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Dynamic equations for individual spins in materials with magnetic order: The ideal ferromagnet
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The time and temperature dependence of individual spins is studied in an ideal ferromagnet. Starting from
the Heisenberg Hamiltonian in a magnetic field and, building on linear-response theory, we derive the linear-
ized microscopic analogy to the macroscopic Landau-Lifshitz equations of motion for magnetization. The
dynamical equations take into account the influence of spin correlations in addition to the molecular field. In
order to illustrate the validity of our approach, we calculate the temperature-dependent spin-wave spectrum and
Landau damping by employing a finite-temperature perturbation theory for spin operators. The latter is adapted
to suit higher-order spin-correlation functions which can be described by simple quasiparticle interactions with
the spin system. Our results agree with those established on the thermodynamics of the Heisenberg model. In
addition, we provide a method of how to deduce macroscopic equations of the Landau-Lifshitz type from first
principles, including temperature dependence and damp8@j.63-18289)06141-X]

[. INTRODUCTION correlations. These correlations give rise to effects such as
the damping of the motion of the spin system and the tem-
An effective way to find out the characteristic propertiesperature dependence of the dynamic parameters. They also
of ferromagnetic materials is to study their specific responsétroduce memory effects on how the system was perturbed
towards a magnetic field. A relation that describes the conby the external field.
nection between this field and the magnetization of the ma- A brief formulation of the problem was communicated
terial is provided by the macroscopic Landau-Lifshitz equa-before together with some preliminary resdlidere, we de-
tions of motion! However, in past years experimental work velop this approach in a more systematic manner. To keep
advanced to the limits of macroscopic physics when investithe calculations simple and focus on the main aspects of the
gating magnetic structures. This led, for example, to the obtheory, we restrict our analysis to an ideal Heisenberg ferro-
servation of exchange-dominated spin-wave resonance spemagnet. In the first part of the paper the basic equations of
tra and traveling spin waves in ferrite fill®§ or the  motion for the average of individual spins are introduced.
magnetization reversal of single-domain particles whichTheir structure is a hierarchy, allowing, for example, to sepa-
might serve as magnetic memory elementsThe former rate single spin-wave excitations from spin-wave correla-
effect is based on exciting very short spin waves, whereagons. In the second part, we address the following two ques-
the latter on the smallness of the structure. On the othetions: Does our approach allow one to obtain previously
hand, the theoretical approach to the problem of magnetizeestablished results on the thermodynamics of the Heisenberg
tion dynamics still remains founded essentially on the theorynodel; and is it possible to derive from the microscopic
of Landau and Lifshitz, i.e., on a macroscopic model. Al-equations macroscopic equations for the magnetization, still
though this model gives a good understanding of the undetincorporating such effects as temperature dependence and
lying physics, a natural limit is set by this model to a suffi- damping? By applying a finite-temperature diagrammatic
cient description of the experiments when using ultrasmalperturbation theory, solutions to these problems are provided
wavelengths or sizes. for the example of an ideal ferromagnet. The perturbation
This paper deals with the development of dynamic equatheory builds on the diagram-technique developed by
tions for the average of individual spins in magnetic orderedzyumov, Kassan-Ogly, and Skryabifi'! Here, we adapt it
materials or, in a sense, with the derivation of a microscopid¢o deal with more complicated three-spin correlation func-
analogy to the macroscopic Landau-Lifshitz equations. Howiions as they arise in the derivation of the equations of mo-
ever, there are significant differences to the classical treation. In principle, this theory may be used to describe the
ment. As our approach is a microscopic one, it is possible talynamics of individual spins for all temperaturésHow-
obtain all material properties, described by various magnetiever, in order to make contact with earlier treatments on the
susceptibilities and the equilibrium magnetization, from ba-thermodynamics of the Heisenberg model, in particular with
sic principles. What is more important is that individual those of Stinchcombet al!? as well as Vaks, Larkin, and
spins become correlated. This happens as a time-dependd®ikin,>'* we exclude the region very close to the critical
external magnetic field drives the system out of equilibrium temperaturel . of magnetic ordering and examine the large
by exciting the individual spins. In this way, the spins inter-range of temperatures, where the principle features of ferro-
act with each other, not only as if each of them is surroundednagnetism are pronounced rather than those of phase transi-
by an average Weiss molecular field, as in the classical cas#on.
but in a way that takes into account the nonequilibrium spin  In subsequent publications we will develop our approach
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further to describe more realistic systems such as magnetmorrelations in the dynamics of an ideal Heisenberg ferro-
multilayers and single-domain particles. In particular, the dy-magnet in Sec. V. Further, we discuss briefly the temperature
namic equations will include apart from exchange alsodependence of the corresponding spectrum which agrees
dipole-dipole interaction and anisotropy effects. Extensiongvith previous solutions in the limit of an uniform excitation

to include antiferromagnetic and ferrimagnetic crystals ardn an infinite lattice. What is more important, we show how
also planned. Based on these dynamic equations, we hofe obtain macroscopic equations of motion for the magneti-

that it will be possible to solve many outstanding problemsZation that depend on temperature and include damping. In
in the field of magneto and nanoelectronics. conclusion, we summarize our results and point out further

Previously, different attempts were made to develop th&lirections in Sec. VI.
theory of dynamic properties in magnetic ordered systems,
for example, using the Lagrangi@nor Hamiltoniart® for- Il. MODEL OF AN IDEAL FERROMAGNET
malism, by obtaining dynamic equations from simple sym-
metry consideration¥, or in the form of hydrodynamic
equations of spin wave$.However, the obtained nonlinear
equations still retain the form of the original formulation by
Landau and Lifshitz. Besides their macroscopic nature, th

In the present paper we consider the case of an ideal fer-
romagnet where the Hamiltonidgd=H+H, is a sum of
contributions arising from the quantum-mechanical exchange
interaction and the Zeeman energy. For our purposes, we

o : . oose the assumption of localized magnetic moments at the
main disadvantage of these approache; s that dampl_ng ailtice sites, where the exchange interaction between them is
temperature dependence cannot be derived from basic Prilascribed by the Heisenberg Hamiltonian
ciples, so that they are at best just added as phenomenologi- '
cal terms.

On the other hand, it is possible to solve the dynamics of ~ He,=—3> " 1;S-S=—3>" 1;;(S S +5S). (1)
an individual spin based purely on quantum-mechanical con- b b

siderations such as the diagonalization of the respectivgyq prime indicates that the sum is only taken at different

Hamiltoniart® or solving the equation of motion for spin lattice sitesi#] over a product of spin operato&* and
operatorg? Unfortunately, these approaches neglect the ther, N . .

; ! . S’ (m,v=+,—,2) which obey the following commutator
mal fluctuations of the system which are often of importance.’

A way around this problem are thermodynamic consider—relat'onS:
ations on the magnetic materials, in particular, using quan- + o z. 7 o +
L - ' R S,.S |1=26;S; S.,S =265 . 2
tum statistical mechanics. Although quantum statistical me- [ ] St L j ] iS @
chanics allow for a broad range of powerful methods o yieldThe coefficientd ;=1 are the exchange integrals. Besides

a proper description of magnetic materials, most of the obneglecting contributions such as dipole-dipole interaction or
tained results have been restricted to rather ideahnisotropy effects, the assumption of localized moments is a
situations:*~***! Some interesting generalizations of thesegross simplification of the physical reality. In order to de-
approaches to the solution of more realistic problems havecribe magnetic materials and structures more accurately,
been made, for example, by Erickson and Mills within thetheir full electron system has to be taken into account. Nev-
context of ultrathin ferromagnetic films as they occur inertheless the Heisenberg model is thought to be suitable for
multilayer magnetic materiafs. Nevertheless, when dealing many ferromagnetic dielectrics and semiconductors, whereas
with particular boundary problems, the Landau-Lifshitzit js less satisfactory for metallic ferromagnets where the
equations remain the only universal and effective approachtinerant contribution of the conduction electrons is signifi-
to the description of magnetization dynamics. Our aim.cant. If, however, as is standard practice, the exchange inte-
therefore, is to compromise between the different views angyrals are not calculated from basic principles but taken from
to advance to dynamic equations for individual spins thalexperiments, the experimental value will already contain the
combine some of the universal features of the macroscopiginerant electron contribution and the localized electron pic-
approach and the rigor of the quantum statistical formulationyyre is still a reasonable approximation for a wide range of
In the macroscopic limit, we obtain equations of the Landaumetals with magnetic ordér. This is in particular the case
Lifshitz-type, however, with the important addition that spin for the rare earths which have a specialized forrh ofiue to
correlations are still present, thus meeting the proposed olhe indirect coupling of the localizeidelectrons through the

jectives. _ _ conduction band. The second term in the Hamiltonian relates
The remainder of the paper is structured as follows: Ing the Zeeman energy,

Sec. Il we introduce and discuss the simple model of an ideal

ferromagnet. Section Il is devoted to a general derivation of

the dynamic equations for individual spin averages which are Hz= gue>X hi()-S=gus> {3(h (HS' +h (HS)

then linearized and discussed in some detail. The equations ' '

of motion are shown to represent a closed set of differential +h¥(t)Ss, 3
equations, so that knowing the equilibrium properties of the

system, any dynamical property of the system can be calcudnd describes the interaction of the localized moments with
lated even in the close vicinity of .. The diagrammatic an external time-dependent magnetic fidddt) =h(r;,t)
perturbation theory for spin operators is laid out in Sec. IV.with cyclic components defined in analogy to the usual defi-
There, we also calculate the three-spin correlation functionsition for spin operators, i.eh”(t)=h}(t)=ihY(t). The
which are described by simple quasiparticle interactions oBohr magneton is defined ag;=|e|%/(2m.c), andg is the
the spin system. These functions are used to describe theandefactor.
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lll. DYNAMIC EQUATIONS FOR AN INDIVIDUAL SPIN dynamical and statistical properties of the system, we study
AVERAGE two types of fluctuations more or less simultaneously: coher-

eTnt fluctuations created by a time-dependent external mag-

. I_n_order to study the time gnd temperature erendence Yetic field and noncoherent fluctuations due to spontaneous
individual spins embedded in a ferromagnetic crystal, we

: o ! .. “and thermal excitations of the spin system. Whereas coherent
average the spin operators over the nonequilibrium St"J‘t'St'CE’rﬂuctuations exist only in the nonequilibrium state of the sys-
ensemble of the entire system,

tem, noncoherent fluctuations are an inherent property of its
(S)=Sp(pS], (4) thermodynamic ground state. T_his does, however, not imply
that they can be regarded as independent of each other. In
where Sp denotes the trace. The density operaftr con-  fact, quite the opposite is the case, and this property will be
tains the complete information about the ensemble. It is thuexploited in the calculations. In contrast to the equation-of-
sufficient to use the von Neumann equation of motiondor motion technique for Green’s functions, the operators in Eq.
to describe the time development of the systémg,p  (6) are not tied to the Heisenberg presentation and thus time
=[H,p]. Together with Eq(4) this leads to an equation for independent. Therefore, we can express the nonequilibrium
the spin average, correlations in terms of equilibrium correlations, by lineariz-
ing them in the time-dependent magnetic field. To identify

it (S)=([S HD). (5 the leading-order terms of the equilibrium correlations, we
With help of the relation$2) the commutator in Eq5) can ~ US€ perturbation theory. The fprmer is Qealt with in the fol-
be calculated. Introducing an operator describing the spifPWind, whereas the latter is discussed in Sec. IV.
fluctuationss/*=S"—(S"), we replace Eq(5) with the fol- S _ _
lowing set of equations: A. Linearization of the equations of motion

The experiments under consideration shall measure the

i (S )=hi el SHIT*—H 7 F, (68 Jinear response to the external time-dependent magnetic
. B ~ field. We can thus restrict ourselves to the calculation of the
—i9(S ) =9lhi e S)] =2 F, (6b) averagess‘s;) to first order in the perturbing field. By sepa-
) rating the external magnetic field into its static and time-
2i (S =7lhi e(S)] " —A1FT. (60 dependent contributiortg(t) = hy+h; _(t), the Hamiltonian
For convenience, we introduced the following notation inof the system is rewritten in terms of its static pdrtand its
analogy to the definition of a vector product: time-dependent perturbatiaf(t), i.e., H=H+V(t). We as-
sume without loss of generality that the static component of
[hi e S 1" =h{'e(S) —hi e S, (7)  the magnetic field is parallel to the coordinate such that
and an effective magnetic field ho=(0,0,—|h§|). Further, in a linear approximation of Eq.

(6) the time-dependent field can couple to the averd&s
1 only in an experimental setup, where it is applied perpen-
hfer(t) =h{*(t) — Q_E Ii]<S]'u>' 8 dicular to the static external field. Therefore, this more inter-
MBj#i ; ; i
esting perpendicular case shall be treated here, hije.,
wherey=gug/f>0 is the gyromagnetic ratio. The fluctua- =0.
tions in the spin system correlate the spins with each other. Now, we turn to the linearization of the averagess))

These correlations are contained in the terms and first discuss the equilibrium case, where the oscillating
external magnetic field is switched off. In E(a) the op-

Fo=S | (($7)— (s7S2)), 9 eratorss™ are unpaired .and, therefore, the equmbrlumlaver—
! ]E;m i(sis)) —(s7s)) %3 ages vanish. Although in the case of Egb) these creation

and destruction operators are paired, the averages do, never-
. 4 . theless, not contribute. The reason is that the spin operators
Fi =; (s Sj )—(s Sj 2k (9b) are taken at the same time, so that the corresponding physical
: process are spontaneous temperature-independent quantum
whereo=+,—. So far no approximations were made andfluctuations which are prohibited by the assumption of com-
Eqg. (6) are exact. The second terms on the right-hand side qgflete localization of the spin moments, i.e#j. We can
Egs. (6a—(6¢) figure the contribution of the spin fluctua- thus focus only on the nonequilibrium contributions.
tions. Without the spin correlatior(®) the equations of mo- The time dependence of the density matrix can be found
tion (6) would yield a closed system of differential equa- by solving the von Neumann equation in linear approxima-
tions, that corresponds formally to the solution for thetion with respect to the perturbing fieM(t). Starting from
classical precession of a magnetic moment. It is necessary tauilibrium at an infinite early time, whevi(—=)=0, we
investigate these correlation terms further. switch onV(t) adiabatically. If we keep only terms linear in
A standard procedure would be to continue with the equathe perturbing field, the von Neumann equation leads to the
tion of motion technique and write an equation of motion for solution
the averagegs{'s/). In general, if we repeat this method, t
this would lead eventually to an infinite series of equations i Fa—iH =t )/E / iH(t—t')/%
of motion, which have to be approximated by decoupling P(=peqi/h fﬁwdt © V) pegle '
them at some stage. Since we are interested in the combined (10
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where pe,=exp(— BH)/Splexp(~ BH)} is the Gibbs equilib- where the retarded Green's functioh " (i, I;t—t")=
rium density matrix, anq8=1/(kBT) the inv_erse absolute —i/(2h) O(t—1") Splped S7(t),S7(t')]} is proportional to
temperature. When taking the trace &isj' as in Eq.(4), we  the Jinear magnetic susceptibility tensor of the system. The
derive for the nonequilibrium correlatiors), derivative in time oK, for example, leads to the relation

Frn=ane [ avnwsie-t), 4 S, (i85 ey KO (L1it—t)=dy (t—t)). (15
J

whereo# o (o,0=+,—). The contribution to th& coor-  Here, we made use of another spin operator describing fluc-
dinate vanishes, since we assunigd =0. Further, we in-  {,ations around the equilibrium average, i.af=S"

troduced the quantity —(S")eq. t0 separate the spin-wave-type energies obtained
. " . " by &ij
Gﬁr(t—t'):;i L[ T A0t =t) =T (i, 1t =t)],
(12 &ij = &jj —gughi+ > li1{SPeq| = 1ij(Seq.  (16)
I #1
describing the spin correlations as an equilibrium property of _ _
the system in terms of the retarded three-spin Green’s fund/©M the spin correlations

tions - , , . ,
D (t—t')=(S)eqbu (t—t") =gy (t—t"),  (17)
I jit—t)=— I—@(t—t’) expressed by the second term of definitid) in terms of
78T 2h the three-spin Green’s function introduced above. This right-
o g = hand side of Eq(15) can be regarded as a generalized func-
X Splped s ()s{(1),s7(t")]}, tion of intensity including the spin correlatiori$2). Taking

(13  the complex conjugate of E15), an expression foK "), is

" o ) ) L obtained as can be seen from its definition. Similarly, the
andI",; —which is defined in analogy. The quantitff takes  Hermitian conjugate of the right-hand side of E#3) leads
the role of a susceptibility tensor, because the contributiongo a simple relation between the three-spin Green’s func-
of the nonequilibrium correlations to E¢(p) are proportional tions, e_g_rgf_)ﬁ:(rgl‘_)’f, The Hermitian property in the
to the driving of the time-dependent fielo’ _(t"). This indices+ and — of the linear and correlation susceptibility
“correlation” susceptibility describes the deviation from the tensor is what one expects for gyrotropic materials such as an
classical precession of the average spins due to the influenggeal ferromagnet. Replacing the Green’s function in Eq.
of the higher spin correlations. In principle, we could almost(14) with the help of the relatio15), we find the following
stop our analysis here, because the only problem that resquation for the perturbing field:
mains to be solved is to calculatq, for instance, using a

modified version of the diagrammatic perturbation theories N 1 ) . .
of Refs. 10-13. hi ()= ——=—1{2 (ihda—ej)(s (O)+F (1),
However, we set out to derive the microscopic analogy of 918(S)eql |

the Landau-Lifshitz equations. These microscopic equations (18)

ought to be as convenient as the macroscopic Landawvhich relates the time-dependent field to the spin-wave-type

Lifshitz equations when solving different applied problems.energies and the spin-correlations. In the same way, we de-

In particular, such problems may be concerned with explorfive an analogous equation for the other cyclic component of

ing the free oscillations of a spin system, where a timethe time-dependent magnetic field. Now, if we insert Eq.

dependent external field is absent, and one would like t@18) into Eq.(11), and integrate partially ovet, an integral

calculate the eigenfrequencies and wave functions incorpaquation for the nonequilibrium correlations is derived

rating the effect of spin correlations. In such a case, inserting

Eq. (12 directly into Eq.(6) would be rather awkward. As a P . ,

rule, analyzing the eigenoscillations of a system, we are not fﬁ(t):E, <Sﬂz>eq1J:wdt s (W) =Ry du—enr)

interested in the question of how they were excited. If one M

would, however, use E@l1) directly, one needs to know the + 6 ,]-T(t’)}g;,(t—t’), (29

entire history on how the system was driven out of equilib- o .

rium. We, therefore, repladef _ in Eq. (11) in terms of(s") which no longer depends explicitly on the external field; and

first and only then insert it into EdB). again forF; (t) analogously. As can be seen from E#9),
Repeating the steps performed in deriving Etfl), we  this equation can be Fourier transformed in frequency, lead-

calculate the linear-response result in the perturbing field foing to a system of simple algebraic equations

the nonequilibrium averages)’). As a result, we find for the ©)

derivative in time, Fio p ”

7 Syer 2| Hi (y(w) (S7), (20)

where® {(w) =(S)eqdii —sii (@) is the Fourier transform of
(14)  the generalized function of intensit{7), and

3 @f(w)
&t<sf’)=g,u82 f_wdt’ he_(t') o KU it —t),
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1 introduces the effect of “memory” in the system, when the
7—[5(1)(0)):—Z E (Ihwén,—s”,)gﬁ,(a}). (21) spin oscillations at a given moment depend directly on the
(S eq 1" oscillations at an earlier time. The time of this memory is
With the help of linear algebra, we now solve Eg0) for ~ given by the interval int—t" in which the kernel™(t
F?(w), leading to an exact expression for the nonequilib-—1t") differs significantly from zero. Equatiori&4) describe
rium correlations, then a non-Markovian proce$$.
Further, we would like to stress that with help of E&4)
it is straightforward to find and investigate the eigenoscilla-
tions of the system which exist fdr7_(t)=0. As can be

_ o een from the memory kernel, the properties of these oscil-
They are expressed in terms of the average of the |nd|V|duq tions do not depend on the way they were excited. It would

;pirwlg _almd I? rr:onlo_cal effelctiye magnetic field that Containshave been much more difficult to show the validity of this
implicitly all the spin correlations, assertion if we did not exclude the time-dependent field

ﬁ—lf?(w)zzl Hii(w)(S7 (). (22

D7, (w)(S?) h7_(t") from the expressiorill). If it is necessary to find
H(w)= > — - ' equ‘T,,(l)(w), (23)  the response of the spin system to a magnetic fild(t),
' D%(w) Egs. (24) become nonhomogeneous and their solutions can

whereD“(w)=det|®(w)|| is the determinant of the spin- be written in terms of a superposition of the free oscillations.
correlation intensity, anB 9 () its algebraic complement. If Eduations(24) are closed in the sense that they only include
we would have taken the approximationdd(w) the average of individual spinsS*) and in contrary to the
%<Sz>eq5” Eq. (20) would obtain the same form as Eq equations of motiori6) do not include nonequilibrium func-

(] ) . .

(22). Thus the quantity}{],, corresponds to the effective tions of higher order.
magnetic field(23) to first order in the spin correlations
s{i(w). When taking the inverse Fourier transform of Eq.
(22) back into the time domain, we obtain the required mi-
croscopic analogy of the Landau-Lifshitz equations. Thus, Before, it was pointed out that the coherent spin fluctua-
we rewrite Eq(6) in a form that depends only on the averagetions, created by the external magnetic field, depend on the
of an individual spin thermal and spontaneous fluctuations. As a consequence, we
could use linear-response theory to decouple the equation of
: N +z_ R N motion systematically and express the nonequilibrium aver-
(ST = erl S 2| J_wdt Hiy (t—t")(S(t")), ages(s{'s) in terms of the nonequilibrium averages of the
(249  individual spins. All spin correlations aof; in Eq. (6) are
taken care of by the nonlocal effective magnetic figl¢] or
. -\ _ -7 C e g the so-called memory kernel which is expressed in terms of
Fo(S )= e S)] 2| fodt Hi (=) the equilibrium three-spin Green’s functiof3). Introduc-
ing this field allows for a separation of the correlations into a
X(§ (1)), (24D hierarchy: Low-lying spin-wave-type excitations contained
where the square brackets are now linearized in the externdl i) interact with each other to form excitations of
magnetic field, higher order, whose excitation energies are given by the
poles ofD’. In other words, the theoretical description can
1 be viewed as a sequence of plateaus, where each plateau is a
[hi,eff<si>]ﬂ:(hia,~(t)_ — > Iij<SJq>)<S|z>eq self-consistent description of the system in analogy to the
9ue j# Landau-theory of Fermi liquids.
1 For example, the low-lying excitations are described by
- ( hi—— > Iij<SjZ>eq)<S.”>, an ideal magnon gas. The interactions between the magnons
Gue j7i lead then to higher-order excitations of the spin system. They
and we made use of the fact théB*)e,=0. The time- correspond either to the scattering of the individual magnons

B. Hierarchy of the linearized equations

dependent nonlocal magnetic field is defined as or to their coupling. If the coupled state corresponds to a
two-magnon state, Eq23) is comparable to what was ob-
” , »do (-t tained by Boyd and Callaway on the basis of a “ladder-
Hi(t=t")= fﬁszn(ﬂ)) e : (25 approximation” in low-temperature perturbation thedyn

a similar fashion, one could derive more complex coupled

The first term on the right-hand side of E@4) couples excitatic_)ng at temperatures.qlo_seTtp. On the other_hand, if
the cyclic coordinates with trecoordinate, i.e., the direction the deviations from the equilibrium value of the spin average
of the spontaneous moment. It is local in time and described'e small, i.e.5{/(S/)eq<1 andD’(w)+0, so that only the
the classical precession of the spin averages coupled indscattering of spin waves has to be taken into account, we can
rectly with each other via the Weiss molecular field of theuse Eq.(20) to solve for{ iteratively instead of applying
exchange interaction. The second term, however, correlatébe exact solutiori23). Thus one finds thath order iteration
not only the cyclic coordinates with tiecoordinate but also in the nonlocal magnetic field(, to be related to then(
the cyclic coordinates among each other. This integral term-1)th order approximation,
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st (@) expression for{S?).,, and the higher spin correlatiorsy
H (@)= St My (@) + ——H (@) [ 5 (12) or the three-spin Green’s functioR(" (13), respec-
I (Seq tively. These quantities can be found approximatively with

(26) help of a finite-temperature perturbation theory for spin op-
erators. In the following, we would like to demonstrate this
for the case of an infinite Heisenberg ferromagnet.

o

where’Hjjq)=0. To first order we obtain again E(R1). To
second order the solution is equivalent to the result of Dys
on’s second Born approximation in an infinite bulk system as

will be shown further down in the text. IV. DIAGRAMMATIC PERTURBATION THEORY
FOR SPIN OPERATORS

. Possibl h Ive the li i i . . .
C. Possible approaches to solve the linearized equations There have been various attempts to find an appropriate

In fact, Eq.(24) is the main result of our paper. The form algorithm for spin-operators in the past. A fundamental con-
of the integrodifferential equations have a more universatribution was given in particular by the works of Stinch-
character than presented here within the Heisenberg modebmbeet al? and later independently by Vaks, Larkin, and
and can be readily generalized to more realistic problem®ikin.'** Whereas Stinchcombe and co-workers used a
than that of an ideal ferromagnet. In the following, we treatlinked cluster expansion in the spirit of Kahn and
Eqg. (24) as an example and show how it can be applied to aJhlenbeck® Vaks, Larkin, and Pikin introduced fictitious
large variety of physical systems. fermion fields. The latter was reformulated by making ex-

First, there are spin clusters. Since E2) is a system of  plicit use of Wick’s theorem in an adaptation to spin opera-
2N coupled integrodifferential equations, it can, in principle, tors by Izyumov, Kassan-Ogly, and Skryabfi! Despite
be computed to any degree of accuracy, in particular, if thehe elegance of the formulation, their work seems to have
number of spindN in the system is not large. The same holdsfound rather little attention, and we thus take the liberty to
for the equilibrium value of the spin average, and the threerestate some parts of it in the following as well as to adapt
spin Green’s function. This is an interesting problem of itsthem to suit the calculation of the three-spin Green’s func-
own in computational physics. In such cases one can oftetion (13). It turns out that the three-spin Green'’s function can
neglect the dipole-dipole interactions and directly apply Eqbe described by simple quasiparticle interactions of the spin
(24). In_a similar fashion, one could treat random spinsystem.
systemg® The problem when dealing with spin operators is based on

A second class presents mesoscopic systems which can fiee fact that they do not commute with each other to yield
either one- or two-dimensional, or of the multilayer type. simplec numbers as can be seen from the relati@sThe
Whereas the former can be solved by Fourier transform intalgorithms allowing one to calculate the Green’s functions
momentum space, the latter is no longer translational invarifor Bose or Fermi particles with simple algebraic relations
ant in the direction perpendicular to the layers in generalhave to be replaced by a method which is adapted to deal
However, if the number of layers is not too large, the systenwith the consequences of more complicated relations such as
of integrodifferential equation€24) can still be solved. The [[[S",S],57],S ]=2S'. As is already shown with this ex-
direction, in which the system is translational invariant, canample, the role of thé&? operator is a particular one, since
be treated with help of a finite-temperature perturbatiomnpaired Cyc"c Operatorsi vanish, when tak|ng the equi_
theory for spin operators, similar to the one of three-|ipbrium average. The idea is, first, to get rid of all the cyclic
dimensional systems to be discussed later. In addition, ONgperatorsS™ in any average expanded th order in the
has to adapt the Hamiltonian with regards to the reduceghteracting part of the Hamiltonian with help of the commu-
dimensionality of the system, since in two dimensions ferro+ator relations(2), and then to calculate independently the

magnetic order is absent at finite temperatures in the HeiseRerages of the remainirsf operators. The averages are of
berg modef’ in contrast to most of the real systems. Forthe form

ferromagnetic films either dipole-dipole interactions or an-
isotropy terms need to be included as discussed by Yafet,

Kwo, and Gyorg¥® or Bander and Mill$° respectively. (TS(r) .. Fm)) = (TS(7) ... SUSB)) o)
The last class are macroscopic three-dimensional systems,* ~ * "7/ "= 4 (S(B)) 0y '
and we can pursue our analysis of E2¢) in the limit where (27)

the number of spins is large. The properties of such systems

depend only on the relative distance between spins at diffeiand are written for convenience as thermal or imaginary-time
ent sites so that one can take the Fourier transform of Ecpverages, where=it, and T orders operators in imaginary
(24) into momentum space. Further, the averdgg) is in-  time. While dealing with finite-temperature Green’s func-
dependent of site in equilibrium and is thus relieved of itstions, we shall sefi=1 for convenience. The operators are
index, i.e., (Se=(SHeq- Of course, also for three- then given in the imaginary-time Heisenberg representation
dimensional systems the Heisenberg model is only an insufs”(7) =exp(H) S* exp(— 7H) in the average on the left-hand
ficient description for realistic systems, since, for examplegside, whereas in the averages on the right-hand side by
the long-range dipole-dipole forces can never really be neS*(7)=exp(Hy) S*exp(—™y). Here, we separated the
glected due to the physical boundaries of any system. Newdamiltonian into a unperturbed and interacting part. The av-
ertheless, as pointed out before, the Heisenberg model iseages(. . .) o) in Eq. (27) are thus determined by the den-
good example to demonstrate the validity of our approach. Isity matrix pg=exp(—BHg)/Sp{exp(—BHg)} according to
particular, to solve Eq(24) explicitly, we have to find an Eq. (4), and the finite-temperatui® matrix,
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(—1)" There is one important point to stress. To make contact
with the theories of Stinchcombe and co-workées well as
n Vaks, Larkin, and Pikil®"**we included the Weiss molecu-
B 8 lar field in the unperturbed Hamiltonian. This assumes that
xf dry ... f d7 [ THin( 1) - . . Hine(70) 1 the exchange interaction has a large radius of interaction, so
0 0 that it is possible to expand in powers ldf,;.

n!

S(B)= 2

(28)

Although there are different ways splitting up the equilib- A. Wick’s theorem for spin operators
rium Hamiltonian in its unperturbed and interacting part, we  Before discussing the details of Wick’s theorem, we
take for convenience the approach which contains the Weisgould like to give an example and calculate the following
molecular field in zeroth-order such th#i=(Hy—Eg) average:
+H int»
<S;(72)5I(7'1)>(0) if m<r
<SI(7'1)S;(T2)>(O) if 7>7,.

(32)
Since the time development of the spin operators has the
usual form,S"(7)=exp(-yn)S" and S (7)=expyn S,
we obtain with the help of Eq2),

Eo=— :NI(SH,, (298 (TS} (72)S; (1)) 0)=

Ho=—y2i aZ=(gmBhé—Io<SZ><o)>Ei S, (29b

Hin=—32" 1ir(S'S) +5(s})), (299
ii’

+ — — +
wherelo=3;.l;;. To separatey and Hy from Hiy, we (S (1251 (10)0)=(S1 ()% (m2)) o)
once more used a fluctuation operatef,= S~ (S*) (o), +2 51,0727 (Sh) ). (39)
however, this time describing the deviations at equilibrium_ ) _ _
from the local spin averages*) o). Eo is the Weiss energy This can be transformed, by using the |nvar|afce of the
of the spin system which takes the valueN1,S%2 at zero ~trace under cyclic ~permutations andS"(7)po
temperature. =exp(—By) poS'(7), into

Enlarging on the particular role of th® operators, we
assume for now, that we have transformed the numerator of (S3 (72)S; (71))(0)=2 126 Y2 ™ (ny+1)(S5) (),
the right-hand side of Eq27) with help of theS matrix (28) (34)
and commutator relation®) into such a form, that we are
left with averages containing onlg* operators. It is then
possible to calculate these remaining averages from the p
tition function of an individual spin. This is similar to calcu-
lating the magnetization in the Weiss molecular field or self-
consistent field approximation. Using the local partition lon,
function for an individual spin, i.e., for the constant tefy
iS not accounted:

where ny={exp(8y)—1}"* is the distribution function for
all?’_ose particles. We have thus reduced the average of two spin
operators to an average over a sin§feoperator. It is now
possible to define an unperturbed time-ordered Green'’s func-

TS (7,)S;
Kg%)(71_72)=—£< S (12)S1 (1)) o)

2 (S50

N
Z=Sp exn{ﬁE yiSZ), (30 n+1 if m<m
! = — 5lze_y(72_71) i -
: L . . n i .
where the index at is introduced for convenience, we obtain y 1~ 72
for the averages ove®” operators (35
o 0. Z This Green'’s function is not yet the spin-wave Green'’s func-
(S .. _S§>(O):u. (31)  tion of the true one-spin-wave, or one-magnon eigenstates.
B"Z To obtain the proper one-magnon Green'’s function, we have

to sum up an infinite series in the perturbation expansion as
will be shown later. However, the necessary diagram rules
have to be introduced first.

The Wick’s theorem for spin operators states that all pos-

A single-operator average is then proportional to the Bril-
louin  function  Bg(x)=[1+(2S) ] cth (S+1/2)x]

—(29) lcth(x/2) as in the Weiss molecular field theory,
(S1)(0)=SBy(BY) =b(By), whereas an-operator average gipie nairings betwees™ andS* as well as betweeS~ and

contains thenth-order derivative of the Brillouin function, S have to be taken under the condition that they should be
_h2 ’ : .

e"c?.&Sfit??(F)_tb +b 5I12; 12{?16 flrstdter;n ?? the right-hand  ime ordered®!* This means that we replace in the initial

side of the last example is the product of two spin average o e . )

and the second term accounts for the interactions in the mo%verage(TSI“ (T'_) Sy (T_” ). as given by the nu

lecular field approximation. In other words, a method is ob-merator on the right-hand side of Eg7), a pair of operators

tained that reproduces in its zeroth order the molecular field'ith one of the relations
result beyond which it allows to calculate, at least in prin- - , ©) -
ciple, all the contributions to any thermodynamic variable. S (11)S3(12) = +KiF (11— 72) S, (72), (363
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1 21 2 1 2 3
O el
a b C = + + + e
FIG. 1. Diagrams according to the pairing relatig8$). .- e _§

55(71)5;(72) -2 K(l%)(Tl_ 7,) Si(7p). (36b) FIG. 2. Molecular field approximation fdf _, .

In this way site “1” cannot take part in further pairings. In grams, the vacuum polarization graphs, cancel exactly all
Eq. (369 the operatoS, needs to be paired up again, how- those diagrams in the numerator that are not fully connected
ever site “2” can take part only in one further pairing which With an external operator either through the exchange inter-

results in the relation action or by forming blocks. Although this does not imply
that all external operators have to be connected with each
S; (71)S5(72) S5 (73) other, we replace foF>1 all S?-operators by their fluctua-

Oy oy , tion parts? in the initial average to describe only the corre-
=~ 2K (11— 1) K5 (72— 73) S5(73). (360 |ation effects, e.0.{S1S5)(0)=b’"61,. In order to calculate

There is still one more possible pairing. The operator in Eqthe nth-order expansion to an average containlirgkternal

(36b) S5 can be left as it stands or used for pairing up an_opgrators, one_thereforg has to draw only all copnected topo-

otherS~ operator. This changes the operator at site “2” into I09ic@l nonequivalent diagrams, where each diagram corre-

anotherS~ operator which needs to paired up again, so thafPONds to an analytical expression of the following kind:

site “2” takes part in three and only three pairings. This can

be expressed in a way as illustrated in the following ex- (—2)m= P H pim-1]
ample: 2"nl"m
S, . - (73)S, B B )
1(71)82(7-2)83(7-3) 4(74) Xf dTl...f dTnz Ill""
=22K{Q(r1 = ) K (ro = 73K (m3= 74) Si(7a). ° °
(360 xS, KO KOs s (37
n,n’

Thus, the initial average can be reduced to a product of
Green’s function&(?), averages of th&” operators, which  The factorP, is the number of topological equivalent dia-
can in turn be calculated via relatidB1), and a numerical  grams, ancb!™ 1 is the (m—1)th derivative ofb.1%

factor of (—2)™+, wherem,. is the number of pairings of
type (36b). A convenient way to represent the pairing rela-

’ . . . ) C. Derivation of the one-magnon Green’s function
tions (36) is in the form of diagrams as shown in Fig. 1, vatl g Hnet

whereK© is presented by a full line starting from & As pointed out before, the Green's functie® is not
operator, and then remainingS* operators are drawn as a compatible with the one-magnon eigenfunction. To obtain
circles. the one-magnon Green’s function, we calculate an infinite

series of diagrams as shown in Fig. 2. This series is of the
Dyson form, and, applying the diagram rul&s), we derive

B. Rules for constructing diagrams .
the dressed Green'’s function

We would like to calculate an average containingpin
operators. An expansion to the ordegiven by

b_1K7+(i,j;T—T’):Ki(jo)(T_T,)—EI ly1

(TS (7). .. U () S H7) S,  (100) . .. Ly

B

) Xf dr KO (7—7p)
X SE( 1) S (7a) ) (0) o '
similar to that on the right-hand side of EQ7) containsn XK_,(1,j;m—7"). (38
operator,,.. Each operatoH;,; depends on a pair of sites . .
[ gndi’ ove”rnwhich ong has tomstumPAfter we hatl)ve made use" Ed- (382 a rjeganve sigh oceurs due to the fact that the
of the rules(36) to draw all possible pairings, the exchange OPerators; is |,nternal forK_.(i,j;7—7') but external for
interaction between these palrs is represented graphically K-+(1.J;71—7"), whereas the overall sign in front of a dia-
as a wavy line to connect all thendnternal operators with 9ram is only determined by the number, of internal op-
each other. The essential difference to standard perturbatidifators. Taking the complex conjugate and the Fourier trans-
theory is now in calculating the averages overtheemain-  o'm of Eq.(38) in time and space, we obtain
ing $¢ operators. They form so-called blocks according to s
relation(31), where as function connecting two sites corre- K+—(k;wn):J d;eimn?E K, (i) e i
sponds graphically to a dashed line between two circles de- 0 ]
noting the remaining operators. b

The denominator on the right-hand side of E2j7) con- — (39)

tains only internal lines. Therefore, the corresponding dia- fon—ei’
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e : Foe (L5317
SR o b e b e . 1 1 .

i Spa e ST @k,
FIG. 3. Molecular field approximation fdf,,. (41)

Its perturbation expansion is represented in Fig. 4. Here, we

where 7=7—17', ri=r—r;, w,=2wn/(B), and e,= . : .
- gMBhg+ g(l OT_ | k)”arelindieeda;%e o7r-1re-r(n/z1)gnon eigsgnener-d'd not include second-order diagrams that form closed loops

gies. In a similar fashion the correlation between tfem- in the exchange interaction, since their leading term is of a

ponents of two spins can be calculated as shown in Fig. 3:higher order inH;y. o
The first diagram in the series is made of three parts: a

b’ straight line connecting, with s, a curved line connecting
KodKiwn) = m Sho> (40 & with s; , and a circle representing the remainsfgppera-

K tor. Thus, the diagram corresponds to pairing relati®6o).
which is static and cannot couple to a time-dependent magdrawing the diagram in a slightly different manner to the
netic field. Close to zero temperature its contribution is expne shown in Fig. (t), should draw attention to the fact that
ponentially small wherb™ <exp(~y,T./T). The result of the operators? and s; are at equal times. Therefore, the

Eq. .(3392) was obtaisned independently by TyablikdV, corresponding analytical expression in momentum and en-
Larkin,*? and Englerf® whereas Eq(40) was obtained by de ergy space is

Gennes and Villaif! as well as Brout and Englelt. We

need both of them in the following. bn
—b KO~ w)KP(0)=— —L, (42)
D. Calculation of the spin correlations lon—y
Now, we evaluate diagrammatically the three-spinwhere we used the convention thet< . This result is in-
Green's function I, —(i,j;l,7—7")=—(1/2)  dependent ok andq since we used only the local Green’s
X<TSiZ(T)Sj+(T)S|_(T,)>, whose Fourier transform shall be functionK(® and not the magnon Green’s functikn _ . In
defined as order to obtain the self-consistent solution fby, _, it

FIG. 4. Diagrams fol'{"” ., orT'¥) _. When

Wp— — Oy
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q.0 while the other one contains 8, 18, 19, and 20. Each of the
diagrams has three extensions instead of two and, therefore,
k,m, k,m, q0 the corresponding subseries is a product of three infinite
+ =—E———r==:2:32230 sums as shown in Figs(& and 5d),
@ .0, ® kq.0 T (@Ko =—b"2K, (K wy)e <2
””””” ° XK (G wp) 1K Ak=0)
Ko g,y Ko k-q,0 _
e >=n el(k—2q)rij 1 b’l
+ ——®——(-======:= © + ——®— _ q
k'q,O q,wn -

log—ey Twp—eq 1—,8b'|k_q,

FIG. 5. Dressed diagrams of self-consistent solutionlTor d ] _2 _ _
FZ+,—(quuwn):_b Ky _(KiopnKy (g, 0p)
therefore seems natural to replag€’ with K _ given in X1y K, K=0)

Eq.(39). That this is indeed possible can be seen from Fig. 4. k-a ™z

Besides diagram 1 we have to consider the diagrams 3, 4, 9, 1 1 b'l—q
10, and 11 which can be divided into three types. The first = o e im— ; .
type is a series of diagrams only within the pairing between @n~ 8k 1@nT8q 1- bl _q

the operators, ands/ and is represented by the diagrams 4 (430

and 11. The second type is a series of diagré&and 9 : . .
within the operators at equal times. Finally, diagram 10 con-In EQ. (43¢ the minus sign occurs for the same reason as in

tains a mixture of the previous two types. This taken to-Eq' (39). Since one of the infinite sums was always taken at

gether, yields a product of two infinite sums of diagrams,equal tlmesf?*rf Eq-(43a>_a”df5+f Eq. (430 essen_nally
which can be drawn as shown in Figah take on_ly two-spin correlations into account. The spin waves
are weighted with regards to other spin waves Fi@) or

T2, (qkwy)=—b"1K, (k;on)K, _(q) quctuating_spin moments Fig(B), as if they Wouléj travel in
an “effective medium.” On the other hand;;, _ and
F§+’_ describe true three-spin correlations. In particular,
they correspond to the scattering of spin waves at fluctuating
) .. .. spin moments. There are two ways this can happen; either a
whereK ;. _(q) contains the frequency summation implicitly gpin wave is absorbed by the spin moment which excites a
so that it gives the number of spin waves in the moleculag,q\y spin wave with different momentum as shown in Fig.
field approximation,ng={exp(Beq) — 1} o Turning to the  5(c) or a spin wave is scattered by transferring part of its
second diagram in Fig. 4, we note that the pairing is onlyyomentum to the spin moment as follows from Figd)5
between the operators ands;” according to rule(36b). The retarded Green’s function can now be obtained by
This yields anothes” operator at sit¢ which forms a block analytical continuationiw,—w+is. We also have to
with s. By interchanging the sitésandj for the pairing, the  change the sum over frequencj@s's,, into an integral over
Fourier transform in momentum space differs by the factofrequency (2r) 'fdw. Performing the integration, we find
exp(i (k—2q)rj;) from the one in Eq(41). Instead, we could
equally well interchange the indicegnd + in the definition FQ’,(q,k;t—t’)z K(P,(k;t—t’)ygﬂ',(q,k;t—t’),
for I',. _ . In other words, the Fourier transformBf, _ or (44)
I, - does not correspond to its inverse transform, only tqyhere e split off the magnon Green's function from its
that of their linear combination. On the other haig, _ modulating part
—I',,_ is just the quantity which is needed in E@4).
However, in order to keep the writing at minimum the expo- ib ) .
nential factor exfi(k—2q)r;;) is introduced as a dummy K(ll(k;t—t')Z—z®(t—t') e 'e(t"t) (459
variable instead. As for the first diagram in Fig. 4 there is
also for this second diagram a subseries of diagréin$4 ;

bnq

=—: (439

io,— g’

1 Al (k=20)r;
5, 12 ; 13, which also consists of a product of two infinite YD (gkit—t')=—n _,_b_;
sums, and can be dealt with in a similar fashion to yield o b 1-p8b'l,
diagram 5b): . )
b’ 1— e (i/Mb(I—1g)(t-t")
I (q.kwn)=b T K, (K wn) K, ()€ k29 b 101,
gl (k—2a)rj; b’ | el k=2arij 4|
== . (43b) w4 k-g
lon—&x 1-pb'l, I—1q ' (45

There are still two more subseries of diagrams shown in Figwhere w,=¢, /4. It was established earlier in the text that
4 which contribute to the self-consistent solutionltf, .  the Green’s functiod’{"), _ is equivalent ta"'{") _ when in-
One of the subseries contains the diagrams 7, 15, 16, and 1f&rchanging the siteisandj. Thus, one is left with only the
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Green’s functionl"g,),+, since it can be transformed into waves from the fluctuating component of a spin as dis-

ro .
'+:(F§Q’,)Jr found in Sec. Il saves us from analyzing
1“9,)'+ separately. Finally, we are in a position to write down
an expression for the spin correlatiofi®)

— 1 . .
T(t—t")= | — e'qrijelkrli
gII( ) ; i N2 kzq (

_e*iqrijeikrli)Fi:r)’;(q,k;t_t’)- (46)

V. RESULTING FORM OF THE LINEARIZED
EQUATIONS OF MOTION FOR AN INFINITE
HEISENBERG FERROMAGNET

With help of Eq.(46), we now calculate the nonlocal
effective magnetic field21), whose Fourier transform reads
in the molecular-field approximation as,

1 _
HIT(l)(t_t/):_%; (iﬁ5||,(9t,+8||/)qil,(t—t').
(47)

For clarity, we try to avoid writing both cyclic indices, since

by the analogous operation. However, the relationcussed earlier in the text and shown in Figc)sand gd).

Before we can write down the resulting form of Eg4),
there is still a quantity left which is not yet calculated beyond
the molecular field result. This is the average of the sponta-
neous moment at equilibriug®®)¢,. As this is a well-known
result, we just state it in the following and refer to Ref. 13 for
further details:

o Bla
2 1-pb'1y)
(51)

The first term is the spin-wave correction which gives the
characteristic Bloch lawT/T.)¥? for (S?)¢,at low tempera-
ture. The second term gives a correction from the scattering
of spin waves at the spontaneous moment, whereas the last
term describes the effect of fluctuations of the spontaneous
moment on itself.

Inserting the effective fields of the two-spin correlations
(499 and of the three-spin correlatioi49b) into Eq. (24),
we obtain the resulting form of the linearized equations of
motion for individual spin averages

(S =£Z (ny—ng)+b’ Blgng+
AT N 4 y ' q'q

the other component can always be obtained taking the com-

plex conjugate. In Eq47) the operator is transformed into
momentum space such thaf. is substituted bye,. We
operate on expressidd6) and derive

1 . -

Hoypy(t—t)=1"1 |.. — eldrijgikni — g—idrijgikry;

|I(1)( ) ; ij N2 kzq ( )
X[8(t—t")—in b K (k;t—t")

(a.kt=t").

Examining the square brackets, it follows that it is possibl
to split up this expression into a part which is local in time
and one which is nonlocal in time,

X a1V (48)

Hiy(t=t')= _ﬁ_l;i i Rij(T) (8 — &) 6(t—t"),

(493
~_ / b’ 1 Ik—q_lq
P 0= 57 20 B o,
X(eiqrijeikr“_e—iqrijeikrlj)K(_p_(q;t—t,),
(49b)

respectively. The first two terms in E¢45b) could be ab-

el

i v + * 7 z/o* <Sz>e e
+iy 1 9(ST)=hi (S)eq— (S >+V5qu¢i 1¥(T)

x(sH—sn-3 | v

X (t=t')(S"(1)). (52
With help of the correlation paramet€s0), we defined a
temperature-dependent  effective exchange interaction
IE7(T)=1;;(1+R;(T)/{S?ey. This gives manifestation to
the empirical fact that the exchange interaction should, in
principle, depend on temperatifre.

So far, the terms in the perturbation series were consid-
ered according to their expansion in powerdHf;. On the
other hand, the method allows us to classify diagrams with
respect to the derivatives &f in other words, to their tem-
perature behavior. In particular, at low temperatures deriva-
tives of b can be neglected due to their exponential small-
ness.

Taking thus the low-temperature approximation of Eq.
(52), the last term, nonlocal in time, drops out. The equations
of motion for an individual spin average is then rather con-
cise. The average spin mometl) takes the form(S%).,
~S—R(T), where R(T)=N‘1Eqnq. The spin-correlation
parameter depends also no longer obn, i.e. R;;(T)

sorbed into a temperature-dependent correlation parameterN—lzqnqequqrij)_ This low-temperature form of Eq.

!

between two spins, describing the effective spin medium

b 1—Bb’lq) - &0

The third term in Eq(45b) gave rise to expressiqd9b). As

nq+

Rij(T)=N"1> elii
q

(52 corresponds to the results of Ref. 9 and justifies the
approximations taken therein.

In the remaining part of this section we would like to
answer the questions of how our approach corresponds to
previous results on the thermodynamics of the three-
dimensional Heisenberg ferromagnet, and how to obtain

the summation ovek andq can no longer be factorized, the from our results macroscopic equations of the magnetization
spins at sites, j, andl are fully correlated with each other. which include temperature dependence and damping of the
The underlying physical process is the scattering of spirspin excitations.
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A. Spectrum and Landau damping

1
T eff \_/Q*
To demonstrate how to obtain the spectrum from®8), gug ;, i MASH =)
we deal with its last term first. We assume that the spin

waves are monochromatic, i.€S;")<exp(—iwt). The time 1 off _ .
integration yields 2(0e)? ZS (S T) (s V) m=(r, T)=he(r,T),
@ 55
i dt’ KO (qit—t)e et (59
o where J¢f(s, T) =J(s){1+ R(s,T)/|mo(T)|}, and mu(T) is
b 1 _ the macroscopic equilibrium magnetization. The sum @ver
:E[p(w—w )—irré(w—wq)ie'“’qt, (53 is usually performed only to include nearest- or next-to-
a nearest-neighbor coupling. In correspondence to the magne-
wherep denotes the principle part. The first term contributestization density, the two-spin correlation parameter is taken
to the spectrum. The second term gives characteristic Landt} the long-wavelength approximatiorsa:
damping of the spin waves. Looking for a solution of Eq.
(52) in an infinite crystal, so that the spin waves depend = dg® 2—(sQ)?
periodically onr;, i.e., s =N"13,s*(k)exp(kr;), we find R(sT)=- gﬂBi > 3 _pe
. —»2(2m)° eFfa—1
for the spectrum and damping constant

: (56)

wheree = gug|ho| + (S/2)2J(9) (s-q)?, andV, is the vol-

E,=¢ —N*12 Ueea—lon +b_/ lk—a—Iq ume of the unit cell. The paramet&(T) differs from the
Kok q k=g "a’Ta’ p 1-8b’l one defined above, in that the second term in the numerator
a of definition (56) is absent.
b’ (Ik_q—lq)2 Apart from the temperature dependence of the exchange
- e 8q 1— B0’ _q ' (543 integral, the expression on the right-hand side of &§) is

analogous to the effective field contribution derived from the
, ) “classical exchange energy” in the Landau and Lifshitz
_b_” (Tk—q—1q) Slw— equations of motion. Therefore, we defined it as a
=N — 0= wg). (54b) ’ ; ;

q 1—p8b'l temperature-dependent effective exchange flleﬁ;(r,T).
Using Cartesian coordinates, the equations of motki)
Vaks, Larkin, and Pikin reported this result fitstCompar-  are generalized towards the following form in their classical
ing Eq. (5438 with Eq. (51), it is evident that the temperature |imit at low temperatures:

dependence of the spin-wave spectrum corresponds only to

zeroth order with that ofS%)¢,. Due to the exponential v~ 19, m(r, T)=hoXm(r,T)+[h_(r) + ho(r, T) X me(T),
smallness ob’ at low temperatures, damping is only notice-

able for intermediate temperatures and rises sufficiently to- (57
gether with the fluctuations as the temperature gets in thﬁ/here we dropped again for brevity the argument denoting
vicinity of T.. However, for very long spin waves the damp- the time dependence. The equations of motin are the

ing is still weak even close to the critical region. We do nottemperature-dependent equivalent of the linearized Landau-
expand the discussion of this point and just refer to the cited ifshitz equations of motion without damping. The tempera-
references for further details, since the purpose of this sequre dependence dFf(s,T) cancels the spurious®? effect

tion was to show the validity of our approach by makingin the spin-wave spectrum as required. In other words, the

Yk
-q

contact to previous works in the field. contributions that arise in the equations of motiéi) due to
the correlation of thermal fluctuationR(s,T), are of the
B. Macroscopic equation for the magnetization same order as those of the spontaneous magnetization

my(T). Equation(57) can be seen as the principle extension
of the Landau-Lifshitz equations of motion to macroscopic
systems at low temperatures, whéf&(s, T) andmy(T) can

Be obtained, either from first principles as shown, or taken as
phenomenological constants from experiment. Moreover, the
equations of motior(57) allow for solving boundary prob-

In the following, we shall take the classical limit of the
low temperature approximation of E¢52), to derive the
macroscopic magnetization equations at low-temperature
These equations will contain the previous convention, lthat
is in the negativez direction andh_(t) is perpendicular to

ho. lems, since in the long-wavelength limi&>a, we can usu-

The macro§lcop|c magnetization is defined )= ally assumen>a+T./T so that the physical surface of the
—gus(S(r))Vo *, where(S(r))[,— =(S) andV, the vol- system does not influence the correlation parameter and
ume of the unit cell, and the exchange integral asequilibrium magnetization.

J(r=r")r=r, =, =1ijVo. Since the exchange integral is In order to include damping at low temperatures in the
falling off rapidly with increasingr—r’|, the magnetization equations of motiorn(57), we have to consider spin-wave-
can be developed by a Taylor expansion in powers ofpin-wave interactions- One way would be to calculate Eq.
s=r—r’', wheresis a vector along the crystallographic axes. (52) to next order, applying the equation-of-motion tech-
Taking the series expansion to second order, we make theque. This would lead to a four-spin Green'’s function which
following transformation: could be calculated to first order at low temperatures by just
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replacingK(®) with K. _ and neglecting terms containitg wheres=r;—r;. We also dropped the linear term knsince
in the perturbation expansion. Finally, the limit of long it cancels, when performing the integral. Now, we are in the
wavelengths has to be taken. The correction to the moleculgiosition to write the nonequilibrium correlatiods;,(t) in

field approximation would then be of second orderHp; . the macroscopic limit

Another more straightforward melhod was introduced in Sec.

Il B. Iterating the nonlocal fieldH{;, Eq. (499 with the t) = fw t' R ' t—t!
help of Egs.(26) and (46), one obtains for the nonequilib- F(nY S§§, _AURGS St

rium correlations at low temperatureB;” = 7;(y)+ F;2),

where X hey(s',r=s',t"), (62)

where the kernel

‘Fﬁil)(t)ZIEI II]RIJ[<S] (t)>_<S| (t)>]! (583) R(S,S,é’,t—t')=—(g,uB)_lJ(S)R(S,T)R(S’,T)

X[KO (g t—t")—KO(g=st—t")]

]:iJEZ)(t):b 1; IiiRiJE, I”,R”,fﬁdt’[K(ﬂ(l,I;t—t’) contains all information on the correlations. The matrix
g K(D(st—t') is the long-wavelength limit ob~ K ")(i j:t
—KO (GIt=t)IS (1)) —(SH(t))], (58 —t').  The  quantity he(r,s)=[1/2(gue)’1I(9) (s
-V)2m(r,T), is defined similar as before antl.(r)
and F;,y, F;z by taking the complex conjugate. The Fou- =Zhe(r.s). In order to include the tern(62) in the equa-
rier transform of the magnon Green's function readstions of motion(57), we substituteF ;,y— — F{,) and Fi;,
KO (i,j;t—t")=N"2,KY (k;t—t")expikrj;. The term —F(,). This new correlation term is responsible for what is
j:ii(l) features already in Eqé52) and(57), respectively. The knqwn in classicallspi.n-wgve theory as a four—_magnon scat-
term j:it(z) is new and with Eq(53) can be seen to give tering process, which is hinted at by the four different space
damping. It corresponds to the results of Dyson’s secon@‘guments in the sum of the ter(62).
Born approximatiorf® Without doubt, within the presented
formalism it is rather straightforward to derive this result, VI. CONCLUSIONS
since no additional Green'’s functions need to be calculated.
In order to include alsd-“ii(z) in the macroscopic equations
of motion(57), we first express the magnon Green’s function
in terms ofx andy coordinates,

The standard Landau-Lifshitz equations are extensively
used in magnetism due to the important fact that they allow
one to solve boundary problems in a rather straightforward
manner. They provide a method to calculate magnetic oscil-
1 lations and waves in finite magnetic samples. The new equa-
KOG jit=t)=Z[KO (i,jit=t)+K® (i, j:;t—t)] tions (24) and (57) obtained in this work generalize the lin-

2 earized Landau-Lifshitz equations in two important aspects:
First, the equation$24) are microscopic and are therefore

M 1. ’
_Kw("] =), (599 applicable to ferromagnetic systems of any type of dimen-
sionality and geometry. Second, Eq24) and (57) include
e o L) e (@) (s e e the influence of spin correlations and not only the effect of
Kyx(J5t=t )_E[K+—("J't )KL=t an effective molecular field. The presence of spin correla-
tions leads to the possibility to describe the temperature de-
=—KO(,jit—t'). (59b  pendence of the dynamic properties in the underlying mag-

netic system. In addition, Eq$24) and (57) are equally
This allows us to define a*33 matrix K(’)=|Kg}g|, where  suitable and convenient as the Landau-Lifshitz equations to
a,B=xy,z and KV=K()=0, so that the corresponding solve boundary problems. In fact, the structure of the mac-
vector to the nonequilibrium correlationis8b) takes in Car-  roscopic equation$57) does not differ, in principle, from
tesian coordinates the form that of the Landau-Lifshitz equations. Only a temperature
dependence of the individual coefficients occurs. As con-
o cerns the microscopic equatiof®), they turn into a system
FiyO=b"1> ;R X’ I“,R”,f dt'[KO(i,t—t) of ordinary differential equations, after Fourier transforma-
I7] L o tion in time.
—KO®G, L=t S ()= (S ()], (60) Nevertheless, there still remains one principle problem. It
is, of course, necessary to know the individual coefficients
When taking the long-wavelength limit df— k() (i,j;t ~ @nd their temperature dependence in the differential equa-
tions (24) and(57). However, the same problem exists in the
case of the Landau-Lifshitz equations, where one needs to
3 know the constants for exchange, anisotropy etc. As a rule,
= dk they are taken from phenomenological considerations, i.e.,
—=2(2)3 from the requirement to obtain agreement between theory
and experiment. This can obviously be done also in our case.
X[2—(k-5)2]e”(/Met=t)  (61)  However, there is in addition the possibility to derive the

—t'), we derive the following function:

iV
K(;l(s;t—t’)z—To(a(t—t')
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necessary coefficients from first principles. These coeffito obtain the spin-wave spectrum, we could have inserted the
cients contain the information on the equilibrium propertiesexpression for the spin correlatiori¢6) directly into Eq.

of the system, and in the present work we obtained for thent15) and evaluated the poles of the two-spin Green’s function
expressions in terms of equilibrium averages of spin operain this approximation, instead of solving the equations of

tors, i.e., three-spin Green’s functions as given in Egg  motion (52). In other words, by combining the equation-of-
and (13). motion technique with diagrammatic perturbation theory, an

In order to find the appropriate algorithm to calculate €ffective method is obtained to derive higher-order correc-
these spin averages, we discussed different classes of S}}gqns to the molecular field result. One simply has to calcu-

tems in Sec. Il C. In Sec. IV we gave a demonstration for date higher-order Green’s functions self-consistently and then

particular example, that of an infinite Heisenberg ferromagi"Sert them into the corresponding equation of motion. The

net. Since the thermodynamic properties of such a simpl8'€thod keeps, thus, a simplicity which lacks in ordinary dia-
system are already studied in detail, we were able to compa@ammatic perturbation theory, due to the rapidly increasing
our results with established ones obtained by differenflumber of different types of diagrams for each higher order
methodsi2~24 This gave the possibility of demonstrating the N the expansion. Not .only thr—; number of diagrams which
validity of our approach and its relative simplicity. have to be anajyzed is significantly reduced, but also _the
In particular, at the heart of our approach lies the combi-UNderlying physical process seems presented more lucidly.
nation of different analytical tools. The equation-of-motion W€ 100K forward to see this method employed also in other
technique for spin operators is employed to derive the prin@'€as of condensed-matter physics. _
ciple equations of motion6) and to single out the spin cor- The use of the simple Heisenberg model and the compari-
relations(9). We used linear-response theory to decouple th&n 10 well-known results can be regarded as a prerequisite

equations of motion and express the nonequilibrium averagé?r the future development of research in this direction. We
(si*s!) in terms of the nonequilibrium averages of the indi- plan to use our approach to solve actual boundary problems.

vidual spins. The obtained closed equati¢t® contain the For instance, we are interested in the temperature behavior of

nonequilibrium spin correlations to all orders given the equi_macroscopm Spin waves in ferrite films of the YIG type. As

librium properties of the system are known. As a result, thesuch films are used in electronic devices, one outstanding

decoupling was obtained in a systematic manner and free &roblem is how to obtain films whose spectral characteristics

any arbitrariness, which might arise in the equation of mo-are most stable against temperature fluctuations. A further

tion technique, when applied to Green’s functions for Spindlre<:t|on we currently focus on was already mentioned in the

operators. It is interesting to pursue this approach to highe?onteXtt. of smatll rr:agnen?tﬁlusteﬁ andttwo-Tm?r;)s?nalt
orders, to obtain closed equations for clusters of spins. magnetic nanostructures ot the multiiayer type. Last but no

The next step of our analysis was to calculate the equilib!eaSt’ an_other problem we are working on, is to (_jrop the
rium properties diagrammatically. Besides the spontaneou@ssumpt'o.n of linear response in order to §tudy the influence
magnetization, we needed to find the three-spin Green’gf correlations on nonlinear and parametric effects.
function (13). At first sight, one would expect that the analy-
sis of the three-spin Green'’s functions is very involved, but it
turned out that indeed the opposite is the case. Namely, to We would like to thank academician Yu. V. Gulyaev,
obtain the first-order correction to the molecular field ap-Professor Sir R. J. Elliott, and Professor R. B. Stinchcombe
proximation, one has to sum-up diagrams that form simpldor their interest in our work. P.E.Z. would like to acknowl-
combinations of geometric progressions. This led to the inedge the Russian Foundation of Basic Research, and C.H.
tuitive picture, that the underlying physical processes ar@cknowledges the support provided by the HSK Il of the
simple quasiparticle interactions of the spin system. In ordeGerman State and haer via the DAAD.
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