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Amorphous solid state: A locally stable thermodynamic phase of randomly constrained systems
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The question of the local stability of the~replica-symmetric! amorphous solid state is addressed for a class
of systems undergoing a continuous liquid to amorphous-solid phase transition driven by the effect of random
constraints. The Hessian matrix, associated with infinitesimal fluctuations around the stationary point corre-
sponding to the amorphous solid state, is obtained. The eigenvalues of this Hessian matrix are all shown to be
strictly positive near the transition, except for one—the zero mode associated with the spontaneously broken
continuous translational symmetry of the system. Thus the local stability of the amorphous solid state is
established.@S0163-1829~99!01641-0#
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I. INTRODUCTION

In recent years, a theoretical approach has been devel
for the problem of the liquid-amorphous solid phase tran
tion in systems of randomly crosslinked flexible line
macromolecules.1–4 This approach starts from a semimicr
scopic model for the macromolecules, and takes into acco
explicitly both the thermal fluctuations at nonzero tempe
ture and the quenched disorder due to the random natu
the crosslinking. It is based on the Deam-Edwards formu
tion of the statistical mechanics of polymer networks,5 and
borrows some concepts and techniques that have in the
been used to study the problem of spin glasses.6 In the
framework of this approach, it is possible to define an or
parameter that probes random static particle density fluc
tions, and is thus able to detect the transition between
liquid and the amorphous solid state.1,4

Along the way, it has been recognized that there exis
class of systems~including, e.g., end-linked flexible and sti
polymers,7 and crosslinked higher dimensional manifolds8!
that display identical transitions, and a general Land
theory was formulated to describe this transition.9 This Lan-
dau theory was constructed using only symmetry consid
ations and the assumption that the phase transition shou
continuous~and thus dominated by the long-distance beh
ior of the system!.

By expanding any of the semimicroscopically deriv
free-energy functionals corresponding to the abo
mentioned physical systems in powers of the order param
and gradients, one recovers this general Landau free-en
functional, up to terms that play no role in the mean-fie
theory, in the vicinity of the transition. In the study of fluc
tuations, as we shall show later, these additional terms do
alter the physical picture. The slight difference between
general Landau theory and the microscopically derived th
ries is due to the fact that, whereas the former theory o
allows states that have a disorder-averaged particle de
that is spatially homogeneous, in the latter states with spa
PRB 600163-1829/99/60~21!/14702~17!/$15.00
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inhomogeneities of the density are in principle allowed, b
are ultimately suppressed by the repulsive interparticle in
actions.

Let us begin by summarizing the results of the mean-fi
theory of the liquid–amorphous-solid transition driven
random constraints:~i! for densities of constraints smalle
than a critical value the system is in the liquid state and
particles are delocalized;~ii ! for densities of constraints
larger than the critical value the system is in an amorph
solid state, characterized by emerging random static den
fluctuations;~iii ! at the critical density of constraints there
a continuous phase transition between the liquid and
amorphous solid states;~iv! in the amorphous solid state
positive fraction of the particles is localized around rando
mean positions and with random rms displacements;~v! in
the amorphous solid state, close to the transition, the frac
of localized particles is proportional to the excess of t
crosslink density beyond its critical value, and the typic
localization length diverges at the transition like the exc
crosslink density to the power21/2; ~vi! when scaled by the
mean value, the statistical distribution of localization leng
is universal near the transition and, consequently, the de
dence of the order parameter on the wave vectors also h
universal scaling form.

Although in the amorphous solid state translational inva
ance and rotational invariance are broken at the microsc
level, because a fraction of the monomers are localized,
average density is uniform, and the system is macrosc
cally translationally~and rotationally! invariant ~MTI !.4 The
liquid state is, of course, not only macroscopically but a
microscopically translationally and rotationally invariant,
each individual monomer density is uniform over the co
tainer. Moreover, as in the case of some of the mean fi
solutions encountered in spin-glass systems, both the liq
and the amorphous solid states are replica symmetr10

However, as will be shown later, the symmetry of the
states is even larger, because the replica symmetry comb
14 702 ©1999 The American Physical Society
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with the rotational symmetry~in d-dimensional space! to
produce rotational symmetry in and-dimensional~i.e., rep-
licated! space.

It is well known that in the spin-glass case the ea
replica-symmetric spin-glass solution10 for the Sherrington-
Kirkpatrick model was later found to be locally unstable
temperatures below the critical temperature by de Alme
and Thouless,11 and was superseded by the repli
symmetry-breaking solution12 discovered by Parisi, with its
elegant interpretation in terms of symmetry-unrelated p
equilibrium states.13 This replica symmetry-breaking solu
tion has a non-negative entropy at all temperatures an
locally marginally stable.14

By analogy with the spin-glass case, and considering a
the fact that random topological constraints can, in princip
lead to a partitioning of the configuration space of thre
dimensional macromolecular systems into ergodic regi
that are not connected by symmetry operations,1,4 it would
not be entirely surprising if in systems undergoing a liqui
amorphous-solid transition under the effect of random c
straints, the replica symmetric stationary point of the fr
energy corresponding to the amorphous solid state turned
to be unstable and had to be superseded by a less symm
solution of the mean-field equations.

However, the Deam-Edwards distribution5,4 used to
model the disorder favors sets of constraint locations that
associated with highly probable configurations of the unc
strained system. Thus, although frustration may in princi
be present, the disorder distribution tends to discourage15

The purpose of this paper is to show that the mean-fi
amorphous solid state is, in fact, locally stable, at least n
the transition. More specifically, the Hessian matrix that
scribes changes of the free-energy functional for infinite
mal fluctuations around the stationary point correspondin
the amorphous solid state is computed, and it is shown t
to linear order in the excess crosslink density, all its eig
values are strictly positive, except for and degenerate zero
mode associated with the spontaneous breaking of
continuous translational symmetry of the system. In orde
do this, we construct a description for the space of fluct
tions around the stationary point that allows the eigenva
problem for the Hessian matrix in replicated space to
reduced, in essence, to an integral eigenvalue equation in
dimension.

The rest of this paper is organized as follows: In Sec
we compute the Hessian matrix for the Landau free-ene
functional around the amorphous solid state, and make us
the continuous symmetry of the problem to identify a ba
set that significantly simplifies the eigenvalue equation
the Hessian. In Sec. III we find positive lower bounds for
the eigenvalues of the Hessian, except for the zero mode
is present due to the spontaneously broken symmetry. In
IV we extend these results to allow for fluctuations in t
particle density in the case of the microscopically deriv
free-energy functional for randomly crosslinked macrom
ecules. Finally, in Sec. V we present our conclusions.

II. LANDAU THEORY: HESSIAN MATRIX

In this section we first summarize briefly the basics of
general Landau theory of the liquid–amorphous-solid ph
t
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transition, as presented in Ref. 9, and later derive express
for the Hessian matrix for the free-energy functional in th
theory.

A. Brief review of the Landau theory

In a system characterized by static random density fl
tuations, the appropriate order parameter is1,4,9

V̄k1,k2,•••,kg[F 1

N (
j 51

N

^eik1
•cj&x^eik2

•cj&x•••^eikg
•cj&xG ,

~2.1!

where N is the total number of particles,ci ~with i
51, . . . ,N) is the (d-dimensional! position vector of par-
ticle i, the wave vectorsk1,k2, . . . ,kg are arbitrary,̂ •••&x

denotes a thermal average for a particular realizationx of the
disorder,@•••# represents averaging over the disorder, ang
is a positive number.

We make the Deam-Edwards assumption5 that the statis-
tics of the disorder is determined by the correlations of
unconstrained system. Under the Deam-Edwards assu
tion, obtaining disorder averages with the replica techniq
amounts to working with then→0 limit of systems ofn
11, as opposed ton, replicas. The additional replica, labele
by a50, represents the degrees of freedom of the origi
system before adding the constraints or, equivalently,
scribes the constraint distribution.

In the replica formalism, the order parameter takes
form1,4,9

V̄ k̂[K 1

N (
i 51

N

exp~ i k̂• ĉi !L
n11

P

. ~2.2!

Here, hatted vectors denote replicated collections
(d-dimensional! vectors, viz.,v̂[(v0,v1, . . . ,vn), their sca-
lar product beingv̂•ŵ[(a50

n va
•wa, and^•••&n11

P denotes
an average for an effective pure~i.e., disorder-free! system of
n11 coupled replicas of the original system. We use
termsone-replica sector~1rs! andhigher replica sector~hrs!
to refer to replicated vectors with, respectively, exactly o
and more than one replicaa for which the corresponding
vectorka is nonzero.

In the Landau theory the order parameter in the o
replica sector represents spatial variations in the disor
averaged mean particle density, and is always assumed
strictly zero.

In the stationary point approximation, the disorde
averaged free energyf ~per particle and space dimension! is
given by6,16,17

f 5 lim
n→0

min
$V k̂%

Fn~$V k̂%!, ~2.3!

with the Landau free-energy functional given by

ndFn~$V k̂%!5(
k̂

S 2e1
uk̂u2

2
D uV k̂u2

2 (
k̂1k̂2k̂3

V k̂1
V k̂2

V k̂3
d k̂11 k̂21 k̂3 ,0̂. ~2.4!
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14 704 PRB 60CASTILLO, GOLDBART, AND ZIPPELIUS
Here e is the control parameter, and is proportional to t
amount by which the constraint density exceeds its valu
the transition. The symbol(̄ denotes a sum over replicate
wave vectorsk̂ in the higher replica sector.

For e,0, the stationary point equations for the fre
energy functional of Eq.~2.4! only have the solutionV̄ k̂
5d k̂,0̂ , corresponding to the liquid state. Fore.0, there are
two solutions, one (V̄ k̂5d k̂,0̂) corresponding to the liquid
state and a second one corresponding to an amorphous
state, given by

V̄ k̂5~12q!d k̂,0̂1q d k̃,0 v~A2k̂2/e!,

q52e/3,

v~k!5E
0

`

du p~u!e2k2/2u. ~2.5!

Here, the quantityq is the ratio of the number of localize
particles to the total number of particles~i.e., the localized
fraction!, p(u) is a universal scaling function that characte
izes the distributionp(1/j2) of the ~inverse square! localiza-
tion lengthsj for the localized particles, throughp(1/j2)
5(2/e)p(2/ej2), and we use the definitionk̃[(a50

n ka. The
factor d k̃,0 encodes the property of macroscopic translat
invariance~MTI ! for the amorphous solid state, i.e., the fa
that the state is invariant under common translations of
the replicas, or, in more physical terms, that the particles
localized around randomly located points that have a ho
geneous probability of being found anywhere in the volu
of the system. The scaling functionp(u) satisfies the station
arity condition

u2

2

dp

du
5~12u! p~u!2E

0

u

du8p~u8!p~u2u8!, ~2.6!

together with the normalization condition

15E
0

`

du p~u!. ~2.7!

This normalization condition directly follows from the fac
that the order parameter of Eq.~2.2! has to be unity at the
origin of replicated wave-vector space.3,4 It is worth noticing
that in the limit e→0 the above parametrization ofV̄ re-
duces continuously to the order parameterV̄ k̂5d k̂,0̂ for the
liquid state, as it should.

Let us now discuss the symmetry properties of the Lan
free-energy functional. Under independent translations o
the replicas, i.e.,ci

a→ci
a1aa, the replica order paramete

Eq. ~2.2!, transforms as

V k̂→V k̂
85eik̂•â V k̂ . ~2.8!

For later reference, let us calculate the change in the o
parameter for the case of small displacements of the repli

dV k̂[V k̂
82V k̂5 i k̂•â V k̂1O~a2!. ~2.9!
at
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Under independent rotations of the replicas, defined byci
a

→c8i
a5Raci

a , andR̂v̂[$R0v0, . . . ,Rnvn%, where eachRa is
a rotation matrix ind dimensions, the order parameter tran
forms as

V k̂→V k̂
85V R̂21k̂ . ~2.10!

By inserting the transformed order parameter for either of
above operations into the free-energy functional Eq.~2.4!,
we see that in both cases

ndFn~$V k̂
8%!5ndFn~$V k̂%!, ~2.11!

i.e., that the Landau free energy is invariant underindepen-
dent translations and rotations of the replicas.

Anticipating the conclusions of this paper, that the liqu
state, which becomes unstable whene is increased through
zero, is replaced by a stable amorphous solid state fore.0,
we now pause to compare some aspects of this phase tr
tion with their counterparts in simple models of th
paramagnet-to-ferromagnet phase transitions@e.g., theO(N)
symmetric vectorf4 model#. We shall refer to Fourier com
ponents of fields asmodes, and shall consider the mean-fie
level of description. At high temperatures~for magnetism!
and low constraint densities~for amorphous solidification!
the equilibrium value of all modes is zero. As the releva
control parameter is changed through its critical value
band of modes, including those of the longest waveleng
become linearly unstable, the longer the wavelength
stronger the instability. In both settings, magnetism a
amorphous solidification, stability is recovered by the acq
sition of a nonzero equilibrium value by one or more of t
modes. For magnetism, there is azero wave-vector mode,
which is the most unstable mode, and by giving it the app
priate nonzero equilibrium value, this modeand all others
are restabilized~i.e., are no longerunstable, as discusse
below, there should and does remain one marginally sta
Goldstone mode!. For amorphous solidification, restabiliza
tion is more intricate. There is no fluctuating zero wav
vector mode in the theory to be given a nonzero equilibri
value. Instead, the most unstable modes have the sma
allowed nonzero wave vectors. If these modes become n
zero, as some of them do, there is no symmetry dicta
‘‘selection rule’’ prohibiting them from acting as ‘‘sources
for certain other modes, and thus not just one but a la
family of modes become nonzero, not only including mod
that were formerly unstable.~This may be regarded as a
analog of domain-wall formation in wave-vector spac!
There is one further subtlety to the amorphous solidificat
case: to give a nonzero equilibrium value to modes that
side in the one replica sector would be extremely energ
cally costly and, from the viewpoint of the Landau theory,
ruled out ~via an implicit linear constraint on the order pa
rameter!. This requirement is satisfied by giving a nonze
equilibrium value only to modes that are MTI, because su
modes are prohibited, on symmetry grounds, from acting
sources for modes in the one replica sector. Thus stabilit
restored not by giving one unstable mode a nonzero va
and not by giving only the unstable modes a nonzero va
but by giving a sheet of modes~some unstable and som
stable! a nonzero value.
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B. Hessian matrix elements

Consider any variation$dV k̂% of the $V k̂% around a sta-
tionary point$V̄ k̂%. To first order in$dV k̂%, the variation of
the free-energy functional is, of course, zero. We see fr
Eq. ~2.4! that the second order variation is18

d (2)@ndFn~$V k̂%!#5(
k̂

S 2e1
uk̂u2

2
D udV k̂u223

3 (
k̂1k̂2k̂3

d k̂11 k̂21 k̂3 ,0̂ V̄ k̂1
dV k̂2

dV k̂3
.

~2.12!

Now consider expanding around the liquid state for a
value ofe. In this case, the second variation reduces to

d (2)@ndFn~$V k̂%!#5(
k̂

S 2e1
uk̂u2

2
D udV k̂u2, ~2.13!

which evidently indicates that the liquid is stable fore,0
and unstable fore.0. Fore.0 the only candidate we know
of for a stable thermodynamic state is the amorphous so
From now on we focus only on that state.

By inserting the value of the order parameter, Eq.~2.5!,
into the three wave-vector sum in Eq.~2.12!, we obtain

(
k̂1k̂2k̂3

d k̂11 k̂21 k̂3 ,0̂d k̃1 ,0

2e

3
v~A2k̂1

2/e!dV k̂2
dV k̂3

5 (
k̂2k̂3

d k̃21 k̃3 ,0

2e

3
vSA2

e
~ k̂21 k̂3!2D dV k̂2

dV k̂3

2
2e

3 (
k̂

udV k̂u2. ~2.14!

Thus we can rewrite the second variation in terms of
Hessian matrixHq̂,q̂8 :

d (2)@ndFn~$V q̂%!#5 (
q̂,q̂8

Hq̂,q̂8dV q̂dV2q̂8 , ~2.15!

where we have definedHk̂, l̂ by

Hk̂, l̂[
1

2!

d2@ndFn#

dV k̂dV2 l̂

. ~2.16!

~For later convenience, we have chosen a definition that
fers from the standard one by a factor of 1/2.! More explic-
itly, we have

Hk̂, l̂ 5d k̂, l̂ S e1
k̂2

2
D 2d k̃, l̃ 2eE

0

`

du p~u!e2( k̂2 l̂ )2/eu

1O~e2!. ~2.17!

As it is adequate to be concerned with matrix elements
leading~i.e., first! order ine, we shall neglect higher order
from now on.
m

y

d.

e

if-

o

C. Change of basis

In order to simplify the diagonalization of the Hessian, w
are going to exploit the symmetries of the problem. As
direct consequence of the invariance of the free-energy fu
tional under translations and the MTI property of the am
phous solid state, the matrix elementHk̂, l̂ of the Hessian only
connects wave vectorsk̂ and l̂ such thatk̃5 l̃ . This already
reduces the complexity of the problem by making the H
sian block diagonal.

As Hk̂, l̂ depends onk̂2, l̂ 2, and k̂• l̂ , one might expect to
find a symmetry under arbitrary rotations in (n11)d dimen-
sions, which would simplify the diagonalization of the He
sian still further. However, the factord k̃, l̃ is not invariant
under some of those rotations. Instead,H only displays a
rotational symmetry innd dimensions, but this will enable u
to simplify the task in much the same way as is commo
done for central potentials in quantum mechanics.

In order to make this symmetry explicit, we choose afixed

matrix TPSO@(11n)d# such that for any vectorv̂ in repli-
cated space we explicitly isolateṽ from the othernd inde-
pendent coordinates, which we callv̆:

Tv̂5S ṽ

A11n

v̆
D . ~2.18!

Due toT being orthogonal, scalar products remain simple
the new coordinates:

v̂•ŵ5
ṽ•w̃

11n
1 v̆•w̆. ~2.19!

In the new coordinates, we have

H k̃k̆, l̃ l̆ 5d k̃, l̃H d k̆, l̆ F e1
1

2
S k̆21

k̃2

11n
D G

22eE
0

`

du p~u!e2( k̆2 l̆ )2/euJ . ~2.20!

This expression, taken naively, would immediately tell
that the Hessian is invariant under rotations innd dimen-
sions:

;R̆PSO~nd!: H k̃ R̆k̆, l̃ R̆l̆ 5H k̃k̆, l̃ l̆ . ~2.21!

However, there is an important caveat. Our Hessian is o
defined for wave vectors in the higher replica sector, but
proposed rotations can take a vector in the higher rep
sector and transform it into a vector in the one-replica sec
For the moment we are going to ignore this difficulty, a
simply diagonalize the matrix obtained by using Eq.~2.17!
as its definition, withk̂ and l̂ takinganynonzero values, both
in the higher and in the one-replica sector.~This enlarged
Hessian matrix will be termed the ‘‘extended Hessian’’
distinguish it from the ‘‘original Hessian’’ which does no
have those additional matrix elements; see Fig. 1.! After hav-
ing diagonalized the extended Hessian, we will return to
issue of the one-replica sector. For the moment, let us
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14 706 PRB 60CASTILLO, GOLDBART, AND ZIPPELIUS
anticipate that, in the replica limitn→0, the only effect of
this extension of the Hessian on its spectrum of eigenva
will be the addition of one spurious eigenvalue, correspo
ing to a fluctuation localized in the one-replica sector.

For the modified problem of diagonalizing the extend
Hessian, theSO(nd) symmetry holds, and Eq.~2.21! is cor-
rect without caveat. In what follows, we will use the sam
strategies as in the diagonalization of a quantum-mechan
Hamiltonian for a particle in a central potential. The role
the Hamiltonian will be played byHk̂, l̂ . We will also exploit
the symmetries of the problem: the rotational symmetry
nd-dimensional space will allow us to write each eigenfun
tion as a product of a radial part, which will be obtained
solving a one-dimensional eigenvalue equation, and an a
lar part, which will simply be a surface harmonic function19

in nd dimensions. The quantityk̃, which is exactly con-
served byHk̂, l̂ , will play the role of a conserved quantum
number. We will obtain distinct sets of eigenfunctions f

each fixed value ofk̃.
We are going to work in the Hilbert space of compl

functions of the variablek̂(Þ0̂). We exclude the origin be

FIG. 1. Comparison of the original Hessian matrix~upper fig-
ure! and the extended Hessian matrix~lower figure!. The extended
Hessian matrix is depicted as being formed by four blocks, resp
tively connecting: the 1rs with itself~labeledH11), the 1rs with the
hrs ~labeledH1h), the hrs with the 1rs~labeledHh1), and the hrs
with the hrs~labeledHhh). The blockHhh corresponds exactly to th
original Hessian.
es
-

al
f

n
-

u-

cause we are interested in fluctuations of the order param
andV 0̂ cannot fluctuate. We define the scalar product in t
space as follows:

^ f ug&[
1

Vn (
k̂Þ0̂

f * ~ k̂!g~ k̂!, ~2.22!

which simplifies, in the thermodynamic limit, to21

^ f ug&.VE dk̂

~2p!(11n)d
f * ~ k̂!g~ k̂!

5VE dk̃ dk̆

~11n!d/2 ~2p!(11n)d
f * ~ k̃,k̆!g~ k̃,k̆!.

~2.23!

We define a basis set for this Hilbert space by

wpp̃s~ k̃,k̆![~11n!d/4~2p!nd/2d p̃,k̃d~ uk̆u2p!

3p(12nd)/2Ss~f k̆!, ~2.24!

Here$Ss(f)% are the normalized surface harmonic functio
defined on the unit sphere innd-dimensional space,19 p̃ is
any wave vector ind dimensions, andp is any positive num-
ber. @Surface harmonics are homogeneous trigonome
polynomials, they are generalizations of spherical harmon
to any space dimensiond>3. The labels is a set of integers
that characterize the appropriate trigonometric polynom
for example, ford53, the surface harmonics are the usu
spherical harmonics, ands[( l ,m), with l the degree of the
trigonometric polynomial andm a label that distinguishes
between polynomials of the same degree.# The notationf k̆

[ k̆/uk̆u denotes the unitnd-dimensional vector along the di
rection of k̆. The elements of the basis set$wpp̃s% are or-
thogonal and normalized under the scalar product Eq.~2.22!:

^wp8p̃8s8uwpp̃s&5d~p82p!d p̃8,p̃ ds8,s . ~2.25!

As suggested above, we propose to express each e
function for the problem in the form

c r p̃s~ k̃,k̆!5~11n!d/4~2p!nd/2

3d p̃,k̃ uk̆u(12nd)/2 Rr~ uk̆u! Ss~f k̆!,

5E
0

`

dp Rr~p!wpp̃s~ k̃,k̆!, ~2.26!

where the discreted function ensures that the eigenfunctio
is localized on points with a fixed value ofk̃, the surface
harmonicSs gives the angular dependence onk̆, and the
radial functionRr gives the radial dependence onk̆. By using
the normalization condition for the basis set, we obtain
normalization condition for the radial part:

E
0

`

dkuRr~k!u251. ~2.27!

We now compute the matrix elements of the Hessian
tween the elements of the basis set$wpp̃s%.

c-
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Consider first the partHD of the Hessian that is diagona
in k̆, i.e., the first term on the right-hand side~rhs! of Eq.
~2.20!. This part is also diagonal in the basis$wpp̃s%, with the
matrix elements

^wp8p̃8s8uH
Duwpp̃s&5d~p82p!d p̃8,p̃ds8,s

3F e1
1

2
S p̆21

p̃2

11n
D G . ~2.28!

The nondiagonal partHO of the Hessian, given by the
second term on the rhs of Eq.~2.20!, has, in the new basis
matrix elements that only connect different values of the
dial coordinatep but are still diagonal inp̃ ands. It is shown
in Appendix A that the matrix elements ofHO have the form

^wp8p̃8s8uH
Ouwpp̃s&5d p̃8,p̃ds8,s ~22e! e21/2Cn

3h usu
(n)~p8/Ae,p/Ae!, ~2.29!

with

Cn[~e/4p!nd/2~11n!2d/2 ~2.30!

and

h l
(n)~x8,x![2Ax8x

3E
0

` du p~u!

u12nd/2
e2(x821x2)/u I l 211nd/2S 2x8x

u D ,

~2.31!

whereI n(x) is the modified Bessel function of ordern. The
label l ([usu) indicates the degree of the surface harmo
Ss as a trigonometric polynomial. The constantCn satisfies
the condition

lim
n→0

Cn51, ~2.32!

via which it disappears from the eigenvalue equation in
replica limit. The kernelh l

(n)(x8,x) is real and symmetric
and controls the nondiagonal nature of the matrix eleme
Due to the positivity ofI n(y) for n>21 andy.0, the ker-
nel h l

(n)(x8,x) is positive for xx8.0. For xx8→01,
h l

(n)(x8,x) vanishes, except ifl 50 andnd.0, in which case
it is divergent.

As bothHD andHO are diagonal on thep̃ ands labels,
the eigenvalue equation for the Hessian,

Huc&5kuc&, ~2.33!

can now be simplified to a radial equation:

kR~p!5E
0

`

dp8 ^wpp̃suHuwp8p̃s&R~p8!,

5F e1
1

2
S p21

p̃2

11n
D G R~p!

22 e CnE
0

` dp8

Ae
h usu

(n)~p/Ae,p8/Ae!R~p8!.

~2.34!
-

c

e

s.

This radial equation can be simplified further by the resc
ing

z5
1

e
Fk2S e1

p̃2

2~11n!
D G , ~2.35a!

x5p/Ae, u~x!5e1/4R~Aex!, ~2.35b!

which removes thee dependence from the eigenvalue equ
tion, thus making both the eigenvaluez and the eigenfunc-
tion u(x) e-independent and obeying

zu~x!5
x2

2
u~x!22 CnE

0

`

dx8h usu
(n)~x,x8!u~x8!.

~2.36!

In the replica limit,n→0, this radial equation reduces to

zu~x!5
x2

2
u~x!22E

0

`

dx8h usu
(0)~x,x8!u~x8!. ~2.37!

For all cases exceptusu50 this limit is straightforward,
becauseh usu

(n)(x,x8) smoothly converges toh usu
(0)(x,x8). For

the special case ofusu50, the limit n→0 for h usu
(n)(x,x8) is

singular near the origin. Let us mention here a property
Eq. ~2.37! that doesnot apply to Eq. ~2.36!. As I 21(z)
5I 1(z) for all values of the variablez, we have the equality

h0
(0)~x,x8!5h2

(0)~x,x8!, ~2.38!

which means that the radial Eq.~2.37! is the same forusu
50 and forusu52. In Sec. III C we discuss in more deta
the relations between the solutions to Eqs.~2.36! and~2.37!.

Both radial equations, Eqs.~2.36! and ~2.37!, are eigen-
value equations for Hermitian operators. This guarantees
existence of a complete orthonormal basis of eigenfunctio
all of them having real eigenvalues. Notice also the no
trivial fact that the radial equation is well defined in th
replica limit n→0.

The form of the radial eigenvalue equation tells us that
radial eigenfunction and the eigenvalue depend on the de
l 5usu of the surface harmonic considered~which plays a
role analogous to that of the total angular momentum qu
tum numberl in the central potential problem for a quantum
mechanical particle!, and on an additional labelr, playing a
role analogous to the radial quantum number in quant
mechanics. Therefore the eigenvalues of the extended H
sian are given by the relation

k lr ~ k̃!5~11z lr !e1
k̃2

2
. ~2.39!

As it is easier to work with scaled variables, let us expre
the condition that there be no unstable fluctuation directi
~i.e., k>0) in terms ofz:

k lr ~ k̃!.0 ; k̃⇔z lr 11.0. ~2.40!

The right-hand side of the equivalence sign is the condit
that we are going to establish in what follows.

III. LANDAU THEORY: EIGENVALUES OF THE HESSIAN

In this section we are going to establish positive low
bounds for all the eigenvalues of the Hessian of the Lan
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14 708 PRB 60CASTILLO, GOLDBART, AND ZIPPELIUS
theory, except for the zero mode associated with the spo
neously broken translational symmetry. In other words,
study the setSo containing the limits, whenn→0, of the
eigenvalues of theoriginal Hessian. However, for technica
reasons, it is convenient to first study two other sets of nu
bers, denoted bySe and Sr . Se is the set containing then
→0 limits of the eigenvalues of theextendedHessian; each
element inSe can be written in the form given by Eq.~2.39!,
wherez lr is taken to be then→0 limit of an eigenvalue in
Eq. ~2.36!. Sr is the set containing all numbersk lr ( k̃) com-
puted according to Eq.~2.39!, with z lr chosen to be an ei
genvalue in theradial Eq. ~2.37!.

In Sec. III A we show thatSr contains a zero elemen
corresponding to the zero mode associated with the spo
neously broken translational symmetry. In Sec. III B w
compute positive lower bounds for all other elements ofSr .
In Sec. III C, we show that the only difference between
limit for n→0 of the eigenvalue spectrum of Eq.~2.36! and
the eigenvalue spectrum of Eq.~2.37! is that in the former a
spurious eigenvalue corresponding to fluctuations in the
appears, which is not present in the latter. Therefore
spectrumSe of the extended Hessian contains a spurio
eigenvalue not present inSr . We also show, in Sec. III C
that the eigenvectors of the original Hessian correspond to
the eigenvectors of the extended Hessian, except the spu
one, i.e., thatSo andSr are identical. Using the results ob
tained in Secs. III A and III B, this will allow us to conclud
that the amorphous solid state is locally stable.

A. Obtaining the zero mode

We first consider a generic eigenfluctuation associa
with the translational symmetry, and show that it is a ze
mode. From Eq.~2.9!, we see that this fluctuation can b
written as

dV k̂5 i k̂•â ~2e/3!d k̃,0E
0

`

du p~u!e2 k̂2/eu

5 i k̆•ă ~2e/3!d k̃,0E
0

`

du p~u!e2 k̆2/eu. ~3.1!

The only angular dependence ofdV k̂ is given by the prefac-
tor k̆•ă, which is a degree-one polynomial ink̆. This guar-
antees that this fluctuation resides in theusu51 sector. By
taking the scalar product with the appropriate element in
basis$wpp̃s% @which we label bys5(1,0) by analogy to the
spherical harmonicY10}z/r ], we obtain the radial function
associated withdV k̂ :

R~k!5^wp,p̃50,s5(1,0)udV&,

5 iAne k(11nd)/2E
0

`

du p~u!e2k2/eu, ~3.2!

whereAn is a numerical prefactor, which we can ignore
what follows. Taking the replica limit, and transforming
scaled variables, we obtain the scaled radial function

u~x!5AxE
0

`

du p~u!e2x2/u. ~3.3!
ta-
e

-

ta-

e

rs
e
s

ll
us

d
o

e

In Appendix ~B! we show by explicit computation that thi
form for u(x) satisfies Eq.~2.37! with z521. By Eq.
~2.39!, this means that the correspondingdV k̂ given by Eq.
~3.1! is an eigenvector of the Hessian with zero eigenval
@As dV k̂ given by Eq.~3.1! is only nonzero fork̂ in the hrs
because otherwisek̆50̆, it is simultaneously an eigenvecto
of the extended Hessian and of the original Hessian.#

It will be shown in the next section that the radial eige
function of Eq.~3.3! is the only one that gives rise to zero
modes. Since any of thend linearly independent surface ha
monics of degree 1 can be chosen as the angular part o
eigenvector, there are exactlynd independent zero modes
~However, since we will be mostly discussing the rad
equation, we will talk about the ‘‘zero mode’’ and not th
‘‘zero modes.’’!

B. Positive lower bounds for the eigenvalues

Having obtained the zero mode for a specific form
fluctuation, we now discuss generic fluctuations in the ord
parameter field, and show that all the other eigenvalues
positive-definite. For the caselÞ1, we will obtain positive
lower bounds for the eigenvalues by analytical manipulat
of Eq. ~2.37!. For the casel 51, we will solve Eq.~2.37!
numerically and show explicitly that the lowest eigenval
corresponds to the zero mode already obtained, and tha
other eigenvalues correspond to positive values ofk( k̃).

Consider one particular scaled radial eigenfunctionu(x)
in Eq. ~2.37!, with eigenvaluez. To simplify the argument
we temporarily switch to the normalization

E
0

`

dxuu~x!u51, ~3.4!

and we define the quantity

s~x![sgn„u~x!…. ~3.5!

In what follows, we express the eigenvaluez in an unusual
but convenient form that allows a lower bound to be deriv
from it. By combining the eigenvalue Eq.~2.37!, with the
normalization condition~3.4! and the definition~3.5!, we ob-
tain

z5zE
0

`

dxuu~x!u

5E
0

`

dx s~x!z u~x!

5E
0

`

dx s~x!Fx2

2
u~x!22E

0

`

dx8h usu
(0)~x,x8!u~x8!G

5E
0

`

dx
x2

2
uu~x!u22E

0

`

dx dx8

3h usu
(0)~x8,x!uu~x!us~x!s~x8!. ~3.6!
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~In the last line we have interchanged the dummy variablex
andx8.! From the expression just derived for the eigenva
z, it follows from the non-negativity ofh usu

(0)(x8,x) that

z>E
0

`

dx g usu~x!uu~x!u>ḡ usu , ~3.7a!

g l~x![
x2

2
22E

0

`

dx8h l
(0)~x8,x!, ~3.7b!

ḡ l[ inf
x

g l~x!. ~3.7c!

Here, the symbol inf indicates the greatest lower bound22 for
a set of real numbers.

It is convenient to writeg l(x) in terms of another function
b l(v), as follows:

g l~x!5E
0

`

du p~u!b l~x/Au!, ~3.8a!

b l~v ![
v2

2^u21&p

24E
0

`

duAuve2(u21v2)I l 21~2uv !.

~3.8b!

Here, we have used the definition of an average with res
to the distributionp,

^ f ~u!&p[E
0

`

du p~u! f ~u!, ~3.9!

and we need, in particular, the numerical value

^u21&p'0.881 768, ~3.10!

which can be obtained by using the functionp(u) of Ref. 3.
As p(u) is non-negative and normalized to unity, Eq.~3.8a!
implies that

z>ḡ usu>b̄ usu , ~3.11!

where

b̄ l[ inf
v

b l~v !. ~3.12!

The bounds for different values of the indexl are not
independent. In fact, becauseI l(x),I l 21(x) for x.0 andl
>1, we have the inequalityh l 11

(0) (x,x8),h l
(0)(x,x8) for

xx8.0 andl>1, and from this inequality it follows that al
the bounds defined so far@g l(x), ḡ l , b l(v), and b̄ l# are
increasingfunctions ofl for l>1. Thus if we obtain a posi-
tive lower bound for one value ofl>1, the same bound
applies for all larger values ofl.

In order to obtain more concrete results, we need an
plicit expression forb l(v). In Appendix ~C! we obtain the
exact expression

b l~v !5
v2

2^u21&p

22
G~ l /211/4!

G~ l !
v l 21/2M S l

2
2

1

4
,l ,2v2D ,

~3.13a!
e

ct

x-

along with the asymptotic formsb (.)(v) andb (,)(v), given
by

b l~v !;b (.)~v ![
v2

2^u21&p

22 for v@1, ~3.13b!

b l~v !;b (,)~v ![
v2

2^u21&p

22
G~ l /211/4!

G~ l !
v l 21/2

for v!1, ~3.13c!

as well as the lower bounds

b l~v !.b (.)~v ! for l .1, ~3.14a!

b l~v !>b (,)~v ! ; l . ~3.14b!

Here G(z) is the gamma function, andM (a,b,z) is a con-
fluent hypergeometric function~Ref. 23, Chap. 13!.

As mentioned above, we need to show that 11z is posi-
tive. Thus the quantity of interest is really 11b l(v), as op-
posed tob l(v). In Fig. 2 we plot 11b l(v) as a function of
v for 0< l<4, together with its asymptotic form 1
1b (.)(v) valid for large values of the argumentv.

Let us now obtain the lower bounds 11b̄ l for 11z, and
show that they are positive forlÞ1. For l 54 @and, asb l(v)
grows with l, for all l>4], b l(v) is positive for all nonzero

v, and thusb̄ l5b l(0)50. For 0< l<3, b̄ l is obtained by
numerically minimizing Eq.~3.13a!. In Table I, we give the
numerical values for these bounds. These lower bounds
tablish that all of thek lr ( k̃) are positive forlÞ1.

FIG. 2. Plot of 11b l(v) ~for 0< l<4) and 11b (.)(v) as func-
tions of v.

TABLE I. Lower bounds for eigenvalues of the Hessian.

l 11b̄ l

1 20.55571
0, 2 0.27376
3 0.94274
>4 1
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14 710 PRB 60CASTILLO, GOLDBART, AND ZIPPELIUS
Let us now focus on the remaining sector, namelyl 51.
As, for this case, our lower bound is negative, we can
draw any conclusion from it. We have already shown t
there is a zero mode, but there could still be one or m
negative eigenvalues, which would render the propo
amorphous solid state unstable. The numerical solution
the radial Eq.~2.37! for this case yields, within numerica
error,24 the following two lowest eigenvalues~both nonde-
generate!:

11z10520.000 0260.000 05,

11z1150.984 1260.000 09. ~3.15!

Evidently, 11z10 corresponds to the expected zero mo
and we can conclude that there are no further zero modes
that all other eigenvalues are positive definite.

To summarize, we have shown that 11z>0 for any ei-
genvaluez of Eq. ~2.37!, i.e., that all elements ofSr are
positive or zero. In the next subsection we will show thatSr
andSo are identical, and therefore that all of the eigenvalu
of the original Hessian are either positive or zero.

C. The one-replica sector and the spurious eigenvalue

We now need to return to the issues that we postpo
earlier, namely our extending of the Hessian matrix defin
by Eq.~2.17! so that it can also be defined in the one-repl
sector, and the differences between the spectra of the ra
Eqs.~2.36! and ~2.37!.

As the Hessian matrix~both in its ‘‘original’’ and its ‘‘ex-
tended’’ versions! leaves exactly uncoupled fluctuations wi
different values ofk̃, it is consistent to consider separate
the MTI fluctuations~those with k̃50) and the non-MTI
fluctuations~those withk̃Þ0).

For the case of non-MTI fluctuations we will show that,
the limit n→0, the hrs and 1rs are not coupled by the e
tended Hessian matrix. Furthermore, each one of the ei
vectors belongs to one of the sectors, inasmuch as it h
vanishing overlap~asn→0) with vectors in the other secto

To understand this issue, we need to look at the form
the 1rs and hrs take, in the replica limit. For a wave vec

p̂5~0, . . . ,0,p,0, . . . ,0! ~3.16!

in the one-replica sector, we have

p̃5p and p̂25p2, ~3.17!

and, by using Eq.~2.19! with v̂5ŵ5 p̂, we have

u p̆u5Ap̂22
p̃2

11n
5Ap22

p2

11n
5A n

11n
upu.

~3.18!

This means that the radial coordinateu p̆u goes to zero like
n1/2 in the replica limit, n→0. Moreover, for each fixed
value of p̃ (5p), then11 wave vectors defined by

êa~p![~e0,e1, . . . ,en!, ~3.19a!
t
t
e
d

of

,
nd

s

d
d

ial

-
n-
a

at
r

eb[H 0 for bÞa,

p for b5a,
~3.19b!

with a50, . . . ,n, are the only vectors in the one-replic
sector that satisfy the condition that the sum of theirn
11) componentd-dimensional wave vectors is equal top.
These two results tell us that the one-replica sector co
sponds, for fixedp̃, to a set ofn11 points that, in the replica
limit, converge to the origin ofp̆ space. Consequently, to se
whether or not a given eigenvector has any overlap with
1rs, one needs to look at the properties of the correspon
radial eigenfunction near the origin.

Let us then consider the scaled radial Eq.~2.36! for the
region close to the origin, and let us keepn.0 for the mo-
ment. By using the small-argument behavior of the modifi
Bessel function~valid for nÞ21,22, . . . ),

I n~z!'
~z/2!n

G~n11!
, ~3.20!

we obtain the asymptotic form of the kernelh for x!1 and
x8&1:

h l
(n)~x,x8!'2

xl 1(nd21)/2

G~ l 1nd/2!
ml~x8!, ~3.21a!

ml~y![E
0

`

du p~u!u2 le2y2/uyl 1(nd21)/2. ~3.21b!

By inserting this asymptotic form into Eq.~2.36!, we obtain

S z2
x2

2 Du~x!'
24xl 1(nd21)/2

G~ l 1nd/2!
Ul , ~3.22a!

Ul[E
0

`

dy ml~y!u~y!. ~3.22b!

For n positive and small, Eq.~3.22a! can only be satisfied for
zÞ0.25 The term proportional tox2 is thus negligible, and
we obtain, forx!1,

u~x!'
24Ul

G~ l 1nd/2!

xl 1(nd21)/2

z
. ~3.23!

The leading behavior of this radial eigenfunction fornd
small and positive depends on the value of the degrel
5usu of the surface harmonic function. Forl 50 there is one
eigenfunction that diverges at the origin likex(nd21)/2. Its
eigenvaluez2 is given by the expression

z2'2

4E
0

`

dyE
0

`

du p~u!e2y2/uynd21

G~nd/2!
, ~3.24!

which, in the replica limit, becomes

lim
n→0

z2522. ~3.25!

The presence of this divergent eigenfunction as a solutio
Eq. ~2.36! depends crucially on the singularity ofh0

(n)(x,x8)
at the origin forn small but positive. It isnot a solution of
Eq. ~2.37!, which only has solutions that go to zero at th
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origin: by Eq.~2.38!, the radial equation forn50 andl 50,
is identical to the radial equation forn50 and l 52, which
means, by Eq.~3.23!, that the radial eigenfunction satisfie
the condition

uu~x!u&x3/2. ~3.26!

We will show below that the divergent eigenfunctio
present forn.0 corresponds, in the replica limit, to an u
physical fluctuation, i.e., a fluctuation in the one-replica s
tor. In fact, from Eqs.~2.39! and ~3.25!, we see that its ei-
genvaluek2( k̃) is negative for smallk̃:

k2~ k̃!52e1
k̃2

2
. ~3.27!

However, for l 50, all other radial eigenfunctions are o
thogonal to the one just found, and thus make the integraUl
vanish. Their behavior is controlled by the next power in t
expansion ofh0

(n)(x,x8), and consequently they vanish fo
x→0 at least as fast asx(nd13)/2. Moreover, forl .0, by Eq.
~3.23! we see that all the radial eigenfunctions vanish fox
→0 asxl 1(nd21)/2 or faster.

These results can be summarized as follows: forn→01

all but one of the radial eigenfunctions are regular at
origin. The one singular eigenfunction corresponds tol 50
and scales likex(nd21)/2 for x!1. The regular eigenfunction
can have any value ofl and vanish forx→0 asx(u l 21u11/2) or
faster.

In all cases in which the eigenfunction is regular at t
origin, it is permissible to take the limitn→0 in Eq. ~2.36!.
This is because these eigenfunctions vanish at the origin
enough that the integral term in Eq.~2.36! does not pick up
any extra contribution from the singularity ofh l

(n)(x,x8)
@which, by Eqs.~3.21a! and ~3.21b!, is at most of order
nd(xx8)(nd21)/2#. Thus the spectrum of eigenvalues of E
~2.37! is the same as the limit of the spectrum of Eq.~2.36!
whenn→0, except that the spurious eigenvaluez2 is absent
in the former and present in the latter.

We now show that the one-replica sector fluctuations
couple from the higher replica sector fluctuations in the r
lica limit. Consider the following complete orthonormal b
sis set for the fluctuations in the one-replica sector with fix
p̃5p:

wj~ k̂![ (
a50

n

wj ,ad k̂,êa(p) ,

wj ,a[
Vn/2

An11
ei2p j a/(n11), ~3.28!

where j 50, . . . ,n.
Let us compute the scalar product^wj uc r p̃s& of one of

these basis functions for the one-replica sector with one
the eigenfunctions of the extended Hessian, which has
general form given in Eq.~2.26!:
-

e

e

st

.

-
-

d

of
he

^wj uc r p̃s&5
1

Vn (
k̂Þ0̂

wj* ~ k̂!c r p̃s~ k̂!

5
1

Vn (
a50

n

wj ,a* @~11n!d/4~2p!nd/2

3Ss~f ĕa(p)!~An/~11n!upu!~12nd!/2

3Rr~An/~11n!upu!#. ~3.29!

Here, we have made use of the relation Eq.~3.18!. There are
two possible cases to consider, depending on whether or
Rr is singular at the origin. If it is singular, we havel 50
and, for smallk,

R~k!5e21/4u~k/Ae!'Ne2nd/4k(nd21)/2, ~3.30!

where N is a normalization constant determined by E
~2.27!. Its value is given by

N5And@11O~nd!#. ~3.31!

As l 50, the angular part ofc r p̃s is isotropic, and is given by

S0~f!5A 1

tnd
5AG~nd/2!

2pnd/2
5~nd!21/2@11O~nd!#,

~3.32!

where tnd52pnd/2/G(nd/2) is the surface area of a un
sphere innd dimensions. By combining Eqs.~3.29!–~3.32!,
we obtain

^wj uc r p̃s&5 (
a50

n

wj ,a* @11O~n!#5^wj uw0&@11O~n!#

5d j ,0@11O~n!#. ~3.33!

This result implies that, in the limitn→0, the eigenfunction
that is singular at the origin lies entirely in the one-repli
sector.

Let us now consider the case in whichRr is not singular at
the origin. In this case, for smallk, the radial eigenfunction
has the form

R~k!5e21/4u~k/Ae!&Ne2(u l 21u11)/2k(u l 21u11/2),
~3.34!

where the normalization constantN does not vanish in the
replica limit. As, in this regular case,l need not be zero, we
have to obtain an estimate for the normalization constan
the surface harmonic for all values ofl. Consider a monomia
Mm(f) defined on theD-dimensional unit sphere

Mm~f![f1
m1
•••fD

mD5
x1

m1
•••xD

mD

r m11•••1mD
. ~3.35!

Here (x1 , . . . ,xD) are the Cartesian coordinates of a pointx,
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r[(x1
21•••1xD

2 )1/2 is the radial coordinate for the sam
point, andf[(f1 , . . . ,fD)[x/r is the unit vector pointing
in the direction ofx. The integral of the monomial over th
unit sphere is

E dfMm~f!5

E dDxx1
m1
•••xD

mDe2(x1
2
1•••1xD

2 )

E
0

`

dr r D21 r m11•••1mDe2r 2

55
2)

j 51

D

GS 11mj

2 D
GS D1( j 51

D mj

2 D if mj even; j ,

0 otherwise.

~3.36!

In the case of interest to usD5nd and( j 51
D mj52usu. From

Eq. ~3.36! we conclude that the normalization factorNs for
the surface harmonicSs has, in the n→0 limit, the
asymptotic form

Ns;AGS nd

2
1usu D;H n21/2 for usu50,

n0 for usuÞ0.
~3.37!

Here, we have ignored factors that have finite limits wh
n→0. This result can be summarized as follows

Ss~f!;ny(s),

y~s!5H 21/2 for usu50,

0 for usuÞ0.
~3.38!

By inserting Eqs.~3.34! and ~3.38! into Eq. ~3.29!, we
obtain the following scaling withn for the sought scala
product:

u^wj uc r p̃s&u&~Anuk̃u!1/2~Anuk̃u!1/21u l 21uny(s),

&H n1/2 for l 50,

n(u l 21u11)/2 for lÞ0.
~3.39!

This relation shows that in the limitn→0 those radial eigen
functions that are regular at the origin give rise to eigenv
tors that lie entirely in the higher replica sector.

For completeness, we now also compute explicitly
matrix elements of the extended Hessian between mem
of the basis set$wj% j 50

n for the one-replica sector fluctuation

with k̃5p,
n

-

e
rs

^wmuHuwj&5
1

V2n (
k̂, l̂ Þ0̂

wm* ~ k̂!Hk̂, l̂wj~ l̂ !

5
1

Vn~11n!
F (

a50

n S e1
p2

2 Dwm,a* wj ,a

22eE
0

`

du p~u!

3 (
a,b50

n

e2[ êa(p)2êb(p)] 2/euwm,a* wj ,bG
5dm, j S 2e1

p2

2 D1O~n!. ~3.40!

Thus we see that, as expected, the eigenvalue obtained
is the same as the one obtained in Eq.~3.27! for the singular
eigenfunction of the extended Hessian.

In summary, for non-MTI fluctuations, in the replica lim
all regular eigenfunctions of the extended Hessian are
thogonal to all of the 1rs vectors, and the singular eigenfu
tion of the extended Hessian coincides with the isotropicj
50) fluctuation in the 1rs. Consequently, in the replica lim
the higher replica sector is an invariant subspace for the
tended Hessian, and therefore the regular eigenfunction
the extended Hessian are the eigenfunctions of the orig
Hessian. More significantly, the eigenvalues of the origi
Hessian are the eigenvalues of the extended Hessian fo
regular eigenfunctions.

For the case of MTI fluctuations, their components in t
one-replica sector are exactly zero, because the condit
k̂P1rs andk̃50 are incompatible. However, all of the argu
ment presented above still holds, except that now the ra
eigenfunction that is singular at the origin coincides with
spurious fluctuation in the zero-replica sector~i.e., a fluctua-
tion of V 0̂).26 The spectrum of the original Hessian is, al
in this case, given by the eigenvalues corresponding to ra
eigenfunctions regular at the origin. Thus we have sho
that the setsSr and So are identical, and we can use th
results of Secs. III A and III B to characterize the spectru
of the original Hessian.

The eigenvalues of the original Hessian have the gen
form

k lr ~ k̃!5~11z lr !e1
k̃2

2
, ~3.41!

with

11z1050 ~3.42!

and

11z lr .0 for ~ l ,r !Þ~1,0!. ~3.43!

Therefore there is and degenerate zero mode correspondi
to (l ,r )5(1,0) andk̃50, which is continued by a branch o
soft modes with eigenvalues
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k10~ k̃!5
k̃2

2
~.0 for k̃Þ0!. ~3.44!

All other eigenvalues are positive, with one continuo
branch of modes labeled byk̃ for each value of (l ,r ). The
minimum eigenvalue for each branch is given by

k lr ~0!5~11z lr !e.0, ~3.45!

which goes to zero as the transition is approached~i.e., as
e→0). Consequently, the amorphous solid state of Ref.
locally stable near the transition.

IV. RANDOMLY CROSS LINKED MACROMOLECULES

We now consider one example of a semimicrosco
theory that exhibits the amorphous solidification transitio
namely the case of randomly crosslinked linear macrom
ecules. In this theory there appears a control parametem2

([11e/3) that determines the crosslink density, and su
that the system exhibits the liquid phase form2,1 and the
amorphous solid phase form2.1. In this semimicroscopic
theory, the fieldV p̂ ~with p̂ in the one-replica sector! is
present and allowed to fluctuate, and there is a coupling
rameter l̃n

2[l22m2(V/N)(1/Vn) associated with its fluc-
tuations. ~The parameterl2 gives the strength of the
excluded-volume interaction between the macromolecul!
The free-energy functional~per macromolecule! has the
form1,4

ndFn~$V k̂%!5l̃n
2 N

V (
p̂

˜ †uV p̂u21
m2

Vn (
k̂

†uV k̂u2

2 lnK expS i l̃n
2 2N

V (
p̂

˜ †ReV p̂r p̂
*

1
2m2

Vn (
k̂

†ReV k̂r k̂
* D L

n11

W

, ~4.1!

where the symbol(̃ p̂ denotes a sum over replicated wa
vectors in the one-replica sector, and the † symbol addit
ally restricts any summation to the half space of relev
wave vectors@i.e., d-dimensional or (n11)d-dimensional#
such that their scalar product with a fixed unit vector (n or
n̂) is positive. Here, we have used the definition of the o
macromolecule Fourier transformed densityr k̂ , i.e.,

r k̂[E
0

1

dsexpi k̂• ĉ~s!, ~4.2!

for a macromolecular configurationĉ(s), and the Wiener
s

is

c
,
l-

h

a-

.

n-
t

-

replicated averagê•••&n11
W is defined by

^O&n11
W [

E Dĉ O expH 2~1/2!E
0

1

dsudĉ~s!/dsu2J
E Dĉ expH 2~1/2!E

0

1

dsudĉ~s!/dsu2J .

~4.3!

Let us note here that to leading order ine the amorphous
solid stationary point in this theory is the same as in
Landau theory discussed above, i.e., it is also described
Eqs.~2.5!–~2.7!.

We now expand the free-energy functional to quadra
order around a stationary point, and obtain its second der
tives with respect to the fields$V q̂%. In this section we use
the notationsH and H̄ to refer to the exact Hessian for th
microscopic theory and the extended Hessian for the Lan
theory, respectively. Fork̂ and k̂8 both in the higher replica
sector we have

d2@ndFn#

dV k̂dV2 k̂8

5Hk̂,k̂8
hh

5
m2

Vn S d k̂,k̂82
m2

Vn
^r2 k̂r k̂8&n11,c

W,V̄ D
5

m2

3 Fd k̂,k̂8S e1
k̂2

2
D 2d k̃,k̃82e

3E
0

`

du p~u!e2( k̂2 k̂8)2/euG1O~e2!

5
1

3
H̄k̂,k̂8

hh
1O~e2!. ~4.4!

For k̂ in the higher replica sector andp̂ in the one-replica
sector we have

d2@ndFn#

dV k̂dV2 p̂

5Hk̂,p̂
h1

52 i l̃n
2 Nm2

V11n
^r2 k̂r p̂&n11,c

W,V̄

52 i
l̃n

2

V

Nm2

3
d k̃,p̃2eE

0

`

du p~u!e2( k̂2 p̂)2/eu

1O~e2!

5
i l̃n

2N

3V
H̄k̂,p̂

h1
1O~e2!. ~4.5!

Finally, for both p̂ and p̂8 in the one-replica sector we hav

d2@ndFn#

dV p̂dV2 p̂8

5Hp̂,p̂8
11

5
l̃n

2N

V
S d p̂,p̂81

l̃n
2N

V
^r2 p̂r p̂8&n11,c

W,V̄ D
5d p̂,p̂8

l̃n
2N

V H 11
l̃n

2N

V
@11O~e!1O~ p̂2!#J .

~4.6!

In obtaining these formulas we have made use of the de
tion



14 714 PRB 60CASTILLO, GOLDBART, AND ZIPPELIUS
^O&n11
W,V̄[

K O expS i l̃n
2 N

V (
p̂

˜
V̄ p̂ r p̂* 1

m2

Vn (
k̂

V̄ k̂ r k̂
* D L

n11

W

K expS i l̃n
2 N

V (
p̂

˜
V̄ p̂r p̂* 1

m2

Vn (
k̂

V̄ k̂r k̂
* D L

n11

W .

~4.7!
e

-

n
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The notationsHhh, Hh1, and H11, respectively, refer to the
higher replica, cross-sector, and one-replica parts of the H
sian matrix. Figure 3 depicts the relation betweenH and H̄.

As MTI ~i.e., k̃50) fluctuations do not have any compo
nent in the 1rs, the relevant Hessian in this case is justHhh

5(1/3)H̄hh. Consequently, the results obtained for the La
dau theory tell us that there is and degenerate zero eigen
value corresponding to the anticipated zero mode, and
the remaining eigenvalues are positive.

Let us now consider general fluctuations. We will sho
that, in the replica limit, the eigenvectors of the HessianH
for this problem are the same as the eigenvectors of the
tended HessianH̄ for the Landau theory, and the one-repli
and higher replica sectors are again invariant subspace
this Hessian.

Let us consider a regular eigenvectoruc r p̃s& of H̄ and one
of the elements of the basis set$uwj&% j 50

n of the one-replica
sector fluctuations. By Eq.~4.6!,

H11uwj&5k1rsuwj&,

k1rs5
l̃n

2N

V H 11
l̃n

2N

V
@11O~e!1O~ p̂2!#J , ~4.8!

FIG. 3. The Hessian matrixH for the semimicroscopic theory in

terms of the extended Hessian matrixH̄ for the Landau theory.
Each block ofH is written in terms of the corresponding block o

H̄, except forH11. (H11 is nonzero whene→0, as opposed toH̄11,
which vanishes linearly withe near the transition.!
s-

-

at

x-

for

and therefore

u^wj uH11uc r p̃s&u5uk1rŝ wj uc r p̃s&u&O~An!. ~4.9!

Analogously, by Eq.~3.40!,

H̄11uwj&5S 2e1
p2

2 D uwj&1O~n!, ~4.10!

and

u^wj uH̄11uc r p̃s&u5US 2e1
p2

2 D ^wj uc r p̃s&U&O~An!.

~4.11!

By combining Eqs.~4.5!, ~4.9!, and ~4.11!, we can now es-
timate the matrix element:

u^wj uHuc r p̃s&u5u^wj uH111H1huc r p̃s&u

5u^wj uH1huc r p̃s&1O~An!u

5U^wj u
i l̃n

2N

3V
H̄1huc r p̃s&1O~An!U

5U i l̃n
2N

3V
^wj uH̄1h1H̄11uc r p̃s&1O~An!U

5U i l̃n
2N

3V
^wj uH̄uc r p̃s&1O~An!U

&O~An!. ~4.12!

This means that, in the replica limit,Huc r p̃s& has no projec-
tion in the one-replica sector, and also thatHuwj& has no
projection in the higher replica sector. Therefore also in t
problem the one-replica sector and the higher replica se
are decoupled invariant subspaces of the Hessian in thn
→0 limit. In the one-replica sector, the eigenvalue isk1rs

.0. In the higher replica sector, asHhh5(1/3)H̄hh, the
eigenvectors are the same as for the Landau theory, and
eigenvalues are obtained from those in the Landau theor
multiplying by 1/3. As discussed before, all of these eige
values are positive, except for and degenerate zero mode
Thus also for the semimicroscopic theory of random
crosslinked macromolecules, the amorphous solid state
Ref. 3 is locally stable near the transition.

V. SUMMARY AND CONCLUDING REMARKS

In this paper we have shown that in a system with rand
constraints near the liquid–amorphous-solid transition,
amorphous solid state of Ref. 3 is a locally stable thermo
namic state.18 In order to do this, we have examined th
eigenvalue spectra of the stability matrices, in the context
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both the Landau theory for the transition and a semimic
scopic model of randomly crosslinked macromolecular s
tems. In both cases the spectrum turns out to be n
negative, with only and degenerate zero eigenvalue, and
the others positive.

Let us remark that even though wedo find a zero eigen-
value for the stability matrix, we still declare that the statio
ary point is locallystable, as opposed to locallymarginally
stable. This is because in this system translational invaria
is spontaneously broken, and therefore there is a manifol
equivalent states that have exactly the same free energy
are connected to each other by the continuous symmetrie
the system. The zero eigenvalue~a.k.a. Goldstone mode!
simply indicates that the free energy does not change if
applies an infinitesimal translation to the thermodynam
state.

In close analogy to the phonon spectra of ordinary sol
the fluctuation eigenvalues can be classified into two type
soft branch of modes associated with ‘‘almost rigid’’ di
placements of the whole system~analogous to the acoustic
phonon branch!, with eigenvaluesk10( k̃)5 k̃2/2, and a set of
stiff modes in which the structure of the system is alte
more strongly ~analogous to the set of optical-phono
branches!, with eigenvaluesk lr ( k̃)5e(11z lr )1 k̃2/2. In ad-
dition, there is in our case a softening of the system, beca
the eigenvalues of the stiff modes go to zero at the transit

We have only addressed the issue of thelocal stability of
the amorphous solid state. It is much harder to determ
whether the amorphous solid state isglobally stable, as the
order parameter space to be explored is enormous. In
ticular, one could consider the possibility of a replica sy
metry breaking saddle point also being present and domi
ing the physical behavior of the system.27 However, there are
strong indications~although by no means conclusive ev
dence! that the~replica symmetric! saddle point considere
here is indeedglobally stable. These indications mainl
come from molecular-dynamics simulations28 as the solid
state observed in the simulations appears to be identica
the one proposed in Ref. 3.

An intriguing problem, left open for further study, is t
establish how the structure of the eigenvalue spectrum of
Hessian matrix, and in particular the softening of the syst
near the transition, manifest themselves in the dynamic
the system.
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APPENDIX A: NONDIAGONAL MATRIX ELEMENTS
FOR THE HESSIAN

In this appendix we collect some useful information co
cerning surface harmonic functions, and use it to comp
the matrix elements of the nondiagonal partHO of the Hes-
sian in the basis$wpp̃s%.

The Gegenbauer~also called hyperspherical! polynomials
-
-

n-
l

-

e
of
nd
of

e
c

s,
a

d

se
n.

e

ar-
-
t-

to

e
m
of

-
te

play a role inD dimensions and with regard to the surfa
harmonicsSs analogous to the role Legendre polynomia
play in three dimensions and with regard to the spher
harmonicsYlm . The Gegenbauer polynomialCl

n(x) of de-
gree l is defined by the generating function~see, e.g., Ref.
20, Vol. II, Sec. 11.1.2!

~122xt1t2!2n5(
l 50

`

Cl
n~x!t l . ~A1!

There is a generalization to dimensionD[p12 of the
addition theorem for spherical harmonics, which relates
Gegenbauer polynomial to a sum of surface harmonics~see,
e.g., Ref. 20, Sec. 11.4!:

Cl
p/2~f8•f!5

Cl
p/2~1!tD

h~ l ,p! (
usu5 l

Ss* ~f8!Ss~f!

5
4p11p/2

~2l 1p!G~p/2! (
usu5 l

Ss* ~f8!Ss~f!.

~A2!

Here,f8 and f are any unitD-dimensional vectors,usu is
the degree of the surface harmonicSs as a trigonometric
polynomial, h( l ,p) is the number of linearly independen
surface harmonics of degreel in dimensionp12, andtD
52pD/2/G(D/2) is the surface area of aD-dimensional unit
sphere.@As Cl

1/2(x) is equal to the Legendre polynomia
Pl(x), formula~A2! reduces, forD53, to the usual addition
theorem.#

We also make use of the identity~see, e.g., Ref. 20, Vol
II, Sec. 7.15!

znexz52nG~n! (
n50

`

~n1n!Cn
n~x!I n1n~z!, ~A3!

whereI n(z) is the modified Bessel function of ordern.
In the case of dimensionD5nd, by combining Eqs.~A2!

and ~A3!, the following identity is obtained:

exp~xf8•f!52pnd/2~x/2!12nd/2

3(
l 50

`

I l 211nd/2~x! (
usu5 l

Ss* ~f8!Ss~f!.

~A4!

Here, x is any real number, andf8 and f are unit
nd-dimensional vectors.

Let us now compute the matrix elements of the nondia
nal partHO of the Hessian in the basis$wpp̃s%. By using Eqs.
~2.24! and ~2.20! we obtain

^wp8p̃8s8uH
Ouwpp̃s&

5V2E dk̃d l̃dk̆d l̆

~11n!d~2p!(11n)2d
~11n!d/2~2p!ndp8(12nd)/2

3d p̃8k̃d~ uk̆u2p8!Ss8
* ~f k̆!p

(12nd)/2d p̃, l̃d~ u l̆ u2p!

3Ss~f l̆ !d k̃, l̃ ~22e!E
0

`

dup~u!e2( k̆2 l̆ )2/eu, ~A5!
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5
22e ~2p!2nd

~11n!d/2 (
k̃, l̃

d p̃8,k̃d p̃, l̃d k̃, l̃

3E
0

`

d~ uk̆u2p8!uk̆und21duk̆u

3E
0

`

d~ u l̆ u2p!u l̆ und21du l̆ u

3E
0

`

dup~u!e2(p21p82)/eu~pp8!(12nd)/2

3E df k̆E df l̆ Ss8
* ~f k̆!

3exp~2pp8f k̆•f l̆ /eu!Ss~f l̆ !. ~A6!

In the second step, we have separated thek̆ and l̆ integrals
into radial and angular parts. The angular integrals can
performed with the help of the identity~A4! and by using the
orthonormality of the surface harmonics to obtain

^wp8p̃8s8uH
Ouwpp̃s&5d p̃8,p̃ds8,s

~22e!e (nd21)/2

2ndpnd/2~11n!d/2

32App8/eE
0

`dup~u!

u12nd/2

3e2(p821p2)/euI usu211nd/2S 2p8p

eu D ,

~A7!

which is equivalent to Eqs.~2.29!–~2.31!.

APPENDIX B: RADIAL EQUATION FOR THE ZERO
MODE

In this appendix we show that the scaled radial function
Eq. ~3.3! corresponding to a change in the system due t
rigid displacement is a solution of the scaled radial eig
function Eq. ~2.37! with z521. Let us first consider the
diagonal term. By inserting the explicit form foru(x), and
then performing an integration by parts we obtain

x2

2
u~x!5

Ax

2 E
0

`

du p~u!u2
d

du
~e2x2/u!

52
Ax

2 E
0

`

du e2x2/u
d

du
$u2p~u!%

52AxE
0

`

du e2x2/uH u2

2

d

du
p~u!1up~u!J .

~B1!

Now the nondiagonal term gives
e

f
a
-

22E
0

`

dx8h1
(0)~x,x8!u~x8!

522E
0

`

dx8du du82Axx8
p~u!

u
e2(x21x82)/uI 0S 2xx8

u D
3Ax8p~u8!e2x82/u8. ~B2!

By making use of the identity29

2E
0

`

dx xe2ax2
I 0~bx!5

eb2/4a

a
, ~B3!

we perform the integration overx8 in Eq. ~B2!, thus obtain-
ing

22E
0

`

dx8h1
(0)~x,x8!u~x8!

522AxE
0

`

du du8
u8p~u!p~u8!

u1u8
e2x2/(u1u8)

52AxE
0

`

du e2x2/uE
0

u

du8p~u!p~u8!. ~B4!

Finally, we combine Eqs.~B1! and ~B4! to obtain

u~x!1
x2

2
u~x!22E

0

`

dx8h usu
(0)~x,x8!u~x8!

5AxE
0

`

du e2x2/uH 2
u2

2

d

du
p~u!1~12u!p~u!

2E
0

u

du8p~u!p~u8!J 50. ~B5!

The justification of the last equality comes from the factor
braces being zero by the stationarity condition, Eq.~2.6!.

Thus we have shown that Eq.~2.37! is satisfied byu(x)
with the eigenvaluez521.

APPENDIX C: COMPUTATION OF LOWER BOUNDS

In this appendix we study in detail the bound functio
b l(v). We decomposeb l(v) as follows:

b l~v !5
v2

2^u21&p

22 j l~v !,

j l~v ![2E
0

`

duAuve2(u21v2)I l 21~2uv !. ~C1!

We now compute analytically the integral definingj l(v):
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j l~v !5Ave2v2E
0

`

dy y21/4e2yI l 21~2vAy!

5
G~ l /211/4!

G~ l !
v l 21/2e2v2

M S l

2
1

1

4
,l ,v2D

5
G~ l /211/4!

G~ l !
v l 21/2M S l

2
2

1

4
,l ,2v2D , ~C2!

where M (a,b,z) is a confluent hypergeometric functio
~Ref. 23, Chap. 13!. By inserting this expression into Eq
~C1!, we obtain Eq.~3.13a!.

We can obtain more information by using the followin
integral formula for the confluent hypergeometric functi
~Ref. 23, Chap. 13!, valid for Rea.0 and Reb.0:

G~b2a!G~a!

G~b!
M ~a,b,z!5E

0

1

eztta21~12t !b2a21dt.

~C3!

This implies that

j l~v !5
~v2! l /221/4

G~ l /221/4!
E

0

1

e2tv2
t ( l /221/4)21~12t !( l /211/4)21dt.

~C4!

By considering the fact that the exponential in the integra
is always less than or equal to 1, this formula can imme
ately be bounded above, as follows:
tt.

o

rt,

ys

pe
p

d
i-

j l~v !<
~v2! l /221/4

G~ l /221/4!
E

0

1

t ( l /221/4)21~12t !( l /211/4)21dt

5
~v2! l /221/4

G~ l /221/4!
BS l

2
2

1

4
,

l

2
1

1

4D5
G~ l /211/4!

G~ l !
v l 21/2,

~C5!

where B(x,y)5G(x)G(y)/G(x1y) is the Beta function
~Ref. 23, Sec. 6.2!. By combining this inequality with Eq.
~C1! we obtain the bound stated in Eq.~3.14b!. Moreover, in
the limit v!1, it is legitimate to replace the exponenti
factor in Eq.~C4! by 1 inside the integral, and thus the sam
expression gives the asymptotic form in thev!1 regime, as
quoted in Eq.~3.13c!.

An additional bound can be obtained forl .1 by taking
into account the fact that the factor (12t)( l /211/4)21 in the
integrand is less than or equal to unity, so that

j l~v !,
~v2! l /221/4

G~ l /221/4!
E

0

`

e2tv2
t ( l /221/4)21dt51. ~C6!

This gives the lower bound of Eq.~3.14a!. Whenv@1, the
same expression provides the asymptotic form for all val
of l, Eq.~3.13b!, as, in that limit, the integral is dominated b
the region near the origin, where the factor (
2t)( l /211/4)21 is close to unity.
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