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Self-consistent spin-wave theory of two-dimensional magnets with impurities

V. Yu. Irkhin,* A. A. Katanin, and M. I. Katsnelson
Institute of Metal Physics, 620219 Ekaterinburg, Russia

~Received 28 January 1999!

The self-consistent spin-wave theory is applied to investigate the magnetization distribution around the
impurity in isotropic and easy-axis two-dimensional ferro- and antiferromagnets. The temperature dependences
of the host magnetization disturbance and impurity magnetization are calculated. The short-range order in the
isotropic case is investigated. The importance of dynamical and kinematical interactions of spin waves is
demonstrated.@S0163-1829~99!13341-1#
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I. INTRODUCTION

In connection with extensive investigations of copp
oxide based superconductors, great attention has been p
studying magnetism of low-dimensional systems. Of parti
lar interest is the problem of nonmagnetic impurities in ma
netic hosts. Numerous experimental results~see, e.g., Refs
1–3! demonstrate that even small amount of substitution
purities~Zn, Fe, etc.! in CuO2 planes may influence strongl
magnetic properties, e.g., lead to strong suppression of
magnetization. These facts have stimulated a number of
oretical works~see, e.g., Refs. 2–9!. In particular, the impu-
rity problem for isotropic two-dimensional~2D! antiferro-
magnets atT50 was investigated by the standard spin-wa
theory.5 However, detailed consideration of the finit
temperature situation, especially in a wide temperature
gion, is absent. Moreover, the usual spin-wave theory is h
obviously inapplicable, since this does not take into acco
adequately the short-range magnetic order which is a c
acteristic feature of low-dimensional magnets.

On the other hand, the impurity problem for thre
dimensional~3D! magnets was investigated within the sta
dard spin-wave theory~see, e.g., Ref. 10!. It was established
that in the case of a weakly coupled magnetic impurity in
ferromagnet the standard spin-wave approximation is in
ficient already atT;Timp whereTimp!TC is the energy of
impurity-host coupling. Inclusion of dynamical and kin
matic interaction of spin waves within the Tyabliko
approximation10 leads in this case to occurrence of
anomalous temperature dependence of impurity magne
tion. Therefore it is interesting to investigate the impur
problem for 2D systems, such as ferro- and antiferromag
~FM and AFM! with small anisotropy or interlayer couplin
~which are required to produce finite values of the magn
ordering temperatureTM).

In the present paper we consider weakly anisotropic
impurity magnetic crystals with the use of the self-consist
spin-wave theory~SSWT!. This theory was developed to de
scribe thermodynamics of 2D systems,11–13and also success
fully applied to quasi-2D~Refs. 14 and 15! and weakly an-
isotropic 2D magnets.15 An important advantage of SSWT i
comparison with the usual spin-wave theory is that it give
possibility to describe both ordered and disordered pha
and therefore provides a qualitatively correct description
the strong short-range order aboveTM . Introducing slave
PRB 600163-1829/99/60~21!/14779~8!/$15.00
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fermions16 into SSWT allows us to take into account kin
matic interactions of spin waves and correctly describe s
tems at not too low temperatures. In the following sectio
we calculate the impurity-induced magnetization disturba
for different signs of exchange interactions in the host a
between host and impurity.

II. FERROMAGNETIC IMPURITY IN FERROMAGNETIC
HOST

The Heisenberg Hamiltonian of a FM crystal with
square lattice, containing a ferromagnetically coupled im
rity at the sitei 50, reads

H52
1

2 (
i j

Ji j SiSj1HA , ~1!

where

HA52D(
i

~Si
z!22

1

2 (
i j

h i j Si
zSj

z , ~2!

D andh i j being parameters of single-site and two-site ea
axis anisotropy. In the nearest-neighbor approximation
nonzero exchange integrals are

Ji ,i 1d5H J8, i 50 or i 1d50

J, i ,i 1dÞ0,
~3!

whered denotes nearest neighbors,J.0, J8.0.
Following to Ref. 15 we use in the FM case foriÞ0 the

representation16

Si
15A2Sai , Si

z5S2ai
†ai2~2S11!ci

†ci ,

Si
25A2SS ai

†2
1

2S
ai

†ai
†ai D2

2~2S11!

A2S
ai

†ci
†ci , ~4!

whereai
† ,ai are the Bose ideal magnon operators andci

† ,ci

are the auxiliary pseudofermion operators at the sitei. As
discussed in Refs. 16 and 15, the pseudofermion contribu
to thermodynamic quantities cancels exactly the contribut
of unphysical states witĥai

† ,ai&.S. Thus introducing of
pseudofermion operators gives a possibility to reduce
problem of accounting for kinematical interaction of sp
waves ~which arises because of the restricted number
14 779 ©1999 The American Physical Society
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14 780 PRB 60V. YU. IRKHIN, A. A. KATANIN, AND M. I. KATSNELSON
states at each site! to a more simple problem of boson
pseudofermion interaction. Note that due to the imagin
contribution to their chemical potential,ipT, pseudofermi-
ons possess the Bose distribution function rather than
Fermi one, cf. Refs. 16 and 15. Fori 50 one has to replace in
Eq. ~4! S→S8 with S8 being the impurity spin.

To satisfy the conditionS̄i50 in the paramagnetic phas
we introduce the Lagrange multipliersm i at each lattice site
which corresponds to the constraint of the magnon occu
tion number atT.TC ~see, e.g., formal consideration in Re
17 and the discussion in Ref. 15!. These multipliers play the
role of a local ‘‘chemical potential’’ for the boson
pseudofermion systems. Introducingm i permits us to correc
drawbacks of the standard spin-wave theory which is in
plicable atT.TC since the magnetization formally becom
negative. AtT,TC we havem i50 and the total magnon
occupation number is not conserved.

Further we perform decouplings of the quartic form
which occur after substituting Eq.~4! into Eq. ~1!. Introduc-
ing the averages

j i ,i 1d5S̄i 1d1^ai
†ai 1d& ~5!

we derive the quadratic Hamiltonian of the mean-field a
proximation

H5(
id

j i ,i 1dJi ,i 1d@ai
†ai2ai 1d

† ai1~2S11!ci
†ci #

2(
i

m i@ai
†ai1~2S11!ci

†ci #1HA . ~6!

As well as in the uniform magnets,15 the averagesj i ,i 1d take
into account the dynamical interaction of spin waves in
lowest Born approximation. The Fermi operators descr
the kinematic interactions of the spin waves.

Following Refs. 18 and 15, we treat the influence of t
magnetic anisotropy by neglecting quartic forms inHA ,
which yields

HA52HA(
i

Si
z52HA(

i
@S2ai

†ai2~2S11!ci
†ci #

with the anisotropy fieldHA

HA5~2S21!D1S(
d

h i ,i 1d . ~7!

As discussed in Ref. 15, the effect of the anisotropy fieldHA
differs from that of the true magnetic field since the chemi
potentialsm i are also influenced byHA . Thus the magnetic
phase transition is still present atHA.0, andTC is shifted to
higher values. In the limitHA!J under consideration, ef
fects of single-site and two-site anisotropy are qualitativ
the same, although concrete expressions for the fieldHA in
Eq. ~7! are different. In the 2D caseHA is the only factor
stabilizing magnetic order (TC50 atHA50), but, as already
mentioned, SSWT works in the disordered phase also.

For an ideal crystal,j i ,i 1d andm i do not depend oni and
the diagonalization of the Hamiltonian~6! is easily
performed.15 At the same time, for the impurity system th
is a complicated task because of the unknown site dep
y
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dences ofj i ,i 1d and m i which are to be determined sel
consistently. However, supposing that except for nea
neighbors of the impurity,j i ,i 1d andm i practically coincide
with the corresponding quantities for the host,jM andm ~this
will be confirmed below by our results!, we may put in Eq.
~6!

j i ,i 1d5H j, i 50

j8, i 1d50

jM , otherwise

, m i2m5H dm0 , i 50

dm1 , i 1d50

0, otherwise.
~8!

Note thatjÞj8 because of non-Hermiticity of the represe
tation ~4!. Taking into account Eq.~4! the spin correlation
function for impurity spin and its nearest neighbors has
form

K[u^S0Sd&u5jj8. ~9!

Under the approximation~8! the Hamiltonian~6! takes the
form

H5H01V, ~10!

where

H05JjM(
id

@ai
†ai2ai 1d

† ai1~2S11!ci
†ci #

1~HA2m!(
i

@ai
†ai1~2S11!ci

†ci # ~11!

is the standard SSWT Hamiltonian without impurities15 and

V5~J8j2JjM !(
d

@a0
†a02ad

†a01~2S811!c0
†c0#

1~J8j82JjM !(
d

@ad
†ad2a0

†ad1~2S11!cd
†cd#

1dm0b0
†b01dm1(

d
ad

†ad ~12!

is the impurity-induced perturbation part. To diagonalizeH
we introduce the Green’s functions

Gi j
0 ~v!5^^aj uai

†&&v
0 5(

q

1

v2Eq
ei

iq(Ri2Rj ),

Gi j ~v!5^^aj uai
†&&v , ~13!

where the index 0 means that statistical averages are ca
lated withH0,

Eq5jM~J02Jq!1HA2m, Jq52J~cosqx1cosqy!.

In the limit R@1 we find by using the saddle point approx
mation ~see, e.g., Ref. 10!

G0R
0 ~v!

;H exp~ iAv/JjMR!/v1/4R1/2, 1!~v/J!1/2R,v!1

2 ln~v/J! ~v/J!1/2R!1.

~14!
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The perturbationV can be written in the matrix form

V5 (
i ,, j 50

4

Vi j ai
†aj1(

i 50

4

Rici
†ci , ~15!

where the indicesi , j enumerate the impurity site and its fou
nearest neighbors. From Eq.~12! we have

V5S 4« g g g g

g8 r 0 0 0

g8 0 r 0 0

g8 0 0 r 0

g8 0 0 0 r

D , R5~2S11!S 4«

r

r

r

r

D ,

~16!

where

g85J8j2JjM , «5g81dm0/4,

g5J8j82JjM , r5g1dm1 .

Then we have the expression for the perturbed Gree
function:10

G̃~v!5@12G̃0~v!V#21G̃0~v!, ~17!

where G̃(v),G̃0(v) are submatrices of matrice
Gi j (v),Gi j

0 (v) with i , j 50, . . . ,4. Further we calculate th
matrix G from Eq. ~17! and the averageŝai

†aj& from the
spectral representation. Then we derive from Eqs.~4! and~8!
the system of self-consistency equations

j5S̄12E
2`

1`dv

p
N~v!Im G̃10

R ~v!,

j85S̄02E
2`

1`dv

p
N~v!Im G̃01

R ~v!, ~18!

whereN(v)5@exp(v/T)21#21 is the Bose distribution func

tion, G̃R(v)5G̃(v1 id), d→10. The integration region in
Eq. ~18! is in fact a<v<2jMJ01a, a5HA2m. The ex-
pressions for the site magnetizations take the form

S̄05S81E
2`

1`dv

p
N~v!Im G̃00

R ~v!1~2S811!N~E0!,

S̄15S1E
2`

1`dv

p
N~v!Im G̃11

R ~v!1~2S11!N~E1!,

~19!

whereEi5(2Si11)JjM1a2dm i is the pseudofermion en
ergy at the sitei (Si5S for iÞ0 andSi5S8 for i 50). In the

case of a pure system (V50) we haveG̃5G̃0 and the values

S̄i ,j i ,i 1d ,m i are independent ofi, so that the system of equa
tions ~18!, ~19! reduces to that of Ref. 15.

In the presence of impurity, the system of equations~18!,
~19! was solved numerically by the iteration method. Fir
the site magnetizations were excluded from Eq.~18!, and the
integrals in the right-hand sides were calculated for the v
ues of short-range order~SRO! parameters corresponding
’s

,

l-

the pure crystal. Then the equations were iterated unt
self-consistent solution was obtained. Finally, the magnet
tions of impurity site and its nearest neighbors were cal
lated by using Eq.~19!. The results of numerical calculation

of magnetizationsS̄0 ,S̄1 and short-range order paramete
j,j8 vs temperature according to Eqs.~18! and ~19! for the
impurity-host system are presented in Figs. 1 and 2. Figu
presents also for comparison the results of the standard s
wave ~SW! theory @which correspond, in our notations, t
jM5j5j85S, pseudofermion occupation numbersN(Ei)

FIG. 1. The temperature dependence of the magnetizations

impurity site S̄0, and for nearest-neighbor sitesS̄1 (S5S8
51/2, HA /J51023, J8/J50.15). The results of the magnetiza
tion for the impurity site in the standard~non-self-consistent! spin-
wave approach without~SW! and with ~SWF! introducing Fermi
operators@see Eq.~4!# are presented for comparison. The ins
shows the temperature dependence of the impurity site magne

tion S̄0 at HA /J51023, J8/J50.15 ~solid line!, HA /J
51023, J8/J50.05 ~short-dashed line!, HA /J51022, J8/J
50.15 ~long-dashed line!.

FIG. 2. The temperature dependence of the short-range o
parametersj,j8 ~solid lines, left scale! and correlation functionK
5^S0Sd& ~long-dashed line, right scale! for the same parameter va
ues as in Fig. 1. Arrows show the value of the Curie temperat
For comparison, the corresponding short-range order paramet
the ideal crystal,jM , is shown.
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14 782 PRB 60V. YU. IRKHIN, A. A. KATANIN, AND M. I. KATSNELSON
being replaced by zero# and spin-wave theory with introduc
ing pseudofermions~SWF!. We see that the impurity mag
netization has an anomalous behavior at temperatureT
;J8. The inset of Fig. 1 shows this dependence at differ
HA /J, J8/J. A sharp decrease of impurity-site magnetizati
at T;J8 can be easily obtained already in the simple me
field approximation, but detailed description of this behav
requires more complicated methods. The standard SW
well as the SWF solutions, does not show this anomaly
we can conclude that it is caused by both dynamic and k
matic interactions of spin waves. The situation is similar
the 3D case where using the Tyablikov approximation res
in a strong modification of the magnetization behavior in t
temperature interval.10 One can see that, owing to a sha
decrease ofj8, the correlations between the impurity site a
its nearest neighbors decrease with temperature more ra
than those in an ideal crystal.

In the ground state the disturbance of magnetization
localized at the impurity site and equalsS82S. To calculate
the magnetization distribution around the impurity at fin
temperatures we need the full matrixG. It may be shown
~see, e.g., Ref. 10! that the latter quantity is given by

G5G01G̃N0V
1

12G̃0V
G̃0N, ~20!

where G̃0N is the submatrix ofGi j
0 with i 50, . . . ,4, j

50, . . . ,N, and G̃N0 is the conjugated matrix. Using Eq
~20! we can find the averages needed. The results of num
cal calculation of magnetization disturbance for different v
ues ofJ8/J, HA /J are presented in Fig. 3. One can see t
at R.0 all the results practically coincide; this takes pla
also in the limiting case whereJ850 ~or in the case of the
vacancy withS850). One can see that the change of ma
netization around the impurity rapidly decreases with
creasing distance from the impurity site, so that the mag
tization disturbance practically vanishes at the distance
four coordination spheres.

FIG. 3. The distribution of magnetization around the impur
for the same parameter values as in Fig. 1,T50.3J. Arrows show
the value of magnetization disturbance at the impurity site (R50).
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Now we discuss briefly the limitHA→0 which corre-
sponds to the 2D isotropic magnets. Although the site m
netizations are changed strongly with changingHA ~the
finite-temperature site magnetizations vanish atHA→0 and

the susceptibilityx5]S̄/]HA is divergent nearT50), it
may be checked analytically that the derivative]j/]HA re-
mains finite atHA→0. Thus the SRO parameters are smoo
functions in the limitHA→0 and practically coincide with
those calculated above forHA51023 J.

III. ANTIFERROMAGNETIC IMPURITY
IN FERROMAGNETIC HOST

Further we consider an AFM impurity in FM host@J
.0, J8,0 in Eq. ~3!#. After passing to the local coordinat
system at the impurity site, we have to use the representa

S0
15A2S8b0

† , S0
z52S81b0

†b01~2S811!d0
†d0 ,

S0
25A2S8S b02

1

2S8
b0

†b0b0D 22
2S811

2S8
d0

†d0b0 ,

~21!

whereb0
† ,b0 are the Bose operators andd0

† ,d0 are the Fermi
operators. Then, in the mean-field approximation, the Ham
tonian ~1! takes the form

H5
1

2
J (

i ,i 1dÞ0
j i ,i 1d@ai

†ai2ai 1d
† ai1~2S11!bi

†bi #

1uJ8u(
d

$j@ad
†ad2b0ad1~2S811!bd

†bd#

1j8@b0
†b02b0

†ad
†1~2S811!c0

†c0#%

1(
iÞ0

~HA2m i !@ai
†ai1~2S11!bi

†bi #1~HA2m0!

3@b0
†b01~2S811!c0

†c0#, ~22!

where

j5S̄01^d0
†ad

†&,

j85S̄11^add0&.

As in ferromagnetic case, we use the approximationj i ,i 1d
.jM ( i ,i 1dÞ0). To diagonalize Eq.~22! we introduce,
following Ref. 10, the ‘‘hole’’ creation and annihilation op
eratorsa0

† , a0 by the canonical transformation

a05d0
† , a0

†52d0 .

As well as in the case of FM impurity, we use the appro
mation~8!. We introduce also the Green’s functions~13! and
represent the Hamiltonian as Eq.~10! with the parameters o
the matrixV, Eq. ~16!,

g852J8j1JjM , «52J8j2JjM1dm0/4,

g5J8j81JjM , r5J8j2JjM1dm1 .
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Then we have the same equation~17! for the full Green’s
function as in the case of FM impurity; the self-consisten
equations also have the same form as Eqs.~18! and ~19!.
Unlike the FM impurity case, the full Green’s function has
pole atv52v0,0.10 To take into account the contributio
from this pole to the averages needed we deform the inte
tion path in the spectral representation for the Green’s fu
tion in the complex plane:

^aj
†ai&52

1

pE2`

1`

dvN~v!Im Gi j
R~v!

5E
C

dv

2p i
N~v!Gi j ~v!2TGi j ~0!. ~23!

The closed contourC has anticlockwise orientation and
selected in such a way that all the singularities ofG(v) lie
inside C, but all the frequenciesvn52pnT(nÞ0) lie out-
side it. The last term in Eq.~23! corresponds to the contri
bution fromv50, which is to be subtracted explicitly.

The results of numerical solution of Eqs.~18! and ~19!
with the use of Eq.~23! for different values of impurity-hos
coupling are presented in Fig. 4.

The AFM impurity induces the disturbance of host ma
netization already atT50. Using the sum rule

p(
i

Im@Gii ~v1 id!2Gii
0 ~v1 id!# ~24!

5
]

]v
Im ln det@12G0~v1 id!V# ~25!

which follows from Eq.~20! and taking into account tha
det@12G0(v)V# has a zero atv52v0 we obtain

^b0
1b0&T505(

i .0
^ai

1ai&T50 ~26!

FIG. 4. The temperature dependence of the magnetizations

impurity site S̄0, and for nearest-neighbor sitesS̄1 in the case of
antiferromagnetic impurity in the ferromagnetic host withS5S8
51/2, HA /J51023, J8/J520.15 ~solid lines!, and J8/J521
~long-dashed lines!.
y

a-
c-

-

so that the total disturbance of magnetization equalsS1S8.10

The distribution of magnetization around the impurity site
shown in Fig. 5. At largeR the contribution from the pole
v52v0 gives the main contribution to the magnetizatio
disturbance which is proportional to exp(2RAv0 /J)/R and
differs from that in the 3D case10 by a preexponential facto
only.

IV. THE CASE OF AN ANTIFERROMAGNETIC HOST

Now we consider an antiferromagnet with the Ham
tonian

H52
1

2 (
i j

Ji j SiSj1HA

with Ji j ,0,h i j ,0. In the case of two sublatticesA,B and
for the antiferromagnetically coupled impurity spin in theA
sublattice we have to use the representation

Si
15A2Sai , Si

z5S2ai
†ai2~2S11!ci

†ci ,

Si
25A2SS ai

†2
1

2S
ai

†ai
†ai D2

2~2S11!

2S
ai

†ci
†ci ~27!

for i PA and

Si
15A2Sbi

† , Si
z52S1bi

†bi1~2S11!di
†di ,

Si
25A2SS bi2

1

2S
bi

†bibi D2
2~2S11!

2S
di

†dibi ~28!

for i PB whereai
† ,ai andbi

† ,bi are the Bose operators an
ci

† ,ci and di
† ,di are the Fermi operators~for i 50 one has

again to replaceS→S8 in this representation!. After standard
decouplings the Hamiltonian takes the form

or
FIG. 5. The distribution of magnetization around the antifer

magnetic impurity in the 2D isotropic ferromagnet atT50, J8/J
50.15 ~solid line!, andJ8/J50.05 ~dashed line!.
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14 784 PRB 60V. YU. IRKHIN, A. A. KATANIN, AND M. I. KATSNELSON
H5 (
i PA,d

uJi ,i 1duj i ,i 1d@ai
†ai2bi 1dai1~2Si11!ci

†ci #

1 (
i PB,d

uJi ,i 1du j̃ i ,i 1d@bi 1d
† bi 1d2bi 1d

† ai
†

1~2Si11!ci
†ci #1(

i PA
~HA2m i !@ai

†ai1~2Si11!ci
†c#

1(
i PB

~HA2m i !@bi
†bi1~2Si11!di

†di #, ~29!

where

HA5~2S21!D1S(
i

uh i ,i 1du ~30!

and

j i ,i 1d5S̄i 1d1^bi 1d
† ai

†&, j̃ i ,i 1d5S̄i1^aibi 1d&. ~31!

For the correlation functionK we have the same expressio

~9! as in the FM case withj5j01,j85 j̃01. To diagonalize
Eq. ~29! we introduce the operators

Ai5H ai i PA

bi
† i PB

and the Green’s functions:

Ĝi j
0 ~v!5^^Ai uAj

†&&v

5Gi j
0 ~V!H r , i , j PA

r 21, i , j PB

1, otherwise,

~32!

where

FIG. 6. The temperature dependence of magnetizations for

purity site S̄0 and nearest-neighbor sitesS̄1 in an antiferromagnet
with S5S851/2, HA /J51023, J8/J50.15. Dashed lines show
the corresponding results for a ferromagnet~Fig. 1!.
r 5S l1v

l2v D 1/2

, V5l2Al22v2,

l5uJ0ujM1HA2m.

Using the approximation~8! we get the same expressio

for the Green’s function~17! with G̃0(v) being the 535

submatrix ofĜi j
0 (v), and analogously forG̃(v). In this no-

tation the self-consistent equations for the site magnet
tions and short-range order parameters have the same f
as in FM case, see Eqs.~19! and~18!. In the case of the pure

system we now haveĜ5Ĝ0 and we again reproduce th
results of Ref. 15.

The results of numerical calculations for the AFM imp
rity system case are shown and compared with those for
FM case in Fig. 6. If the impurity spin is weakly coupled
the host, the behavior of magnetization in AFM and F

-

FIG. 7. The temperature dependence of the short-range o
parametersj,j8 and correlation functionK52^S0Sd& for the same
parameter values as in Fig. 6. Arrows show the value of the N´el
temperature.

FIG. 8. The distribution of magnetization around impurity in th
2D isotropic antiferromagnet atT50. The inset shows the pictur
at largeR.
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PRB 60 14 785SELF-CONSISTENT SPIN-WAVE THEORY OF TWO- . . .
situations is very close, except for the region near the m
netic ordering temperature (TN.TC because of quantum
fluctuations!. At the same time, the nearest-neighbor mag
tizations are strongly different and demonstrate a beha
that is typical for the corresponding hosts. One can also
that SSWT leads to unambiguous results at lowT, where the
impurity magnetization turns out to be greater than the h
one. The difference between magnetizations of impurity a
host increases with decreasing the value ofJ8/J and de-
creases with increasing temperature. Thus SSWT pred
strong influence of quantum fluctuations on magnetization
the case of weakly magnetic impurities.

The results of calculating the short-range order para
etersj,j8 and the correlation functionK are presented in Fig
7. The parameterj has a nonmonotonic temperature depe
dence. At the same time, the temperature dependence o
correlation function of the impurity spin with its neare
neighbors is monotonic and more rapid than that for corre
tion functions between spins in the host.

To calculate the total magnetization disturbance we
the sum rule for the Green’s functions~32!

p(
i

~21! i Im@Ĝii ~v1 id!2Ĝii
0 ~v1 id!#

5
]

]v
Im ln det@12Ĝ0~v1 id!V#. ~33!

Since det(12Ĝ0V) has no zeros atv,0, we obtain at
T50

dM5S82S2
1

p
Im ln det@12Ĝ0~v1 id!V#2`

0 5S82S.

~34!

This result is valid also for a vacancy if we putS850. For a
ferromagnetically coupled impurity we have to replace in E
~34! S8→2S8.

The distribution of magnetization around the impurity
the ground state of a 2D isotropic antiferromagnet is sho
in Fig. 8. The magnetization of each sublattice decreases
that corrections to the host magnetization have alterna
signs. The values of sublattice magnetization disturbance
close to those in the spin-wave theory.5 At largeR, the main
.
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contribution to the disturbance of sublattice magnetizat
comes from the frequenciesv!J. Expanding Eqs.~20! and
~32! up to first order inv/J, we derive

d^A0
†Ai&;1/Ri

3 . ~35!

Note that in the 3D case this quantity demonstrates a m
rapid decrease 1/R4, which may be obtained in the sam
manner.

V. CONCLUSIONS

To conclude, we have investigated 2D magnets with i
purities for different signs of exchange integrals within t
framework of self-consistent spin-wave theory.11,12,15 This
theory permits us to calculate both magnetization distribut
and the correlation functions~short-range order parameters!.
For T50 modifications of the results of the standard sp
wave theory are small. At the same time, for finite tempe
tures, corrections owing to dynamic and kinematic inter
tions of spin waves turn out to be important. It should
stressed that despite the absence of long-range order in
isotropic 2D magnets atT.0, the temperature dependen
of the impurity-host correlation functionK, Eq.~9!, is similar
to that in the 3D case, although in the latter case the m

contribution toK equalsS̄0S̄d .
The distribution of magnetization in the ground state w

investigated in detail. In the nearest-neighbor approximat
considered, the host magnetization disturbance decre
rapidly with distance from impurity, and the total change
magnetic moment equals2S6S8 depending on the sign o
J8. More interesting situations occur in the case of the lon
range exchange. So, in the case of FM impurity in the F
host with sufficiently strong negative next-nearest impuri
host exchangeJ9, the total magnetization change equals

dM5S82S22z2S ~36!

with z2 the corresponding coordination number. In the ca
of FM impurity in the AFM host with large positiveJ9 we
have

dM5S82S12z2S. ~37!

It would be of interest also to investigate the problem o
current carrier in the AFM host within a similar approac
~e.g., within thet-J model, cf. Ref. 11!.
*Electronic address: Valentin.Irkhin@imp.uran.ru
1G. Xiao, M. Z. Cieplak, and C. L. Chien, Phys. Rev. B42, 240

~1990!.
2A. M. Finkelstein, V. E. Kataev, E. V. Kukovitskii, and G. B

Teitelbaum, Physica C168, 370 ~1990!.
3A. A. Romanyukha, Yu. N. Shvachko, Y. Yu. Irkhin, M. I

Katsnelson, A. A. Koshta, and V. V. Ustinov, Physica C171,
276 ~1990!.

4T. Yanagisawa, J. Phys. Soc. Jpn.60, 2823~1991!.
5N. Bulut, D. Hone, and D. J. Scalapino, Phys. Rev. Lett.62, 2192

~1989!; N. Nagaosa, Y. Hatsugai, and M. Imada, J. Phys. S
Jpn.58, 978 ~1989!.

6T.-K. Ng, Phys. Rev. B54, 11 921~1996!.
7G. B. Martins, M. Laudkamp, J. Riera, and E. Dagotto, Ph

Rev. Lett.78, 3563~1997!.
c.

s.

8C. Yasuda and A. Oguchi, J. Phys. Soc. Jpn.66, 2836~1997!.
9V. N. Kotov, J. Oitmaa, and O. Sushkov, Phys. Rev. B58, 8495

~1998!.
10Yu. A. Izyumov and M. V. Medvedev,Magnetically Ordered

Crystals Containing Impurities~Consultants Bureau, New York,
1973!.

11A. Auerbach, Interacting Electrons and Quantum Magnetism
~Springer, Berlin, 1994!.

12M. Takahashi, Phys. Rev. B40, 2494~1989!.
13D. Yoshioka, J. Phys. Soc. Jpn.58, 3733~1989!.
14V. Yu. Irkhin, A. A. Katanin, and M. I. Katsnelson, Phys. Lett. A

157, 295 ~1991!; Bang-Gui Liu, J. Phys.: Condens. Matter4,
8339 ~1992!.

15V. Yu. Irkhin, A. A. Katanin, and M. I. Katsnelson, Phys. Rev. B
60, 1082~1999!.



y,

14 786 PRB 60V. YU. IRKHIN, A. A. KATANIN, AND M. I. KATSNELSON
16V. G. Baryakhtar, V. N. Krivoruchko, and D. A. Jablonsk
Green’s Functions in the Theory of Magnetism@in Russian#
~Naukova Dumka, Kiev, 1984!; Solid State Commun.46, 613
~1983!; Zh. Éksp. Teor. Fiz.85, 601 ~1983! @Sov. Phys. JETP
58, 351 ~1983!#.
17L. A. Popovich and M. V. Medvedev, cond-mat/9803205~unpub-

lished!.
18E. Rastelly, A. Tassi, and L. Reatto, J. Phys. C7, 1735~1974!.


