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Conventional mechanisms for exotic superconductivity
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We consider the pairing state due to the usual BCS mechanism in substances of cubic and hexagonal
symmetry where the Fermi surface forms pockets around several points of high symmetry. We find that the
symmetry imposed on the multiple pocket positions could give rise to a multidimensional nontrivial supercon-
ducting order parameter. The time-reversal symmetry in the pairing state is broken. We suggest several
candidate substances where such ordering may appear, and discuss means by which such a phase may be
identified.@S0163-1829~99!00942-X#
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Most conventional superconductors are described v
well by the BCS theory.1 The electron-phonon interactio
mediates an attraction between electrons that is stronger
the Coulomb repulsion. This gives rise to the Cooper ins
bility of the normal state leading to the appearance of a c
densate of pairs. The order parameter~the anomalous func
tion F; Ref. 2! in this case belongs to the ‘‘s-wave’’ type,
i.e., it is invariant with respect to the transformations ofG
^ R, where G is the crystal point group andR is time-
reversal operation. As a result the quasiparticle spectrum
a gap, which leads to well-known experimental con
quences. A variety of materials:3He,3 UBe13,4 UPt3,5 high-
Tc materials,6 and Sr2RuO4,7 have been discovered that p
tentially break theG^ R symmetry of the normal state. A
well-known example is theA phase of3He,3 which is not
rotationally or time-reversal invariant~note that theB phase
of 3He is both rotation and time-reversal invariant!. Such
non-s-wave superconductors are usually expected to hav
gapless excitation spectrum and arise when the interac
itself depends upon the superconducting ground state~in the
case of 3He the BCS ground state is theB phase and the
spin-fluctuation feedback effect is required to stabilize theA
phase8!. All the possible symmetry classes of the superc
ducting state in crystalline materials were enumerated in R
9 ~for a review, see Refs. 10 and 11!.

We show below that exotic superconductivity can be
much more common phenomenon and does not require
usual mechanisms. The electron-phonon and Coulomb in
actions are enough to give rise to a multidimensional or
parameter which would have lower symmetry than the n
mal state — including the breaking of time-reversal inva
ance. The effects we consider are possible in metals w
several pockets which are centered at or around some s
metry points of the Brillouin zone~BZ!. A BCS approxima-
tion generalized to the multiband case~see, e.g., Ref. 12! will
be used. The point here is that since the form of the inte
tion parameters describing the two electron scattering on
between the different pockets of the Fermi surface~FS! is
fixed by symmetry, the resulting superconducting state n
not bes wave. Below we consider three cases in detail:~a!
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three FS pockets centered about theX-points of a simple
cubic lattice; ~b! three FS pockets at theM points of the
hexagonal lattice;~c! four FS pockets at theL points in the
face-centered-cubic lattice. A complete analysis of all ot
high-symmetry points is possible, and will be publish
elsewhere.13

We emphasize that this FS structure is not unusual.
deed, superconductivity with pockets as in case~a! and Tc
;0.1 K is found in LaB6.14 Another example is given by the
superconducting semiconductors such as PbTe, SnTe
SrTiO3.15 Many materials exist where such FS sheets coe
with other nonsymmetry related FS sheets and some of th
materials have anomalous superconducting properties.
example is CeCo2;16,17Fig. 1 shows some of the FS sheets
CeCo2(Tc51.6 K). We will return to this later.13

We will use the generalized Ginsburg-Landau~GL! func-
tional to identify possible nontrivial superconducting phas
The Hamiltonian for several separate pieces of the FS ca
written in the following form:

H5 (
asp

e~p!aas
† ~p!aas~p!1

1

2 (
k,k8,q

(
abss8

3lab~q!aas
† ~k1q!abs8

†
~k82q!aas8~k8!abs~k!,

~1!

wheres ands8 are spin indices,lab(q) includes the inter-
action for scattering two electrons from the pocketa into
pocketb which is due to both Coulomb and electron-phon
terms. Introducing the anomalous Green’s functionF̂a(x
2x8) for each FS sheeta, the corresponding Gor’kov
equations18 can be used to obtain the following solution
finite temperatures for the case of singlet pairing:

F a
†~vn ,p!5

Da* ~p!

vn
21j21uDa~p!u2

, ~2!

where
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Da* ~p!52
T

~2p!3 (
b

(
n
E dklba~p2k!Fb

†~vn ,k!.

~3!

Equation~2! being expanded inuDau up to the third order,
Eq. ~3! becomes a variation of the GL functional with respe
to the vector order parameterDa(p).19,20 For simplicity we
assume that eachDa(p) is constant along the correspondin
FS, and to fourth order inDa we can write

Fs2Fn52Da* F ~ l̂21!ab2dab

mp0

2p2lnS 2gvD

pT D GDb

1
7z~3!mp0

32p4T2 (
b

uDbu4, ~4!

wherel̂21 is the matrix inverse to the interactionlab , vD is
the cutoff ~Debye! frequency.

We now analyze three different cases for multiple
sheets.

(a) Three X points in a cubic lattice. The interaction ma-
trix l̂ for threeX points takes the following general form

lab5ldab1m~12dab!. ~5!

Herel is the interaction on the same pocket,m couples any
two different pockets. Consider first the linearized gap eq
tion Eqs.~2! and ~3! to determineTc :

Da*
2p2

mp0
52(

b
labDb* lnS 2gvD

pTc
D . ~6!

The threeDa transform among each other at cubic symme
transformations forming a three-dimensional~3D! reducible
representation of the cubic groupOh , which is split into a
1D A1g and a 2DEg irreducible representation. These tw
representations correspond to different order parameters
two critical temperatures:

Tc,E5
2gvD

p
expS 2p2

mp0~l2m! D ~2D!, ~7!

FIG. 1. Some FS sheets of CeCo2 ~from Ref. 17!.
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Tc,A5
2gvD

p
expS 2p2

mp0~l12m! D ~1D! ~8!

~the terms in the exponents must be negative for the Coo
effect to take place!. The basis wave function for 1D identi
cal representation is

l 5~D11D21D3!/A3 ~9!

and the basis wave functions for the 2D representation ca
chosen as

h15~D11eD21e2D3!/A3,

h25~D11e2D21eD3!/A3, ~10!

wheree5exp(2pi/3). From Eq.~8! if l2m,0 andm.0
then superconductivity will belong to the nontrivial 2DEg
representation, i.e., if the interactionbetween twodifferent
FS pockets is dominated by Coulomb repulsion. Let us c
sider the latter case in detail. Rewriting the Landau fun
tional Eq.~4! in terms ofl, h1, andh2, we obtain, for tem-
peraturesT near Tc,E :

2p2

mp0
dF5

T2Tc,E

Tc,E
~ uh1u21uh2u2!1 ln~Tc,E /Tc,A!u l u2

1
7z~3!

48p2Tc,E
2 ~ uh1u41uh2u414uh1u2uh2u21Flh

(4)!,

~11!

where Flh
(4) is the fourth-order term in the GL functiona

which may admix the 1D representationl:

Flh
(4)52l ~h1* !2h212lh1~h2* !21H.c. ~12!

With Tc,A,Tc,E the superconducting instability will corre
spond to the 2D representationEg of the cubic point group.
The fourth-order coefficients in Eq.~11! indicate that the
classO(D2) is the most preferable energetically.9 This class
corresponds to a phase withh250, h1Þ0 in Eq. ~11!. The
symmetry properties of this class are known9. Time-reversal
symmetry is broken and allows for antiferromagnetic d
mains and for fractional vortices to appear~see, e.g.,~11!!. In
principle point nodes should appear where the FS inters
the cube diagonals. This would lead to theelectroniccontri-
bution in theT3 behavior for the heat capacity at low tem
peratures. In our case, however, there is no FS along
diagonals of the cube and the low-temperature thermo
namic properties will be determined by the gap of the sa
magnitude for all three FS sheets. In the presence of ano
FS, for example, at theG point, the nontrivial orderO(D2)
will be induced on it. In this case the point nodes will ex
and power laws in thermodynamic properties due to the
perconductivity should be seen experimentally. The anis
ropy of the upper critical field (Hc2) ~Ref. 21! near Tc for
this class also requires that~at least! two vortex lattice phases
~with a second-order transition between them! exists when
the magnetic field is applied along the (1,1,0) and equiva
directions. Note from Eq.~12! that the terms linear inl iden-
tically disappear for this class, i.e., there will be no adm
ture of thes-wave component.
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(b) Three X points in a hexagonal lattice. Calculations in
this case are the same as in the previous case, i.e.,
~5!–~12! apply. We only have to specify the symmetry pro
erties and the superconducting class in this case since
symmetry of the lattice is different. The three-dimension
representation is split by the hexagonal groupD6h^ R into
1D (A1g) and 2D (E2g). Note that the basis functions fo
E2g can be once again chosen as given by Eq.~10!. The
phase withh1Þ0,h250 has the lowest free energy and
this case corresponds to the nontrivial classD6(C2). Time-
reversal symmetry for this class is broken,9 and ferromag-
netismis allowed. Point nodes~at two points of intersection
of an additional FS at theG point with the sixfold axis! can
be seen in thermodynamic properties but again these n
are only present if such a FS exists. The upper critical fiel
isotropic nearTc for this superconductivity representatio
Nevertheless, it can be shown that there will also exist~at
least! two distinct vortex lattice phases with a second-ord
transition between them for the magnetic field applied in
basal plane.13

(c) Four L points in the fcc lattice. The interaction and
the linearized gap equation for the fourL points again take
the form Eqs.~5! and~6!. This time the 4D representationDa
is split into the 1D (A1g) and 3D (F2g) irreducible represen
tations. The critical temperatures for the two representati
are now given by

Tc,F5
2gvD

p
expS 2p2

mp0~l2m! D ~3D!, ~13!

Tc,A5
2gvD

p
expS 2p2

mp0~l13m! D ~1D!. ~14!

The basis functions for the 1D and 3D representations a

l 5~D11D21D31D4!/2 ~1D! ~15!

and

hx5~D12D22D31D4!/2,

hy5~D11D22D32D4!/2 ~3D! ~16!

hz5~D12D21D32D4!/2.

The nontrivial 3D representation is stable ifl2m,0 and
m.0, i.e., if the interaction isattractive for each pocket
alone, while it isrepulsivebetween two different pockets. A
above, we can expand Eq.~4! in terms ofl andhW . Dropping
the 1D identical representation, we get

2p2

mp0
dF5

T2Tc,F

Tc,F
~hW hW * !1

7z~3!

64p2Tc,F
2 @2~hW hW * !2

1uhW 2u222~ uhxu41uhyu41uhzu4!#. ~17!

The GL coefficients in Eq.~17! places the system right o
the boundary of two phases, superconducting clas
D4

(2)(D2) ^ R andD4(E) ~see Fig. 2!. This degeneracy is an
artifact of the BCS theory, it isnot lifted by higher-order
terms in the GL functional. The presence of a FS at theG
point lifts this degeneracy. As a result, the magnetic sup
qs.
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conducting classD4(E) is likely to appear. This class als
allows ferromagnetism. Note that it has a line of nodes~at
the intersection of the FS with the horizontal plane of sy
metry! i.e., C}T2 at low temperatures.9 There are also poin
nodes at the intersection of the FS with the fourfold symm
try axis. This representation also exhibits an anisotropy
Hc2 nearTc . In principle multiple vortex lattice phases ca
also exist for this class but they are not required by symm
try as they are for theE representations discussed above.

In the above cases, other than the standard isotropic o
parameter, only multidimensional order parameters
peared. This leads to the possibility of domain walls betwe
different equivalent superconducting states and as a pos
consequence the existence of inhomogeneous mag
order9 ~see also Refs. 10 and 11!. Also in all the above case
the resulting superconducting states had gaps of equal m
nitude on each of the FS sheets. In such a case a He
Slichter peak in 1/T1 measurements may be present. T
nontrivial representations were stable when the pair inte
tion between the different sheets was repulsive~independent
of the intrasheet interaction!. In many materials the Coulomb
repulsion can be comparable to the attraction between e
trons due to electron-phonon interactions. This is illustra
through the reduction of isotope effect due to Coulomb
pulsion. It is well known that for a number of metalsTc
}M 2a, where not onlyaÞ0.5 but it may even have the
opposite sign (a.22 for a2U; Ref. 22!. The sensitivity of
these exotic superconducting phases to impurities nee
more detailed analysis. However, provided the interpoc
defect scattering amplitudes are much smaller than the in
pocket amplitudes, these phases will survive the presenc
a considerable amount of defects~due to the ordinary BCS
pairing on each sheet!. This will be studied in more detail in
Ref. 13.

In summary, we have shown that exotic superconductiv
can appear merely as a competition of the phonon and C
lomb interactions if the FS consists of several pockets
cated at some symmetry points. Time-reversal symmetr
broken for the nontrivial order, meaning that the superc
ducting transition should be accompanied by some kind

FIG. 2. Regions of existence of different superconduct
phases on the basis of the three-dimensional representations o
cubic group~from Ref. 9!. A point on the boundary of two phase
corresponds to our BCS solution.
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magnetic order. The simplest methods to identify exotic
der parameters are, apart from the phase-sensitive mea
ments, the power-law dependence of the heat capacity~due
to the nodes!, measurements of the upper critical field anis
ropy Hc2(u) at Tc ,21 or the observation of transitions be
tween different vortex lattice phases. Note that if the
pockets are fully isolated then the nodes are absent sinc
order parameter is then constant on each FS pocket
changes phase as one moves from one pocket to ano
Nodes could appear, however, if there are ‘‘necks’’ conne
ing different sheets14 or if superconductivity is induced on
FS centered, for example, around theG point. The upper
critical-field anisotropy nearTc does not work as a test o
nontrivial order in the hexagonal group.21 The magnetic or-
der, on the other hand, can be observed inmSR ~muon spin-
et
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rotation! measurements or magnetization measurement
small enough samples~where the dimensions are on the o
der of the penetration depth!. A general classification of al
cases of nontrivial superconductivity of the type conside
above is possible. These FS sheets are not always cen
on the BZ boundary, as, for example, in some dop
semiconductors15 and CeCo2.17 We postpone a detailed
analysis of the various possibilities to a future work.13

We would like to thank Z. Fisk, D. Khokhlov, J. R. Schr
effer, and the members of the NHMFL condensed-ma
theory group seminar for useful discussions and comme
This work was supported by the National High Magne
Field Laboratory through NSF cooperative agreement N
DMR-9527035 and the State of Florida.
h,

an-

Y.

.
Jpn.
1J. Bardeen, L.N. Cooper, and J.R. Schrieffer, Phys. Rev.108,
1175 ~1957!.
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