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Amorphous solid state: A locally stable thermodynamic phase of randomly constrained systems
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The question of the local stability of tHeeplica-symmetricamorphous solid state is addressed for a class
of systems undergoing a continuous liquid to amorphous-solid phase transition driven by the effect of random
constraints. The Hessian matrix, associated with infinitesimal fluctuations around the stationary point corre-
sponding to the amorphous solid state, is obtained. The eigenvalues of this Hessian matrix are all shown to be
strictly positive near the transition, except for one—the zero mode associated with the spontaneously broken
continuous translational symmetry of the system. Thus the local stability of the amorphous solid state is
established[S0163-182819)01641-7

[. INTRODUCTION inhomogeneities of the density are in principle allowed, but

In recent years, a theoretical approach has been developeade ultimately suppressed by the repulsive interparticle inter-
for the problem of the liquid-amorphous solid phase transi-actions.
tion in systems of randomly crosslinked flexible linear Let us begin by summarizing the results of the mean-field
macromolecule$=* This approach starts from a semimicro- theory of the liquid—amorphous-solid transition driven by
scopic model for the macromolecules, and takes into accoumandom constraints(i) for densities of constraints smaller
explicitly both the thermal fluctuations at nonzero temperathan a critical value the system is in the liquid state and all
ture and the quenched disorder due to the random nature pfrticles are delocalizediii) for densities of constraints
the crosslinking. It is based on the Deam-Edwards formulalarger than the critical value the system is in an amorphous
tion of the statistical mechanics of polymer netwotkand  solid state, characterized by emerging random static density
borrows some concepts and techniques that have in the pd&ictuationsiii ) at the critical density of constraints there is
been used to study the problem of spin glaSsés.the a continuous phase transition between the liquid and the
framework of this approach, it is possible to define an ordeamorphous solid stategv) in the amorphous solid state a
parameter that probes random static particle density fluctugositive fraction of the particles is localized around random
tions, and is thus able to detect the transition between thmean positions and with random rms displacemefwsin
liquid and the amorphous solid staté. the amorphous solid state, close to the transition, the fraction

Along the way, it has been recognized that there exists af localized particles is proportional to the excess of the
class of systeméncluding, e.g., end-linked flexible and stiff crosslink density beyond its critical value, and the typical
polymers’ and crosslinked higher dimensional manif§lds localization length diverges at the transition like the excess
that display identical transitions, and a general Landatcrosslink density to the power 1/2; (vi) when scaled by the
theory was formulated to describe this transitiofhis Lan- mean value, the statistical distribution of localization lengths
dau theory was constructed using only symmetry consideris universal near the transition and, consequently, the depen-
ations and the assumption that the phase transition should lskence of the order parameter on the wave vectors also has a
continuous(and thus dominated by the long-distance behavuniversal scaling form.
ior of the system Although in the amorphous solid state translational invari-

By expanding any of the semimicroscopically derivedance and rotational invariance are broken at the microscopic
free-energy functionals corresponding to the aboveievel, because a fraction of the monomers are localized, the
mentioned physical systems in powers of the order parameteverage density is uniform, and the system is macroscopi-
and gradients, one recovers this general Landau free-energlly translationally(and rotationally invariant(MTI).* The
functional, up to terms that play no role in the mean-fieldliquid state is, of course, not only macroscopically but also
theory, in the vicinity of the transition. In the study of fluc- microscopically translationally and rotationally invariant, as
tuations, as we shall show later, these additional terms do n@&ach individual monomer density is uniform over the con-
alter the physical picture. The slight difference between thdainer. Moreover, as in the case of some of the mean field
general Landau theory and the microscopically derived theosolutions encountered in spin-glass systems, both the liquid
ries is due to the fact that, whereas the former theory onlyand the amorphous solid states are replica symmetric.
allows states that have a disorder-averaged patrticle densityowever, as will be shown later, the symmetry of these
that is spatially homogeneous, in the latter states with spatidtates is even larger, because the replica symmetry combines
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with the rotational symmetryin d-dimensional spageto  transition, as presented in Ref. 9, and later derive expressions
produce rotational symmetry inrad-dimensional(i.e., rep-  for the Hessian matrix for the free-energy functional in this
licated space. theory.
It is well known that in the spin-glass case the early
replica-symmetric spin-glass soluti@rfor the Sherrington- A. Brief review of the Landau theory
Kirkpatrick model was later found to be locally unstable at ) ) )
temperatures below the critical temperature by de Almeida N @ System characterized by static random density fluc-
and Thoulesd! and was superseded by the replicatuations, the appropriate order parametef'is
symmetry-breaking solutidf discovered by Parisi, with its N
elegant interpretation in terms of symmetry-unrelated pure a |1 2 iKkl.c iK2.c ik9.c;
equilibrium state$® This replica symmetry-breaking solu- KLIZ - KT N o (D) () () s
tion has a non-negative entropy at all temperatures and is (2.2
locally marginally stablé?
By analogy with the spin-glass case, and considering alswhere N is the total number of particlese; (with i
the fact that random topological constraints can, in principle=1, - - . N) is the (d-dimensional position vector of par-
lead to a partitioning of the configuration space of threedicle i, the wave vector&’,k?, ... k9 are arbitrary(- - ),
dimensional macromolecular systems into ergodic regiongenotes a thermal average for a particular realizatiof the
that are not connected by symmetry operatibhi, would ~ disorder[ - - - ] represents averaging over the disorder, @nd
not be entirely surprising if in systems undergoing a liquid—is a positive number.
amorphous-solid transition under the effect of random con- We make the Deam-Edwards assumptitat the statis-
straints, the replica symmetric stationary point of the freetics of the disorder is determined by the correlations of the
energy corresponding to the amorphous solid state turned ouficonstrained system. Under the Deam-Edwards assump-
to be unstable and had to be superseded by a less symmettien, obtaining disorder averages with the replica technique
solution of the mean-field equations. amounts to working with then—0 limit of systems ofn
However, the Deam-Edwards distributtdh used to +1, as opposed to, replicas. The additional replica, labeled
model the disorder favors sets of constraint locations that arey a=0, represents the degrees of freedom of the original
associated with highly probable configurations of the unconsystem before adding the constraints or, equivalently, de-
strained system. Thus, although frustration may in principlescribes the constraint distribution.
be present, the disorder distribution tends to discouratfe it. ~ In the replica formalism, the order parameter takes the
The purpose of this paper is to show that the mean-fieldorm***?
amorphous solid state is, in fact, locally stable, at least near 1 N P
the transition. More specifically, the Hessian matrix that de- 5R5<— > exmﬁ.{;i)> . (2.2)
scribes changes of the free-energy functional for infinitesi- N =1
mal fluctuations around the stationary point corresponding to
the amorphous solid state is computed, and it is shown thatjere, hatted vectors denote replicated collections of
to linear order in the excess crosslink density, all its eigen{d-dimensional vectors, viz.,QE(vo,vl, ... ,v"), their sca-
values are strictly positive, except forral degenerate zero |ar product beings-w=3"_,v*-w?, and(- - -)~ ., denotes

mode associated with the spontaneous breaking of thgn 5yerage for an effective putiee., disorder-frepsystem of
contmuous translational symmet_ry of the system. In order g, 1 coupled replicas of the original system. We use the
QO this, we construct_ a descrlptlon for the space o_f ﬂUCt“atermsone-replica sectof1rs andhigher replica sectothrs)
tions around the stationary point that allows the eigenvalugy refer to replicated vectors with, respectively, exactly one

problem for the Hessian matrix in replicated space 0 b&nq more than one replica for which the corresponding
reduced, in essence, to an integral eigenvalue equation in 0l tork® is nonzero.

dimension. , , , _ In the Landau theory the order parameter in the one-
The rest of this paper is organized as follows: In Sec. llrgpjica sector represents spatial variations in the disorder-

we compute the Hessian matrix for the Landau free-energyyeraged mean particle density, and is always assumed to be
functional around the amorphous solid state, and make use erictly zero.

the continuous symmetry of the problem to identify a basis | "the stationary point approximation, the disorder-
set that significantly simplifies the eigenvalue equation for,

- . S veraged free enerdy(per particle and space dimensjas
the Hessian. In Sec. lll we find positive lower bounds for all ;i\.en byP16:17
the eigenvalues of the Hessian, except for the zero mode thgt _ _
is present due to the spontaneously broken symmetry. In Sec. f=lim min 7,({Q¢}), 2.3
IV we extend these results to allow for fluctuations in the n—0{Qid
particle density in the case of the m|crospop|cally derlvec\Nith the Landau free-energy functional given by
free-energy functional for randomly crosslinked macromol-
ecules. Finally, in Sec. V we present our conclusions.

n+1

— |R|2
nd7,({ Qi) = ; et 1042
Il. LANDAU THEORY: HESSIAN MATRIX
In this section we first summarize briefly the basics of the - 2 Of, O, Qi Ok, iy vkg.0- (2.4

general Landau theory of the liguid—amorphous-solid phase kykoks
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Here € is the control parameter, and is proportional to theUnder independent rotations of the replicas, defineccby
amount by which the constraint density exceeds its value at—>c’i”=R“ci“, andﬁQE{Rovo, ... RW", where eaclR” is

the transition. The symbdl denotes a sum over replicated a rotation matrix ind dimensions, the order parameter trans-

wave vectorsk in the higher replica sector. forms as
For €<0, the stationary point equations for the free-

energy functional of Eq(2.4) only have the solutiorf) Q=0 =0x 1. (2.10

= i, corresponding to the liquid state. Fer 0, there are By inserting the transformed order parameter for either of the
two solutions, one Q= p) corresponding to the liquid ﬁé 9 b

! ove operations into the free-energy functional Eg4),
state and a second one corresponding to an amorphous so see that in both cases
state, given by

&=(1—CI)5&,6+C] P \/Tzle), nd}—n({ﬂk}) nd7,({Qi}), (211
i.e., that the Landau free energy is invariant unidetlepen-
g=2¢/3, denttranslations and rotations of the replicas.
Anticipating the conclusions of this paper, that the liquid
% ) state, which becomes unstable wheis increased through
w(k)ZJ do m(6)e <7, (2.5 zero, is replaced by a stable amorphous solid statefd,
0 we now pause to compare some aspects of this phase transi-

Here, the quantity is the ratio of the number of localized tion with their counterparts in simple models of the
particles to the total number of particléise., thelocalized paramag_net-to-ferzomagnet phase transitjeng., theO(N)
fraction), () is a universal scaling function that character- Symmetric vectoks™ model. We shall refer to Fourier com-
izes the distributiorp(1/¢?) of the (inverse squandocaliza- ~ Ponents of fields amodesand shall consider the mean-field
tion lengthsé for the localized particles, through(1/¢2)  level of description. At high temperaturéfor magnetism

— (2/e) w(2/e?), and we use the definitidTQEE‘;,ok“. The and low constraint densitie§or amorphous solidification

g . . the equilibrium value of all modes is zero. As the relevant
factor 5 o encodes the property of macroscopic translation

) ) . : control parameter is changed through its critical value, a
invariance(MTI) for the amorphous solid state, i.e., the fact and of modes, including those of the longest wavelength
that the state is invariant under common translations of alEecome Iinearl3’/ unstable, the longer the wavelength thé
the rgpllcas, or, in more physical terms, that the particles argtronger the instability. Ir’1 both settings, magnetism and
localized around. Ta”dom'Y located points that 'have a homoélmorphous solidification, stability is recovered by the acqui-
geneous probability of being found anywhere in the volume

: ) o . sition of a nonzero equilibrium value by one or more of the
g:it?/ec?rlmsc‘jti(tai?ﬁ The scaling functior(6) satisfies the station- modes. For magnetism, there iszaro wave-vector mode,

which is the most unstable mode, and by giving it the appro-
) priate nonzero equilibrium value, this moded all others
=(1-6) W(g)_J do'm(6')m(6—6'), (2.9  are restabilizedi.e., are no longeunstable, as discussed
0 below, there should and does remain one marginally stable
) o N Goldstone mode For amorphous solidification, restabiliza-
together with the normalization condition tion is more intricate. There is no fluctuating zero wave-
vector mode in the theory to be given a nonzero equilibrium
1= deew( 0) 2.7 value. Instead, the most unstable modes have the smallest
0 ' ' allowed nonzero wave vectors. If these modes become non-
zero, as some of them do, there is no symmetry dictated
This normalization condition directly follows from the fact “selection rule” prohibiting them from acting as “sources”
that the order parameter of E(.2) has to be unity at the for certain other modes, and thus not just one but a large
origin of replicated wave-vector spat&lt is worth noticing  family of modes become nonzero, not only including modes
that in the limit e—0 the above parametrization 6 re- that were formerly unstablgThis may be regarded as an
duces continuously to the order parameigr= 5; ; for the ~ analog of domain-wall formation in wave-vector space.
liquid state, as it should. ’ There is one further subtlety to the amorphous solidification
Let us now discuss the symmetry properties of the Landa§aSe: t0 give a nonzero equilibrium value to modes that re-
free-energy functional. Under independent translations of affide in the one replica sector would be extremely energeti-

the replicas, i.e.c*—c*+a® the replica order parameter, cally costly_and, f_rom_the _viewpoint of t_he Landau theory, is
Eq. (2.2), transforms as ruled out(wa an |n"_|pI|C|t Im_ear constraint on _the order pa-
rametey. This requirement is satisfied by giving a nonzero
equilibrium value only to modes that are MTI, because such
modes are prohibited, on symmetry grounds, from acting as
For later reference, let us calculate the change in the ordéPurees for mode_s _in the one replica sector. Thus stability is
parameter for the case of small displacements of the replicaggsmred hot _by giving one unstable mode a nonzero value,
and not by giving only the unstable modes a nonzero value,

N e A ) but by giving a sheet of modesome unstable and some
6Qi=Q —Qi=ik-aQi+0(a%). (29 stabld a nonzero value.

6% dr
2 do

0i—0l=e*a0;. 2.9
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B. Hessian matrix elements C. Change of basis

Consider any variatiog6Q;} of the {Q;} around a sta- In order to simplify the diagonalization of the Hessian, we

tionary point{Q}. To first order in{ Q¢! the variation of ~are going to exploit the symmetries of the problem. As a

the free-energy functional is, of course, zero. We see fronflirect consequence of the invariance of the free-energy func-
Eq. (2.4) that the second order variatioris tional under translations and the MTI property of the amor-

phous solid state, the matrix eleméiit of the Hessian only
connects wave vectolis andi such thatk=T. This already
|6Q¢/?-3 reduces the complexity of the problem by making the Hes-
sian block diagonal.
— _ As H; i depends ok?, 12, andk-1, one might expect to
X 2 S rigriy,0 Qi 004,00 . find a symmetry under arbitrary rotations in€1)d dimen-
kikaks sions, which would simplify the diagonalization of the Hes-
(2.12 sian still further. However, the factof; 7 is not invariant
) ) o under some of those rotations. Inste&tl,only displays a
Now consider expanding around the liquid state for anyotational symmetry imd dimensions, but this will enable us
value of . In this case, the second variation reduces to ¢, simplify the task in much the same way as is commonly
. done for central potentials in quantum mechanics.
|k|? In order to make this symmetry explicit, we choosiexad
2

matrix T e SO (1+n)d] such that for any vector in repli-
cated space we explicitly isolatefrom the othemd inde-
pendent coordinates, which we catl

k|2

BTN

5<2>[rmlfn<{sm>]=Ek

—e+ |6Q¢]?, (2.13

SAndF,({Q)]= >
k

which evidently indicates that the liquid is stable fex0

and unstable foe>0. Fore>0 the only candidate we know
of for a stable thermodynamic state is the amorphous solid. ~
From now on we focus only on that state. v

By inserting the value of the order parameter, EI5), Tv=| Vi1+n]|. (2.18
into the three wave-vector sum in E@.12, we obtain

v
Due toT being orthogonal, scalar products remain simple in

= 2e =
> Ok +ky+ig 09k, 05~ @ V2ki/ €) 804, 50 the new coordinates:

kqkoks
S 2e 2 . . f e VWL
=2 5,05 0| Ve (ketke?] 05,005, Vo= T VW, (2.19
2R3
9e — In the new coordinates, we have
_ e 12
3 §k‘, | 502 (2.14 R
Hi, 1= k1) Oki| €t 5| K2+ 7
Thus we can rewrite the second variation in terms of the +tn

Hessian matrixHg g . o
—26J daw(o)e-<k-'>2/60]. (2.20
= 0

SPndF,({Qgh]1= 2 Haq 00560 5, (219

a.9’ This expression, taken naively, would immediately tell us
) that the Hessian is invariant under rotationsnid dimen-
where we have defined ; by sions:
2 -
Hy = 2LNd7al 2.16 VResOnd): Hiw Tei=Hrii- (220

However, there is an important caveat. Our Hessian is only

(For later convenience, we have chosen a definition that difdefined for wave vectors in the higher replica sector, but the

fers from the standard one by a factor of 1/®lore explic-  Proposed rotations can take a vector in the higher replica
itly, we have sector and transform it into a vector in the one-replica sector.

For the moment we are going to ignore this difficulty, and

k2 w - simply diagonalize the matrix obtained by using E2.17)
Hii=6kil e+ >~ 6;,~|Zef dg m(g)e (k-DTel as its definition, wittk andi takinganynonzero values, both
0 in the higher and in the one-replica sect¢fhis enlarged
+O(€?). (2.17  Hessian matrix will be termed the “extended Hessian” to

distinguish it from the “original Hessian” which does not
As it is adequate to be concerned with matrix elements tdave those additional matrix elements; see FipAtter hav-
leading(i.e., firsh order ine, we shall neglect higher orders ing diagonalized the extended Hessian, we will return to the
from now on. issue of the one-replica sector. For the moment, let us just
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hI'S cause we are interested in fluctuations of the order parameter,
andQg cannot fluctuate. We define the scalar product in this
space as follows:

1 N "
<f|g>zwz f* (kyg(k), (2.22

k#0

which simplifies, in the thermodynamic limit, b

dk I
<f|9>zvjmf*(k)g(k)

dk dk .
=Vf(1-1—n)d/2(27-r)(1+n)df (k,k)g(k,k).

(2.23

We define a basis set for this Hilbert space by
Pppo(K.K)=(1+n) ¥ 2m)"25; z (1K~ p)

X p=nd2s (), (2.24

Here{S,(¢)} are the normalized surface harmonic functions

defined on the unit sphere ind-dimensional spac¥, p is
any wave vector id dimensions, ang@ is any positive num-
ber. [Surface harmonics are homogeneous trigonometric
polynomials, they are generalizations of spherical harmonics
to any space dimensiai= 3. The labelr is a set of integers
that characterize the appropriate trigonometric polynomial:
for example, ford=3, the surface harmonics are the usual
FIG. 1. Comparison of the original Hessian mattipper fig- SPhe”Ca' harmon'cs’ a_mﬂz(l ,m), with | the de.gr_ee O,f the
ure) and the extended Hessian matfiswer figure. The extended ~trigonometric polynomial andn a label that distinguishes
Hessian matrix is depicted as being formed by four blocks, resped?€tween polynomials of the same degtekhe notationg
tively connecting: the 1rs with itselfabeledH), the 1rs with the ~ =k/|k| denotes the unitd-dimensional vector along the di-
hr_s (labeledH"), thehhrs with the 1'r1flabeledHh1), and the hrs  (action of k. The elements of the basis skt ,po) are or-
with the hrs(labeledH""). The blockH"" corresponds exactly to the thogonal and normalized under the scalar product(EQ2):

original Hessian.
<(Pp”[:~)’o"|€0p50'>:5(p,_p)5ﬁ’,5 50”,0" (223

As suggested above, we propose to express each eigen-
nction for the problem in the form

Y

anticipate that, in the replica limit— 0, the only effect of

this extension of the Hessian on its spectrum of eigenvaluefsu
will be the addition of one spurious eigenvalue, correspond-
ing to a fluctuation localized in the one-replica sector.

For the modified problem of diagonalizing the extended
Hessia}n, the&& Q(nd) symmetry holds, and E_cj2.2]) is cor- X 8% |R|(1fnd)/2 Rr(|R|) S, (i),
rect without caveat. In what follows, we will use the same
strategies as in the diagonalization of a quantum-mechanical
Hamiltonian for a particle in a central potential. The role of
the Hamiltonian will be played bif; ;. We will also exploit ) . , )
the symmetries of the problem: the rotational symmetry inwhere the discreté function ensures that tr~1e eigenfunction
nd-dimensional space will allow us to write each eigenfunc-is localized on points with a fixed value @, the surface
tion as a product of a radial part, which will be obtained byharmonicS, gives the angular dependence knand the
solving a one-dimensional eigenvalue equation, and an angyadial functionR, gives the radial dependence lorBy using
lar part, which will simply be a surface harmonic functidn the normalization condition for the basis set, we obtain the
in nd dimensions. The quantitk, which is exactly con- normalization condition for the radial part:
served byHj 7, will play the role of a conserved quantum .
number. We will obtain distinct sets of eigenfunctions for f dk|R,(K)|2=1. (2.27)

0

each fixed value ok.

We are going to work in the Hilbert space of complex we now compute the matrix elements of the Hessian be-
functions of the variablé(+#0). We exclude the origin be- tween the elements of the basis $ety,}-

Prro(k, k) = (1+n) ¥4 277)"92

= J:dp R(P) opps(K.K), (2.26
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Consider first the patti® of the Hessian that is diagonal This radial equation can be simplified further by the rescal-

in k, i.e., the first term on the right-hand sidehs) of Eq.
(2.20. This part is also diagonal in the basis,;, }, with the
matrix elements

(€050 |HP €450) = 8(P = P) 550 50,15

1(., p?
i Y
e+ p+1+n

Xl €ty

. (2.28

The nondiagonal paH® of the Hessian, given by the
second term on the rhs of E(R.20, has, in the new basis,
matrix elements that only connect different values of the ra-

dial coordinatep but are still diagonal ip ande-. It is shown
in Appendix A that the matrix elements Bf° have the form

(‘Pp’E’(r’|HO| (PPE(T> = 6'[3/’550./,0. ( - 26) 671/2Cn

Xy (p'leplVe), (229
with
Co=(el4m)"¥%(1+n)~ %2 (2.30
and
7M(x',x)=2x"x
ocd0’77(0) 12, 2 2x'x
PR N G O 1 -
XJO el,nd,ze . |I1+nd/2< o |
(2.39)

wherel (x) is the modified Bessel function of order The

ing
1 =2
=< K_(6+2(1+n)
x=p/\e, u(x)=e"R(\ex), (2.35H
which removes the dependence from the eigenvalue equa-
tion, thus making both the eigenvalgeand the eigenfunc-
tion u(x) e-independent and obeying
x2 %
{u(x)=—ux)-2 Cnf dx’ pfg] (x,x")u(x’).
0
(2.36
In the replica limit,n— 0, this radial equation reduces to

X2 o
Zu(x)= ?u(x)—zfo dx’ 7 (x.x"u(x"). (237

}, (2.353

For all cases exceptr|=0 this limit is straightforward,
becausen(n](x,x") smoothly converges toyJ)(x,x"). For
the special case dfr|=0, the limitn—0 for nﬂ(x,x’) is
singular near the origin. Let us mention here a property of
Eq. (2.37) that doesnot apply to Eq.(2.36. As | _4(2)
=1,(2) for all values of the variable, we have the equality

(2.38

which means that the radial E€R.37) is the same fol o]

=0 and for|o|=2. In Sec. Ill C we discuss in more detail

the relations between the solutions to E@36) and(2.37).
Both radial equations, Eq$2.36) and (2.37), are eigen-

200x,x") =7 (x,x'),

label |(=|o|) indicates the degree of the surface harmonicvalue equations for Hermitian operators. This guarantees the

S, as a trigonometric polynomial. The consta&ly satisfies
the condition

imC,=1,

n—0

(2.32

via which it disappears from the eigenvalue equation in th
replica limit. The kernelp(™(x’,x) is real and symmetric,
and controls the nondiagonal nature of the matrix element%

Due to the positivity ofl ,(y) for v=—1 andy>0, the ker-
nel nf”)(x’,x) is positive for xx’>0. For xx'—07,
nl(“)(x’ ,X) vanishes, except I=0 andnd>0, in which case
it is divergent.

As bothHP andH© are diagonal on the and o labels,
the eigenvalue equation for the Hessian,

Hlw) = «li),

can now be simplified to a radial equation:

(2.33

KR(p)=fO dp’ (eppolHleppa)R(P),

72
p2+ p_

1
€ty 1+n

5 R(p)

=dp’ ' ,
—26ano ﬁm(ghp/\/;,p /\/E)R(p ).
(2.39

existence of a complete orthonormal basis of eigenfunctions,
all of them having real eigenvalues. Notice also the non-
trivial fact that the radial equation is well defined in the
replica limitn—0.

The form of the radial eigenvalue equation tells us that the
adial eigenfunction and the eigenvalue depend on the degree
=|o| of the surface harmonic consider@dhich plays a
ole analogous to that of the total angular momentum quan-
um numbeil in the central potential problem for a quantum-
mechanical particle and on an additional labe| playing a
role analogous to the radial quantum number in quantum
mechanics. Therefore the eigenvalues of the extended Hes-
sian are given by the relation

K2

Kur(F)=(1+§|r)e+7. (2.39

As it is easier to work with scaled variables, let us express
the condition that there be no unstable fluctuation directions
(i.e., k=0) in terms of{:

ki (K)>0 Vke ¢, +1>0. (2.40

The right-hand side of the equivalence sign is the condition
that we are going to establish in what follows.
IIl. LANDAU THEORY: EIGENVALUES OF THE HESSIAN

In this section we are going to establish positive lower
bounds for all the eigenvalues of the Hessian of the Landau
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theory, except for the zero mode associated with the spontdn Appendix (B) we show by explicit computation that this
neously broken translational symmetry. In other words, weform for u(x) satisfies Eq.(2.37) with {=—1. By Eq.
study the setS, containing the limits, whem—0, of the (2.39, this means that the correspondid@j given by Eq.
eigenvalues of theriginal Hessian. However, for technical (3.1) is an eigenvector of the Hessian with zero eigenvalue.
reasons, it is convenient to first study two other sets of numfas 50 given by Eq (3.1) is only nonzero fokk in the hrs

bers, denoted by, and S, . S is the set containing the — po05,,qe otherwisie=0, it is simultaneously an eigenvector
—0 limits of the eigenvalues of thextendedHessian; each of the extended Hessian and of the original Hessian.

element inS, can be written in the form given by E(.39, It will be shown in the next section that the radial eigen-

where{y, is taken to be the@—0 limit of an eigenvalue in - nc4ion of Eq.(3.3) is the only one that gives rise to zero
Eq. (2.36. &; is the set containing all numbers; (k) com-  modes. Since any of thed linearly independent surface har-
puted according to Eq2.39, with ¢, chosen to be an ei- monics of degree 1 can be chosen as the angular part of the
genvalue in theadial Eq. (2.37). eigenvector, there are exacthd independent zero modes.

In Sec. Il A we show thatS, contains a zero element (However, since we will be mostly discussing the radial
corresponding to the zero mode associated with the spontaquation, we will talk about the “zero mode” and not the
neously broken translational symmetry. In Sec. IlIB we“zero modes.”
compute positive lower bounds for all other elementss,of
In Sec. Il C, we show that the only difference between the
limit for n—0 of the eigenvalue spectrum of EQ.36 and B. Positive lower bounds for the eigenvalues
the eigenvalue spectrum of E@.37) is that in the former a Having obtained the zero mode for a specific form of
spurious eigenvalue corresponding to fluctuations in the 1rgyctuation, we now discuss generic fluctuations in the order-
appears, which is not present in the latter. Therefore th@arameter field, and show that all the other eigenvalues are
spectrumsS, of the extended Hessian contains a spuriousositive-definite. For the cadet 1, we will obtain positive
eigenvalue not present ifi, . We also show, in Sec. Il C, |ower bounds for the eigenvalues by analytical manipulation
that the eigenvectors of the original Hessian correspond to aif Eq. (2.37). For the casd=1, we will solve Eq.(2.37
the eigenvectors of the extended Hessian, except the spurioggmerically and show explicitly that the lowest eigenvalue
one, i.e., thatS, and S; are identical. Using the results ob- corresponds to the zero mode already obtained, and that all

tﬁine?] in Secs.hlll A anf_ldlll B, th_is |Wi” ‘ﬁ”OW ltjj to conclude other eigenvalues correspond to positive values @).
that the amorphous solid state Is locally stable. Consider one particular scaled radial eigenfunctigr)
in Eq. (2.37), with eigenvaluel. To simplify the argument

A. Obtaining the zero mode we temporarily switch to the normalization
We first consider a generic eigenfluctuation associated
with the translational symmetry, and show that it is a zero w
mode. From Eqg(2.9), we see that this fluctuation can be f dxju(x)|=1, (3.9
written as 0
:ik'é(2€/3)5i,of do m( 0)e*k2’f" and we define the quantity
0
=i|“<-é(2e/3)5;,0f do m(o)e 0. (3.1 S(x)=sgr(u(x)). 39
0

The onlv anaular dependence &f.: is given by the prefac- In what follows, we express the eigenvalfien an unusual
y ang P k1S9 y P but convenient form that allows a lower bound to be derived

tor k-a, which is a degree-one polynomial kn This guar-  fom it. By combining the eigenvalue Eq2.37), with the

antees that this fluctuation resides in {leg=1 sector. By normalization conditiori3.4) and the definition(3.5), we ob-
taking the scalar product with the appropriate element in thegy;,

basis{ ¢, [Which we label byo=(1,0) by analogy to the
spherical harmoni¢/,g<z/r], we obtain the radial function
associated withdQy,: o

“ §=z:fo dx|u(x)
R(K)=(¢p5=-0,0=(1,0/ ),

& = deS(X)s“U(X)
:iAnek<1+”d>/2J dom(0)e ¢, (3.2 fo
0

whereA,, is a numerical prefactor, which we can ignore in f dx o(x) —U(X) 2] dx’ 9o (x,x )u(x")
what follows. Taking the replica limit, and transforming to

scaled variables, we obtain the scaled radial function

© X2 0
=f dx5|u(x)|—2f dx dx
. . 0 0
”(X):&fod”(e)eﬂm' 33 X 700 ) [u()[s()s(x"). (3.6
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(In the last line we have interchanged the dummy variakles
andx’.) From the expression just derived for the eigenvalue

£, it follows from the non-negativity of{o)(x’,x) that

(= f "X 1O U(X) [ =01 (374
0
X2 %
=2 a0, @
n=inf y,(x). (3.79

X

Here, the symbol inf indicates the greatest lower bStifmt
a set of real numbers.

It is convenient to writey,(x) in terms of another function
Bi(v), as follows:

N0 = f:dewwwx/@), (3.89

V2

2(6° Y,

Bi(v)= —4f0wdu@e’(“2+vz)l|,1(2uv).

(3.8b

Here, we have used the definition of an average with respect

to the distributionr,

<f<e>>wzf do m(0)f(6), (3.9
0
and we need, in particular, the numerical value

(671 ,~0.881768, (3.10

which can be obtained by using the functiefd) of Ref. 3.
As 7(6) is non-negative and normalized to unity, £8§.8a
implies that

(= Y0= Blo (3.1

where

Bi=inf By(v). (3.12

The bounds for different values of the indéxare not
independent. In fact, becaubéx) <I,_,(x) for x>0 andlI
=1, we have the inequalityp?;(x,x")< 7{%(x,x") for
xx'>0 andl=1, and from this inequality it follows that all
the bounds defined so fary(x), y,, Bi(v), and 8] are
increasingfunctions ofl for [I=1. Thus if we obtain a posi-
tive lower bound for one value df=1, the same bound
applies for all larger values df

In order to obtain more concrete results, we need an ex

plicit expression forg;(v). In Appendix(C) we obtain the
exact expression

v2 Ldr+14
206071, INQ))

Bi(v)= v"”zM(l——1 I —vz),
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5.0

40 +

3.0}

20 ¢

L+ B(v)

1.0

2.0

3.0

FIG. 2. Plot of 1+ B,(v) (for 0<I=<4) and 1+ 3*)(v) as func-
tions ofv.

along with the asymptotic formg>)(v) and8(=)(v), given
by

2

Bi(v)~BF)(v)= —2 for v>1, (3.13b

2(671).,
/3|(V)~/3(<)(V)52<;_21>W_ N
for v<1, (3.130
as well as the lower bounds
Bi(v)>B)(v) for 1>1, (3.143
Bi(v)=p(v) VI, (3.14b

HereI'(z) is the gamma function, anill(a,b,z) is a con-
fluent hypergeometric functio(Ref. 23, Chap. 138

As mentioned above, we need to show that{lis posi-
tive. Thus the quantity of interest is really+18,(v), as op-
posed toB,(v). In Fig. 2 we plot I+ 8,(v) as a function of
v for O0<I=4, together with its asymptotic form 1
+ B*)(v) valid for large values of the argument

Let us now obtain the lower boundst18, for 1+ ¢, and
show that they are positive for: 1. Forl =4 [and, asB(v)
grows withl, for all I=4], B,(v) is positive for all nonzero
v, and thusg,=B,(0)=0. For 0<I1=<3, B, is obtained by
numerically minimizing Eq(3.133. In Table I, we give the
numerical values for these bounds. These lower bounds es-

tablish that all of thex,, (k) are positive forl # 1.

TABLE I. Lower bounds for eigenvalues of the Hessian.

I 1+

1 —0.55571
0,2 0.27376

3 0.94274

=4 1
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Let us now focus on the remaining sector, nanleiyl. 0 for B+#a,
As, for this case, our lower bound is negative, we cannot =
draw any conclusion from it. We have already shown that
there is a zero mode, but there could still be one or morevith «=0, ... n, are the only vectors in the one-replica
negative eigenvalues, which would render the proposedector that satisfy the condition that the sum of their (
amorphous solid state unstable. The numerical solution of- 1) componentd-dimensional wave vectors is equal o
the radial Eq.(2.37) for this case yields, within numerical These two results tell us that the one-replica sector corre-

24 : . ~
error™" the following two lowest eigenvalue®oth nonde- sponds, for fixed, to a set o+ 1 points that, in the replica

generatg limit, converge to the origin of; space. Consequently, to see
whether or not a given eigenvector has any overlap with the
1rs, one needs to look at the properties of the corresponding
radial eigenfunction near the origin.
1+¢1,=0.98412-0.000 09. (3.19 Let us then consider the scaled radial £2.36) for the
region close to the origin, and let us keep-0 for the mo-
nt. By using the small-argument behavior of the modified
essel functionvalid for v#—-1,—-2,...),

= o for f—a, (3.19h

1+ {40= —0.000 02=0.000 05,

Evidently, 1+ {4 corresponds to the expected zero mode,
and we can conclude that there are no further zero modes a
that all other eigenvalues are positive definite.

To summarize, we have shown thatZ=0 for any ei- (212)"
genvalue{ of Eqg. (2.37), i.e., that all elements of, are | ()~ =——, (3.20
positive or zero. In the next subsection we will show t8at F(v+1)
andS, are identical, and therefore that all of the eigenvaluesve obtain the asymptotic form of the kernglfor x<1 and
of the original Hessian are either positive or zero. x'<1:

I +(nd-1)2

C. The one-replica sector and the spurious eigenvalue (n) N
X =27

m(x’), (3.21a
We now need to return to the issues that we postponed

earlier, namely our extending of the Hessian matrix defined w )

by Eq.(2.17) so that it can also be defined in the one-replica m|(y)Ef dom(9)0 e Yoyl T(nd=12 (3 21h

sector, and the differences between the spectra of the radial 0

Egs.(2.36 and(2.37). By inserting this asymptotic form into E¢2.36), we obtain
As the Hessian matrigoth in its “original” and its “ex-

tended” versionsleaves exactly uncoupled fluctuations with x? —4x'+(”d‘1)’2U 399

different values ofk, it is consistent to consider separately ¢ 2 ue9~ L(I+nd2) " (3.223

the MTI fluctuations(those withk=0) and the non-MTI

fluctuations(those withk # 0). U= dey m(y)u(y). (3.228
For the case of non-MT] fluctuations we will show that, in 0

the limit n—0, the hrs and 1rs are not coupled by the ex-pq nositive and small, Eq3.22a can only be satisfied for
tended Hessian matrix. Furthermore, each one of the €i9eny. (25 The term proportional to? is thus negligible, and
vectors belongs to one of the sectors, inasmuch as it hasvge o.btain forx<1 '
vanishing overlagasn— 0) with vectors in the other sector. ' '

To understand this issue, we need to look at the form that —4U, ¥l +(nd=1)/2
the 1rs and hrs take, in the replica limit. For a wave vector u(x)~ T(+nd2) 7 : (3.23
p=(0,...,0p,0, ...0 (3.16  The leading behavior of this radial eigenfunction fod
small and positive depends on the value of the dedree
in the one-replica sector, we have =|o| of the surface harmonic function. Fbr0 there is one
eigenfunction that diverges at the origin liké"d~ 172 |ts
p=p and p?=p? (3.17  eigenvaluef_ is given by the expression
and, by using Eq(2.19 with v=w=p, we have 4fo dyfo d6 m(g)e Y Ioynd-1
N R A A " e -
PENP ™ VP 1™ VolPl which, in the replica limit, becomes
(3.18
. lim¢{_=-2. (3.2
This means that the radial coordina{® goes to zero like n—0

1/2 . . . . .
n**in the replica limit,n—0. Moreover, for each fixed g hresence of this divergent eigenfunction as a solution of

value ofp (=p), then+1 wave vectors defined by Eq. (2.36 depends crucially on the singularity af" (x,x’)
R at the origin forn small but positive. It isnot a solution of
e, (p)=(e, ..., (3.198  Eq. (2.37), which only has solutions that go to zero at the
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origin: by Eq.(2.38), the radial equation fon=0 andl =0, 1 . .
is identical to the radial equation for=0 andl=2, which (Wil po) =— Z Wi (K) ¢r5,(k)
means, by Eq(3.23, that the radial eigenfunction satisfies V7 k=0

the condition

1 n
= — > Wi [(1+n)¥2m)n?
lu(x)|=x%2. (3.26 Vi a0

XSy e (p))( n/(1+n)|p|)X—ndr2
We will show below that the divergent eigenfunction

present fom>0 corresponds, in the replica limit, to an un- XR(yn/(1+n)[p|)]. (3.29

physical fluctuation, i.e., a fluctuation in the one-replica sec-

tor. In fact, from Egs(2.39 and (3.25, we see that its ei- Here, we have made use of the relation Ey18. There are

genvaluex_(K) is negative for smalk: two possible cases to consider, depending on whether or not
R, is singular at the origin. If it is singular, we have=0
and, for smallk,

. k2
k_(k)y=-— e+7. (3.2

R(k)= e~ Yu(k/Je) = Ne 412 (3,30
However, forl=0, all other radial eigenfunctions are or- Where /' is a normalization constant determined by Eq.
thogonal to the one just found, and thus make the intdgral (2.27). Its value is given by

vanish. Their behavior is controlled by the next power in the

expansion ofng”)(x,x’), and consequently they vanish for N= \/ﬁ[1+ O(nd)]. (3.3
x—0 at least as fast ad"4"3"2 Moreover, forl >0, by Eq.

(3.23 we see that all the radial eigenfunctions vanishXor As|=0, the angular part ofs;, is isotropic, and is given by
—0 asx' T("d=D/2 o faster.

These results can be summarized as follows:rfer0™*
all but one of the radial eigenfunctions are regular at the So( )= /i: ‘ /F(ndlz):(nd)fl/z[lJrO(nd)]
origin. The one singular eigenfunction corresponds <@ Thd 27"d2 ’

and scales like("9" Y2 for x<1. The regular eigenfunctions (3.32
can have any value dfand vanish fox— 0 asx('~11*1/2) or
faster. where 7,4=27"%%T(nd/2) is the surface area of a unit

In all cases in which the eigenfunction is regular at thesphere innd dimensions. By combining Eq$3.29—(3.32,
origin, it is permissible to take the limit—0 in Eq.(2.36.  we obtain
This is because these eigenfunctions vanish at the origin fast

enough that the integral term in E(.36) does not pick up n

any extra contribution from the singularity af{"(x,x’) (Wil thso)= 2 WF [1+0(n)]=(wj|we)[ 1+ O(n)]
[which, by Egs.(3.213 and (3.21b, is at most of order a=0

nd(xx’)("4=Y2] Thus the spectrum of eigenvalues of Eq. =5, {1+ 0(m)]. (3.33

(2.37 is the same as the limit of the spectrum of E2,.36
whenn—0, except that the spurious eigenvallieis absent This result implies that, in the limih— 0, the eigenfunction

in the former and present in the latter. that is singular at the origin lies entirely in the one-replica

We now show that the one-replica sector fluctuations de'sector.

couple from the higher replica sector fluctuations in the rep- Let us now consider the case in whiBhis not singular at

lica limit. Consider the following complete orthonormal ba- he origin. In this case, for smak the radial eigenfunction
sis set for the fluctuations in the one-replica sector with fixe X '

> as the form
p=p:
R(k):6—1/4u(k/\/;)SNE—(H—lHl)/Zk(H—l|+1/2),
S (3.39
Wj(k)E 20 ijaﬁkéa(p) s
“ where the normalization constanf does not vanish in the
replica limit. As, in this regular caséneed not be zero, we
vz o have to obtain an estimate for the normalization constant of
W = g'2miel(nt1) (3.28  the surface harmonic for all valueslofConsider a monomial
yn+1 Mm(¢) defined on theD-dimensional unit sphere
wherej=0, ... n. xML. .. xMo
Let us compute the scalar produat;|i;,) of one of M ()= lml. Comp_ 71 D (3.39

these basis functions for the one-replica sector with one of rmtotmp

the eigenfunctions of the extended Hessian, which has the
general form given in E¢2.26): Here ,, ... Xp) are the Cartesian coordinates of a point
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r=(xj+---+x3)"? is the radial coordinate for the same 1 A A
point, and¢= (¢, . .. ,¢p)=x/r is the unit vector pointing (W H|wj)= o 2 wi(K)Hi jw;(1)
in the direction ofx. The integral of the monomial over the Vo k=0
unit sphere is
" = ! é e+p—2 whow
V'(1+n)|a=o 2 maerhe
D, m My — (x2+ - .. +x2
[ o oo ~2¢[ “do o)
f dpM ()= — 0
f der—l rm1-¢—-~~+mDe—r2
0 n . .
b X > e [eaPepI ety x Wi p
1+mj a,p=0 ' '
2[I T 5 ,
j=1 . :
if m; evenvj, —s | _ =
Drslm j S| — e+ | +O(n). (3.40

Thus we see that, as expected, the eigenvalue obtained here
is the same as the one obtained in E3327) for the singular
0 otherwise. eigenfunction of the extended Hessian.
(3.36 In summary, for non-MT] fluctuations, in the replica limit
' all regular eigenfunctions of the extended Hessian are or-
thogonal to all of the 1rs vectors, and the singular eigenfunc-
In the case of interest to B=nd andEjD:lmj=2|a|. From tion of the extended Hessian coincides with the isotropic (

Eqg. (3.36 we conclude that the normalization factdy, for =0) fluctuation in the 1rs. Consequently, in the replica limit,
the surface harmonicS, has, in then—0 limit, the the higher replica sector is an invariant subspace for the ex-
asymptotic form tended Hessian, and therefore the regular eigenfunctions of

the extended Hessian are the eigenfunctions of the original
Hessian. More significantly, the eigenvalues of the original
n~12 for |o|=0, Hessian are the eigenvalues of the extended Hessian for its
Y for || #0. (3.37 regular eigenfunctions. _ ' .
For the case of MTI fluctuations, their components in the
one-replica sector are exactly zero, because the conditions
Here, we have ignored factors that have finite limits wherg ¢ 1rs andk =0 are incompatible. However, all of the argu-
n—0. This result can be summarized as follows ment presented above still holds, except that now the radial
eigenfunction that is singular at the origin coincides with a
spurious fluctuation in the zero-replica secfice., a fluctua-

I\ —=+|o|

2

(o8

S (¢)~n", tion of 05).28 The spectrum of the original Hessian is, also
in this case, given by the eigenvalues corresponding to radial
B eigenfunctions regular at the origin. Thus we have shown
v(o)= —12 for|o]=0, (3.39 that the setsS, and S, are identical, and we can use the

0 for|o|#0. results of Secs. Il A and 1l B to characterize the spectrum
of the original Hessian.

The eigenvalues of the original Hessian have the general
By inserting Eqgs.(3.34) and (3.38 into Eq. (3.29, we  form
obtain the following scaling witm for the sought scalar

product: -
kie(K)=(1+ ) et =, (3.4
(Wl o) | = (VKM [k |) Y2 T2,
nt? for1=0 with
= _ (3.39
n=1U+172 t5r1£0. 1+¢3=0 (3.42

This relation shows that in the limit— 0 those radial eigen- and

functions that are regular at the origin give rise to eigenvec-

tors that lie entirely in the higher replica sector. 1+¢,>0 for (I,r)#(1,0. (3.43
For completeness, we now also compute explicitly the

matrix elements of the extended Hessian between membeTherefore there is ad degenerate zero mode corresponding

of the basis sefw;}]_, for the one-replica sector fluctuations g (1,r)=(1,0) andk=0, which is continued by a branch of

with k= p, soft modes with eigenvalues
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_ k2 3 replicated averagé - -)¥, ; is defined by
K1o(K) = > (>0 fork+0). (3.49

f Dc O expl' —(1/2) f Old sldc(s)/d s|2J

All other eigenvalues are positive, with one continuous (O)xVHE

~ l ~

branch of modes labeled tfyfor each value of I(r). The f Dc exp{ —(1/2)f ds|dc(s)/ds|2]

minimum eigenvalue for each branch is given by 0 43

Let us note here that to leading order énthe amorphous

K (0)=(1+{))e>0, (349 solid stationary point in this theory is the same as in the
Landau theory discussed above, i.e., it is also described by

which goes to zero as the transition is approachied, as  Eds.(2.5—(2.7).

€—0). Consequently, the amorphous solid state of Ref. 3 is We now expand the free-energy functional to quadratic
locally stable near the transition. order around a stationary point, and obtain its second deriva-

tives with respect to the fieldd);}. In this section we use

the notationdH andH to refer to the exact Hessian for the
IV. RANDOMLY CROSS LINKED MACROMOLECULES microscopic theory and the extended Hessian for the Landau

dheory, respectively. Fdk andk’ both in the higher replica

We now consider one example of a semimicroscopi
sector we have

theory that exhibits the amorphous solidification transition,
namely the case of randomly crosslinked linear macromol-

ecules. In this theory there appears a control parameter 5[ ndF,] w?
(=1+¢€/3) that determines the crosslink density, and such ———=H{{,= —
that the system exhibits the liquid phase jof<1 and the UL v

u? _
- <L AW,0
Ok kr — W(P—kpk'>n+1,c

amorphous solid phase far?>1. In this semimicroscopic 2 i

theory, the fieldQ; (with p in the one-replica sectpris =—| S| et = | — Sk 2e
s : : 3| % 2 :

present and allowed to fluctuate, and there is a coupling pa-

rameterx2=X\2— u?(V/IN)(1V") associated with its fluc- »

tuations. (The parameter\? gives the strength of the X | dom(g)e"kKIet| L 02
excluded-volume interaction between the macromolecules. 0

The free-energy functionalper macromolecu)e has the 1

form®* = §ﬁ2f“&, +O(€2). (4.4)

For k in the higher replica sector amul in the one-replica

5 sector we have

N~ MZ_
ndF,({Qih) =R7y Eﬁ*lﬂ,al%ka*im

2 2 _
IN — M:Hb%: _iXZNL@ RP”>W’%
L~ n - n+1c
—In< exp(l)\ﬁv ZTRng,pE 8080, kP yin :
P
N2 Nu? o Fo-
_ w i e —(k—p)%eo
2u? =i x,pzef do m(g)e” kP
+W%TRngpE > . (4D vV 3 0
n+1 +O( 62)
~ 52
where the symbok;, denotes a sum over replicated wave _ 'anm1A+O(€2) 4.5
vectors in the one-replica sector, and the T symbol addition- 3V kp ’ '

ally restricts any summation to the half space of relevant ~ . _

wave vectorgi.e., d-dimensional or g+ 1)d-dimensiona) ~ Finally, for bothp andp’ in the one-replica sector we have
such that their scalar product with a fixed unit vectordf

. " —_ 2 T2 T2 -~

n) is positive. Here, we have used the definition of the one- 6°[nd7y] T AN P NN e
macromolecule Fourier transformed density, i.e., 50,60 5, TV PRy {P-pPpriniic

VELS (9(e)+0(|62)]].

(4.6)

. In obtaining these formulas we have made use of the defini-
for a macromolecular configuratioo(s), and the Wiener tion

Pi= foldsexpiﬁ-é(s), (4.2)



14714 CASTILLO, GOLDBART, AND ZIPPELIUS PRB 60

4.7

The notationsH™, HM, andH, respectively, refer to the and therefore
higher replica, cross-sector, and one-replica parts of the Hes- o N\ =o(n
sian matrix. Figure 3 depicts the relation betwétandH. (Wil H o) | = | kard Wi i) | = O().

As MTI (i.e.,k=0) fluctuations do not have any compo- Analogously, by Eq(3.40,
nent in the 1rs, the relevant Hessian in this case isHi$t

=(1/3)H"". Consequently, the results obtained for the Lan-
dau theory tell us that there israd degenerate zero eigen-
value corresponding to the anticipated zero mode, and th&nd
the remaining eigenvalues are positive.

Let us now consider general fluctuations. We will show =0( Jn).
that, in the replica limit, the eigenvectors of the Hesdian

for this problem are the same as the eigenvectors of the ex- 4.19

tended HessiaRl for the Landau theory, and the one-replica BY combining Eqs(4.9), (4.9), and(4.11), we can now es-
pate the matrix element:

and higher replica sectors are again invariant subspaces 8
this Hessian.

4.9

2
ﬁll|Wj>= _E+% |WJ>+O(n), (41@

2
p
6+?

|<Wj |ﬁ11| 'ﬂrfm>| = <Wj| ¢r50>

Let us consider a regular eigenvectgf;,,) of H and one
of the elements of the basis ggiv;)}]_, of the one-replica

(Wi H 00 ] = [(w; [H - HE 5,0
= (W HM 500 + O(Vn)|

sector fluctuations. By Eq4.6), -~§ o
HSw,) = ey, = (wj| 5y H" o) + O(Vn)
X2N[ 2N ) NN
k= | 1+ L0+ 0], (4.8 =| gy (Wil H"+ HYgig,) + O(n)
inAN
Irs hrs =| Wil Hlw5,) + 0GN)
>
- (7 Y% — Q) <0O(yn). (4.12
— [_]11 ' l a th This means that, in the replica limi|,5,) has no projec-
— ' tion in the one-replica sector, and also th#fw;) has no
_\_ — _)_:_E __________________ - projection in the higher replica sector. Therefore also in this
~ N ™ problem the one-replica sector and the higher replica sector
1 are decoupled invariant subspaces of the Hessian imthe
— : —0 limit. In the one-replica sector, the eigenvaluexigs
- ' >0. In the higher replica sector, adM"=(1/3)H"" the
7o) I m ! 1L hh eigenvectors are the same as for the Landau theory, and the
— S 1 = & eigenvalues are obtained from those in the Landau theory by
= -~ |, ’% £ multiplying by 1/3. As discussed before, all of these eigen-
| : s values are positive, except forral degenerate zero mode.
1 Thus also for the semimicroscopic theory of randomly
" crosslinked macromolecules, the amorphous solid state of
' Ref. 3 is locally stable near the transition.
\_ '\
\ - J V. SUMMARY AND CONCLUDING REMARKS

FIG. 3. The Hessian matrikd for the semimicroscopic theory in
terms of the extended Hessian mattik for the Landau theory.
Each block ofH is written in terms of the corresponding block of
H, except forHL. (H!is nonzero wher— 0, as opposed tbi'?,
which vanishes linearly witle near the transitioi.

In this paper we have shown that in a system with random
constraints near the liquid—amorphous-solid transition, the
amorphous solid state of Ref. 3 is a locally stable thermody-
namic staté® In order to do this, we have examined the
eigenvalue spectra of the stability matrices, in the contexts of
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both the Landau theory for the transition and a semimicroplay a role inD dimensions and with regard to the surface

scopic model of randomly crosslinked macromolecular sysharmonicsS, analogous to the role Legendre polynomials

tems. In both cases the spectrum turns out to be norplay in three dimensions and with regard to the spherical

negative, with only and degenerate zero eigenvalue, and allharmonicsY,,,. The Gegenbauer polynomiél/(x) of de-

the others positive. greel is defined by the generating functideee, e.g., Ref.
Let us remark that even though wie find a zero eigen- 20, Vol. II, Sec. 11.1.p

value for the stability matrix, we still declare that the station- .

ary point is locallystable as opposed to locallynarginally

stable This is because in this system translational invariance (1-2xt+t?) "= Z’o Croot. (A1)

is spontaneously broken, and therefore there is a manifold of

equivalent states that have exactly the same free energy and There is a generalization to dimensi@n=p+2 of the

are connected to each other by the continuous symmetries gfidition theorem for spherical harmonics, which relates the

the system. The zero eigenvalga.k.a. Goldstone modle Gegenbauer polynomial to a sum of surface harmo(ses,

simply indicates that the free energy does not change if ong.g., Ref. 20, Sec. 11):4

applies an infinitesimal translation to the thermodynamic

state. o2 ) CP2(1)mp
In close analogy to the phonon spectra of ordinary solids, Ci (¢'-¢)= Thip)

the fluctuation eigenvalues can be classified into two types: a '

| S;(¢")S,(¢)

lo]=

soft branch of modes associated with “almost rigid” dis- 4itp2 .
placements of the whole systeanalogous to the acoustic- ~ 2+ p)T(pi2) ‘(;:l S5 (¢")S,(¢).
phonon branch with eigenvaluesc;o(k) =k?/2, and a set of

stiff modes in which the structure of the system is altered (A2)

more strongly (analogous to the set of optical-phonon Here, ¢’ and ¢ are any unitD-dimensional vectorg,o| is
branchey with eigenvalues, (k) =e(1+¢,,) +k%2. In ad-  the degree of the surface harmorSg as a trigonometric
dition, there is in our case a softening of the system, becaugelynomial, h(l,p) is the number of linearly independent
the eigenvalues of the stiff modes go to zero at the transitiorsurface harmonics of degréein dimensionp+2, and rp

We have only addressed the issue of itheal stability of ~ =27P"2/T'(D/2) is the surface area of B-dimensional unit
the amorphous solid state. It is much harder to determingphere.[As C,l’z(x) is equal to the Legendre polynomial
whether the amorphous solid stategisbally stable, as the P,(x), formula(A2) reduces, foD =3, to the usual addition
order parameter space to be explored is enormous. In pagheorem)
ticular, one could consider the possibility of a replica sym- We also make use of the identifgee, e.g., Ref. 20, Vol.
metry breaking saddle point also being present and dominatt, Sec. 7.15
ing the physical behavior of the systéfHowever, there are
strong indications(although by no means conclusive evi- Xz o - ,
dence that the(replica symmetrig saddle point considered z'e"*=2 F(V)nzo (n+v)Ch(X)ni,(2),  (A3)
here is indeedglobally stable. These indications mainly
come from molecular-dynamics simulatiéhss the solid wherel (z) is the modified Bessel function of order
state observed in the simulations appears to be identical to In the case of dimensiob=nd, by combining Eqs(A2)
the one proposed in Ref. 3. and(A3), the following identity is obtained:

An intriguing problem, left open for further study, is to ) a2 1o ndl2
establish how the structure of the eigenvalue spectrum of the €XP(X@" - ¢)=2m""(x/2)
Hessian matrix, and in particular the softening of the system %
near the transition, manifest themselves in the dynamics of X1 1 nga(X)
the system. =0 |o

| S;(¢")S,().

(A4)

Here, x is any real number, and)’ and ¢ are unit
We gratefully acknowledge support from the University nd-dimensional vectors.
of lllinois at Urbana-ChampaigriH.E.C), from the U.S. Let us now compute the matrix elements of the nondiago-
NSF through Grant No. DMR99-75187P.M.G), from  nal partH® of the Hessian in the basfg ;). By using Egs.
NATO through CRG 94090H.E.C., P.M.G., A.2, and (2.24 and(2.20 we obtain
from the DFG through SFB 348A.Z.).
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APPENDIX A: NONDIAGONAL MATRIX ELEMENTS dkdTdkdi
FOR THE HESSIAN =V2f r Trmzd
(1+n)d4(27m)@d+m

(1+ n)d/Z(zw)ndp/(l—nd)/Z

In this appendix we collect some useful information con-

cerning surface harmonic functions, and use it to compute X 88Kl —p") Sk (i) pt " 285 75(]T| —p)

the matrix elements of the nondiagonal pef of the Hes-

sian in the basi§¢y;,}- XS ()i~ (—2 dea P ef(kaf)zlea A5
The Gegenbaudalso called hyperspheriggbolynomials AP KT (—2€) 0 () ' (A9)
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—2e (2m)~"d J (0)
_— > S R SSTST —2| dx' 7y (x,x")u(x’)
(1+n)d/2 EE,NI p’ k%, 19,1
0 * 7T( 6) 2 12 2XX,
- N _ - — ’ ! ! —(X +X )/9
XJ;) S(|K|—p") K|~ Ld|K| Zfo dx'dede’ 2xx 0 e |0(—(9
. s XX m(0")e XY (B2)
x [ o~ pylf "
0
By making use of the identity
XJ deﬂ_(g)ef(p2+p’2)/56’(ppr)(lfnd)IZ
0 b2/4a
f dx xe & lo(bx)= (B3)
Xf dcﬁ“kf dei Sy (i)
X exp(2pp’ bi- b7 /€6)S,(b7). (A6) Wwe perform the integration over' in Eq. (B2), thus obtain-
7 ing
In the second step, we have separatedfdade integrals "
into radial apd angular parts. .The.angular integre_lls can be2J dx’ 77(10)()(')(f)u(x/)
performed with the help of the identitA4) and by using the 0
orthonormality of the surface harmonics to obtain
(OT(0) _ 2yipey
:_2\/— dgda’— Xe/(0+0")
(_ 26) E(nd—l)/Z o+ 0
<(P ’N’(r'|HO|¢)pl~J(r>: 8}3’ 550" o o 0
o PR gnagn (1 + ) ¥ = &f d0e*X2’0J o' m(0)m(0'). (84)
0 0
>d@m(0)
XZVpp/EJ gi-ndz - ; '
Finally, we combine EqgB1) and(B4) to obtain
' 2p’
ce A ] 2P
€ u(x)+—u j dx’ 79 (x.x")u(x")
(A7)
b ; =&fd9e*“9 —a—ziw(ew(l—a)w(e)
which is equivalent to Eqg2.29—-(2.31). o 2 do
4
APPENDIX B: RADIAL EQUATION FOR THE ZERO - fo do'm(0)m(6") =0. (BS)

MODE

In this appendix we show that the scaled radial function ofrhe justification of the last equality comes from the factor in
Eq. (3.3 corresponding to a change in the system due to @races being zero by the stationarity condition, Ex6).

rigid displacement is a solution of the scaled radial eigen- Thus we have shown that E(R.37) is satisfied byu(x)
function Eq.(2.37) with {=—1. Let us first consider the ith the eigenvalug’=—1.

diagonal term. By inserting the explicit form far(x), and
then performing an integration by parts we obtain
APPENDIX C: COMPUTATION OF LOWER BOUNDS

X2 Jx In this appendix we study in detail the bound function
—u(x)— f dé m(6) 02 (e‘X 0y Bi(v). We decomposg,(v) as follows:
\/Q o . d 2
—_ —X10_"_fp2 .
5 JO doe d0{9 m(0)} 'BI(V):2<971> —2ji(v),

2
=—\/—f doe [7%77(0)%977(9)-

81 J.(v)Ezf;duMe*“z*vzn._1(2uv). (CD)

Now the nondiagonal term gives We now compute analytically the integral definingv):
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e (V2)|/2—1/4 1
H — —v — 14—y H < (112—=1/14)—-1,1 _+\(1/2+1/4)—-1
Jl(v) \/;e JO dyy € ||,1(2V\/§) JI(V)<F(|/2_1/4) Ot (1 t) dt
:F(|/2+ 1/4) |—1/26—v2M |_+ E | Vz) B (VZ)I/2—1/4 5 |__ E |_+ E _ 1"(|/2+ 1/4) V|71/2
() 2 4 "TUR-14H"\2 42 4 IND) ’
rar+usy o (11 ) (CS)
—TV M E——J,—V , (CZ)

where B(x,y)=T'(x)I'(y)/T'(x+y) is the Beta function
where M(a,b,z) is a confluent hypergeometric function (Ref. 23, Sec. 6,2 By combining this inequality with Eq.
(Ref. 23, Chap. 1B By inserting this expression into Eq. (C1) we obtain the bound stated in E&.14b. Moreover, in
(C1), we obtain Eq(3.133. the limit v<1, it is legitimate to replace the exponential

We can obtain more information by using the following factor in Eq.(C4) by 1 inside the integral, and thus the same
integral formula for the confluent hypergeometric functionexpression gives the asymptotic form in th& 1 regime, as
(Ref. 23, Chap. 183 valid for Rea>0 and Ré&>0: quoted in Eq(3.130.

An additional bound can be obtained for1 by taking

wM(a b,z)= fleZtta—l(l_t)b—a—ldt_ into account the fact that the factor £1)(?*¥9~1 in the
I'(b) o 0 integrand is less than or equal to unity, so that
(C3
This implies that _ (v3)lfe-1a o 2
A I N S 17 S P
J|(V)<r(|/2_1/4) . @ t dt=1. (C6)

2\1/2-1/4
(v9) le—tvzt(”z_lm)_l(l—t)(”2+1/4)_1dt.

hv)=srpm—
T(172=1/4) Jo This gives the lower bound of E¢3.143. Whenv>1, the

(C4 same expression provides the asymptotic form for all values
By considering the fact that the exponential in the integrandf |, Eq.(3.13b, as, in that limit, the integral is dominated by
is always less than or equal to 1, this formula can immedithe region near the origin, where the factor (1
ately be bounded above, as follows: —1){I72+V4)~1 i5 close to unity.
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2.6 for a full discussion.

"We use the notation§ for the equilibrium value of the order

parameter and for the fluctuating variabléwhich features in
the Landau free energy and of whidh is the expectation
value.

8Wwe consider here only the set of “small fluctuations” defined as

those for whichsQ is small for each individual wave vectér

As, by Eq.(2.5), the stationary point order parameter is only
nonzero in a lower dimensional subspadefined by the condi-
tion k=0), a more comprehensive definition of small fluctua-
tions would additionally include those in which the support of
the order parametdt.e., the manifold on which it is nonzerss
slightly deformed. In those additional fluctuations, which one
might call “capillary” or “interface” waves, the changes of the
order-parameter field would not be small for individual values of
the wave vectok (a full value of the order parameter would be
replaced by zero for some valuesigfwhile for other values of

k zero would be replaced by a full value of the order parameter
According to an enlarged definition of this sort, the set of small
fluctuations would contain, among others, those fluctuations as-
sociated with “almost rigid” rotations of the systefmotice
that, by Eq.(2.10), a set of replica index dependent rigid rota-
tions already produces a change of support for the order param-
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