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Resonant peak splitting for ballistic conductance in magnetic superlattices
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We investigated theoretically the resonant splitting of ballistic conductance peaks in magnetic superlattices.
It is found that, for magnetic superlattices with periodically arrangedn identical magnetic barriers, there exists
a general (n21)-fold resonant peak splitting rule for ballistic conductance, which is the analogy of the (n
21)-fold resonant splitting for transmission inn-barrier electric superlattices@R. Tsu and L. Esaki, Appl. Phys.
Lett. 22, 562 ~1973!#. @S0163-1829~99!05827-0#
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Electron motion in a two-dimensional electron g
~2DEG! subjected to a magnetic field has attracted lo
drawn interest, since it provides a variety of interesting a
significant information characterizing the behavior of ele
trons in 2DEG systems. There are a number of papers1 de-
voted to the study on quantum transport of a 2DEG in
unidirectional weak sinusoidal magnetic-field modulati
with a uniform magnetic-field background, where comme
surability effects come into play. This system was recen
realized experimentally,2 and the long-predicted magnetor
sistance oscillations1 resulting from semiclassical commen
surability between the classical cyclotron diameter and
period of the magnetic modulation, were observed. Recen
a 2DEG was investigated under the influence of a magn
step, magnetic well, and magnetic barrier.3 Electron tunnel-
ing in more complicated and more realistic magnetic str
tures was found to possess wave-vector filtering properti4

The studies5 showed that the energy spectrum of magne
superlattice~MS! consists of magnetic minibands.

(n21)-fold transmission splitting forn electric-barrier
tunneling was first noticed and generalized by Tsu and E
in their pioneering paper,6 and was proved analytically b
Lui and Stamp7 in the electric superlattice~ES! with periodi-
cally arrangedn identical rectangular barriers. Very recentl
Guo et al.8 investigated theoretically the transmission sp
ting effects in two kinds of magnetic supperlattices~MS! and
found no explicit and general resonant peak splitting
transmission in electron tunneling in MS.

We noticed that there is a single conductance peak
electron tunneling through the two-barrier magnetic str
ture, and two resonant spikes in the triple-barrier structu4

We also observed four resonant peaks in the ballistic c
ductance at low Fermi energies and found that four reson
shoulders can be resolved for a 2DEG modulated by a s
soidal magnetic field of five periods and a 5-magnetic-st
barrier structure as long as the magnetic strength is str
enough.9 This urges us to explore whether there is a gene
resonant peak splitting rule for ballistic conductance in m
netic superlattices~MS!. Since ballistic conductance can b
derived as the electron flow averaged over half the Fe
surface,10 the main features of resonant tunneling throu
magnetic barriers is still preserved for ballistic conductanc4
PRB 600163-1829/99/60~3!/1515~4!/$15.00
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It hints that there exists some kind of resonant peak splitt
rule for ballistic conductance in magnetic superlattices~MS!,
which is only dependent on the number of barriers in
magnetic field profile. In the following, we calculated balli
tic conductances with the help of transfer matrix method
four kinds of magnetic superlattices.5 ~a! Kronig-Penney
magnetic superlattice~KPMS!, which is the analogy of the
well-known electrostatic Kronig-Penny model. Its magne
field profile is modeled by the expressionB(x)/B0

5g(n52`
n51`(21)n11d(x2nl/2), and the vector potential ca

be taken asA(x)/A05g 1
2 sgn@cos(2px/l)# @see Fig. 1~a!#. ~b!

Step magnetic superlattice ~Step MS!: B(x)/B0

5g(n52`
n51`(21)nu(x2nl/2)u@(n11)l /22x# and A(x)/A0

5g(n52`
n51`(21)n@x2(2n11)l /4#u(x 2nl/2)u@(n 1 1)l /2

2x# @see Fig. 1~b!#. ~c! Sinusoidal magnetic superlattic
~Sinusoidal MS!: B(x)/B05g sin(2px/l) and A(x)/A05
2g1/(2p)cos(2px/l) @see Fig. 1~c!#. ~d! Sawtooth magnetic
superlattice ~Sawtooth MS!: B(x)/B052g2/l (n52`

n51`(x
2nl)u@x2(n11/2)l #u(x2nl) and A(x)/A0

5g1/l (n52`
n51`(x2nl)2u@x2(n11)l /2#u(x2nl) @see Fig.

1~d!#. Here,u(x) is the heaviside step function andl is the
period of superlattice,g is a parameter characterizing th

FIG. 1. The magnetic field profiles and the corresponding vec
potential about four kinds of magnetic superlattices, where o
three periods are plotted.
1515 ©1999 The American Physical Society
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1516 PRB 60BRIEF REPORTS
magnetic-field strength. The above systems can be
formed experimentally.4,5,11

For a 2DEG subjected to a periodic magnetic field p
pendicular to the 2DEG plane, the corresponding o
electron Hamiltonian reads

H5
1

2m* @p1eA~x!#25
1

2m* $px
21@py1eA~x!#2%, ~1!

where m* is the effective mass of electron andA(x)
5(0,A(x),0) is thevector potential in the Landau gaug
Since @Py ,H#50, the problem is translational invarian
along they direction. Then the wave functions can be writt
in the form 1/(Al y)e

ikyyc(x), whereky is the wave vector in
the y direction andl y the length of the magnetic structure
the y direction. By introducing the magnetic lengthl B

5A\/eB0 and the cyclotron frequencyvc5eB0 /m* , we
express the basic quantities in the dimensionless units:~1!
coordinatesr˜rl B . ~2! magnetic fieldB(x)˜B(x)B0 . ~3!
the vector potentialA(x)˜A(x)B0l B . ~4! the energyE
˜E\vc . For GaAs and an estimatedB050.1 T we have
l B581.3 nm,\vc50.17 meV. After some algebras, the fo
lowing 1D Schro¨dinger equation forc(x) can be obtained4

H d2

dx22@A~x!1ky#
212EJ c~x!50. ~2!

The functionV(x,ky)5@A(x)1ky#
2 can be interpreted as a

effective ky-dependent electric potential. From this expre
sion we can find out that, electron tunneling in MS is inh
ently a complicated two-dimensional process, which depe
on the electron’s wave vectors in the longitudinal and tra
verse directions of the 2DEG, and thus possesses no ge
transmission splitting relation as in ES.

For the magnetic structure in region@0, L5nl#, we dev-
ide it into M (M@1) segments, each of which has widtha
5L/M . The effective potential in each segment can
viewed as constant and then the plane-wave approxima
can be taken. In thej th segment, the wave functions may b
expressed as

c~x!5Aje
ik jx1Bje

2 ik j x,xP@ ja,~ j 11!a#, ~3!

wherekj5A2E2@A( ja1a/2)1ky#
2, which may be either

real or pure imaginary.
Without any loss of generality, we assume there is

magnetic field in the incident and outgoing regions, then
wave functions can be expressed by plane waves

c~x!5H eikx1re2 ikx, x,0,

teikx, x.L,
~4!

wherek5A2E2ky
2 and r,t are the reflection and transmis

sion amplitudes, respectively.
The match of the wave functions and their derivatives

x50 andx5L yields

F1r G5F1/2 1/~2ik !

1/2 21/~2ik !
GTMF eikL e2 ikL

ikeikL 2 ike2 ikLG F t
0G , ~5!
r-

-
-
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where

TM5FT11 T12

T21 T22
G5)

j 51

M

TM
j

5)
j 51

M F cos~kja! 2sin~kja!/kj

kj sin~kja! kj cos~kja!
G , ~6!

whereTM
j is the transfer matrix for thej th segment.

Transmission coefficientT(E,ky) for electron tunneling
through then-barrier MS can be readily obtained from E
~5!

T~E,ky!5t25$11~T11
2 1T22

2 1k2T12
2 1T21

2 /k222!/4%21.
~7!

With the transmission coefficient, we calculate ballistic co
ductance from the well-known Landaur-Bu¨ttiker formula10

G/G05E
2p/2

p/2

T~EF ,A2EF sinu!cosudu, ~8!

whereu is the angle between the incidence velocity and thx
axis,EF is the Fermi energy,G05e2m* vFl y /\2, andvF is
the Fermi velocity of electrons.

First, ballistic conductances~in units of G0! versus inci-
dence energy in Kronig-Penny magnetic superlatt
~KPMS! were studied. Our results, shown in the left colum
of Fig. 2, are calculated for the different numbern of mag-

FIG. 2. Ballistic conductances for KPMS, Step MS, and Sin
soidal MS. The left column of the figure corresponds to the KPM
the middle column to Step MS and the right column to Sinusoi
MS. Herel 52, g52 for dashed curves, andg52.5 for solid curves
in KPMS and Step MS cases, whileg54 for dashed curves and
g55 for solid curves in Sinusoidal MS case.n is the number of
the magnetic barriers~also the number of magnetic period exce
for n51 case of half the magnetic period!.
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PRB 60 1517BRIEF REPORTS
netic barriers~which is also the number of the periods
magnetic superlattice except forn51 case of half the mag
netic period!. The structure parameters are chosen to bl
52, g52.5 for solid curves andl 52, g52 for dashed
curves. Let us inspect the conductance splitting at the m
netic strengthg52. It is obvious that no resonant peak exis
in the ballistic conductance for the single-magnetic-bar
case. One resonant peak is seen for double magnetic ba
and one sharper spike along with one resonant shoulde
pears for triple-magnetic barriers. With the increase of
numbern of magnetic barriers in KPMS, the total number
resonant conductance spikes and shoulders increases
with the resonant peaks and shoulders becoming sharpe
n˜`, the peaks will fill in the energy windows of the mag
netic minibands continuously as in the periodic ES.7 By
counting the number of resonant peaks and resonant sh
ders inn-barrier KPMS, we found that, the number of res
nant peaks and resonant shoulders, or the number of r
nance splitting equals ton21, which is the number of the
magnetic barriers in KPMS. This is the correspondingn
21)-fold resonant peak splitting for ballistic conductance
KPMS, which is similar to the (n21)-fold resonant splitting
for transmission inn-barrier ES. The splitting rules for bal
listic conductance in KPMS is exactly the same as that
transmission in ES. With the magnetic strengthg increasing,
the resonant shoulders become resonant spikes and the
nant peaks are resolved more clearly. More importantly,
(n21)-fold resonant peak splitting for ballistic conductan
is unchanged.

To find out the general rules for resonant peak splitting
ballistic conductance in MS of arbitrary magnetic-barr
profile, we calculated ballistic conductances versus incide
energy for Step MS in the middle column of Fig. 2, Sin
soidal MS in the right column of Fig. 2, and Sawtooth MS
Fig. 3. The parameters for the calculated conductance
Step MS are the same as for the KPMS. While the para
eters for Sinusoidal MS are set to bel 52, g54 for dashed
curves andl 52, g55 for solid curves. In Fig. 3,l 52, g
53 are chosen for dashed curves andl 52, g53.5 for solid
curves. From Figs. 2 and 3, one can also observe cle
resonant splitting of the ballistic conductance peaks in S
MS, Sinusoidal MS, and Sawtooth MS. By checking t
number of resonant peaks in ballistic conductances for S
MS, Sinusoidal MS, and Sawtooth MS, we found that t

FIG. 3. Ballistic conductance for Sawtooth MS. Here,l 52, g
53 for dashed curves, andg53.5 for solid curves.
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number of resonant conductance peaks in then-barrier Step
MS, Sinusoidal MS, and Sawtooth MS is alson21 ~n is the
number of magnetic barriers!. This indicates the existence o
a general (n21)-fold resonant splitting of conductanc
peaks in MS withn identical magnetic barriers, which i
independent of the magnetic-barrier profile. Then, we c
generalize this rule as follows: for electron tunneling throu
magnetic superlattices with periodically arrangedn identical
magnetic barriers, (n21)-fold resonant peak splitting exist
in ballistic conductance within each magnetic miniband. It
a general rule as the (n21)-fold resonant peak splitting fo
transmission inn-electric-barrier superlattices. For transmi
sion of electron tunneling in magnetic superlattices, there
no such general splitting rule, since it is strongly depend
on the wave vector~momentum! normal to the tunneling
direction. It is worth noting that the resonant peaks in bal
tic conductances within lower energy minibands will be su
pressed and that within higher energy minibands will be
solved gradually by the further-increased magnetic streng4

As is well known, for electron tunneling through electr
superlattice, when the incidence energy of electrons co
cides with the energy of bound states in potential well,
resonant tunneling occurs~i.e., the transmission is 1!. Be-
cause of the coupling between the wells via tunnel
through the barriers of finite width, the degenerate eigenl
els of the independent wells are split, consequently, th
split levels redistribute themselves into groups around th
unperturbed positions and form quasibands. This leads to
resonant splitting of transmission. As the number of perio
~or the number of barriers! tends to infinity, the locally con-
tinuous energy distribution~energy band! is formed. Al-
though electron tunneling in MS is more complicated than
ES due to its dependence on the perpendicular wave ve
ky ~Ref. 4!, electron tunneling in MS is equivalent to that
ES for a givenky from the mathematical viewpoint. Th
resonant tunneling of electrons in MS results from the sa
physics as ES. We attributed the resonant peak splitting
ballistic conductance in magnetic superlattices to a collec
effect of electron’s wave-vector-dependent tunnelin
Though the number of resonant transmission peaks in e
tron’s tunneling through MS is closely related to the wa
vectorky and may be different for differentky , on an aver-
age, the number of resonant conductance peaks is the s
as the number of wells in magnetic vector potential of M
Since ballistic conductance is derived as the transmiss
averaged over all the possible wave vectorsky , it can be
viewed as the transmission of the electron’s collective t
neling with a characteristicky through an average effectiv
potentialVaver(x), which has the same number of wells
the magnetic vector potentialA(x). This can be clearly seen
if we plot the effective potentialV(x,ky) as a function ofx
andky as did by Ibrahim and Peters,5 the number of the main
wells in the effective potentialV(x,ky) really equals to the
number of the wells in the magnetic vector potentialA(x) on
the whole and on average. Because the number of magn
barriers in MS equals to the number of barriers in the cor
sponding magnetic vector potential, as can be seen from
1, (n21)-fold resonant splitting occurs in the ballistic co
ductance peaks ofn-barrier MS.

In summary, we studied the resonant peak splitting effe
for ballistic conductance in four kinds of magnetic superl



is
-

n-
ne

ro-
isit

1518 PRB 60BRIEF REPORTS
tices of finite periods with identical magnetic barriers. It
found that there is a general (n21)-fold resonant peak split
ting rule for ballistic conductance inn-identical-barrier mag-
netic superlattices, which is the analogy of (n21)-fold
transmission splitting inn-barrier electric superlattices.
.
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