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Self-consistent spin-wave theory of two-dimensional magnets with impurities
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The self-consistent spin-wave theory is applied to investigate the magnetization distribution around the
impurity in isotropic and easy-axis two-dimensional ferro- and antiferromagnets. The temperature dependences
of the host magnetization disturbance and impurity magnetization are calculated. The short-range order in the
isotropic case is investigated. The importance of dynamical and kinematical interactions of spin waves is
demonstrated.S0163-182609)13341-1

[. INTRODUCTION fermiong® into SSWT allows us to take into account kine-
matic interactions of spin waves and correctly describe sys-

In connection with extensive investigations of copper-tems at not too low temperatures. In the following sections
oxide based superconductors, great attention has been paidwe calculate the impurity-induced magnetization disturbance
studying magnetism of low-dimensional systems. Of particufor different signs of exchange interactions in the host and
lar interest is the problem of nonmagnetic impurities in mag-between host and impurity.
netic hosts. Numerous experimental resg#se, e.g., Refs.
1-3 demonstrate that even small amount of substitution im-1l. FERROMAGNETIC IMPURITY IN FERROMAGNETIC
purities(Zn, Fe, eto.in CuO, planes may influence strongly HOST
magnetic properties, e.g., lead to strong suppression of host . . .
magnetization. These facts have stimulated a number of the- The He_lsenberg _H_amlltonlan of a '.:M crystal W'Fh a
oretical works(see, e.g., Refs. 249In particular, the impu- square Iatt".:e’. containing a ferromagnetically coupled impu-
rity problem for isotropic two-dimensionglD) antiferro- rity at the sitei =0, reads
magnets af =0 was investigated by the standard spin-wave 1
theory> However, detailed consideration of the finite- H=—= >, JiiSS+ Ha, (1)
temperature situation, especially in a wide temperature re- 29
gion, is absent. Moreover, the usual spin-wave theory is herghere
obviously inapplicable, since this does not take into account
adequately the short-range magnetic order which is a char- 2o 1 e
acteristic feature of low-dimensional magnets. Ha=— Dzi (S)*=3 IE 7SS, 2

On the other hand, the impurity problem for three- .
dimensional(3D) magnets was investigated within the stan-D and 7;; being parameters of single-site and two-site easy-
dard spin-wave theorgsee, e.g., Ref. 101t was established axis anisotropy. In the nearest-neighbor approximation the
that in the case of a weakly coupled magnetic impurity in anonzero exchange integrals are
ferromagnet the standard spin-wave approximation is insuf- _ )
ficient already afl ~ Ty, where T, ,<T¢ is the energy of 3. _{J/’ =0 or i+6=0 3
impurity-host coupling. Inclusion of dynamical and kine- hiteT g, i,i+6#0,
matic interaction of spin waves within the Tyablikov )
approximatiot? leads in this case to occurrence of anWhered denotes nearest neighbods:0, J'>0.
anomalous temperature dependence of impurity magnetiza- Following to Ref. 15 we use in the FM case fo# 0 the
tion. Therefore it is interesting to investigate the impurity representatiot?
problem for 2D systems, such as ferro- and antiferromagnets "
(FM and AFM) with small anisotropy or interlayer coupling S = \/2_Sa,
(which are required to produce finite values of the magnetic

S=S-a'a,—(2S+1)c/c;,

ordering temperaturé&y). _ - i fot | 2(25+1) . 4
In the present paper we consider weakly anisotropic 2D 3 V28| a, >gdidid /25 aicici, (4

impurity magnetic crystals with the use of the self-consistent

spin-wave theorySSWT). This theory was developed to de- Wherea/ ,a; are the Bose ideal magnon operators aht;
scribe thermodynamics of 2D systefis!®and also success- are the auxiliary pseudofermion operators at the kitas

fully applied to quasi-2D(Refs. 14 and 1pand weakly an- discussed in Refs. 16 and 15, the pseudofermion contribution
isotropic 2D magnet¥ An important advantage of SSWT in to thermodynamic quantities cancels exactly the contribution
comparison with the usual spin-wave theory is that it gives af unphysical states WitlﬁaiT ,8;)>S. Thus introducing of
possibility to describe both ordered and disordered phasgsseudofermion operators gives a possibility to reduce the
and therefore provides a qualitatively correct description oforoblem of accounting for kinematical interaction of spin
the strong short-range order aboVg, . Introducing slave waves (which arises because of the restricted number of
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states at each sjt¢o a more simple problem of boson- dences of¢; i, s and u; which are to be determined self-
pseudofermion interaction. Note that due to the imaginanconsistently. However, supposing that except for nearest
contribution to their chemical potentialsT, pseudofermi- neighbors of the impurityé; ;+ s and u; practically coincide
ons possess the Bose distribution function rather than theith the corresponding quantities for the hagg, andw (this
Fermi one, cf. Refs. 16 and 15. Fot 0 one has to replace in will be confirmed below by our resultswe may put in Eq.

Eq. (4) S—S' with S’ being the impurity spin. (6)

To satisfy the conditior§;=0 in the paramagnetic phase

we introduce the Lagrange multipliets at each lattice site, & _ =0 Oko, _ 1=0
which corresponds to the constraint of the magnon occupaé; s ;=9 & 1+0=0, pu—pu={ ou1, i+6=0
tion number alf >T¢ (see, e.g., formal consideration in Ref. &y, otherwise 0, otherwise.
17 and the discussion in Ref. 15 hese multipliers play the (8)

role of a local “chemical potential” for the boson-
pseudofermion systems. Introducipg permits us to correct
drawbacks of the standard spin-wave theory which is inap
plicable atT> T since the magnetization formally becomes
negative. AtT<T. we haveu;=0 and the total magnon

Note that¢# &' because of non-Hermiticity of the represen-
tation (4). Taking into account Eq(4) the spin correlation
function for impurity spin and its nearest neighbors has the
form

occupation number is not conserved. K=|(SySs)| = £¢'. 9)
Further we perform decouplings of the quartic forms R
which occur after substituting E@4) into Eq. (1). Introduc- Under the approximatio(8) the Hamiltonian(6) takes the
ing the averages form
&ivs=S+st(alai,) ©) H=HotV, (19

we derive the quadratic Hamiltonian of the mean-field ap-Where
proximation

Ho=Jéu 2, [ala—al, a+(28+1)cfci]
I
H= % Givodiivdalai—al, s+ (2S+1)clc]

+(Ha—p) X [ala+(25+1)c¢] (12)
|
—> wilala+(2S+1)cici]+Ha. 6 - o
[ is the standard SSWT Hamiltonian without impuritreand
As well as in the uniform magnetsthe averages; ;. ; take
into account the dynamical interaction of spin waves in the V=(J’§—J§M)E [agao—a;ao+(28’+1)c$co]
lowest Born approximation. The Fermi operators describe g
the kinematic interactions of the spin waves.
Following Refs. 18 and 15, we treat the influence of the +(J'E —JE) Y, [alas—alas+(25+1)ckes]
magnetic anisotropy by neglecting quartic forms %), °
which yields
+ Spobibo+ Sus > akas (12
o
Hp=—H 7= —H S—ala,—(25+1)c/¢;
A AEi S AZ . i Jeicil is the impurity-induced perturbation part. To diagonalize

. . . we introduce the Green'’s functions
with the anisotropy fieldH o

1 .
Gow)=((ala))0=> —— ¢ dR~R)
Ha=(2S-1)D+S> 7. 5. (7 i =(alal)=3 oog e
B

As discussed in Ref. 15, the effect of the anisotropy figjd Gij(@)=((ajla))e, (13
differs from that of the true magnetic field since the chemicalyhere the index 0 means that statistical averages are calcu-
potentialsu; are also influenced bl 5. Thus the magnetic |51eq with Ho,

phase transition is still presentldiy,>0, andT is shifted to

higher values. In the limiH,<J under consideration, ef- Eq=ém(Jo—Jg) tHa—n, Jq=2J(cosqy+cosqy).
Iﬁgti;)r;:ngllti sggehaggntcv;/:tes Iteisrr;::;t (;ﬂ[;)/f;r?hgu;&?:velym the limit R>1 we find by using the saddle point approxi-
Eq. (7) are different. In the 2D casH, is the only factor mation(see, e.g., Ref. 30

stabilizing magnetic ordefM-=0 atH,=0), but, as already Gy w)

mentioned, SSWT works in the disordered phase also.

For an ideal crystal; ;, s and w; do not depend onand expli VolJéEyR) 0¥ RY2,  1<(w/d)VR,0<1
the diagonalization of the Hamiltoniar6) is easil ~ 2
pen‘ormegdl.5 At the same time, for the impurity system }c/his ~In(w/J) (@/)TR<1.
is a complicated task because of the unknown site depen- (14
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The perturbatiorV can be written in the matrix form 050
s -
V=2 Vjala+> R, (15) 0.40 -
i,.7=0 i=0 E
where the indices,j enumerate the impurity site and its four E
nearest neighbors. From E{.2) we have 030 =
| v E
4e vy v v v 4e g
) 020
Yy p 0 0 O p E
v=| ¥ 0 p 0 0|, R=(2s+1)| p [, o1oE
y 0 0 p O p T F
! [y
7 O 0 0 p p 16) O.OOZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
( 000 010 020 030 040  0.50
where T/J
v =J§E-3€y, e=7v+uyld, FIG. 1. Thztemperature dependence of the maﬁgnetizations for
impurity site S;, and for nearest-neighbor site§; (S=5'
y=J3¢& -3¢, p=y+touq. =1/2, Hy/J=10"3, J’'/J=0.15). The results of the magnetiza-

. Ltion for the impurity site in the standafdon-self-consistentspin-
Then we have the expression for the perturbed Green's. . approach withoutSW) and with (SWP introducing Fermi

i 210

function: operators[see Eq.(4)] are presented for comparison. The inset
~ ~0 _1%0 shows the temperature dependence of the impurity site magnetiza-
G(w)=[1-G@)V] "G (w), A7 fon S at HaJ=10% J'/J=015 (solid ling, Ha/J

=103, J'/J=0.05 (short-dashed line H,/J=10"2, J'/J

~ =0 . .
where G(w),G"(w) are submatrices of matrices —0.15long-dashed ling

Gij(w),Gin(w) with i,j=0, ... ,4. Further we calculate the
matrix G from Eq. (17) and the average{aafaﬁ from the
spectral representation. Then we derive from Edjsand(8)

the system of self-consistency equations

the pure crystal. Then the equations were iterated until a

self-consistent solution was obtained. Finally, the magnetiza-

tions of impurity site and its nearest neighbors were calcu-
lated by using Eq(19). The results of numerical calculations

— +oQw ~
§—Sl—f — N(w)im Gl ), of magnetizationsS,,S; and short-range order parameters
o £, &' vs temperature according to Eq48) and (19) for the
o tede B impurity-host system are presented in Figs. 1 and 2. Figure 1
&=S,— J —N()ImG](w), (18)  presents also for comparison the results of the standard spin-
—w T wave (SW) theory [which correspond, in our notations, to

whereN(w) =[exp@/T)—1] ! is the Bose distribution func- ¢éu=£=¢'=S, pseudofermion occupation numbey &)

tion, E;R(w)=é(w+i5), 6— +0. The integration region in 0.60

T TT T T L L LI 040
Eqg. (18) is in fact asw<2¢yJo+ @, a=Hp— u. The ex- - ]
pressions for the site magnetizations take the form C i
_ +ode ~ r - 030
SOZS’+f FN(w)ImGoo(w)+(28’+1)N(Eo), 040 i
ar - 4 020 v
_ +odw ~R r g -
S, =S+ —N(w)ImGT(w)+(2S+1)N(E,), N ]
e T 020 ]
(19 r g - 010
whereE;=(2S +1)J&y+ a— Su,; is the pseudofermion en- E S~ K 1
ergy at the sité (S=Sfori#0 andS,=S' fori=0). In the E | | | T | ]
case of a pure systenVE0) we haveG=G° and the values 0'08.00 020 040 060 080 1.000'00
Si.& i+ s, are independent of so that the system of equa- T
tions (18), (19) reduces to that of Ref. 15. FIG. 2. The temperature dependence of the short-range order

In the presence of impurity, the system of equatit®,  parameters;, ¢’ (solid lines, left scaleand correlation functior
(19) was solved numerically by the iteration method. First,=(s,s;) (long-dashed line, right scaléor the same parameter val-
the site magnetizations were excluded from B@), and the  yes as in Fig. 1. Arrows show the value of the Curie temperature.
integrals in the right-hand sides were calculated for the valfor comparison, the corresponding short-range order parameter in
ues of short-range ordéBRO parameters corresponding to the ideal crystal§y, , is shown.
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0.20 . . . . . . Now we discuss briefly the limiH,—0 which corre-
sponds to the 2D isotropic magnets. Although the site mag-
netizations are changed strongly with changiHg (the
finite-temperature site magnetizations vanistHat—~0 and

the susceptibilityy=0S/dH, is divergent nearT=0), it
may be checked analytically that the derivati® oH 5 re-
mains finite aH ,— 0. Thus the SRO parameters are smooth
functions in the limitH,— 0 and practically coincide with
those calculated above fét,=10"2 J.

0.16
0.12F

0.08

I1l. ANTIFERROMAGNETIC IMPURITY

Ot IN FERROMAGNETIC HOST

_IIIII|lIIII|IIIII|IIIII

Further we consider an AFM impurity in FM host]
>0, J'<0 in Eq.(3)]. After passing to the local coordinate
system at the impurity site, we have to use the representation

0.00

o
—
[\
w
EN

FIG. 3. The distribution of magnetization around the impurity Ss =V2S'b}, S5=—S"+blbo+ (28 +1)did,,
for the same parameter values as in FigT £0.3]. Arrows show
the value of magnetization disturbance at the impurity $Re=0). 1 28 +1
—bgbobo> -2 ’s

S%-\25

bo— dld,b,,
OZS’ oYolo

being replaced by zef@and spin-wave theory with introduc-
ing pseudofermionsSWHF. We see that the impurity mag-
netization has an anomalous behavior at temperatlires whereb],b, are the Bose operators adf,d, are the Fermi
~J'. The inset of Fig. 1 shows this dependence at differenbperators. Then, in the mean-field approximation, the Hamil-
Ha/Jd, J'1J. A sharp decrease of impurity-site magnetizationtonian (1) takes the form

at T~J’ can be easily obtained already in the simple mean-

field approximation, but detailed description of this behavior 1 T + +

requires more complicated methods. The standard SW, as 1= _‘]i HZ&#O &iivolaiai—al, 2+ (25+1)bib;]

well as the SWF solutions, does not show this anomaly, so '

we can conclude that it is caused by both dynamic and kine-

(21)

matic interactions of spin waves. The situation is similar to + |‘],|2§ {g[afsa(g— boas+ (28" + 1)b2;b5]
the 3D case where using the Tyablikov approximation results
in a strong modification of the magnetization behavior in this +&'[blbo—blal+(2S +1)cco ]}
temperature intervdf One can see that, owing to a sharp
decrease of’', the correlations between the impurity site and _ o Arata T, _
its nearest neighbors decrease with temperature more rapidly +i;) (Ha—wolarai+ (25T 1)bibiJ+ (Ha~ ro)
than those in an ideal crystal. . ) .
In the ground state the disturbance of magnetization is X[bgbo+ (28" +1)coCo], (22)

localized at the impurity site and equa@s—S. To calculate
the magnetization distribution around the impurity at finite
temperatures we need the full mati& It may be shown

where

- < tot
(see, e.g., Ref. JQhat the latter quantity is given by §=So+(doa),
- 1 - §'=Sl+<a5d0>.
G=G"+GNovV——G™, (20) , , :
1-Go% As in ferromagnetic case, we use the approximagpn, s

=¢u (i,i+6#0). To diagonalize Eq(22) we introduce,
following Ref. 10, the “hole” creation and annihilation op-

where G is the submatrix ofGQ with i=0, ...,4, | T . .
! eratorsa,, ao by the canonical transformation

=0, ... N, andGN? is the conjugated matrix. Using Eq.
(20) we can find the averages needed. The results of numeri- ap=d}, al=—d,.

cal calculation of magnetization disturbance for different val-

ues ofd’/J, H,/J are presented in Fig. 3. One can see thatAs well as in the case of FM impurity, we use the approxi-
at R>0 all the results practically coincide; this takes placemation(8). We introduce also the Green’s functiofis) and
also in the limiting case wher& =0 (or in the case of the represent the Hamiltonian as H40) with the parameters of
vacancy withS’=0). One can see that the change of mag-the matrixV, Eq. (16),

netization around the impurity rapidly decreases with in-

creasing distance from the impurity site, so that the magne- Y'==3§+3én, e=—J"E-JIEwt dpol4,

tization disturbance practically vanishes at the distance of

four coordination spheres. y=J'E&+Ién, p=JE—JETtOu,.
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FIG. 4. The temperature dependence of the magnetizations for
impurity site Sy, and for nearest-neighbor sit& in the case of
antiferromagnetic impurity in the ferromagnetic host wih- S’
=1/2, Hy/J=10"3, J'/J=-0.15 (solid lineg, and J'/J=—1
(long-dashed lines

FIG. 5. The distribution of magnetization around the antiferro-
magnetic impurity in the 2D isotropic ferromagnet &0, J'/J
=0.15(solid line), andJ’/J=0.05 (dashed ling

so that the total disturbance of magnetization eq8als’ .*°

Then we have the same equatiti?) for the full Green’s ~ The distribution of magnetization around the impurity site is
function as in the case of FM impurity; the self-consistencyShown in Fig. 5. At largeR the contribution from the pole
equations also have the same form as qu) and (19) W= —wo giVeS the main contribution to the magnetization
Unlike the FM impurity case, the full Green’s function has adisturbance which is proportional to expRyw,/J)/R and
pole atw= — wy<0.2° To take into account the contribution differs from that in the ® casé® by a preexponential factor
from this pole to the averages needed we deform the integranly.

tion path in the spectral representation for the Green’s func-

tion in the complex plane: IV. THE CASE OF AN ANTIFERROMAGNETIC HOST
t 1(+= R Now we consider an antiferromagnet with the Hamil-

do 1

The closed contou€ has anticlockwise orientation and is
selected in such a way that all the singularitiesGgfw) lie
inside C, but all the frequencie®,=2m7nT(n#0) lie out-
side it. The last term in Eq23) corresponds to the contri-
bution fromw=0, which is to be subtracted explicitly. "

The results of numerical solution of Eq&l8) and (19) S =\/2—Sa,
with the use of Eq(23) for different values of impurity-host
coupling are presented in Fig. 4. _

The AFM impurity induces the disturbance of host mag- S = V2s
netization already af =0. Using the sum rule

with J;;<0,7;;<0. In the case of two sublattice’s,B and
for the antiferromagnetically coupled impurity spin in the
sublattice we have to use the representation

S=S—ala—(2S+1)clc;,

1
al— Z—Sai*ai*ai

2(25+1)
- TarCiTCi (27)

forieA and
7, IM[Gji(w+i8)— G (w+id)] (24)
' ' S"=\2Sh, S'=—S+bib+(25+1)did;,
J
=—Imindef1-G%w+id)V] (25) - 1 2(2S+1)
Jo S =\2s bi_z_sbinibi T T o5 didib, (28
which follows from Eq.(20) and taking into account that
def1—G%w)V] has a zero ab=— w, we obtain for i e B wherea/ ,a; andb/ ,b; are the Bose operators and
¢/ ,c; andd!,d; are the Fermi operatorgor i=0 one has
b ba)e_ = ata ). 26 again to replac&— S’ in this representatignAfter standard
{bo bo)=0 §o< " i)T=0 (26) decouplings the Hamiltonian takes the form
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0.20— 3 020 — 010
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0.00 ool o Tova oo 4™ 0] 0.00 0.40 0.80

000 010 020 030 040 050 T/7

T/J FIG. 7. The temperature dependence of the short-range order

FIG. 6. The temperature dependence of magnetizations for imParameters, £’ and correlation functiok = —(SoSy) for the same
T . L. ) parameter values as in Fig. 6. Arrows show the value of thel Ne
purity site Sy and nearest-neighbor sit&; in an antiferromagnet

- e , temperature.
with S=S'=1/2, H,/J=10"", J'/J=0.15. Dashed lines show
the corresponding results for a ferromag(feg. 1). NIRRT
w
r= m s Q=)\—\/)\2—w2,

H= ZA& |35+ 5l & i+ LA @ — by, 52+ (25 + 1)cf ¢ ]

e A=|Jolém+Ha— 1.

ﬂ;g 95,1+ 4l gi,i+6[biT+ bivs— bl Al Using the approximatiori8) we get the same expression

for the Green’s function(17) with éo(w) being the 5<5
+(23+1)Cr0i]+_2 (HA_Mi)[aiTai_F(zsi"_l)CiTC] supmatrix ofGin(w),.and analogqusly foB(w). !n this no- .
ieA tation the self-consistent equations for the site magnetiza-

tions and short-range order parameters have the same forms

+ 2 (HA_Mi)[bini+(25i+1)d;rdi]v (29) as in FM case, see Eq4.9) and(18). In the case of the pure
=B system we now hav& =G, and we again reproduce the
where results of Ref. 15.

The results of numerical calculations for the AFM impu-

rity system case are shown and compared with those for the
Ha=(2S—- 1)D+SE | 75 i+ 4l (30 FM case in Fig. 6. If the impurity spin is weakly coupled to
: the host, the behavior of magnetization in AFM and FM

and
0.20
&ivs=Sot(blial), &irs=S+(abiis). (3D C
For the correlation functiol we have the same expression 0.10 L
(9) as in the FM case with=&q;,£' = &;. To diagonalize N
Eqg. (29) we introduce the operators a -
. L
. = 000 [~
a IieA 2 -
A- = . -
"o/ ieB L
and the Green’s functions: 0.10 -
Gij(w)=((AlA])), N
. 020 ! ' '
" hieA 0 10 20
=Gy rt ijeB (32) R
1, otherwise, FIG. 8. The distribution of magnetization around impurity in the

2D isotropic antiferromagnet &=0. The inset shows the picture
where at largeR.
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situations is very close, except for the region near the mageontribution to the disturbance of sublattice magnetization
netic ordering temperatureT(,>T. because of quantum comes from the frequencies<J. Expanding Eqs(20) and
fluctuationg. At the same time, the nearest-neighbor magne{32) up to first order inw/J, we derive

tizations are strongly different and demonstrate a behavior

that is typical for the corresponding hosts. One can also see 5(A$Ai>~1/Ri3. (35

that SSWT leads to unambiguous results at Towvhere the  note that in the 3D case this quantity demonstrates a more

impurity magnetization turns out to be greater than the hoﬁtapid decrease B, which may be obtained in the same
one. The difference between magnetizations of impurity angy,anner. ’

host increases with decreasing the valueJ&fJ and de-

creases with increasing temperature. Thus SSWT predicts V. CONCLUSIONS
strong influence of quantum fluctuations on magnetization in T lud h . . d 2D ith i
the case of weakly magnetic impurities. o conclude, we have investigate magnets with im-

: ) purities for different signs of exchange integrals within the
The results of calculating the short-range order paramg - - ework of self-consistent spin-wave thedhy215 This

, : . LT
gte_lr_ig,f and tr;e Cﬁrrelatlon functl?ﬁ "?“et presentted n dF'g' theory permits us to calculate both magnetization distribution
- The parametef has a nonmonotonic temperature €PEN"3nd the correlation functionshort-range order parametgrs

dence. At the same time, the temperature dependence of trfi‘?)r T=0 modifications of the results of the standard spin-

correlation function of the impurity spin with its nearest ..o theory are small. At the same time, for finite tempera-

neighbors is monotonic and more rapid than that for correlagres, corrections owing to dynamic and kinematic interac-

tion functions between spins in the host. tions of spin waves turn out to be important. It should be
To calculate the total magnetization disturbance we usgtressed that despite the absence of long-range order in the

the sum rule for the Green’s functioK32) isotropic 2D magnets af>0, the temperature dependence

of the impurity-host correlation functiol, Eq.(9), is similar

to that in the 3D case, although in the latter case the main

contribution toK equalsS,S;.
The distribution of magnetization in the ground state was
d 0 ) investigated in detail. In the nearest-neighbor approximation
= minde{1-Gw+idV]. (33)  considered, the host magnetization disturbance decreases
rapidly with distance from impurity, and the total change of
Since det(+G°/) has no zeros atv<0, we obtain at Magnetic moment equals S=S’ depending on the sign of
T=0 J’. More interesting situations occur in the case of the long-
range exchange. So, in the case of FM impurity in the FM
1 X host with sufficiently strong negative next-nearest impurity-
SM=S'—S— g Im Indef1—G%w+i 5)\/]900:5' —S. host exchangd”, the total magnetization change equals

7> (—1) IM[Gji(w+i8)—Gl(w+id)]

(34) SM=S'—S—22,S (36)

This result is valid also for a vacancy if we pgt=0. For a
ferromagnetically coupled impurity we have to replace in Eq
(349 S'——-9'. h

The distribution of magnetization around the impurity in
the ground state of a 2D isotropic antiferromagnet is shown _ar
in Fig. 8. The magnetization of each sublattice decreases, so OM=S'=5+22,5 S
that corrections to the host magnetization have alternating It would be of interest also to investigate the problem of a
signs. The values of sublattice magnetization disturbance amrrent carrier in the AFM host within a similar approach
close to those in the spin-wave theGnjit large R, the main  (e.g., within thet-J model, cf. Ref. 11

with z, the corresponding coordination number. In the case
‘of FM impurity in the AFM host with large positivé” we
ave

*Electronic address: Valentin.Irkhin@imp.uran.ru 8C. Yasuda and A. Oguchi, J. Phys. Soc. J§).2836(1997).

1G. Xiao, M. Z. Cieplak, and C. L. Chien, Phys. Rev.4R, 240 9V. N. Kotov, J. Oitmaa, and O. Sushkov, Phys. Re\b® 8495
(1990. (1998.

2A. M. Finkelstein, V. E. Kataev, E. V. Kukovitskii, and G. B. °Yu. A. Izyumov and M. V. MedvedevMagnetically Ordered
Teitelbaum, Physica @68 370 (1990. Crystals Containing ImpuritieConsultants Bureau, New York,

SA. A. Romanyukha, Yu. N. Shvachko, Y. Yu. Irkhin, M. L. 1973.
Katsnelson, A. A. Koshta, and V. V. Ustinov, PhysicalZl, IA. Auerbach, Interacting Electrons and Quantum Magnetism
276 (1990. (Springer, Berlin, 1994

4T. Yanagisawa, J. Phys. Soc. Jii0, 2823(1991). 12M. Takahashi, Phys. Rev. B0, 2494(1989.

SN. Bulut, D. Hone, and D. J. Scalapino, Phys. Rev. L&#.2192  3D. Yoshioka, J. Phys. Soc. Jpb8, 3733(1989.
(1989; N. Nagaosa, Y. Hatsugai, and M. Imada, J. Phys. Soc*V. Yu. Irkhin, A. A. Katanin, and M. I. Katsnelson, Phys. Lett. A
Jpn.58, 978(1989. 157, 295 (1991); Bang-Gui Liu, J. Phys.: Condens. Mattér

6T.-K. Ng, Phys. Rev. B54, 11 921(1996. 8339(1992.

’G. B. Martins, M. Laudkamp, J. Riera, and E. Dagotto, Phys.’®V. Yu. Irkhin, A. A. Katanin, and M. I. Katsnelson, Phys. Rev. B
Rev. Lett.78, 3563(1997). 60, 1082(1999.



14 786 V. YU. IRKHIN, A. A. KATANIN, AND M. I. KATSNELSON PRB 60

16y, G. Baryakhtar, V. N. Krivoruchko, and D. A. Jablonsky, 58, 351(1983].
Green’s Functions in the Theory of Magnetidin Russian 7. A. Popovich and M. V. Medvedev, cond-mat/9803Z06pub-
(Naukova Dumka, Kiev, 1984 Solid State Commur46, 613 lished.
(1983; Zh. Eksp. Teor. Fiz.85, 601 (1983 [Sov. Phys. JETP 18, Rastelly, A. Tassi, and L. Reatto, J. Phys7,(1735(1974).



