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Ultrasonic attenuation in an orthorhombic anisotropic superconductor
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We show that ultrasound attenuation in a clean two-dimensional orthorhombic superconductor can be used
to get information separately, on band-structure anisotropy, and on the relative magnitude of a subdominant
s-wave component to the dominasiwave gap. An angular sweep as a function of orientation of the in-plane
attenuated sound momentum will exhibit a twofold pattern. Using a simplified one-band model of the elec-
tronic structure with anisotropic effective masses in the plane, we illustrate that the maximum in the attenuation
occurs when the direction of the sound is perpendicular to the direction of the Fermi velocity at the nodes. This
is not the same as the direction of the nodes in the gap except for the case of a circular Fermi surface.
Nevertheless, with the same analysis, nodal directions can be determined as well as band and gap anisotropy
parameters and the ratio of gap magnitude to Fermi en¢8f163-182@09)01545-3

I. INTRODUCTION clean limit(ballistic cas¢ Experimental issues related to the

The topic of anisotropic or unconventional superconduc-detection of effects described in the previous work and
tivity is currently of great interest with regard to the high-  elaborated upon and extended here, have been raised by
copper oxide in which the superconductivity is believed toLeibowitz*? Ultrasonic attenuation measurements give an al-
reside in the two-dimensional Cg®|anes and the energy j[ernative bUIk measurement method for Qetermining gap an-
gap is known to exhibitl,2_,> symmetry. A complication isotropy, which dc_Jes not depend on nonlinear effe_cts as does
arises in YBaCwu,O, (YBCO) because it is orthorhombic the nonlinear Meissner effect, which has yet to yield results
rather than tetragonal with CuO chains along one of the plaof Ref. 13. _ .
nar axes. These chains are conducting and participate in the The format of this paper is as follows. In Sec. I, we
superconductivity. In this case, the gap can possess in addierive the formalism and introduce our model to study the
tion to a dominantd,z_,2 piece a subdominant-wave ultrasonic attenuation for an orthorhombi_c anisotropic super-
component; which shifts the node off the main diagonals. conductor. In Sec. lll, we present our major results and show
Additional effects of band anisotropy, i.e., orthorhombicity, €xplicitly that ultrasonic attenuation is useful in determining
include important changes in residual density of states in thé€ gap symmetry and band-structure anisotropies exhibited
presence of elastic impurity scatterif§A finite density of ~ in high-T. cuprates. In Sec. IV, we discuss the result in the
states at zero energy can drastically affect the observed lovase when the ratia (0)/e¢ is negligibly small[hereA(0)
temperature properties that depend mainly on the behavidp the maximum gap magnitude &t=0 ande is the Fermi
around the gap nodes. To understand these effects better, it§§€rgy and in Sec. V, we give a brief summary. Throughout
important to have more experiments that reveal details of gafis paper, we have takeén=kg=1 for brevity.
and band anisotropies.

In this paper, we show that ultrasonic attenuatforan be Il. FORMALISM AND MODEL
used to determine the anisotropy exhibited in higheu-
prates. An angular sweep of the sound momentum will ex- To study sound propagation in high- superconductors,
hibit a twofold symmetry and through analysis of the ob-one needs first to clarify whether a collisionless or hydrody-
served pattern, one cai) measure the angular position of namic regime is appropriate. Though the coherence length of
the gap nodegji) measure the ratio of the maximum gap to Cooper pairs is short in high; cuprates, the scattering of
the Fermi energy, andii) extract the anisotropy due to the phonons with electrons can be in the collisionless regime
band structure and the gap symmedgparately (gl>1 with g the momentum wave vector of phonons dnd

The previous related work of Vekhtet al® deals only the mean free path of electrons, which can be of order a few
with the tetragonal case and so the issues of band and gapicrons in recent sampl&, i.e., in theclean limit. As a
anisotropies, which are central in this paper, do not ariseresult, the damping rate for phonon propagation
The work of Kosturet al.” and of Wolenski and Swihd&t =Imw,(q) (A denotes the polarizatioris directly propor-
both assume the limit of zero gap to Fermi energy ratio andional to the imaginary part of the phonon-coupled density-
so predict an exponential temperature dependence at suffiensity response functiop(q, ) for electrons.
ciently low T in contrast to our finding that it is linear in For a superconductor, it is straightforward to calculate the
accordance with the work of Coppersmith and Klethand  response function to lowest ordge=GG—FF, which in-
of Ref. 9. The recent work of Moreno and Colentatteats  volves both the normalG) and anomalous(F) single-
the dirty limit (diffusive casg while here we deal with the particle Green’s functions. For sound attenuation, we are in-
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terested in small phonon momentumand frequencyw, , 2m,

which are governed by the sound velocity via w, K=K\ (K=Y, )
=c,q, . In this regime, the imaginary part gf is given by o

(see, for example, Refs. 1517 so that the band energi¢3) are transformed frong,— ¢\

= (k> +k,?)/(m,+m,) - er, which has aylindrical Fermi
surface. In this frame, one can define a Fermi wave number

}5(Ek+q_Ek)a ke, which satisfieskg/(m,+m,)=e: and a Fermi speed

1) given by ve=(2kg)/(m,+m,). Moreover, of most impor-

tance, the momentutasum in Eq.(1) can be replaced by an

whereE,=[2+A2]"2 is the quasiparticle excitation spec- integration =, — =, =N(0)[”..de [5"d$/2m, where N(0)

trum with &, the particle band energy an the supercon- =(m,+m,)/27 is the density of states and is the azi-

ducting gap. The functiog(k) is the electron-phonon cou- muthal angle in thé&’ frame. In a similar manner, the gap

pling. Terms involving creation or destruction of two function (4) is transformed to

quasiparticles are obviously absent in Eg). In conven-

tional swave superconductors, this is obviously due to the A=A =A(¢)=A(T)(¢) (6)

fact that the phonon energy is small compared to the minipn the transformed Fermi surface, where

mum energy A required to break up a Cooper pair. For an

anisotropic superconductor considered here, the condition cog2¢)+a

holds except for small regions around the nodes, which gives f(¢)= 1+acog2¢) *s, @

only minor correction relative to the rest. ) . ) . i

Whenq is small, thes function in Eq.(1) can be approxi- " Which « is positive and defined by
mated by

2 If(E
imx(@0)=0 lgk? =5 [—ﬁ

=5 IE

m,—m,
a=———, (8)
(9Ek Ek Ak aAk mx+my
O(ExrqmB)=96| = ~-q|=d| g v-a+ - 4| o .
k k A cylindrical Fermi surface corresponds g, =m, or «

2) =0. The two parametergr and s correspond to band-
where the electron velocity=de,/dk is calculated domi- Structure anisotropy and gap-symmetry anisotropy, respec-
nantly on the Fermi surface due to the Fermi function factottively, in our simplified model, and can be fit to experiments.
in Eq. (1). One can estimate the order of the ratio of theThe critical angles®, which maked (¢) in Eq. (7) vanish, is
second to the first term in EQ). It is ~A(0)/er (see later.

For an isotropis-wave superconductor, however, the second °=tan Y /(1+ a)(1+s)
term vanishes and thus only the portion of the Fermi surface (1—a)(1—5)
el il coriiite o he MEGHoR M i the region of (Gs2). 1 worth noing that whem—
rétes the second term dc?es contribute and how irr? ortant jt,>’ ¢°=m/4. This corresponds to the interesting case for
'ps de énds on the ratio @f(0)/ hich for YB.C Op s which the effect due to band-structure anisotropy is compen-
: P o df(0)/er, whi B,Cs07, i sated for by the gap-symmetry anisotrapge Ref. & While
roughly 0.05-0.2. Therefore, the second term is important.. O : .
. in EqQ. (9), the compensation is exact, other properties still
Layered YBCO has two Cufplanes and one CuO chain el
o . . . . differ from the «=s=0 case’
within a unit cell. One is therefore involved in a three-layer

problem. To capture the essential physics however in the
simplest possible way, we model YBCO by a single band

(€)

IIl. ULTRASOUND ATTENUATION

with an elliptical Fermi surface? Using the abové’ transformation and after carrying out

5 ) the energy integration, the ratio of longitudinal ultrasonic

— K n i_f 3) attenuation in the superconducting state to its normal state
" 2m, 2m, °F value (A,=0) is reduced to
where the effective mass,>m, because the CuO chain is e%(p) _,|E(9)
taken to be along thi, axis. This models naturally a case as  \4TE(P)|v-q| cosh T
for which the electronic transport is easier along yhaxis —= , (10
than along thex axis. A superconducting gap of the form %n (8(v-a))
L where (A)=[5"d@$A/2m denotes a Fermi-surface average.
Ak(T)=A(T)(k)2(—k§+ S) (4) In the denominator of Eq(10) responsible for the normal

_ . . state, only two points on the Fermi surface satigfyj=0
is assumed, which has a dominaht.2-wave component ¢4 eachqg and contribute to the averagsee Fig. L But this
and a smalls-wave admixture. In Eq), k, (w=X,y) are s not the case for the superconducting state in the numerator
the » component of the unit vectdt defined on the Fermi  of Eq. (10). In Eq. (10), E(¢) =[%($)+A%($)]1*2 where
surface. We note that trecomponent, though small, can in A(¢) is given in Eq.(6) and
general be positive or negative.
To evaluate Eq91) and(2) for an elliptical band3), it is _ u-q
convenient to apply the transformation e(#)=-A(9) q’ (1)
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FIG. 1. Schematic diagram of Fermi velocitieand momentum e ) N n n n 1
transferq of ultrasound in the case of an elliptical Fermi surface. A p ) i
i3 j oo o\ ’ A
. . . . (R [ PR ;o
in which u=dA,/dk and v=de,/dk, both viewed in the N RN 2L N NS SRR
transformedck’ frame. We note that the effect of anisotropy 0 45 13% ( d1goree§25 270 315 360
in the electron-phonon coupling has been ignored in Eq. o \deg

(10), which may lead to minor corrections, but is beyond the FIG. 2. Low-temperature slopes /e, with respect to tem-

scope of this paper. In the following, we will use the nOtationperature{see Eq(12)] vs the angle of momentum transfer foda
that ¢q denotes the angle of the sound propagation Momery.yave superconductor with an elliptical Fermi surface. Two differ-

tumq. ent A(0)/eg ratios are chosen and we have set0.4 ands=
WhenT<T,, we find approximatelysee Ref. 9 ~0.2.
as T |0hi(.dg)l |4y, Figure 2 shows the low-temperature value of (a,)/T
a_nzz In ZE_FV ()|, 4o [using Eq.(12)] as a function of the angle of sound momen-
¢=¢ tum transfer. We choose two different values\dD)/er and
h§(¢°,¢>q) fix «=0.4 ands=—0.2. These values af ands were cho-
X T YT 3 +(pC——9° ¢, sen previousl§to fit the observed zero-temperature value of
[N1(#% dg)+ v ha(¢% dg)] the penetration depth in theeandb direction and observed

(12  low-temperature slope§-*° The peaks deviate fromp,
= /4 due to the presence af ands anisotropies. In the
vicinity of slope maxima, the larger the ratio(0)/eg, the
smaller the slope magnitude. In contrast, near the antinodes

wherey=A(0)/eg,

hy( b, )= V-q _COS¢ CoSdy n smd)smq’)q, (13 (#q=0 orm/2), the larger the value af(0)/e, the larger
Y ave Vi+a Vi—« the slope magnitudeln the following, we focus on how we
and might extract values forr ands components separately from
ultrasound attenuation measurements.
u-q
h2(¢r¢q)= W A. Maximum ratio slopes
sin 26(1— a?) The measured critical angl¢g (see Fig. 2 where the
= 7 slope of attenuation ratioals/a,)/T IS maximum corre-
(1+acos 2p)” sponds tohy(+ ¢, ¢5)=0 in Eq. (12). Substitutinge® in

x( Sing cos¢y  cos¢ sin ¢>q) (14) 5. (9)Into Eg. (13, we find
Vi+a Vi—«a .

l-a [1-s
As shown clearly in Eq(12) and as is the case for many l+a Vi+s

properties of an unconventional superconductor, the oW, the range of (07/2). Therefore finding of angles at which
temperature ultrasonic attenuation is mainly determined byhe sjope of the ultrasonic attenuation ratio is maximum can
their behavior around the nodeg+ ¢°). Moreover in Eq.  |ead to information on the gap and the band-structure anisot-
(12), ¢, is the angle of the electronic velocityperpendicu-  yopy. At this stagea ands cannot be extracted separately,
lar to g. One can easily find that but we will show in the next section that this can be done.
On the other hand, the magnitude of the maximum ratio

pg=tan * (16)

1+« .
do=cot 1| — /mt&m% (15  slope at¢pg at low temperatures is calculated to be
_ 2
in the range @/2,7). In Fig. 1, we sketch the diagram of (as/an) _In2 | e 1 @ L. (17
Fermi velocitiesv and momentum transfeg of ultrasonic T A(0)[A(0)[(1=s)(1+as)

bq= b
attenuation in the case of an elliptical Fermi surface. The 4
highlight is that whilev is perpendicular tag, the angle As indicated in Eq(17), in principle one can obtain the ratio
(o~ ¢q) between the momentum definingand the vector of A(0)/er from the magnitude of maximum slopes when

g is not in generakr/2, except for a circular Fermi surface. A(0), «, ands are known. In Fig. 3 we study the effect of
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FIG. 3. The dependence af (band structure orthorhombicity FIG. 4. The ratio of ultrasonic attenuation in superconducting to

on the low-temperature slopes,ad/a,)/T. We have taken ,,ma)state as a function of the angle of momentum trafigéng
A(0)/eg=0.1 ands=0. Solid, dotted, dashed, and dot-dashed Imesqu (21)]. Herea=0.4 ands=—0.2.

are fora=0, 0.3, 0.6, and 0.9, respectively.
band-structure orthorhombicityve sets=0 and varye) on  attenuation coefficients is reducedo
the ratio slopes &s/a,)/T. One finds that the value of
affects not only the angular positions of ratio maxima, but as  (28(v-q)f(|Ag]))
also the magnitude. The fourfold symmetry in caseaof a—n: (5(v-q))

=0 is broken and reduced to a twofold symmetry when
#0. In the case of extremely large value, the two maxi-
mum slope peaks can combine into a single peakat 7.

(20

Clearly in Eq.(20), for both g and a,, only two points on
the Fermi surface satisfy-q=0 and contribute for a two-
dimensional superconductgsee Fig. L Thus, one simply
obtains

As seen in Figs. 2 or 3, the curve is asymmetric on the
two sides of the critical anglezﬁg . The low-temperature ratio

B. Antinode

of the attenuation ratios at the two antinodésg, € 0,7/2) is ﬁzzf A = 21
found to be an ([a(¢q)D eld(¢al/T 4 1 21)
— 5/2
aslan($pq=0) _ (1+a)(1+s) (18)  Where gy is a function of¢, and is governed by Eq15).
aslag(pq=ml2) [(1-a)(1-9) The key difference between E(1) and Eq.(12) is that the

latter was linear inl, while the former is exponential if.

ne cannot obtain Eq21) by simply taking the asymptotic
imit in Eqg. (12). This is because the former is an exact
result, while the latter is approximate.

The form of Eq.(21) is familiar for a conventiona-wave
superconductor. The difference in the present case is that the
gapA(¢g) exhibits an angular dependence, which in turn is
corresponds to the real gap nodes in the originédame, is reflected in the angular dependence of the attenuation. In Fig.

' 4, we plot Eq.(21) vs ¢ at different temperatures with fixed
a=0.4 ands=—0.2 (same values as used in Fig. Zhe
temperature dependence &{T) was assumed to be given

(199 by the BCS value with 3(0)/T,=3.52. In fact, in the

given by
[1+s
1-s present smallA(0)/er limit, the temperature dependence of

in the region of (0s/2). Clearlydoqeis independent ofr as ~ A(T) can be measured directly by ultrasound attenuation ex-
expected. Extraction of thecomponent of the gap using the perlment(s_ee Iat_e)r. _ _
method mentioned above will allow identification of the an- Comparing Fig. 2 with Fig. 4, the peaks appear at the

Equation(18) provides another way to test both the gap sym-
metry and band-structure anisotropy. The two measuremen
of ¢g [using Eq.(16)] and the ratio at antinoddsising Eq.
(18)] allow one to extract the values of ands separately.
When a ands are known, the ratio ofA(0)/ex can be ex-
tracted from Eq(17).

To end this section, it is noted that the anglg 4., which

_ —1
¢node_ tan

gular position of gap nodes in the original frame. same critical angle; [see Eq(16)]. Thus, the second term
of Eqg. (2) has no effect on the peak positions of ultrasound
IV. CASE OF A(0)/er—0 attenuation. In EQ.(21), the maximum attenuation ratio

agla, (unity) corresponds toA(¢y)=0 (gap nodes to
In this section, we consider the limit whel(0)/eg is  which ¢o=7— ¢° [by using Egs(9), (15), and(16)]. Sec-
negligibly small. In this case, the second term in thiunc-  ond, we found that the absolute value of the angular slope at
tion of Eq. (2) is dropped and, consequently, the ratio of the critical angle(same for two sidesis given by
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Nl ary) A(T) V1—S%(1+ a2+ 2as) ductor with an orthorhombic band structure. The critical
T bg=5T T 1—o? . (22 angle defining the direction of the momentum of the propa-
q @ gating sound wave at which the attenuation ratio of super-
Therefore, in the case when the rati¢0)/er is small, the  conducting to normal state ratie,/ «, is maximum depends
angular slope ofv./«, at the critical value can be used to strongly on the gap symmetry anisotropy and band-structure
measure the temperature dependence of the superconductiagisotropy. Moreover, the magnitude of these critical attenu-
gap provided thatr and s are known. Finally, while the ation ratios are also strongly dependent on these anisotropies.
slopes vanish at the two antinodég=0 and=/2, the ratio We have shown that by making an angular sweep of the
of the values at these angles are attenuated sound wave momentum, the angular position of
gap node, the ratio of the maximum gap to the Fermi energy,
1+exr{ﬂ(l+s) and separately the band-structure and gap-symmetry anisot-
aslan(pg=0) T (23 TPy parameters can be extracted. Contrary to the expecta-
asl an(pq=m/2) B A(T) ’ tion for a tetragonadi-wave superconductor, such an angular
1+exg——(1-9) sweep possesses only a twofold instead of a fourfold sym-
o ) metry and the angle at which the maximum in attenuation
which is independent of, the band-structure anisotropy pa- occyrs is not equal to the nodal directions. Instead it is when
rameter. the direction of the sound wave is perpendicular to the direc-

In summary in the case whe(0)/ex is small, a mea- .}ion of the electron Fermi velocity at the nodes.
surement of the attenuation ratios at the two antinodes wil

give direct information on theawave admixture, assuming
that the temperature dependence of the gap magnitude is
found from the measurements of slopes at the critical angle.
With a knowledge of thes-component in the gap, the nodal ) ) .
angle of the gap can be determined via B) and the value We thank E. Schachinger, I. Vekhter, E. Nicol, J. X. Li,
of a can be determined from the measuremenggfusing and T. K. Lee for stlmu'latmg d|§0u35|ons. W.C.W.is grateful
Eq. (16). for the support of National Science Coun@NSC) of Tai-
wan under Grant No. 88-2112-M-003-004 and the hospitality
V. CONCLUSION of Institute of Physics, Academia Sinica. J.P.C. acknowl-
edges the support from Natural Sciences and Engineering
In this paper, we have studied the low-temperatufe ( Research CouncilNSERQ of Canada and Canadian Insti-
<T,.) ultrasound attenuation in a cledn-s-wave supercon- tute for Advanced ReseardCIAR).
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