order of the perturbation théory

E(SC):Ep

1
1+ E) , (17

wave function(10) to the strong coupling limit. variational parameterm(ﬁn) is reported.
The expectation value of the Hamiltoniéh) on the state We end this section noting that this method can be sys-
(10) gives tematically improved by adding further terms in E46).
= © KRS [1e2(1—eid Ry This allows us to obtain better and better estimates of the
(7 Hell )= —12 e Foe = (me polaron energy in the strong-coupling limit.
Rn

E . = . N . The large polaron
X “(Ry) di(Rp—Rp— 6 . .
o5 ¢ (Rm) SR = Rn = 9) It is well known that when the value of is small the
" picture is quite different. As the electron moves through the
(13 crystal it exerts weak forces upon the ions, which respond
(s (s and move. is resultant ionic polarization will, in turn,
<¢()|H +H|z,//()) d Th [tant pol t Il t
k ph 1%k . . .
modify the motion of the electron. Then the particle must
e _ig-R - drag this polarization with it during its motion through the
. - -12(1—e 10°Ry *
:Z e'“Fre % fal"(1-e )Z & (Rm) solid. This affects its effective mass that is weakly larger
Rn R than that of a Bloch electroff.In this weak-coupling regime
. it is useful to adopt a variational approach similar to that of
2wpe 4 Rn Lee, Low, and Pines in the continuum approximatiom
possible choice for the trial wave function is

fq

X p(Rm—R) 2 [
q
_f’\:M eid'(ﬁmfﬁn)—fﬂw*e*iq“ﬁm . 14 1 = =
aMa aMge ] (19 )= S R, (19
Rn
Moreover, the calculation of the normalization factor
<¢(RS)|‘/’(1ZS)> gives where . 2 -
o . iR |42 (Ry))=c]|0) e [hakage™ ™h—Hel
WRIPP)=3, e Fre X lfifa-e e
Rn N - =
x| |0)pnt 2 dZ (K)e @ Rnalj0) | (20)
X > ¢f (Rm) d(Rn— Ry). (15) ‘
Rm and
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. Mg where
hg(k)= = = ) (21 N

T 0o+ Ep(q)—Ep(G=0) W) =1+ 3 |dgl2 (25)

q

Here,E(q) is the free electron band energy Thendj is fixed by the condition

N ? JEW)

Ey(q)=—2t2 coggja), (22 K _o (26

i=1 ad.}g .

q

wherea is the lattice parameter ard} (k) is a variational ) : P

function that has to bepdeterminedrgij(m)inimizing the expec—Here’E('z) Is the polaron en(le;rgy ml the weak-coupling limit

tation value of the Hamiltoniafil) on the stat&19). (,)_Wg |H|'//(;z)>
| (K)) has the right translational symmetry, i.e., itis a k — <‘/’(12|)|‘/’(|2|)> '

Bloch state with wave numbée. This wave function repre- ] )

sents an electron dressed by the virtual phonon field that"iS Procedure provides

describes the ionic polarization. We note that the term in the Mq—woha—Zte*Z |h(i|2(17C05qxa)hdAa(|Z)

square brackets of the E(O0) allows a considerable advan- q

(27)

tage over the independent phonon approximation of Lee, ¢ o d
Low, and Pines. In the Lee, Low, and Pines ansatz an im- Yi— Bi+t 2te” 2 I (1=cosa@ > cogki—qj)a
portant physical ingredient is missing: it does not take into K =1
account the fact that the polaron energy can appregctOn
the contrary the wave functiofi9) contains this physical where
information?® In particular when the polaron excitation en- ) . .
ergy becomes equal to the energy of a longitudinal optical Bi= wo+2 [wolhgl _Mqha —Mghql,
phonon, the band dispersion flattens and becomes horizontal. d . .
For these values dt the band has the bare phononlike be- AA(E):iEl [coskia—cos(ki—qi)aeri(IZ) cos(é—qi
] (29)

(28)

a

havior with very small spectral weight. For the same values ¢

of k and in particular at the edges of the Brillouin zone the k.
main part of the spectral weight follows the bare electron —cos—a
band?* 2
The two wave function$10) and(19), describing respec-
tively the small and large polaron, differentiate mainly for
the expression of the phonon distribution function. It is evi-
dent that, in spite of the assumption of no correlatisum of
coherent states in the phonon coordinatee large polaron For any particular value ot there is a value of the
wave function takes into account the average effect of thelectron-phonon coupling constarg.j where the ground-
correlation introduced by the electron reddil. (21)], effect  state energies of the two previously discussed solutions be-
absent in the small polaron phonon distribution function. come equal. Nevertheless the two solutions exhibit very dif-
The expectation value of the Hamiltonigh) on the state ferent polaron features. In particular, when the coupling

. ki
+z(k)| sin a—sinE'a

ki
E_Qi

andx;(k), z(Kk), y(k) are variational parameters.

Intermediate coupling

(19) gives constant is smaller thag, the stable solutiorithe one with
. ~ic3 lowest energy corresponds to the large polaron while fpr
(1 My _ s -12(1 _ a—iq- & . /
(¢ [Hell g >——t% e e % Ihg™a—e ) >g. it corresponds to the small polaron. Crossigg the
)

mass of the polaronic quasi-particle increases in a discon-

N i tinuous way'* A more careful inspection shows that in this

142 (hgd? +H.c)(1-e 197 range ofg values the wave functions describing the two so-
q lutions of large and small polaron are not orthogonal and
. oL have nonzero off-diagonal matrix elements. This suggests
+2 |dg%eia 04 Y d&lh;E (e7'19-1) that the lowest state of the system is made of a mixture of the

q a1 ! large and small polaron solutioA$Then the idea is to use a
variational method to determine the ground-state energy of

X

XZ g h; (e*iq}f?_ 1) (23 the Hamiltonian(1) by considering as trial state a linear su-
dy 2 2 perposition of the wave functions describing the two types of
0 o previously discussed polarons
— -2 * -
<¢|Z |th+ HI|¢|2 >_ Z (w0|hq| - Mqha - M; hq)} AE|ES)>+ B|2|E(|ZS)>
“ 0= ——=; ; (30)
- VAL +BZ+ 2AB;S;
x<¢(§)|¢(ﬁ)>+z [w0|d(i|2 where
q
v )
— hd® * o h*Vd- k k
+(Mq a)ohq)dq+(Mq wohq)dq], |_(J) = |Z§)>:— (31)

W) =———,
24 ) wP1u)
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andS; is the overlap factor of the two wave functioh?a&")
and |E§))

() He.

5 (32

In Eq. (30) A; andBy; are two additional variational param-
eters that provide the relative weight of the large and smal
polaron solutions in the ground state of the system for any,

particular value ok.
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the computational effort and makes all calculations described
accessible on a personal computer.

It should be noted that the trial wave functi¢d80) con-
tains correlation between the emission of successive virtual
phonons in the field around the electron since the phonon
wave function is a linear superposition of coherent states for
any particular lattice site. Then the wave functi@0) recov-
ers, in the weak- and strong-coupling limit respectively, the
large and small polaron wave function, introduces correla-
ion between the emission of successive virtual phonons by
he electron and contains the important physical information
that the quasi-particle becomes unstable when the polaron

In this paper, we perform the minimization procedure inexcitation energy equals the energy of a longitudinal optical
two steps. First, the energies of the large and the small pgphonon.

laron wave functions are minimized, then these wave func-

The procedure of minimization of the quantity

tions are used in the minimization procedure discussed in thé|H| i)/ { ] ¥g) with respect toA; and B gives for the
present section. This way to proceed simplifies significantlypolaron energy

Efm— SIZEIZC_ \/( Ekm— SlZElZC)Z_ (1- SE)(E(kJ)E(IZS) B EEC)

E;= (33
K 1_SE
|
and - 1) e
S,
(" Hpn+Hy |y >:E OIMONST
A Eie—EiS Re (1))
P n - (34) .
B Ex—Eg e [Ihgl2+1fgl2~2hgf X e ™19 Rujr2
q
Here, Ejn=(EV+E®)2 and Eg=((yl|H[4) () )12

+H.c.)/2. Finally the overlap factor and the matrix element

of the Hamiltonian between the two solutiorhggb and
|Z(|ZS)) are, respectively

ek Ry

e —— $i(—Ry)
(bl ; (WO O 2 (O] 4Oy 12

<o [Ingl2+1fgl2~2hgf: e~ 19"Rm2
q

x| 1+ dg(hf —fie i) (35)
q

and
ek Rn
(W w2

Ry (
e [Ing/2-+14|2~2hgt S e~ 19 Rmyr2
q

WOMH) ==t

(i) V2

L(h* —f*a-i0-R,
X 1+% dg(h; —fre )

XY, ¢i(—Ry—9), (36)
()

><¢g<—f<n>|2 dg(M e )
q

+

1+ dg(hf —ffe 9 Ry
q

X D (wofihge 14 Fn— M fXeid Fo
q
—Ma‘ha)]. (37)

Ill. NUMERICAL RESULTS

In order to test the validity of our variational approach we
recall the perturbative results both in the weak- and strong-
coupling limits. From the weak coupling perturbative theory
we gef

L= Ey(K) + R{S[K,En(K) T}, (38)

where

. IMg|?
S (K,ikn) =2 - —
q ikn—=wo—Ep(k+q)

(39

while the second-order perturbation theory in the strong-
coupling limit giveg
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FIG. 1. The polaron ground state enefd;— in the Eq.(33)]

in one dimensior{thick solid ling is reported as a function of the

FIG. 2. The polaron ground state enefd—, in the Eq.(33)]
in two dimensiongthick solid ling is reported as a function of the

electron-phonon coupling constant for different values of the adiag|ectron-phonon coupling constant for different values of the adia-
batic parametet, /t. The data obtained within the approach dis- p5tic parametetw,/t. The data obtained within the approach dis-

cussed in this paper are compared with the results of stEd?f
[Eg. (17), dashed-dotted lifeand weak coupling perturbation
[Eq. (38), thin-solid lingl and strong{dotted ling and
the weak-(dashed ling coupling variational estimateEff) [Eq.
(Al1)] and ES) [Eq. (27)]. The energies are given in units &f,

0

(w
theoryE,_ ]

1
ECI=E,| 1+—
ax

in one dimension and

1
ECI=Ey| 1+
8\

E
—2—" e %°(Cos Z,+ cos Z, + 2 cosk, Cosk,)

8\ 2

in two dimensions.

E
—2te” 92coskx— 2—"2 e 9cos X,
4\

2
—2te” 9 (cosk,+ cosk,)

cussed in this paper are compared with the results of St
[Eg. (17), dotted-dashed lileand weak-coupling perturbation
theory Ef(“z'cg [Eq. (38), thin solid lingl and strong(dotted and the
weak (dashed ling coupling variational estimateE(If) [Eqg. (AD)]

and ES) [Eq. (27)]. The energies are given in units &f,.

laron estimate$Eqs. (27) and (A1)], on which our solution

is based, and with the perturbative results. As it is clear from
the plots, our variational proposal recovers the asymptotic
perturbative results and improves significantly both varia-
tional estimates in the intermediate region, where neither the
perturbative methods nor the asymptotic variational ansatz
give a satisfactory description. Moreover, our data in the
intermediate region are in very good agreement with the re-
sults of two of the best methods available in the literature
(see Fig. 3 the Global Local variational methdtiand the
quantum Monte Carlo calculatiochThe agreement of our
results with approaches numerically much more sophisti-
cated indicates that the true wave function is very close to a
superposition of the wave functions that we have classified

In Figs. 1 and 2, we report the polaron ground-state enas large and small polaron solutions. The very accurate

ergy obtained within our approaglE;_, in the Eq.(33)] in

choice of the variational wave function has allowed a dra-

one and two dimensions together with large and small pomatic simplification of the numerical problem.

W -2
a5 | (@)
-3
a5 b
b
—as | wo/t=1
s [ 10
-55
e f
-65 .

-4

-45

© FIG. 3. The variational results obtained within

the approach discussed in this papEg. (33),
solid line] are compared with the data of the Glo-
bal Local variational methodRef. 13 (dia-
monds, kindly provided by A. H. Romero, in one
dimension[Fig. 3(@] and with the energies cal-
culated with a Quantum Monte Carlo algorithm
(Ref. 9 (circles, kindly provided by P. E. Kor-
nilovitch, in one and two dimensior&igs. 3a)
and 3b)] at wg/t=1. The energies are given in
units of wg.




PRB 60 VARIATIONAL APPROACH FOR THE HOLSTEIN . .. 15169

T -5.471

-5.4751- FIG. 4. The polaron band structusolid line)

in one dimension ab,/t=1 is reported for dif-
ferent values of the electron-phonon coupling
constant and it is compared with the weak-
(dashed ling and strong-(dotted ling coupling
variational estimatesES) and E(IZS). The energies
and the momenta are given in units ef and
7/a, respectively.

—5,48]
|-5.485[
=5.49]

—5.4950="

Within our approach we have also studied the polarorelectron state in the polaronic trial wave function. In Figs. 6
band both in one and two dimensions for different values ofand 7 we report the numerical results&f, at wy/t=1, as
the electron-phonon coupling constaRigs. 4 and 5 As for  a function of the electron-phonon coupling constantkat
the ground-state energy our variational ansatz is able to re=0 and as a function of the polaron Bloch state wave num-
cover all the properties expected. In the weak-coupling reber for different values ofy. In the weak-coupling regime
gime, increasing the value of the wave number of the polaroz;_, is of order of the unity indicating that the polaronic
Bloch state,Ei; increases until the excitation enerdy;  quasiparticle is well defined. The main part of the spectral
—Ex-o equalswy. Whenk is greater than this critical mo- weight is located at energies that correspond approximatively
mentum the polaron becomes unstable to optical phonoto the bare electronic levels. Instead at the edges of the Bril-
emission and the dispersion curve bends over and becomésiin zoneZ; approaches zero. For these values of the wave
horizontal (this does not happen fd/wy<<0.25 in one di- number of the polaron Bloch state the main part of the spec-
mension and/wy<0.125 in two dimensions In the oppo- tral weight follows the bare electron band. Increasing the
site regime the well-known polaronic band collapse takeslectron-phonon interactiod;_, decreases and approaches
place. Finally for intermediate values of the electron-phonoreero in the strong-coupling regime. Here the carrier acquires
coupling constant the polaron band structure deviates signifiarge effective mass, the mean number of phonons in the
cantly from both the dispersion curves. In particular, thecloud around the electron is very large and the most of spec-
strong-coupling variational result underestimates the bandwral weight is located at the excited states, indicating that the
width and overestimates significantly the mass enhancementoherent motion is suppressed rapidly with increasing the

From our results and in agreement with Rometal®  temperaturé®
we find that there is not qualitative difference between the Finally, we consider the lattice displacement associated to
polaron features in one and two dimensions. In both caseshe polaron formation. An estimate of the average deviation
also in the adiabatic regime, there is a range of intermediatef the diatomic molecule on the sitet m from the equilib-
values of the electron-phonon coupling constant where a@um position, when one electron is on the sitds given by
crossover takes place between the weak-coupling regimehe function
characterized by effective masses lightly heavier than the

free electron mass, and the strong-coupling regime in which DR =2 Sﬁ(ﬁm) 43
the well-known polaronic band collapse takes place. k(Rm) =29 m' (43
Another property of interest in studying the polaronic
properties is the ground-stateTspegtraI weight where
Zi= (il 0)]%, (42
where |0) is the electronic vacuum state containing no E 'Ry, Rm)
phonons.Z; is the renormalization coefficient of the one- S‘;(FE )= Rn (44)
electron Green function and gives the fraction of the bare m 29
e b 1 ) FIG. 5. The polaron band structure along the

-6.57-

diagonal k.=k,) of the lattice in two dimen-
sions atwg/t=1 is reported for different values
of the electron-phonon coupling constant and it is
compared with the weak{dashed ling and
strong- (dotted ling coupling variational esti-
mates,E(k»') and E(If). The energies and the mo-
menta are given in units ab, and 7/a, respec-
tively.
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FIG. 6. The spectral weight of the polaronic ground state in one 0 ! 2 3 4 5 6 / 8
dimension as a function of the electron-phonon coupling constant at R

k=0 [Fig. 6@] and as a function of the polaron Bloch state wave
number(in units of 77/a) for different values of dFigs. §b), 6(c),

and Gd)] at wy/t=1.

Here,M denotes the ionic mass adt{(R,,Ry) represents

FIG. 8. The dimensionless quant&(ﬁm), atwy/t=0.5and in
one dimension, for different values of the electron-phonon coupling
constant atk=0: g=1 (circles, g=2 (squarey g=2.2 (dia-
monds, g=2.5 (triangles.

the correlation function between the electronic density on the In Fig. 8, we report the numerical results of the dimen-
site n and the ionic displacement on the site-m

TRy, Rin) = (¥l chen(@ns m+ ansm)| 40)-

E 0N
0 02 04 06 08 1

(49)

sionless quantit)&;(lim), at wy/t=0.5 and in one dimen-
sion, for different values of the electron-phonon coupling

constant atk=0. In the weak-coupling regim&;_o(Ry,)
decreases very slowly with increasing the valuenofThis is
consistent with the assertion that in this regime the extension
of the polaron is large compared with the lattice parameter of
the crystal. In the strong-coupling reginf&zzo(lim) is dif-
ferent from zero only forR,,=0, i.e., the lattice displace-
ment is different from zero only on the cell where there is the
electron, indicating that the quasi-particle are extremely lo-
calized. Furthermore the crossover from large to small po-
laron is very smooth.

IV. CONCLUSIONS

04 - 9 . 004 k=K, In this paper, a variational approach has been developed
0.35 E ™ oo b to investigate the polaron features of the Holstein molecular-
0.3 E 0.03 b crystal model. It has been found that a simple linear super-
0.25 E 0.025 F position of Bloch states that describe the small and large
- g=2.2 0.02 [ polaron solutions provides an estimate of the ground-state
0.15 E 0.015 E energy that is in very good agreement with the best results
o1 f 0.01 f available. It has been possible to identify a range of interme-
0.05 f 0.005 f diate values of the electron-phonon coupling constant where
05‘ S e—— ok a cro_ssover_takes place between the weak- and strong-
© k=K, @ K=k, coupling regime. Here, the small and large polaron wave

functions are not orthogonal and both contribute to the for-

FIG. 7. The spectral weight of the polaronic ground state in twomMation of the so-called intermediate polaron. We stress that
dimensions as a function of the electron-phonon coupling constarfhis variational approach does not require any significant
atk=0 [Fig. 7(a)] and as a function of the polaron Bloch state wave cOmputational effort to be implemented and involves, for any
number(in units of 7r/a) for different values of dFig. 7(b), 7(c), particulark value, a very small number of variational param-
and 7d)] at wy/t=1. eters, that does not depend on the number of lattice sites.
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APPENDIX

In the Holstein model M ;= w0/ JN) the standard trigonometric integrals in the E€3)—(15) can be performed ana-
lytically. In one dimension, the polaron energy in the strong coupling limit assumes the following ot d=1):

_o_ (M)

iy e Sl (A1)
)

where
(WO = 142 cosky(2agBi+ 2Biyi)e” i 2Bt 20208260 1 2 cos Ky B+ 2ygag)e 9okt Bt 2% 2%
+4 cos 3<X,8,;yl;e*92(“3*2133*27?27%) +2cos «Xyéefgz(“é*zﬁé* 7, (A2)
WO H )= — t(4agBi+ 4Biyid) — 2t cosk(2agyi+ B+ 1)e 9 2620 2008 28,%) — 21t cos (4B vk
+ 2,8gag)e‘gz(“2+ﬁé+273‘275"‘§) — 2t cos H,(2ajyi+ Bt yE)e‘gz(“E“ﬁE*zVE‘ZVEBE)
— 4t cos &y ygBe~ ek 28 M) — 2t cos &Xyéefgz(“é*zﬁé*”g) (A3)
and
(| Hont 107 = — 0 (ag+ 285+ 27,0 + %L (2eiBi+ 2Bi70) (e B+ 285 v) — 20 Bi— 2B vi— 2Byent
—293Bi]2 coskee™ it 2B+ 22260 1 g2 ( B2+ 2ya) B+ 2v20%) — 28— 24 e
—2y;a’]2 cos lxe*gz(“éwé*z’/g* 2vga) + 92(4Bve—2viB:
—2y2Bi)2 cos B(Xe—gz(aé+253+2yé—27éﬁé) +9%(y2—2y3)2 cos 4<Xe‘92("3+ 26+, (A4)
In two dimensions, we have
<$(ES)| zp(lf)) = 1+ (cosky+ cosky) (4aiBi+ 8,8;gyg)e*92(“3*452*473*2“555*455’/5) + (cos X+ cos 2ky)(2,BE
+ 4yE)e‘92(“E+3BE+ 250 4 cosk, cosk,(8agyi+ 8,BE)e‘ 0%+ 26 +4rg2vpey) | (cos X, cosk,
+cos X, cosk,)8 Bgygefgz(“g“‘ﬁg“"/g* 29080 + cos %, cos X4 yée*gz(asﬂﬁéﬂyg), (A5)
(WO H e ) = —t(BaxgBi+ 1685 y) — t(COSKy+ Cosky) (L0BZ+ 492+ 2+ Bargyg)e (i 46y 47208~ 487
—t(cos Ky+cos X,) (4agBi+ 16ﬂ|;yg)e*92(“é+3ﬁé+273) —t(cos X, + cos 3<y)(235
+ 4y§)e‘gz(“é+4ﬁé+47b — t cosky cosk,(16Bag+ 48)/,;/3,;)e‘gz("g*ZBE*“VE‘Z“EVE) — t(cos X, cosk,
+cos X, coskx)(lz,BEvL 12’yE+ 8a,;yl;)e‘gz(”‘E*“BE“yE‘ZBEVE) —tcos X, cos X,168¢yke” 0%+ 437
—t(cos X, cosk, + cos X, cosk,)8 /B,gygefgz(“g“‘ﬁg“‘yé) —t(cos X, cos X,
+cos X, cos 2<X)4yée*92(“3+433+473) (A6)
and
(P2 Hpn+ Hil ) = — g2+ 4B+ 4vp) + 0 (4aiBit BBivi) (2ee B+ 45 ye) — At Bi— 885 vi— 4Brai—8vi il
X (cosky,+ cosky)e‘gz(“E“BE“VE‘ 2y 4Be7) 4 gz[(Z,BEJr 4y§)(,83+ 273) - 4/33— 8 yE](cos X,
+cos &) e~ 936200 + g2 (Bagyi+ 8B2) (2B1+ 292a2) — Balyi— 1681
- Bam/E]coskx coskye*92(“3*232*473*275“5) +g%( 16;%3 yE— 8/3334;— 8,8|;y§~)(cos %, cosky

2, 4 4 4 2 2 2, 4 4 4
+cos &, cok,) e It BTN T2NB) 1 92[43/2— 8y‘k3]cos %y cos kye 9T ABF3Y, (A7)
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