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Conventional mechanisms for exotic superconductivity

D. F. Agterberg and Victor Barzykin
National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310

Lev P. Gorkov
National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310
and L.D. Landau Institute for Theoretical Physics, Chernogolovka, 142432, Russia
(Received 19 May 1999

We consider the pairing state due to the usual BCS mechanism in substances of cubic and hexagonal
symmetry where the Fermi surface forms pockets around several points of high symmetry. We find that the
symmetry imposed on the multiple pocket positions could give rise to a multidimensional nontrivial supercon-
ducting order parameter. The time-reversal symmetry in the pairing state is broken. We suggest several
candidate substances where such ordering may appear, and discuss means by which such a phase may be
identified.[S0163-18209)00942-X]

Most conventional superconductors are described verthree FS pockets centered about ¥goints of a simple
well by the BCS theory. The electron-phonon interaction cubic lattice; (b) three FS pockets at thil points of the
mediates an attraction between electrons that is stronger th&x@xagonal lattice{c) four FS pockets at the points in the
the Coulomb repulsion. This gives rise to the Cooper instaface-centered-cubic lattice. A complete analysis of all other
bility of the normal state leading to the appearance of a conhigh-symmetry points is possible, and will be published
densate of pairs. The order paramgtbe anomalous func- elsewheré?

tion F; Ref. 2 in this case belongs to thes“wave” type, We emphasize that this FS structure is not unusual. In-
i.e., it is invariant with respect to the transformations®f deed, superconductivity with pockets as in cégeand T,
®R, where G is the crystal point group an® is time- ~0.1 Kisfound in LaB.* Another example is given by the

reversal operation. As a result the quasiparticle spectrum haiperconducting semiconductors such as PbTe, SnTe, or
a gap, which leads to well-known experimental conse-SrTiO;.'> Many materials exist where such FS sheets coexist
quences. A variety of materialSHe,® UBe 3,* UPt,® high-  with other nonsymmetry related FS sheets and some of these
T. materials} and SsRuQ,,” have been discovered that po- materials have anomalous superconducting properties. One
tentially break theG®R symmetry of the normal state. A example is CeCo'®*"Fig. 1 shows some of the FS sheets of
well-known example is thé\ phase of®He2 which is not CeCq(T.=1.6 K). We will return to this latet?
rotationally or time-reversal invariatihote that theB phase We will use the generalized Ginsburg-Land&lL) func-
of 3He is both rotation and time-reversal invarianBuch tional to identify possible nontrivial superconducting phases.
nons-wave superconductors are usually expected to have &he Hamiltonian for several separate pieces of the FS can be
gapless excitation spectrum and arise when the interactiowritten in the following form:
itself depends upon the superconducting ground siatdne
case of3He the BCS ground state is th& phase and the 1
spin-fluctuation feedback effect is required to stabilizeahe H= >, e(p)al,(P)a.,(p)+ >
phasé). All the possible symmetry classes of the supercon- arp
ducting state in crystalline materials were enumerated in Ref. T i " (K
9 (for a review, see Refs. 10 and)11 XN op(Dag (Kt a)ag, (K'—aq)ay, (k)ag,(k),

We show below that exotic superconductivity can be a ()
much more common phenomenon and does not require un-
usual mechanisms. The electron-phonon and Coulomb intetvherec ando’ are spin indices) ,4(q) includes the inter-
actions are enough to give rise to a multidimensional ordefction for scattering two electrons from the pocketinto
parameter which would have lower symmetry than the norpockets which is due to both Coulomb and electron-phonon
mal state — including the breaking of time-reversal invari-terms. Introducing the anomalous Green’s functigp(x
ance. The effects we consider are possible in metals with-x') for each FS sheet, the corresponding Gor'kov
several pockets which are centered at or around some syrequation$® can be used to obtain the following solution at
metry points of the Brillouin zon¢BZ). A BCS approxima- finite temperatures for the case of singlet pairing:
tion generalized to the multiband casee, e.g., Ref. 12will

> 2>

k,k",q aBod’

be used. The point here is that since the form of the interac- A*(p)
tion parameters describing the two electron scattering on and ]:Z(wn P)=— i : 2)
between the different pockets of the Fermi surf4ge) is wpt E+|A L (p)|?

fixed by symmetry, the resulting superconducting state need
not bes wave. Below we consider three cases in det@l: where
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(the terms in the exponents must be negative for the Cooper
effect to take place The basis wave function for 1D identi-

) (1D) ®

= cal representation is
Al / | =(A;+A,+ A3 (9)
X ¥ and the basis wave functions for the 2D representation can be
chosen as

771:(A1+ €A2+ 62A3)/\/§,

72=(A1+ €2A,+ €A5)/\3, (10)

where e=exp(2mi/3). From EQq.(8) if A\—u<0 andu>0
then superconductivity will belong to the nontrivial 2B
representation, i.e., if the interactidoetween twddifferent
FS pockets is dominated by Coulomb repulsion. Let us con-
* T sider the latter case in detail. Rewriting the Landau func-
Az(p)=— (2m)3 % ; J' dk}‘ﬁa(p_k)':,g(‘”n'k)' tional Eq.(4) in terms ofl, »;, and »,, we obtain, for tem-
©) peraturesT near T, g:

FIG. 1. Some FS sheets of CeCdrom Ref. 17.

Equation(2) being expanded ifA | up to the third order, 27 T-Tee
q S venaton o the 611 F = L (2 )+ T T

Eq. (3) becomes a variation of the GL functional with respect mp, Tee
to the vector order parametdr,(p).*°% For simplicity we '
assume that each,(p) is constant along the corresponding 7L(3)
FS, and to fourth order i, we can write 2.2 (I7a]*+ [ 2|+ 41 1] ?| 772|2+FI(31))'
' a A8m T e
. mpo. [2ywp (1)
Fo—Fo=—A% (N1 5~ b, —In(—) A
s al prorebom?\ a1 7P where F{}) is the fourth-order term in the GL functional
7¢(3)mpy which may admix the 1D representatitin
+ s > Al (4)

ZE F()=21(75)2not 2l m(3)?+He. (12
whereX ~ ! is the matrix inverse to the interaction,z, wpis ~ With Tea<Tce the superconducting instability will corre-
the cutoff(Debye frequency. spond to the 2D representati@y of the cubic point group.
sheets. classO(D,) is the most preferable energeticallfhis class

(a) Three X points in a cubic lattic& he interaction ma- corresponds to a phase wit=0, 7, #0 in Eq. (11). The

trix A for threeX points takes the following general form symmetry properties of this class are kn&wﬁlme-rever_sal
symmetry is broken and allows for antiferromagnetic do-

) mains and for fractional vortices to appésee, e.9.(11)). In
principle point nodes should appear where the FS intersects

Here is the interaction on the same pocketcouples any the cube diagonals. This would lead to #lectroniccontri-

. . 3 . -
two different pockets. Consider first the linearized gap equabution in theT* behavior for the heat capacity at low tem-
tion Egs.(2) and (3) to determineT,: peratures. In our case, however, there is no FS along the

diagonals of the cube and the low-temperature thermody-
namic properties will be determined by the gap of the same
. (6) magnitude for all three FS sheets. In the presence of another
FS, for example, at th€ point, the nontrivial orde©(D>)
. will be induced on it. In this case the point nodes will exist
The threed,, transform among each other at cubic symmetry,nq nower laws in thermodynamic properties due to the su-
transformations forming a three-dimensiofi@D) reducible o conductivity should be seen experimentally. The anisot-

representation of the cubic gro@,, whichis splitinto a o of the upper critical field Ref. 21 near T. for
1D A4 and a 2DE, irreducible representation. These two {lg\:py PP Hco) (Ref. 29 <

)\aﬁ::)\5aﬁ+ ILL(l_ 50’,8)

2
£ 27

AL
mpo

2ywp
N A*In(
% B=p T.

o

. . _this class also requires th@it leas} two vortex lattice phases
representations correspond to different order parameters wi ith a second-order transition between theemists when
two critical temperatures:

the magnetic field is applied along the (1,1,0) and equivalent

5 directions. Note from Eq.12) that the terms linear ihiden-

T :27’an p( 2m ) (2D) 7) tically disappear for this class, i.e., there will be no admix-
¢.E iy mpo(A—w) ' ture of thesswave component.
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(b) Three X points in a hexagonal lattic€alculations in
this case are the same as in the previous case, i.e., Egs.
(5)—(12) apply. We only have to specify the symmetry prop-
erties and the superconducting class in this case since the DR D.(E)
symmetry of the lattice is different. The three-dimensional 3
representation is split by the hexagonal grddg,® R into
1D (A,g) and 2D [E,y). Note that the basis functions for
E,y can be once again chosen as given by 8d). The
phase withn,#0,7,=0 has the lowest free energy and in

o o

1
1
this case corresponds to the nontrivial cl@&gC,). Time- D‘j}DZ)xR ! D,(E) %
reversal symmetry for this class is brokéand ferromag- !
netismis allowed. Point node&t two points of intersection !
of an additional FS at thE point with the sixfold axis can I
be seen in thermodynamic properties but again these nodes : B=-28
1
1

are only present if such a FS exists. The upper critical field is
isotropic nearT, for this superconductivity representation.
Nevertheless, it can be shown that there will also e¢ast FIG. 2. Regions of existence_ of d_ifferent supercor_lducting
leas) two distinct vortex lattice phases with a second-orderpha_ses on the basis of the thr_ee-dlmensmnal representations of the
transition between them for the magnetic field applied in thefuPic group(from Ref. 9. A point on the boundary of two phases
basal plané?' corresponds to our BCS solution.

(¢) Four L points in the fcc latticeThe interaction and
the linearized gap equation for the fourpoints again take conducting clas®,(E) is likely to appear. This class also
the form Eqs(5) and(6). This time the 4D representatidn, allows ferromagnetism. Note that it has a line of nodats
is split into the 1D A,4) and 3D () irreducible represen- the intersection of the FS with the horizontal plane of sym-
tations. The critical temperatures for the two representationmetry) i.e., CxT? at low temperature$There are also point

are now given by nodes at the intersection of the FS with the fourfold symme-
) try axis. This representation also exhibits an anisotropy of

T :27’an F( 27 ) (3D) (13) H¢, nearT,. In principle multiple vortex lattice phases can
c.F T mpo(A— ) ' also exist for this class but they are not required by symme-

try as they are for th& representations discussed above.
2ywp 2m? In the above cases, other than the standard isotropic order
Tea= ex;{ mpo()\+3,u)) (1D). (14) parameter, only multidimensional order parameters ap-
peared. This leads to the possibility of domain walls between
The basis functions for the 1D and 3D representations are different equivalent superconducting states and as a possible
consequence the existence of inhomogeneous magnetic

I=(A1+Ax+A5+A44)72 (1D) (19 order (see also Refs. 10 and 1 2Also in all the above cases
and the resulting superconducting states had gaps of equal mag-
nitude on each of the FS sheets. In such a case a Hebel-
ny=(A1—Ap,—Az+A,)/2, Slichter peak in I'; measurements may be present. The
nontrivial representations were stable when the pair interac-
ny=(A1+A,—A3—A,)/2 (3D) (16) tion between the different sheets was repulgindependent
of the intrasheet interactipnin many materials the Coulomb
7,=(A1— A+ Az—AyI2. repulsion can be comparable to the attraction between elec-

o o ) trons due to electron-phonon interactions. This is illustrated
The nontrivial 3D representation is stableNf-x<0 and  through the reduction of isotope effect due to Coulomb re-
w=>0, ie., if the interaction isattractive for each pocket pyision. It is well known that for a number of metdls
alone, while it isrepulsivebetween two different pockets. As «\j—« where not onlya+#0.5 but it may even have the
above, we can expand E@f) in terms ofl and 7. Dropping  opposite sign &= —2 for a—U; Ref. 22. The sensitivity of
the 1D identical representation, we get these exotic superconducting phases to impurities needs a
more detailed analysis. However, provided the interpocket

2 T-Ter --, 7L(3) - o defect scattering amplitudes are much smaller than the intra-
mPo oF = Toe 7 ) 64m2T2 [2(n9*) pocket amplitudes, these phases will survive the presence of
' c.F a considerable amount of defecthue to the ordinary BCS
+] 772|2—2(| 7]x|4+ | 7]y|4+ | 7]Z|4)]. (17) Ezzlfrlnlggon each sheketThis will be studied in more detail in

The GL coefficients in Eq(17) places the system right on In summary, we have shown that exotic superconductivity
the boundary of two phases, superconducting classesan appear merely as a competition of the phonon and Cou-
D&Z)(D2)®R andD4(E) (see Fig. 2 This degeneracy is an lomb interactions if the FS consists of several pockets lo-
artifact of the BCS theory, it isiot lifted by higher-order cated at some symmetry points. Time-reversal symmetry is
terms in the GL functional. The presence of a FS atlthe broken for the nontrivial order, meaning that the supercon-
point lifts this degeneracy. As a result, the magnetic superducting transition should be accompanied by some kind of
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magnetic order. The simplest methods to identify exotic or+otation measurements or magnetization measurements in
der parameters are, apart from the phase-sensitive measuggnall enough samplgsvhere the dimensions are on the or-
ments, the power-law dependence of the heat capédity  der of the penetration depthA general classification of all

to the nodeg measurements of the upper critical field anisot-cases of nontrivial superconductivity of the type considered
ropy He(6) at Tg,* or the observation of transitions be- apove is possible. These FS sheets are not always centered
tween different vortex lattice phases. Note that if the F%n the BZ boundary, as, for examp|e, in some doped
pockets are fully isolated then the nodes are absent since th@ miconductor€ and CeCg.!” We postpone a detailed

order parameter is then constant on each FS pocket angh,\ysis of the various possibilities to a future wotk.
changes phase as one moves from one pocket to another.

Nodes could appear, however, if there are “necks” connect- We would like to thank Z. Fisk, D. Khokhlov, J. R. Schri-
ing different sheeté or if superconductivity is induced on a effer, and the members of the NHMFL condensed-matter
FS centered, for example, around thepoint. The upper theory group seminar for useful discussions and comments.
critical-field anisotropy neall, does not work as a test of This work was supported by the National High Magnetic
nontrivial order in the hexagonal grodbThe magnetic or- Field Laboratory through NSF cooperative agreement No.
der, on the other hand, can be observed 8R (muon spin- DMR-9527035 and the State of Florida.
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