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Dynamic equations for individual spins in materials with magnetic order: The ideal ferromagnet

C. Heide and P. E. Zilberman
Institute of Radio-Engineering & Electronics, Russian Academy of Sciences,

Fryazino, Vvedenskii Square 1, Moscow Region 141120, Russia
~Received 24 March 1999!

The time and temperature dependence of individual spins is studied in an ideal ferromagnet. Starting from
the Heisenberg Hamiltonian in a magnetic field and, building on linear-response theory, we derive the linear-
ized microscopic analogy to the macroscopic Landau-Lifshitz equations of motion for magnetization. The
dynamical equations take into account the influence of spin correlations in addition to the molecular field. In
order to illustrate the validity of our approach, we calculate the temperature-dependent spin-wave spectrum and
Landau damping by employing a finite-temperature perturbation theory for spin operators. The latter is adapted
to suit higher-order spin-correlation functions which can be described by simple quasiparticle interactions with
the spin system. Our results agree with those established on the thermodynamics of the Heisenberg model. In
addition, we provide a method of how to deduce macroscopic equations of the Landau-Lifshitz type from first
principles, including temperature dependence and damping.@S0163-1829~99!06141-X#
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I. INTRODUCTION

An effective way to find out the characteristic properti
of ferromagnetic materials is to study their specific respo
towards a magnetic field. A relation that describes the c
nection between this field and the magnetization of the m
terial is provided by the macroscopic Landau-Lifshitz equ
tions of motion.1 However, in past years experimental wo
advanced to the limits of macroscopic physics when inve
gating magnetic structures. This led, for example, to the
servation of exchange-dominated spin-wave resonance s
tra and traveling spin waves in ferrite films2–4 or the
magnetization reversal of single-domain particles wh
might serve as magnetic memory elements.5–8 The former
effect is based on exciting very short spin waves, wher
the latter on the smallness of the structure. On the o
hand, the theoretical approach to the problem of magnet
tion dynamics still remains founded essentially on the the
of Landau and Lifshitz, i.e., on a macroscopic model. A
though this model gives a good understanding of the un
lying physics, a natural limit is set by this model to a suf
cient description of the experiments when using ultrasm
wavelengths or sizes.

This paper deals with the development of dynamic eq
tions for the average of individual spins in magnetic orde
materials or, in a sense, with the derivation of a microsco
analogy to the macroscopic Landau-Lifshitz equations. Ho
ever, there are significant differences to the classical tr
ment. As our approach is a microscopic one, it is possible
obtain all material properties, described by various magn
susceptibilities and the equilibrium magnetization, from b
sic principles. What is more important is that individu
spins become correlated. This happens as a time-depen
external magnetic field drives the system out of equilibriu
by exciting the individual spins. In this way, the spins inte
act with each other, not only as if each of them is surroun
by an average Weiss molecular field, as in the classical c
but in a way that takes into account the nonequilibrium s
PRB 600163-1829/99/60~21!/14756~15!/$15.00
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correlations. These correlations give rise to effects such
the damping of the motion of the spin system and the te
perature dependence of the dynamic parameters. They
introduce memory effects on how the system was pertur
by the external field.

A brief formulation of the problem was communicate
before together with some preliminary results.9 Here, we de-
velop this approach in a more systematic manner. To k
the calculations simple and focus on the main aspects of
theory, we restrict our analysis to an ideal Heisenberg fe
magnet. In the first part of the paper the basic equation
motion for the average of individual spins are introduce
Their structure is a hierarchy, allowing, for example, to se
rate single spin-wave excitations from spin-wave corre
tions. In the second part, we address the following two qu
tions: Does our approach allow one to obtain previou
established results on the thermodynamics of the Heisen
model; and is it possible to derive from the microscop
equations macroscopic equations for the magnetization,
incorporating such effects as temperature dependence
damping? By applying a finite-temperature diagramma
perturbation theory, solutions to these problems are provi
for the example of an ideal ferromagnet. The perturbat
theory builds on the diagram-technique developed
Izyumov, Kassan-Ogly, and Skryabin.10,11 Here, we adapt it
to deal with more complicated three-spin correlation fun
tions as they arise in the derivation of the equations of m
tion. In principle, this theory may be used to describe
dynamics of individual spins for all temperatures.11 How-
ever, in order to make contact with earlier treatments on
thermodynamics of the Heisenberg model, in particular w
those of Stinchcombeet al.12 as well as Vaks, Larkin, and
Pikin,13,14 we exclude the region very close to the critic
temperatureTc of magnetic ordering and examine the lar
range of temperatures, where the principle features of fe
magnetism are pronounced rather than those of phase tr
tion.

In subsequent publications we will develop our approa
14 756 ©1999 The American Physical Society
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further to describe more realistic systems such as magn
multilayers and single-domain particles. In particular, the
namic equations will include apart from exchange a
dipole-dipole interaction and anisotropy effects. Extensio
to include antiferromagnetic and ferrimagnetic crystals
also planned. Based on these dynamic equations, we
that it will be possible to solve many outstanding proble
in the field of magneto and nanoelectronics.

Previously, different attempts were made to develop
theory of dynamic properties in magnetic ordered syste
for example, using the Lagrangian15 or Hamiltonian16 for-
malism, by obtaining dynamic equations from simple sy
metry considerations,17 or in the form of hydrodynamic
equations of spin waves.18 However, the obtained nonlinea
equations still retain the form of the original formulation b
Landau and Lifshitz. Besides their macroscopic nature,
main disadvantage of these approaches is that damping
temperature dependence cannot be derived from basic
ciples, so that they are at best just added as phenomeno
cal terms.

On the other hand, it is possible to solve the dynamics
an individual spin based purely on quantum-mechanical c
siderations such as the diagonalization of the respec
Hamiltonian19 or solving the equation of motion for spi
operators.20 Unfortunately, these approaches neglect the th
mal fluctuations of the system which are often of importan

A way around this problem are thermodynamic consid
ations on the magnetic materials, in particular, using qu
tum statistical mechanics. Although quantum statistical m
chanics allow for a broad range of powerful methods to yi
a proper description of magnetic materials, most of the
tained results have been restricted to rather id
situations.12–14,21 Some interesting generalizations of the
approaches to the solution of more realistic problems h
been made, for example, by Erickson and Mills within t
context of ultrathin ferromagnetic films as they occur
multilayer magnetic materials.22 Nevertheless, when dealin
with particular boundary problems, the Landau-Lifsh
equations remain the only universal and effective appro
to the description of magnetization dynamics. Our a
therefore, is to compromise between the different views
to advance to dynamic equations for individual spins t
combine some of the universal features of the macrosc
approach and the rigor of the quantum statistical formulati
In the macroscopic limit, we obtain equations of the Land
Lifshitz-type, however, with the important addition that sp
correlations are still present, thus meeting the proposed
jectives.

The remainder of the paper is structured as follows:
Sec. II we introduce and discuss the simple model of an id
ferromagnet. Section III is devoted to a general derivation
the dynamic equations for individual spin averages which
then linearized and discussed in some detail. The equat
of motion are shown to represent a closed set of differen
equations, so that knowing the equilibrium properties of
system, any dynamical property of the system can be ca
lated even in the close vicinity ofTc . The diagrammatic
perturbation theory for spin operators is laid out in Sec.
There, we also calculate the three-spin correlation functi
which are described by simple quasiparticle interactions
the spin system. These functions are used to describe
tic
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correlations in the dynamics of an ideal Heisenberg fer
magnet in Sec. V. Further, we discuss briefly the tempera
dependence of the corresponding spectrum which ag
with previous solutions in the limit of an uniform excitatio
in an infinite lattice. What is more important, we show ho
to obtain macroscopic equations of motion for the magn
zation that depend on temperature and include damping
conclusion, we summarize our results and point out furt
directions in Sec. VI.

II. MODEL OF AN IDEAL FERROMAGNET

In the present paper we consider the case of an ideal
romagnet where the HamiltonianH5Hex1Hz is a sum of
contributions arising from the quantum-mechanical excha
interaction and the Zeeman energy. For our purposes,
choose the assumption of localized magnetic moments a
lattice sites, where the exchange interaction between the
described by the Heisenberg Hamiltonian,

Hex52 1
2 (

i , j
8 I i j Si•Sj52 1

2 (
i , j

8 I i j ~Si
2Sj

11Si
zSj

z!. ~1!

The prime indicates that the sum is only taken at differ
lattice sitesiÞ j over a product of spin operatorsSi

m and
Sj

n (m,n51,2,z) which obey the following commutato
relations:

@Si
1 ,Sj

2#52d i j Si
z ; @Si

z ,Sj
6#56d i j Si

6 . ~2!

The coefficientsI i j 5I j i are the exchange integrals. Besid
neglecting contributions such as dipole-dipole interaction
anisotropy effects, the assumption of localized moments
gross simplification of the physical reality. In order to d
scribe magnetic materials and structures more accura
their full electron system has to be taken into account. N
ertheless the Heisenberg model is thought to be suitable
many ferromagnetic dielectrics and semiconductors, whe
it is less satisfactory for metallic ferromagnets where
itinerant contribution of the conduction electrons is sign
cant. If, however, as is standard practice, the exchange
grals are not calculated from basic principles but taken fr
experiments, the experimental value will already contain
itinerant electron contribution and the localized electron p
ture is still a reasonable approximation for a wide range
metals with magnetic order.23 This is in particular the case
for the rare earths which have a specialized form ofI i j due to
the indirect coupling of the localizedf electrons through the
conduction band. The second term in the Hamiltonian rela
to the Zeeman energy,

Hz5gmB(
i

hi~ t !•Si5gmB(
i

$ 1
2 „hi

2~ t !Si
11hi

1~ t !Si
2
…

1hi
z~ t !Si

z%, ~3!

and describes the interaction of the localized moments w
an external time-dependent magnetic fieldhi(t)5h(r i ,t)
with cyclic components defined in analogy to the usual d
nition for spin operators, i.e.,hi

6(t)5hi
x(t)6 ihi

y(t). The
Bohr magneton is defined asmB5ueu\/(2mec), andg is the
Landéfactor.
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III. DYNAMIC EQUATIONS FOR AN INDIVIDUAL SPIN
AVERAGE

In order to study the time and temperature dependenc
individual spins embedded in a ferromagnetic crystal,
average the spin operators over the nonequilibrium statis
ensemble of the entire system,

^Si&5Sp$rSi%, ~4!

where Sp denotes the trace. The density operatorr(t) con-
tains the complete information about the ensemble. It is t
sufficient to use the von Neumann equation of motion for
to describe the time development of the system,i\ ] tr
5@H,r#. Together with Eq.~4! this leads to an equation fo
the spin average,

i\ ] t^Si&5^@Si ,H#&. ~5!

With help of the relations~2! the commutator in Eq.~5! can
be calculated. Introducing an operator describing the s
fluctuationssi

m5Si
m2^Si

m&, we replace Eq.~5! with the fol-
lowing set of equations:

i ] t^Si
1&5g@hi ,eff^Si&#1z2\21F i

1 , ~6a!

2 i ] t^Si
2&5g@hi ,eff^Si&#2z2\21F i

2 , ~6b!

2i ] t^Si
z&5g@hi ,eff^Si&#212\21F i

z . ~6c!

For convenience, we introduced the following notation
analogy to the definition of a vector product:

@hi ,eff^Si&#mn5hi ,eff
m ^Si

n&2hi ,eff
n ^Si

m&, ~7!

and an effective magnetic field

hi ,eff
m ~ t !5hi

m~ t !2
1

gmB
(
j Þ i

I i j ^Sj
m&, ~8!

whereg5gmB /\.0 is the gyromagnetic ratio. The fluctua
tions in the spin system correlate the spins with each ot
These correlations are contained in the terms

F i
s5(

j Þ i
I i j ~^si

zsj
s&2^si

ssj
z&!, ~9a!

F i
z5(

j Þ i
I i j ~^si

1sj
2&2^si

2sj
1&!, ~9b!

wheres51,2. So far no approximations were made a
Eq. ~6! are exact. The second terms on the right-hand sid
Eqs. ~6a!–~6c! figure the contribution of the spin fluctua
tions. Without the spin correlations~9! the equations of mo-
tion ~6! would yield a closed system of differential equ
tions, that corresponds formally to the solution for t
classical precession of a magnetic moment. It is necessa
investigate these correlation terms further.

A standard procedure would be to continue with the eq
tion of motion technique and write an equation of motion
the averageŝsi

msj
n&. In general, if we repeat this method

this would lead eventually to an infinite series of equatio
of motion, which have to be approximated by decoupli
them at some stage. Since we are interested in the comb
of
e
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to

-
r

s

ed

dynamical and statistical properties of the system, we st
two types of fluctuations more or less simultaneously: coh
ent fluctuations created by a time-dependent external m
netic field and noncoherent fluctuations due to spontane
and thermal excitations of the spin system. Whereas cohe
fluctuations exist only in the nonequilibrium state of the sy
tem, noncoherent fluctuations are an inherent property o
thermodynamic ground state. This does, however, not im
that they can be regarded as independent of each othe
fact, quite the opposite is the case, and this property will
exploited in the calculations. In contrast to the equation-
motion technique for Green’s functions, the operators in
~6! are not tied to the Heisenberg presentation and thus t
independent. Therefore, we can express the nonequilibr
correlations in terms of equilibrium correlations, by lineari
ing them in the time-dependent magnetic field. To ident
the leading-order terms of the equilibrium correlations,
use perturbation theory. The former is dealt with in the f
lowing, whereas the latter is discussed in Sec. IV.

A. Linearization of the equations of motion

The experiments under consideration shall measure
linear response to the external time-dependent magn
field. We can thus restrict ourselves to the calculation of
averageŝsi

msj
n& to first order in the perturbing field. By sepa

rating the external magnetic field into its static and tim
dependent contributionshi(t)5h01hi ,;(t), the Hamiltonian
of the system is rewritten in terms of its static partH̄ and its
time-dependent perturbationV(t), i.e.,H5H̄1V(t). We as-
sume without loss of generality that the static componen
the magnetic field is parallel to thez coordinate such tha
h05(0,0,2uh0

zu). Further, in a linear approximation of Eq
~6! the time-dependent field can couple to the averages^Si

m&
only in an experimental setup, where it is applied perp
dicular to the static external field. Therefore, this more int
esting perpendicular case shall be treated here, i.e.,hi ,;

z

50.
Now, we turn to the linearization of the averages^si

msj
n&

and first discuss the equilibrium case, where the oscillat
external magnetic field is switched off. In Eq.~9a! the op-
eratorss6 are unpaired and, therefore, the equilibrium av
ages vanish. Although in the case of Eq.~9b! these creation
and destruction operators are paired, the averages do, n
theless, not contribute. The reason is that the spin opera
are taken at the same time, so that the corresponding phy
process are spontaneous temperature-independent qua
fluctuations which are prohibited by the assumption of co
plete localization of the spin moments, i.e.,iÞ j . We can
thus focus only on the nonequilibrium contributions.

The time dependence of the density matrix can be fou
by solving the von Neumann equation in linear approxim
tion with respect to the perturbing fieldV(t). Starting from
equilibrium at an infinite early time, whenV(2`)50, we
switch onV(t) adiabatically. If we keep only terms linear i
the perturbing field, the von Neumann equation leads to
solution

r~ t !5req2 i /\ E
2`

t

dt8e2 iH̄ (t2t8)/\@V~ t8!,req#e
iH̄ (t2t8)/\,

~10!
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wherereq5exp(2bH̄)/Sp$exp(2bH̄)% is the Gibbs equilib-
rium density matrix, andb51/(kBT) the inverse absolute
temperature. When taking the trace forsi

msj
n as in Eq.~4!, we

derive for the nonequilibrium correlations~9!,

F i
s~ t !5gmB(

l
E

2`

`

dt8 hl ,;
s ~ t8!§ i l

s̄~ t2t8!, ~11!

wheresÞs̄ (s,s̄51,2). The contribution to thez coor-
dinate vanishes, since we assumedhi ,;

z 50. Further, we in-
troduced the quantity

§ i l
s̄~ t2t8!5(

j Þ i
I i j @Gzs,s̄

(r )
~ i , j ; l ;t2t8!2Gsz,s̄

(r )
~ i , j ; l ;t2t8!#,

~12!

describing the spin correlations as an equilibrium property
the system in terms of the retarded three-spin Green’s fu
tions

Gsz,s̄
(r )

~ i , j ; l ;t2t8!52
i

2\
Q~ t2t8!

3Sp$req@si
s~ t !sj

z~ t !,sl
s̄~ t8!#%,

~13!

andGzs,s̄
(r ) which is defined in analogy. The quantity§ i l

s takes
the role of a susceptibility tensor, because the contributi
of the nonequilibrium correlations to Eq.~6! are proportional
to the driving of the time-dependent fieldhl ,;

s (t8). This
‘‘correlation’’ susceptibility describes the deviation from th
classical precession of the average spins due to the influ
of the higher spin correlations. In principle, we could almo
stop our analysis here, because the only problem that
mains to be solved is to calculate§ i l

s , for instance, using a
modified version of the diagrammatic perturbation theor
of Refs. 10–13.

However, we set out to derive the microscopic analogy
the Landau-Lifshitz equations. These microscopic equati
ought to be as convenient as the macroscopic Land
Lifshitz equations when solving different applied problem
In particular, such problems may be concerned with exp
ing the free oscillations of a spin system, where a tim
dependent external field is absent, and one would like
calculate the eigenfrequencies and wave functions inco
rating the effect of spin correlations. In such a case, inser
Eq. ~11! directly into Eq.~6! would be rather awkward. As a
rule, analyzing the eigenoscillations of a system, we are
interested in the question of how they were excited. If o
would, however, use Eq.~11! directly, one needs to know th
entire history on how the system was driven out of equil
rium. We, therefore, replacehl ,;

s in Eq. ~11! in terms of^sl
s&

first and only then insert it into Eq.~6!.
Repeating the steps performed in deriving Eq.~11!, we

calculate the linear-response result in the perturbing field
the nonequilibrium averagêsl

s&. As a result, we find for the
derivative in time,

] t^si
s&5gmB(

l
E

2`

`

dt8 hl ,;
s ~ t8! ] t Kss̄

(r )
~ i ,l ;t2t8!,

~14!
f
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where the retarded Green’s functionKss̄
(r ) ( i ,l ;t2t8)5

2 i /(2\) Q(t2t8) Sp$req@si
s(t),sl

s̄(t8)#% is proportional to
the linear magnetic susceptibility tensor of the system. T
derivative in time ofK12

(r ) , for example, leads to the relatio

(
j

@ i\d i j ] t2« i j #K12
(r ) ~ j ,l ;t2t8!5F i l

2~ t2t8!. ~15!

Here, we made use of another spin operator describing fl
tuations around the equilibrium average, i.e.,si

m5Si
m

2^Si
m&eq, to separate the spin-wave-type energies obtai

by « i j ,

« i j 5d i j S 2gmBh0
z1(

lÞ i
I i l ^Sl

z&eqD 2I i j ^Si
z&eq, ~16!

from the spin correlations

F i l
2~ t2t8!5^Si

z&eqd i l d~ t2t8!2§ i l
2~ t2t8!, ~17!

expressed by the second term of definition~17! in terms of
the three-spin Green’s function introduced above. This rig
hand side of Eq.~15! can be regarded as a generalized fun
tion of intensity including the spin correlations~12!. Taking
the complex conjugate of Eq.~15!, an expression forK21

(r ) is
obtained as can be seen from its definition. Similarly,
Hermitian conjugate of the right-hand side of Eq.~13! leads
to a simple relation between the three-spin Green’s fu
tions, e.g.Gz2,1

(r ) 5(Gz1,2
(r ) )†. The Hermitian property in the

indices1 and2 of the linear and correlation susceptibilit
tensor is what one expects for gyrotropic materials such a
ideal ferromagnet. Replacing the Green’s function in E
~14! with the help of the relation~15!, we find the following
equation for the perturbing field:

hi ,;
1 ~ t !5

1

gmB^Si
z&eq

H(
j

~ i\d i j ] t2« i j !^sj
1~ t !&1F i

1~ t !J ,

~18!

which relates the time-dependent field to the spin-wave-t
energies and the spin-correlations. In the same way, we
rive an analogous equation for the other cyclic componen
the time-dependent magnetic field. Now, if we insert E
~18! into Eq.~11!, and integrate partially overt8, an integral
equation for the nonequilibrium correlations is derived

F i
1~ t !5(

l ,l 8
^Sl

z&eq
21E

2`

`

dt8 $^sl
1~ t8!&~2 i\d l l 8] t82« l l 8!

1d l l 8F l
1~ t8!%§ i l 8

2
~ t2t8!, ~19!

which no longer depends explicitly on the external field; a
again forF i

2(t) analogously. As can be seen from Eq.~19!,
this equation can be Fourier transformed in frequency, le
ing to a system of simple algebraic equations

(
l

F i l
s̄~v!

F l
s~v!

\^Sl
z&eq

5(
l

Hi l (1)
s̄ ~v! ^Sl

s&, ~20!

whereF i l
s(v)5^Si

z&eqd i l 2§ i l
s(v) is the Fourier transform of

the generalized function of intensity~17!, and
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Hi l (1)
6 ~v!5

1

\^Sl
z&eq

(
l 8

~7\vd l l 82« l l 8!§ i l 8
6

~v!. ~21!

With the help of linear algebra, we now solve Eq.~20! for
F i

s(v), leading to an exact expression for the nonequil
rium correlations,

\21F i
s~v!5(

l
H i l

s̄~v!^Sl
s~v!&. ~22!

They are expressed in terms of the average of the individ
spins and a nonlocal effective magnetic field that conta
implicitly all the spin correlations,

H i l
s~v!5(

l 8

Dil 8
s

~v!^Si
z&eq

Ds~v!
Hl 8 l (1)

s
~v!, ~23!

whereDs(v)5detuuF i l
s(v)uu is the determinant of the spin

correlation intensity, andDil
s(v) its algebraic complement. I

we would have taken the approximationF i l
s(v)

'^Si
z&eqd i l , Eq. ~20! would obtain the same form as Eq

~22!. Thus the quantityHi l (1)
s corresponds to the effectiv

magnetic field~23! to first order in the spin correlation
§ i l

s(v). When taking the inverse Fourier transform of E
~22! back into the time domain, we obtain the required m
croscopic analogy of the Landau-Lifshitz equations. Th
we rewrite Eq.~6! in a form that depends only on the avera
of an individual spin

i ] t^Si
1&5g@hi ,eff^Si&#1z2(

l
E

2`

`

dt8 H i l
2~ t2t8!^Sl

1~ t8!&,

~24a!

2 i ] t^Si
2&5g@hi ,eff^Si&#2z2(

l
E

2`

`

dt8 H i l
1~ t2t8!

3^Sl
2~ t8!&, ~24b!

where the square brackets are now linearized in the exte
magnetic field,

@hi ,eff^Si&#sz5S hi ,;
s ~ t !2

1

gmB
(
j Þ i

I i j ^Sj
s& D ^Si

z&eq

2S h0
z2

1

gmB
(
j Þ i

I i j ^Sj
z&eqD ^Si

s&,

and we made use of the fact that^S6&eq50. The time-
dependent nonlocal magnetic field is defined as

H i l
s~ t2t8!5E

2`

` dv

2p
H i l

s~v! e2 iv(t2t8). ~25!

The first term on the right-hand side of Eq.~24! couples
the cyclic coordinates with thez coordinate, i.e., the direction
of the spontaneous moment. It is local in time and descri
the classical precession of the spin averages coupled
rectly with each other via the Weiss molecular field of t
exchange interaction. The second term, however, correl
not only the cyclic coordinates with thez coordinate but also
the cyclic coordinates among each other. This integral te
-
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,

al
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m

introduces the effect of ‘‘memory’’ in the system, when th
spin oscillations at a given moment depend directly on
oscillations at an earlier time. The time of this memory
given by the interval int2t8 in which the kernelH i l

s(t
2t8) differs significantly from zero. Equations~24! describe
then a non-Markovian process.24

Further, we would like to stress that with help of Eq.~24!
it is straightforward to find and investigate the eigenoscil
tions of the system which exist forhi ,;

s (t)50. As can be
seen from the memory kernel, the properties of these os
lations do not depend on the way they were excited. It wo
have been much more difficult to show the validity of th
assertion if we did not exclude the time-dependent fi
hi ,;

s (t8) from the expression~11!. If it is necessary to find
the response of the spin system to a magnetic fieldhi ,;

s (t),
Eqs. ~24! become nonhomogeneous and their solutions
be written in terms of a superposition of the free oscillatio
Equations~24! are closed in the sense that they only inclu
the average of individual spinŝSi

m& and in contrary to the
equations of motion~6! do not include nonequilibrium func
tions of higher order.

B. Hierarchy of the linearized equations

Before, it was pointed out that the coherent spin fluctu
tions, created by the external magnetic field, depend on
thermal and spontaneous fluctuations. As a consequence
could use linear-response theory to decouple the equatio
motion systematically and express the nonequilibrium av
ages^si

msj
n& in terms of the nonequilibrium averages of th

individual spins. All spin correlations ofFi in Eq. ~6! are
taken care of by the nonlocal effective magnetic fieldH i l

s or
the so-called memory kernel which is expressed in terms
the equilibrium three-spin Green’s functions~13!. Introduc-
ing this field allows for a separation of the correlations into
hierarchy: Low-lying spin-wave-type excitations contain
in Hi l (1)

s interact with each other to form excitations o
higher order, whose excitation energies are given by
poles ofDs. In other words, the theoretical description c
be viewed as a sequence of plateaus, where each platea
self-consistent description of the system in analogy to
Landau-theory of Fermi liquids.

For example, the low-lying excitations are described
an ideal magnon gas. The interactions between the mag
lead then to higher-order excitations of the spin system. T
correspond either to the scattering of the individual magn
or to their coupling. If the coupled state corresponds to
two-magnon state, Eq.~23! is comparable to what was ob
tained by Boyd and Callaway on the basis of a ‘‘ladde
approximation’’ in low-temperature perturbation theory.25 In
a similar fashion, one could derive more complex coup
excitations at temperatures close toTc . On the other hand, if
the deviations from the equilibrium value of the spin avera
are small, i.e.,§ i l

s/^Si
z&eq!1 andDs(v)Þ0, so that only the

scattering of spin waves has to be taken into account, we
use Eq.~20! to solve forH i l

s iteratively instead of applying
the exact solution~23!. Thus one finds thenth order iteration
in the nonlocal magnetic fieldHi l (n)

s to be related to the (n
21)th order approximation,
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Hi l (n)
s ~v!5(

l 8
H d i l 8Hl 8 l (1)

s
~v!1

§ i l 8
s

~v!

^Sl
z&eq

Hl 8 l (n-1)
s

~v!J ,

~26!

whereHi l (0)
s 50. To first order we obtain again Eq.~21!. To

second order the solution is equivalent to the result of D
on’s second Born approximation in an infinite bulk system
will be shown further down in the text.21

C. Possible approaches to solve the linearized equations

In fact, Eq.~24! is the main result of our paper. The form
of the integrodifferential equations have a more univer
character than presented here within the Heisenberg m
and can be readily generalized to more realistic proble
than that of an ideal ferromagnet. In the following, we tre
Eq. ~24! as an example and show how it can be applied t
large variety of physical systems.

First, there are spin clusters. Since Eq.~24! is a system of
2N coupled integrodifferential equations, it can, in princip
be computed to any degree of accuracy, in particular, if
number of spinsN in the system is not large. The same hol
for the equilibrium value of the spin average, and the thr
spin Green’s function. This is an interesting problem of
own in computational physics. In such cases one can o
neglect the dipole-dipole interactions and directly apply E
~24!. In a similar fashion, one could treat random sp
systems.26

A second class presents mesoscopic systems which ca
either one- or two-dimensional, or of the multilayer typ
Whereas the former can be solved by Fourier transform
momentum space, the latter is no longer translational inv
ant in the direction perpendicular to the layers in gene
However, if the number of layers is not too large, the syst
of integrodifferential equations~24! can still be solved. The
direction, in which the system is translational invariant, c
be treated with help of a finite-temperature perturbat
theory for spin operators, similar to the one of thre
dimensional systems to be discussed later. In addition,
has to adapt the Hamiltonian with regards to the redu
dimensionality of the system, since in two dimensions fer
magnetic order is absent at finite temperatures in the Hei
berg model,27 in contrast to most of the real systems. F
ferromagnetic films either dipole-dipole interactions or a
isotropy terms need to be included as discussed by Ya
Kwo, and Gyorgy28 or Bander and Mills,29 respectively.

The last class are macroscopic three-dimensional syst
and we can pursue our analysis of Eq.~24! in the limit where
the number of spins is large. The properties of such syst
depend only on the relative distance between spins at di
ent sites so that one can take the Fourier transform of
~24! into momentum space. Further, the average^Si

m& is in-
dependent of site in equilibrium and is thus relieved of
index, i.e., ^Si

z&eq5^Sz&eq. Of course, also for three
dimensional systems the Heisenberg model is only an in
ficient description for realistic systems, since, for examp
the long-range dipole-dipole forces can never really be
glected due to the physical boundaries of any system. N
ertheless, as pointed out before, the Heisenberg model
good example to demonstrate the validity of our approach
particular, to solve Eq.~24! explicitly, we have to find an
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expression for̂ Sz&eq, and the higher spin correlations§ i l
6

~12! or the three-spin Green’s functionG (r ) ~13!, respec-
tively. These quantities can be found approximatively w
help of a finite-temperature perturbation theory for spin o
erators. In the following, we would like to demonstrate th
for the case of an infinite Heisenberg ferromagnet.

IV. DIAGRAMMATIC PERTURBATION THEORY
FOR SPIN OPERATORS

There have been various attempts to find an appropr
algorithm for spin-operators in the past. A fundamental co
tribution was given in particular by the works of Stinch
combeet al.12 and later independently by Vaks, Larkin, an
Pikin.13,14 Whereas Stinchcombe and co-workers used
linked cluster expansion in the spirit of Kahn an
Uhlenbeck,30 Vaks, Larkin, and Pikin introduced fictitiou
fermion fields. The latter was reformulated by making e
plicit use of Wick’s theorem in an adaptation to spin ope
tors by Izyumov, Kassan-Ogly, and Skryabin.10,11 Despite
the elegance of the formulation, their work seems to ha
found rather little attention, and we thus take the liberty
restate some parts of it in the following as well as to ad
them to suit the calculation of the three-spin Green’s fu
tion ~13!. It turns out that the three-spin Green’s function c
be described by simple quasiparticle interactions of the s
system.

The problem when dealing with spin operators is based
the fact that they do not commute with each other to yi
simplec numbers as can be seen from the relations~2!. The
algorithms allowing one to calculate the Green’s functio
for Bose or Fermi particles with simple algebraic relatio
have to be replaced by a method which is adapted to d
with the consequences of more complicated relations suc
@@@Si

1 ,Si
z#,Si

z#,Si
2#52 Si

z . As is already shown with this ex
ample, the role of theSz operator is a particular one, sinc
unpaired cyclic operatorsS6 vanish, when taking the equi
librium average. The idea is, first, to get rid of all the cyc
operatorsS6 in any average expanded tonth order in the
interacting part of the Hamiltonian with help of the comm
tator relations~2!, and then to calculate independently th
averages of the remainingSz operators. The averages are
the form

^TS̄i
m i~t i ! . . . S̄l

m l~t l !&5
^TSi

m i~t i ! . . . Sl
m l~t l !S~b!& (0)

^S~b!& (0)
,

~27!

and are written for convenience as thermal or imaginary-ti
averages, wheret5 i t , andT orders operators in imaginar
time. While dealing with finite-temperature Green’s fun
tions, we shall set\51 for convenience. The operators a
then given in the imaginary-time Heisenberg representa
S̄m(t)5exp(tH̄) Sm exp(2tH̄) in the average on the left-han
side, whereas in the averages on the right-hand side
Sm(t)5exp(tH0 ) Sm exp(2tH0 ). Here, we separated th
Hamiltonian into a unperturbed and interacting part. The
erageŝ . . . & (0) in Eq. ~27! are thus determined by the den
sity matrix r05exp(2bH0)/Sp$exp(2bH0)% according to
Eq. ~4!, and the finite-temperatureS matrix,
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S~b!5 (
n50

`
~21!n

n!

3E
0

b

dt1 . . . E
0

b

dtn@THint~t1! . . . H int~tn!#.

~28!

Although there are different ways splitting up the equili
rium Hamiltonian in its unperturbed and interacting part,
take for convenience the approach which contains the W
molecular field in zeroth-order such thatH̄5(H02E0)
1H int ,

E052 1
2 NI0^S

z& (0)
2 , ~29a!

H052y(
i

Si
z5~gmBh0

z2I 0^S
z& (0)!(

i
Si

z, ~29b!

H int52 1
2 (

i ,i 8

8 I i i 8~si
2si 8

1
1si

zsi 8
z

!, ~29c!

where I 05( j Þ i I i j . To separateE0 and H0 from H int , we
once more used a fluctuation operator,si

m5Si
m2^Sm& (0) ,

however, this time describing the deviations at equilibriu
from the local spin averagêSm& (0) . E0 is the Weiss energy
of the spin system which takes the value2NI0S2/2 at zero
temperature.

Enlarging on the particular role of theSz operators, we
assume for now, that we have transformed the numerato
the right-hand side of Eq.~27! with help of theSmatrix ~28!
and commutator relations~2! into such a form, that we are
left with averages containing onlySz operators. It is then
possible to calculate these remaining averages from the
tition function of an individual spin. This is similar to calcu
lating the magnetization in the Weiss molecular field or se
consistent field approximation. Using the local partiti
function for an individual spin, i.e., for the constant termE0
is not accounted:

Z5Sp expS b (
i

N

yiSi
zD , ~30!

where the index aty is introduced for convenience, we obta
for the averages overSz operators

^S1
z . . . Sn

z& (0)5
]y1

. . . ]yn
Z

bnZ
. ~31!

A single-operator average is then proportional to the B
louin function BS(x)5@11(2S)21# cth@(S11/2)x#
2(2S)21 cth(x/2) as in the Weiss molecular field theor
^S1

z& (0)5SBS(by)5b(by), whereas an-operator average
contains thenth-order derivative of the Brillouin function
e.g.,^S1

zS2
z& (0)5b21b8d12. The first term on the right-hand

side of the last example is the product of two spin avera
and the second term accounts for the interactions in the
lecular field approximation. In other words, a method is o
tained that reproduces in its zeroth order the molecular fi
result beyond which it allows to calculate, at least in pr
ciple, all the contributions to any thermodynamic variable
ss

of

ar-

-

-

s
o-
-
ld
-

There is one important point to stress. To make cont
with the theories of Stinchcombe and co-workers12 as well as
Vaks, Larkin, and Pikin13,14 we included the Weiss molecu
lar field in the unperturbed Hamiltonian. This assumes t
the exchange interaction has a large radius of interaction
that it is possible to expand in powers ofH int .

A. Wick’s theorem for spin operators

Before discussing the details of Wick’s theorem, w
would like to give an example and calculate the followin
average:

^TS2
1~t2!S1

2~t1!& (0)5H ^S2
1~t2!S1

2~t1!& (0) if t1,t2

^S1
2~t1!S2

1~t2!& (0) if t1.t2 .

~32!

Since the time development of the spin operators has
usual form, S1(t)5exp(2yt) S1 and S2(t)5exp(yt) S2,
we obtain with the help of Eq.~2!,

^S2
1~t2!S1

2~t1!& (0)5^S1
2~t1!S2

1~t2!& (0)

12 d12e2y(t22t1)^S2
z& (0) . ~33!

This can be transformed, by using the invariance of
trace under cyclic permutations and S1(t)r0
5exp(2by) r0 S1(t), into

^S2
1~t2!S1

2~t1!& (0)52 d12e2y(t22t1)~ny11!^S2
z& (0) ,

~34!

where ny5$exp(by)21%21 is the distribution function for
Bose particles. We have thus reduced the average of two
operators to an average over a singleSz operator. It is now
possible to define an unperturbed time-ordered Green’s fu
tion,

K12
(0)~t12t2!52

1

2

^TS2
1~t2!S1

2~t1!& (0)

^S2
z& (0)

52d12e2y(t22t1)H ny11 if t1,t2

ny if t1.t2 .

~35!

This Green’s function is not yet the spin-wave Green’s fun
tion of the true one-spin-wave, or one-magnon eigensta
To obtain the proper one-magnon Green’s function, we h
to sum up an infinite series in the perturbation expansion
will be shown later. However, the necessary diagram ru
have to be introduced first.

The Wick’s theorem for spin operators states that all p
sible pairings betweenS2 andS1 as well as betweenS2 and
Sz have to be taken under the condition that they should
time ordered.10,11 This means that we replace in the initi
average^TSi

m i(t i) . . . S
n8

mn8(tn8)& (0) , as given by the nu-
merator on the right-hand side of Eq.~27!, a pair of operators
with one of the relations

S1
2~t1!S2

z~t2!51K12
(0)~t12t2! S2

2~t2!, ~36a!
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S1
2~t1!S2

1~t2!522 K12
(0)~t12t2! S2

z~t2!. ~36b!

In this way site ‘‘1’’ cannot take part in further pairings. I
Eq. ~36a! the operatorS2

2 needs to be paired up again, how
ever site ‘‘2’’ can take part only in one further pairing whic
results in the relation

S1
2~t1!S2

z~t2!S3
1~t3!

522 K12
(0)~t12t2!K23

(0)~t22t3! S3
z~t3!. ~36c!

There is still one more possible pairing. The operator in
~36b! S2

z can be left as it stands or used for pairing up a
otherS2 operator. This changes the operator at site ‘‘2’’ in
anotherS2 operator which needs to paired up again, so t
site ‘‘2’’ takes part in three and only three pairings. This c
be expressed in a way as illustrated in the following e
ample:

S1
2~t1!S2

1~t2!S3
2~t3!S4

1~t4!

522K12
(0)~t12t2!K23

(0)~t22t3!K34
(0)~t32t4! S4

z~t4!.

~36d!

Thus, the initial average can be reduced to a produc
Green’s functionsK (0), averages of theSz operators, which
can in turn be calculated via relation~31!, and a numerical
factor of (22)m1, wherem1 is the number of pairings o
type ~36b!. A convenient way to represent the pairing re
tions ~36! is in the form of diagrams as shown in Fig.
whereK (0) is presented by a full line starting from anS2

operator, and them remainingSz operators are drawn as
circles.

B. Rules for constructing diagrams

We would like to calculate an average containingl spin
operators. An expansion to the ordern given by

^TSi
m i~t i ! . . . Sl

m l~t l !S1
m1~t1!S

18

m18~t18! . . .

3Sn
mn~tn!S

n8

mn8~tn8!& (0)

similar to that on the right-hand side of Eq.~27! containsn
operatorsH int . Each operatorH int depends on a pair of site
i andi 8 over which one has to sum. After we have made u
of the rules~36! to draw all possible pairings, the exchan
interaction between these pairsI i i 8 is represented graphicall
as a wavy line to connect all the 2n internal operators with
each other. The essential difference to standard perturba
theory is now in calculating the averages over them remain-
ing Sz operators. They form so-called blocks according
relation~31!, where ad function connecting two sites corre
sponds graphically to a dashed line between two circles
noting the remainingSz operators.

The denominator on the right-hand side of Eq.~27! con-
tains only internal lines. Therefore, the corresponding d

FIG. 1. Diagrams according to the pairing relations~36!.
.
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t
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of
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e

on

e-
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grams, the vacuum polarization graphs, cancel exactly
those diagrams in the numerator that are not fully connec
with an external operator either through the exchange in
action or by forming blocks. Although this does not imp
that all external operators have to be connected with e
other, we replace forl .1 all Sz-operators by their fluctua
tion partsz in the initial average to describe only the corr
lation effects, e.g.,̂ s1

zs2
z& (0)5b8d12. In order to calculate

the nth-order expansion to an average containingl external
operators, one therefore has to draw only all connected to
logical nonequivalent diagrams, where each diagram co
sponds to an analytical expression of the following kind:

~22!m1
P n

2nn!
)
m

b[m21]

3E
0

b

dt1 . . . E
0

b

dtn(
1,18

8 I 118 . . .

3 (
n,n8

8 I nn8K
(0) . . . K (0)d . . . d. ~37!

The factorPn is the number of topological equivalent dia
grams, andb[m21] is the (m21)th derivative ofb.10,11

C. Derivation of the one-magnon Green’s function

As pointed out before, the Green’s functionK (0) is not
compatible with the one-magnon eigenfunction. To obt
the one-magnon Green’s function, we calculate an infin
series of diagrams as shown in Fig. 2. This series is of
Dyson form, and, applying the diagram rules~37!, we derive
the dressed Green’s function

b21K21~ i , j ;t2t8!5Ki j
(0)~t2t8!2(

1,18

8 I 118

3E
0

b

dt1 Ki18
(0)

~t2t1!

3K21~1,j ;t12t8!. ~38!

In Eq. ~38! a negative sign occurs due to the fact that t
operators1

2 is internal forK21( i , j ;t2t8) but external for
K21(1,j;t12t8), whereas the overall sign in front of a dia
gram is only determined by the numberm1 of internal op-
erators. Taking the complex conjugate and the Fourier tra
form of Eq. ~38! in time and space, we obtain

K12~k;vn!5E
0

b

dt̃ eivnt̃(
r i j

K12~ i , j ; t̃ !e2 ikr i j

5
b

ivn2«k
, ~39!

FIG. 2. Molecular field approximation forK21 .
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where t̃5t2t8, r i j 5r i2r j , vn52pn/(b), and «k5
2gmBh0

z1b(I 02I k) are indeed the one-magnon eigenen
gies. In a similar fashion the correlation between thez com-
ponents of two spins can be calculated as shown in Fig.

Kzz~k;vn!5
b8

b212b8I k

dn0 , ~40!

which is static and cannot couple to a time-dependent m
netic field. Close to zero temperature its contribution is
ponentially small whenb[n]}exp(2gnTc /T). The result of
Eq. ~39! was obtained independently by Tyablikov,31

Larkin,32 and Englert,33 whereas Eq.~40! was obtained by de
Gennes and Villain,34 as well as Brout and Englert.35 We
need both of them in the following.

D. Calculation of the spin correlations

Now, we evaluate diagrammatically the three-sp
Green’s function Gz1,2( i , j ; l ;t2t8)52(1/2)
3^Tsi

z(t)sj
1(t)sl

2(t8)&, whose Fourier transform shall b
defined as

FIG. 3. Molecular field approximation forKzz.
-

:

g-
-

Gz1,2~ i , j ; l ; t̃ !

5
1

b (
n

e2 ivnt̃
1

N2 (
k,q

ei [kr l1„q2k…r i2qr j ] Gz1,2~q,k;vn!.

~41!

Its perturbation expansion is represented in Fig. 4. Here,
did not include second-order diagrams that form closed lo
in the exchange interaction, since their leading term is o
higher order inH int .

The first diagram in the series is made of three parts
straight line connectingsl

2 with si
z , a curved line connecting

si
z with sj

1 , and a circle representing the remainingsz opera-
tor. Thus, the diagram corresponds to pairing relation~36c!.
Drawing the diagram in a slightly different manner to th
one shown in Fig. 1~c!, should draw attention to the fact tha
the operatorssi

z and sj
1 are at equal times. Therefore, th

corresponding analytical expression in momentum and
ergy space is

2b Kk
(0)~2vn!Kq

(0)~0!52
b ny

ivn2y
, ~42!

where we used the convention thatt8,t. This result is in-
dependent ofk andq since we used only the local Green
functionK (0) and not the magnon Green’s functionK12 . In
order to obtain the self-consistent solution forGz1,2 , it
FIG. 4. Diagrams forGz2,1
(r ) , or Gz1,2

(r ) . When
vn↔2vn .
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therefore seems natural to replaceK (0) with K12 given in
Eq. ~39!. That this is indeed possible can be seen from Fig
Besides diagram 1 we have to consider the diagrams 3,
10, and 11 which can be divided into three types. The fi
type is a series of diagrams only within the pairing betwe
the operatorssl

2 andsi
z and is represented by the diagrams

and 11. The second type is a series of diagrams~3 and 9!
within the operators at equal times. Finally, diagram 10 c
tains a mixture of the previous two types. This taken
gether, yields a product of two infinite sums of diagram
which can be drawn as shown in Fig. 5~a!,

Gz1,2
a ~q,k;vn!52 b21 K12~k;vn!K12~q!

52
b nq

ivn2«k
, ~43a!

whereK12(q) contains the frequency summation implicit
so that it gives the number of spin waves in the molecu
field approximation,nq5$exp(b«q)21%21. Turning to the
second diagram in Fig. 4, we note that the pairing is o
between the operatorssl

2 and sj
1 according to rule~36b!.

This yields anothersz operator at sitej which forms a block
with si

z . By interchanging the sitesi andj for the pairing, the
Fourier transform in momentum space differs by the fac
exp„i (k22q…r i j … from the one in Eq.~41!. Instead, we could
equally well interchange the indicesz and1 in the definition
for Gz1,2 . In other words, the Fourier transform ofGz1,2 or
G1z,2 does not correspond to its inverse transform, only
that of their linear combination. On the other hand,Gz1,2
2G1z,2 is just the quantity which is needed in Eq.~24!.
However, in order to keep the writing at minimum the exp
nential factor exp„i (k22q…r i j … is introduced as a dumm
variable instead. As for the first diagram in Fig. 4 there
also for this second diagram a subseries of diagrams~6, 14 ;
5, 12 ; 13!, which also consists of a product of two infinit
sums, and can be dealt with in a similar fashion to yie
diagram 5~b!:

Gz1,2
b ~q,k;vn!5b21 K12~k;vn!Kzz~q!ei (k22q…r i j

5
ei (k22q…r i j

ivn2«k

b8

12bb8I q

. ~43b!

There are still two more subseries of diagrams shown in F
4 which contribute to the self-consistent solution ofGz1,2 .
One of the subseries contains the diagrams 7, 15, 16, an

FIG. 5. Dressed diagrams of self-consistent solution forG.
.
9,
t
n

-
-
,

r

y

r

o

-

g.

17,

while the other one contains 8, 18, 19, and 20. Each of
diagrams has three extensions instead of two and, there
the corresponding subseries is a product of three infi
sums as shown in Figs. 5~c! and 5~d!,

Gz1,2
c ~q,k;vn!52b22 K12~k;vn!ei (k22q…r i j

3K12~q;vn! I q Kzz~k2q!

52
ei (k22q…r i j

ivn2«k

1

ivn2«q

b8I q

12bb8I k2q

,

~43c!

Gz1,2
d ~q,k;vn!52b22 K12~k;vn!K12~q;vn!

3I k2q Kzz~k2q!

52
1

ivn2«k

1

ivn2«q

b8I k2q

12bb8I k2q

.

~43d!

In Eq. ~43c! the minus sign occurs for the same reason as
Eq. ~39!. Since one of the infinite sums was always taken
equal times,Gz1,2

a Eq. ~43a! andGz1,2
b Eq. ~43b! essentially

take only two-spin correlations into account. The spin wav
are weighted with regards to other spin waves Fig. 5~a! or
fluctuating spin moments Fig. 5~b!, as if they would travel in
an ‘‘effective medium.’’ On the other hand,Gz1,2

c and
Gz1,2

d describe true three-spin correlations. In particul
they correspond to the scattering of spin waves at fluctua
spin moments. There are two ways this can happen; eith
spin wave is absorbed by the spin moment which excite
new spin wave with different momentum as shown in F
5~c!, or a spin wave is scattered by transferring part of
momentum to the spin moment as follows from Fig. 5~d!.

The retarded Green’s function can now be obtained
analytical continuation ivn→v1 id. We also have to
change the sum over frequenciesb21(n into an integral over
frequency (2p)21*dv. Performing the integration, we find

Gz1,2
(r ) ~q,k;t2t8!5K12

(r ) ~k;t2t8!gz1,2
(r ) ~q,k;t2t8!,

~44!

where we split off the magnon Green’s function from
modulating part

K12
(r ) ~k;t2t8!52

ib

\
Q~ t2t8! e2 ivk(t2t8), ~45a!

gz1,2
(r ) ~q,k;t2t8!52nq1

b8

b

ei (k22q…r i j

12bb8I q

2
b8

b

12e2( i /\)b(I k2I q)(t2t8)

12bb8I k2q

3
I qe

i (k22q…r i j 1I k2q

I k2I q
, ~45b!

wherevk5«k /\. It was established earlier in the text th
the Green’s functionG1z,2

(r ) is equivalent toGz1,2
(r ) when in-

terchanging the sitesi and j. Thus, one is left with only the
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Green’s functionGz2,1
(r ) , since it can be transformed int

G2z,1
(r ) by the analogous operation. However, the relat

Gz2,1
(r ) 5(Gz1,2

(r ) )† found in Sec. III saves us from analyzin
Gz2,1

(r ) separately. Finally, we are in a position to write dow
an expression for the spin correlations~12!

§ i l
s̄~ t2t8!5(

j Þ i
I i j

1

N2 (
k,q

~eiqr i j eikr l i

2e2 iqr i j eikr l j !Gzs,s̄
(r )

~q,k;t2t8!. ~46!

V. RESULTING FORM OF THE LINEARIZED
EQUATIONS OF MOTION FOR AN INFINITE

HEISENBERG FERROMAGNET

With help of Eq. ~46!, we now calculate the nonloca
effective magnetic field~21!, whose Fourier transform read
in the molecular-field approximation as,

Hi l (1)
2 ~ t2t8!52

1

\b (
l 8

~ i\d l l 8] t81« l l 8!§ i l 8
2

~ t2t8!.

~47!

For clarity, we try to avoid writing both cyclic indices, sinc
the other component can always be obtained taking the c
plex conjugate. In Eq.~47! the operator is transformed int
momentum space such that« l l 8 is substituted by«k . We
operate on expression~46! and derive

Hi l (1)
2 ~ t2t8!5\21(

j Þ i
I i j

1

N2 (
k,q

~eiqr i j eikr l i 2e2 iqr i j eikr l j !

3@d~ t2t8!2 i\ b21K12
(r ) ~k;t2t8!

3] t8#gz1,2
(r ) ~q,k;t2t8!. ~48!

Examining the square brackets, it follows that it is possi
to split up this expression into a part which is local in tim
and one which is nonlocal in time,

H̄i l (1)
2 ~ t2t8!52\21(

j Þ i
I i j Ri j ~T!~d l i 2d l j !d~ t2t8!,

~49a!

H̃i l (1)
2 ~ t2t8!5

b8

b\ (
j Þ i

I i j

1

N2 (
k,q

I k2q2I q

12bb8I k2q

3~eiqr i j eikr l i 2e2 iqr i j eikr l j !K12
(r ) ~q;t2t8!,

~49b!

respectively. The first two terms in Eq.~45b! could be ab-
sorbed into a temperature-dependent correlation param
between two spins, describing the effective spin medium

Ri j ~T!5N21(
q

eiqr i j S nq1
b8

b

1

12bb8I q
D . ~50!

The third term in Eq.~45b! gave rise to expression~49b!. As
the summation overk andq can no longer be factorized, th
spins at sitesi, j, and l are fully correlated with each othe
The underlying physical process is the scattering of s
n

-

e

ter

n

waves from the fluctuatingz component of a spin as dis
cussed earlier in the text and shown in Fig. 5~c! and 5~d!.

Before we can write down the resulting form of Eq.~24!,
there is still a quantity left which is not yet calculated beyo
the molecular field result. This is the average of the spon
neous moment at equilibrium̂Sz&eq. As this is a well-known
result, we just state it in the following and refer to Ref. 13 f
further details:

^Sz&eq(1)5
1

N (
q

S ~ny2nq!1b8bI qnq1
b9

2

bI q

12bb8I q
D .

~51!

The first term is the spin-wave correction which gives t
characteristic Bloch law (T/Tc)

3/2 for ^Sz&eq at low tempera-
ture. The second term gives a correction from the scatte
of spin waves at the spontaneous moment, whereas the
term describes the effect of fluctuations of the spontane
moment on itself.

Inserting the effective fields of the two-spin correlatio
~49a! and of the three-spin correlations~49b! into Eq. ~24!,
we obtain the resulting form of the linearized equations
motion for individual spin averages

6 i g21] t^Si
6&5hi ,;

6 ^Sz&eq2h0
z^Si

6&1
^Sz&eq

gmB
(
j Þ i

I i j
eff~T!

3~^Si
6&2^Sj

6&!2(
l
E

2`

`

dt8 H̃i l (1)
7

3~ t2t8!^Sl
6~ t8!&. ~52!

With help of the correlation parameter~50!, we defined a
temperature-dependent effective exchange interac
I i j

eff(T)5I i j (11Ri j (T)/^Sz&eq). This gives manifestation to
the empirical fact that the exchange interaction should,
principle, depend on temperature.23

So far, the terms in the perturbation series were con
ered according to their expansion in powers ofH int . On the
other hand, the method allows us to classify diagrams w
respect to the derivatives ofb, in other words, to their tem-
perature behavior. In particular, at low temperatures der
tives of b can be neglected due to their exponential sm
ness.

Taking thus the low-temperature approximation of E
~52!, the last term, nonlocal in time, drops out. The equatio
of motion for an individual spin average is then rather co
cise. The average spin moment~51! takes the form̂ Sz&eq
'S2R(T), where R(T)5N21(qnq . The spin-correlation
parameter depends also no longer onb8, i.e. Ri j (T)
5N21(qnqexp(iqr i j ). This low-temperature form of Eq
~52! corresponds to the results of Ref. 9 and justifies
approximations taken therein.

In the remaining part of this section we would like
answer the questions of how our approach correspond
previous results on the thermodynamics of the thr
dimensional Heisenberg ferromagnet, and how to obt
from our results macroscopic equations of the magnetiza
which include temperature dependence and damping of
spin excitations.
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A. Spectrum and Landau damping

To demonstrate how to obtain the spectrum from Eq.~52!,
we deal with its last term first. We assume that the s
waves are monochromatic, i.e.,^Si

1&}exp(2ivt). The time
integration yields

E
2`

`

dt8 K12
(r ) ~q;t2t8!e2 ivt8

5
b

\ H `S 1

v2vq
D2 ip d~v2vq!J e2 ivqt, ~53!

where` denotes the principle part. The first term contribu
to the spectrum. The second term gives characteristic Lan
damping of the spin waves. Looking for a solution of E
~52! in an infinite crystal, so that the spin waves depe
periodically onr i , i.e., si

15N21(ks
1(k)exp(ikr i), we find

for the spectrum and damping constant

Ek5«k2N21(
q

H ~ I k2q2I q!nq1
b8

b

I k2q2I q

12bb8I q

2
b8

«k2«q

~ I k2q2I q!2

12bb8I k2q
J , ~54a!

gk5
b8p

\N (
q

~ I k2q2I q!2

12bb8I k2q

d~v2vq!. ~54b!

Vaks, Larkin, and Pikin reported this result first.14 Compar-
ing Eq.~54a! with Eq. ~51!, it is evident that the temperatur
dependence of the spin-wave spectrum corresponds on
zeroth order with that of̂ Sz&eq. Due to the exponentia
smallness ofb8 at low temperatures, damping is only notic
able for intermediate temperatures and rises sufficiently
gether with the fluctuations as the temperature gets in
vicinity of Tc . However, for very long spin waves the dam
ing is still weak even close to the critical region. We do n
expand the discussion of this point and just refer to the c
references for further details, since the purpose of this s
tion was to show the validity of our approach by maki
contact to previous works in the field.

B. Macroscopic equation for the magnetization

In the following, we shall take the classical limit of th
low temperature approximation of Eq.~52!, to derive the
macroscopic magnetization equations at low-temperatu
These equations will contain the previous convention, thah0
is in the negativez direction andh;(t) is perpendicular to
h0.

The macroscopic magnetization is defined as,m„r )5
2gmB^S(r )&V0

21, where^S(r )&ur5r i
5^Si& and V0 the vol-

ume of the unit cell, and the exchange integral
J(r2r 8)ur5r i ,r85r j

5I i j V0 . Since the exchange integral

falling off rapidly with increasingur2r 8u, the magnetization
can be developed by a Taylor expansion in powers
s5r2r 8, wheres is a vector along the crystallographic axe
Taking the series expansion to second order, we make
following transformation:
n

s
au
.
d

to

-
e

t
d
c-

s.

,

f
.
he

1

gmB
(
j Þ i

I i j
eff~T!~^Si

6&2^Sj
6&!

5
1

2~gmB!2 (
s

Jeff~s,T! ~s•“ !2m6~r ,T![hex
6~r ,T!,

~55!

where Jeff(s,T)5J(s)$11R(s,T)/um0(T)u%, and m0(T) is
the macroscopic equilibrium magnetization. The sum oves
is usually performed only to include nearest- or next-
nearest-neighbor coupling. In correspondence to the ma
tization density, the two-spin correlation parameter is tak
at the long-wavelength approximationl@a:

R~s,T!52 gmBE
2`

` dq3

2~2p!3

22~s•q!2

eb«q21
, ~56!

where«q5gmBuh0u1(S/2)(sJ(s) (s•q)2, andV0 is the vol-
ume of the unit cell. The parameterR(T) differs from the
one defined above, in that the second term in the numer
of definition ~56! is absent.

Apart from the temperature dependence of the excha
integral, the expression on the right-hand side of Eq.~55! is
analogous to the effective field contribution derived from t
‘‘classical exchange energy’’ in the Landau and Lifsh
equations of motion. Therefore, we defined it as
temperature-dependent effective exchange fieldhex

6(r ,T).
Using Cartesian coordinates, the equations of motion~52!
are generalized towards the following form in their classi
limit at low temperatures:

g21] t m~r ,T!5h03m~r ,T!1@h;~r !1hex~r ,T!#3m0~T!,

~57!

where we dropped again for brevity the argument denot
the time dependence. The equations of motion~57! are the
temperature-dependent equivalent of the linearized Land
Lifshitz equations of motion without damping. The temper
ture dependence ofJeff(s,T) cancels the spuriousT3/2 effect
in the spin-wave spectrum as required. In other words,
contributions that arise in the equations of motion~57! due to
the correlation of thermal fluctuationsR(s,T), are of the
same order as those of the spontaneous magnetiza
m0(T). Equation~57! can be seen as the principle extensi
of the Landau-Lifshitz equations of motion to macroscop
systems at low temperatures, whereJeff(s,T) andm0(T) can
be obtained, either from first principles as shown, or taken
phenomenological constants from experiment. Moreover,
equations of motion~57! allow for solving boundary prob-
lems, since in the long-wavelength limitl@a, we can usu-
ally assumel@aATc/T so that the physical surface of th
system does not influence the correlation parameter
equilibrium magnetization.

In order to include damping at low temperatures in t
equations of motion~57!, we have to consider spin-wave
spin-wave interactions.21 One way would be to calculate Eq
~52! to next order, applying the equation-of-motion tec
nique. This would lead to a four-spin Green’s function whi
could be calculated to first order at low temperatures by
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replacingK (0) with K12 and neglecting terms containingb8
in the perturbation expansion. Finally, the limit of lon
wavelengths has to be taken. The correction to the molec
field approximation would then be of second order inH int .
Another more straightforward method was introduced in S
III B. Iterating the nonlocal fieldH̄i l (1)

s Eq. ~49a! with the
help of Eqs.~26! and ~46!, one obtains for the nonequilib
rium correlations at low temperaturesF i

65Fi (1)
6 1Fi (2)

6 ,
where

Fi (1)
1 ~ t !5(

j Þ i
I i j Ri j @^Sj

1~ t !&2^Si
1~ t !&#, ~58a!

Fi (2)
1 ~ t !5b21(

j Þ i
I i j Ri j (

l ,l 8

8 I l l 8Rll 8E
2`

`

dt8@K12
(r ) ~ i ,l ;t2t8!

2K12
(r ) ~ j ,l ;t2t8!#@^Sl

1~ t8!&2^Sl 8
1

~ t8!&#, ~58b!

andFi (1)
2 , Fi (2)

2 by taking the complex conjugate. The Fo
rier transform of the magnon Green’s function rea
K12

(r ) ( i , j ;t2t8)5N21(kK12
(r ) (k;t2t8)expikr i j . The term

Fi (1)
6 features already in Eqs.~52! and~57!, respectively. The

term Fi (2)
6 is new and with Eq.~53! can be seen to give

damping. It corresponds to the results of Dyson’s sec
Born approximation.21 Without doubt, within the presente
formalism it is rather straightforward to derive this resu
since no additional Green’s functions need to be calcula

In order to include alsoFi (2)
6 in the macroscopic equation

of motion~57!, we first express the magnon Green’s functi
in terms ofx andy coordinates,

Kxx
(r )~ i , j ;t2t8!5

1

2
@K12

(r ) ~ i , j ;t2t8!1K12
(a) ~ i , j ;t2t8!#

5Kyy
(r )~ i , j ;t2t8!, ~59a!

Kyx
(r )~ i , j ;t2t8!5

1

2i
@K12

(r ) ~ i , j ;t2t8!2K12
(a) ~ i , j ;t2t8!#

52Kxy
(r )~ i , j ;t2t8!. ~59b!

This allows us to define a 333 matrix K (r )5uKab
(r ) u, where

a,b5x,y,z and Kza
(r )5Kaz

(r )50, so that the correspondin
vector to the nonequilibrium correlations~58b! takes in Car-
tesian coordinates the form

Fi (2)~ t !5b21(
j Þ i

I i j Ri j (
l ,l 8

8 I l l 8Rll 8E
2`

`

dt8@K (r )~ i ,l ;t2t8!

2K (r )~ j ,l ;t2t8!#@^Sl~ t8!&2^Sl 8~ t8!&#. ~60!

When taking the long-wavelength limit ofb21K12
(r ) ( i , j ;t

2t8), we derive the following function:

K12
(r ) ~s;t2t8!52

iV0

\
Q~ t2t8!E

2`

` dk3

2~2p!3

3@22~k–s!2#e2( i /\)«k(t2t8), ~61!
lar

c.

s

d

,
d.

wheres5r i2r j . We also dropped the linear term ink since
it cancels, when performing the integral. Now, we are in t
position to write the nonequilibrium correlationsFi (2)(t) in
the macroscopic limit

F(2)~r ,t !5 (
s,s8,s9

E
2`

`

dt8 R„s,s8,s9,t2t8)

3hex~s8,r2s9,t8!, ~62!

where the kernel

R„s,s8,s9,t2t8)52~gmB!21J~s!R~s,T!R~s8,T!

3@K (r )~s9,t2t8!2K (r )~s92s,t2t8!#

contains all information on the correlations. The mat
K (r )(s,t2t8) is the long-wavelength limit ofb21K (r )( i , j ;t
2t8). The quantity hex(r,s)5@1/2(gmB)2#J(s) (s
•“)2m(r ,T), is defined similar as before andhex(r )
5(shex(r,s). In order to include the term~62! in the equa-
tions of motion~57!, we substituteF (2)

x →2F (2)
y andF (2)

y

→F (2)
x . This new correlation term is responsible for what

known in classical spin-wave theory as a four-magnon s
tering process, which is hinted at by the four different spa
arguments in the sum of the term~62!.

VI. CONCLUSIONS

The standard Landau-Lifshitz equations are extensiv
used in magnetism due to the important fact that they al
one to solve boundary problems in a rather straightforw
manner. They provide a method to calculate magnetic os
lations and waves in finite magnetic samples. The new eq
tions ~24! and ~57! obtained in this work generalize the lin
earized Landau-Lifshitz equations in two important aspe
First, the equations~24! are microscopic and are therefo
applicable to ferromagnetic systems of any type of dim
sionality and geometry. Second, Eqs.~24! and ~57! include
the influence of spin correlations and not only the effect
an effective molecular field. The presence of spin corre
tions leads to the possibility to describe the temperature
pendence of the dynamic properties in the underlying m
netic system. In addition, Eqs.~24! and ~57! are equally
suitable and convenient as the Landau-Lifshitz equation
solve boundary problems. In fact, the structure of the m
roscopic equations~57! does not differ, in principle, from
that of the Landau-Lifshitz equations. Only a temperatu
dependence of the individual coefficients occurs. As c
cerns the microscopic equations~24!, they turn into a system
of ordinary differential equations, after Fourier transform
tion in time.

Nevertheless, there still remains one principle problem
is, of course, necessary to know the individual coefficie
and their temperature dependence in the differential eq
tions ~24! and~57!. However, the same problem exists in th
case of the Landau-Lifshitz equations, where one need
know the constants for exchange, anisotropy etc. As a r
they are taken from phenomenological considerations,
from the requirement to obtain agreement between the
and experiment. This can obviously be done also in our c
However, there is in addition the possibility to derive th
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necessary coefficients from first principles. These coe
cients contain the information on the equilibrium propert
of the system, and in the present work we obtained for th
expressions in terms of equilibrium averages of spin ope
tors, i.e., three-spin Green’s functions as given in Eqs.~12!
and ~13!.

In order to find the appropriate algorithm to calcula
these spin averages, we discussed different classes of
tems in Sec. III C. In Sec. IV we gave a demonstration fo
particular example, that of an infinite Heisenberg ferrom
net. Since the thermodynamic properties of such a sim
system are already studied in detail, we were able to com
our results with established ones obtained by differ
methods.12–14 This gave the possibility of demonstrating th
validity of our approach and its relative simplicity.

In particular, at the heart of our approach lies the com
nation of different analytical tools. The equation-of-motio
technique for spin operators is employed to derive the p
ciple equations of motion~6! and to single out the spin cor
relations~9!. We used linear-response theory to decouple
equations of motion and express the nonequilibrium avera
^si

msj
n& in terms of the nonequilibrium averages of the ind

vidual spins. The obtained closed equations~19! contain the
nonequilibrium spin correlations to all orders given the eq
librium properties of the system are known. As a result,
decoupling was obtained in a systematic manner and fre
any arbitrariness, which might arise in the equation of m
tion technique, when applied to Green’s functions for s
operators. It is interesting to pursue this approach to hig
orders, to obtain closed equations for clusters of spins.

The next step of our analysis was to calculate the equ
rium properties diagrammatically. Besides the spontane
magnetization, we needed to find the three-spin Gree
function ~13!. At first sight, one would expect that the anal
sis of the three-spin Green’s functions is very involved, bu
turned out that indeed the opposite is the case. Namely
obtain the first-order correction to the molecular field a
proximation, one has to sum-up diagrams that form sim
combinations of geometric progressions. This led to the
tuitive picture, that the underlying physical processes
simple quasiparticle interactions of the spin system. In or
il-
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to obtain the spin-wave spectrum, we could have inserted
expression for the spin correlations~46! directly into Eq.
~15! and evaluated the poles of the two-spin Green’s funct
in this approximation, instead of solving the equations
motion ~52!. In other words, by combining the equation-o
motion technique with diagrammatic perturbation theory,
effective method is obtained to derive higher-order corr
tions to the molecular field result. One simply has to calc
late higher-order Green’s functions self-consistently and t
insert them into the corresponding equation of motion. T
method keeps, thus, a simplicity which lacks in ordinary d
grammatic perturbation theory, due to the rapidly increas
number of different types of diagrams for each higher or
in the expansion. Not only the number of diagrams wh
have to be analyzed is significantly reduced, but also
underlying physical process seems presented more luc
We look forward to see this method employed also in ot
areas of condensed-matter physics.

The use of the simple Heisenberg model and the comp
son to well-known results can be regarded as a prerequ
for the future development of research in this direction. W
plan to use our approach to solve actual boundary proble
For instance, we are interested in the temperature behavi
macroscopic spin waves in ferrite films of the YIG type. A
such films are used in electronic devices, one outstand
problem is how to obtain films whose spectral characteris
are most stable against temperature fluctuations. A fur
direction we currently focus on was already mentioned in
context of small magnetic clusters and two-dimensio
magnetic nanostructures of the multilayer type. Last but
least, another problem we are working on, is to drop
assumption of linear response in order to study the influe
of correlations on nonlinear and parametric effects.
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