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Phase stability under irradiation in alloys with a positive heat of mixing: Effective thermodynamics
description

Raúl A. Enrique and Pascal Bellon
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University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
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The alteration of phase stability due to the continuous production of forced atomic displacements, as is the
case under irradiation, is studied. A simple kinetic model of a binary alloy exhibiting phase separation is
investigated, and two limiting cases are considered: nearest-neighbor ballistic exchanges and arbitrary-length
ballistic exchanges. The model is simultaneously studied by direct kinetic Monte Carlo simulations, and by
theoretical approaches based in the description of the steady state by effective thermodynamics. Two theoret-
ical frameworks are considered: a microscopic description based in effective interactions, and a macroscopic
description based in effective free energies constructed over a modified Cahn-Hilliard equation. Developments
of these models are proposed to allow for quantitative predictions. For nearest-neighbor ballistic exchanges, the
steady-state phase diagram is evaluated for each of the approaches and the results are directly compared. In the
case of arbitrary-length ballistic exchanges, the appearance of labyrinthine mesoscopic structures at steady
state is rationalized in terms of the competition between short-range attractive and long-range repulsive effec-
tive interactions. The favorable comparison between the theoretical results and the direct Kinetic Monte Carlo
simulations shows that the long-term behavior of this inherently far-from-equilibrium system can be described
in terms of effective thermodynamic potentials.@S0163-1829~99!05146-2#
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I. INTRODUCTION

In several types of applications, materials are conti
ously maintained away from thermodynamical equilibriu
by an external driving force. As examples, we can cite m
terials under continuous plastic deformation, such as cy
fatigue or ball milling, and materials under irradiation, su
as nuclear reactor core components or compounds prod
by ion implantation. The termdriven alloyshas been intro-
duced to refer to this class of systems.1 Under the forcing
condition, the material can reach a steady-state configura
the properties of which will, in general, be different from th
equilibrium properties. In particular, irradiation can affe
phase stability in alloys in many different, and seeming
contradictory, ways. For example, while for certain expe
mental conditions irradiation-induced solute precipitati
can take place, in some other conditions enhanced solub
is observed.2

For equilibrium systems, thermodynamics and statist
mechanics provide us with a framework to describe
steady state of any system. Driven alloys are, however,
tems far from equilibrium, for which thermodynamical co
cepts cannot be directly applied. The temporal evolution
the driven alloy is described by a non-Hamiltonian~dissipa-
tive! dynamical system, so the steady-state probability dis
bution cannot be written using the equilibrium Gibbs dist
bution. In fact, no general method exists to find the stea
state probability distribution. Several authors have propo
the construction ofeffectivethermodynamical potentials t
describe the steady-state properties of the driven alloy. C
trary to equilibrium potentials, these effective potentials d
pend explicitly on the forcing parameters, since additio
intensive variables, related to the strength and partic
PRB 600163-1829/99/60~21!/14649~11!/$15.00
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characteristics of the driving force, must be introduced
specify the steady state.

For a solid under irradiation, the atomic rearrangeme
produced by a colliding particle have been extensively inv
tigated by molecular dynamics simulations~see Ref. 3 for a
recent review!. For metals, the magnitude of the atomic d
placements produced in the matrix vary according to the
ergy transferred by the impinging particle,Ep . Above a
threshold energy, a sequence of collisions, or ballistic d
placements, is originated with the creation of a prima
knock-on atom, which is any target struck by the irradiati
particle. Lighter particles, such as high-energy electrons,
produce a localized replacement collision sequence~RCS!,
in which a row of atoms is displaced, with the creation o
vacancy in the first position and an interstitial at the end.
the other hand, neutrons and more massive particles
transfer more energy, generating a collision cascade. Lo
ized regions of the lattice become highly disturbed, and
large amount of mixing takes place. In alloys with positi
heat of mixing, for not too energetic cascades, e.g.,Ep

<1 keV in Cu ~Ref. 4!, this atomic mixing appears to b
ballistic, in the sense that it is not affected by the chemi
interactions between atoms. The situation changes for m
energetic cascades, as it is the case forEp'5 keV in Co-Cu
and Cu-Ni alloys, where it has been observed that an
crease in the positive heat of mixing results in a decreas
the atomic mixing.5 This indicates that the mixing is no
longer purely ballistic. In the present work, we restrict ou
selves to the case of purely ballistic mixing, as is produc
by RCS’s or by not too energetic cascades.

A rich gamut of physical situations arise when irradiatio
induced mixing acts in opposition to the thermodynamica
driven kinetics. Binary systems exhibiting either ordering
14 649 ©1999 The American Physical Society



fig
t o
de
ul

tu
r,

ite
y
el
ts
.
s,
ty
ty
tra

ri-
e
is
ca
th
io
c
Fo

to
t-
a
n
n.
th
m
d
tr

oe

ed
e

nd
th
e

u-
i-

e
o
A

in
in
-
e

-
io

el
o
ta
he

op-
-
is-
s

he
er-

tive
olu-
he
h

ese
dy

oy
r-
cus
By

the
els,
hes
al
es,

and
o a
tic
hort

in
low
gh

di-
ight
in

ion
the

int
d the
s-

osed
lute

ous

o-
MC
bal-
y-

is
nd
to

the
n-
of
he
y-

ting
nge
ex-

pe
n-

14 650 PRB 60RAÚL A. ENRIQUE AND PASCAL BELLON
phase separation can be led to different steady-state con
rations under the continuous external forcing. The effec
continuous irradiation upon systems with order-disor
transformations has been investigated by numerical sim
tions and mean-field calculations,6 where not only extensive
solubility has been observed, but also a change of the na
of the A2-B2 ordering transition from second to first orde
which has been later confirmed experimentally.7 For an alloy
exhibiting phase separation, on the other hand, only lim
cases have been simulated,8 and an analysis of the stead
state has only been performed in the mean-fi
approximation.9,10 Experimental studies of irradiation effec
in these types of alloys have been performed extensively2 In
particular, with 1.0 MeV Kr irradiation, in Ag-Cu sample
Wei and Averback11 have been able to obtain a solubili
enhancement at moderate temperatures, and full solubili
low temperatures, which can be described as a reen
steady-state miscibility gap.

To explain this type of irradiation-induced mixing expe
ment, Martin9 proposed a macroscopic, continuum-bas
model. In this description, it is assumed that ballistic d
placements produce a local mixing of the atoms, and
effectively be described as a diffusion process. Using
Cahn-Hilliard equations, Martin shows that after the addit
of the extra diffusion term, an effective free-energy fun
tional can be defined, which is minimum at steady state.
their experimental situation in Ag-Cu, Wei and Averback11

perform a numerical study based on Martin’s formulation
explain qualitatively their results. A similar continuum trea
ment can be performed for a model of arbitrary-length b
listic exchanges, where at a certain frequency the positio
two atoms is interchanged regardless of their separatio
has been observed that an immiscible binary alloy under
type of irradiation develops a steady-state labyrinthine
crostructure. An effective free energy can be also define
this case, which contains an extra term describing an elec
staticlike repulsion between atoms of the same type.12 The
same microstructure can be observed if the alloy underg
instead, a nonequilibriumA
B chemical reaction.13

A different picture of the problem can be construct
starting from an atomistic description. An Ising-type mod
of competing dynamics, where thermal diffusion a
irradiation-induced ballistic exchanges act against each o
to drive the system into different directions, has be
proposed.1 At the same time, it allows us to carry out sim
lations in a statistically meaningful amount of material. K
netic Monte Carlo~KMC! simulations are required for th
system to follow a temporal trajectory, where the meaning
an external irradiation frequency can be maintained.
residence-time algorithm serves to this purpose. This Is
type model shares the same formal structure with the Is
model in an external field~two-temperatures system or com
peting dynamics system!, that has received attention from th
statistical mechanics community.14–16Both for the driven al-
loy and the Ising equivalent, only solutions for low
dimensionality systems or in the mean-field approximat
have been found.

The Ising-type description of the system can immediat
be put into the form of a master equation for the evolution
the probability of each state of the system. The steady-s
probability distribution is the homogeneous solution of t
u-
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master equation. By considering the general symmetry pr
erties, Vaks and Kamyshenko10 have shown that the steady
state probability distribution can be rewritten as a Gibbs d
tribution if one is to define an effective Hamiltonian in term
of pair, triplets, etc., effective interactions. In this way, t
problem is reduced to the evaluation of these effective en
gies. Although it may seem that the existence of an effec
Hamiltonian contradicts the statement that no general s
tion of the problem exists, it must be borne in mind that t
effective Hamiltonian will in general be a function of bot
the temperature and the forcing parameters.10,15,16 In this
work we propose a method to numerically evaluate th
effective interactions, from which an analysis of the stea
state is carried out by standard equilibrium calculations.

In this paper we study phase stability in a binary all
with a positive heat of mixing, which continuously unde
goes ballistic atomic exchanges due to irradiation. Our fo
is in the long-term, steady-state response of such alloy.
performing direct numerical simulations, and comparing
result of these to the predictions of the theoretical mod
our purpose is to test the validity range of these approac
at the level of approximation required to perform numeric
predictions. Regarding the range of the ballistic exchang
two limiting models are considered: nearest neighbors
arbitrary-length atomic jumps. Each model case leads t
different type of microstructure. Nearest-neighbor ballis
exchanges represent the mixing produced by a very s
RCS, and they induce an enhancement of the solubility
each phase, leading to a closure of the miscibility gap at
temperatures. Arbitrary-length ballistic exchanges, althou
not corresponding to any specific physical irradiation con
tion, deserve some attention since they provide useful ins
into understanding of the nature of effective interactions
driven alloys. This type of exchange leads to the format
of labyrinthine mesoscopic structures at steady state. In
models, for the sake of simplicity, the concentration of po
defects is assumed to have reached a steady value, an
contribution of interstitials, as well as defect sinks and clu
ters, is neglected. Under these assumptions, the prop
model excludes phenomena related to macroscopic so
migration, such as irradiation-induced heterogene
precipitation.2

The structure of this paper is as follows. We first intr
duce the microscopic and macroscopic models, and the K
simulation method. Then we focus on nearest-neighbor
listic exchanges, performing a direct evaluation of the d
namical phase diagram. The dynamical phase diagram
quantitatively compared to the one derived from Vaks a
Kamyshenko’s approach, where we devise a method
evaluate numerically the effective interactions, and to
one derived from Martin’s model, where we perform qua
titative predictions by introducing a mean-field modeling
the chemical diffusion coefficient. We then touch upon t
problem of arbitrary-length ballistic exchanges, where lab
rinthine mesoscopic structures are observed. By calcula
effective interactions, we test the appearance of long-ra
repulsive effective interactions, which have been used to
plain the stabilization of mesoscopic structures.

II. MICROSCOPIC MODEL

The microscopic description is based in an Ising-ty
model, suited for kinetic Monte Carlo simulations. We co
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sider a binary (AB) alloy on a rigid fcc lattice. Two separat
dynamics compete to drive the system into different confi
rations. On one hand, we have vacancy assisted therma
changes that drive the system to thermodynamical equ
rium, i.e., phase separation. On the other hand, we h
irradiation-induced ballistic exchanges producing random
terchanges of atomic positions. A more detailed presenta
of the model can be found in Ref. 17.

The probabilistic evolution of the system is governed b
master equation that describes the transition probability
tween states of the system:

dP~a!

dt
5(

b
Wb→aP~b!2Wa→bP~a!. ~1!

These transition probabilities are the sum of thermal a
ballistic components,Wa→b5Wa→b

th 1Wa→b
ball . Each compo-

nent can be written:

Wa→b
th 5da→b

th v0e2b(Ea→b
s

2Ea), ~2!

Wa→b
ball 5da→b

ball Gb . ~3!

Here, da→b takes the value 1 of the statesa and b are
connected by a transition and 0 otherwise,v0 is the attempt
frequency for vacancy exchange,Ea→b

s the saddle-point en
ergy, Ea the energy of the configuration, andGb the fre-
quency for ballistic exchanges. The saddle-point energ
independent of the direction of the transition (Ea→b

s

5Eb→a
s [Ea↔b

s ). In this model, the total energy of the con
figuration is obtained as a sum of bonds linking the atom
Ghost interactions between the vacancy and the atoms
also included to model both the cohesive energy and
vacancy formation energy. In this fashion, the exponen
Eq. ~2! is simply a sum of a constant saddle-point ene
plus the energy required to break the bonds linking the
cancy and the exchanging atom to their environment. T
constant saddle-point term can be fixed by setting a value
the vacancy migration energy at a given concentration.

Although under each separate dynamics detailed bala
is satisfied, when considering the competing dynamics, in
most general case, detailed balance is lost. There are, h
ever, specific models for which detailed balance is preser
even in the presence of the two dynamics. For these mod
discussed in the Appendix, the equation of detailed bala
also acts as a mean to find the steady-state probability d
bution.

A. Kinetic Monte Carlo simulations

A residence-time algorithm is used for the kinetic Mon
Carlo simulations~a review of this method can be found
Ref. 1!. In this way, the system evolves according to Eq.~1!
following a temporal trajectory. This property allows for
meaningful comparison between the frequencies of rand
and vacancy exchanges at each simulation step.

The simulation domain is aL3L3L rhombohedric crys-
tal with periodic boundary conditions. The faces of t
rhombohedron are$111% planes in the fcc crystal. A single
vacancy is placed in the simulation domain. Most of t
simulations are carried out forL564. When this is not the
case, time is rescaled so as to maintain the value for
-
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vacancy concentrationCv51/643. The competition between
the frequencies for vacancy and ballistic exchanges de
mines which transition takes place at each time step.

The purpose of the kinetic Monte Carlo simulations
twofold. First, we use it to study the global behavior of t
system. Second, we use it to perform a direct numer
evaluation of the effective interactions in Vaks and Kamys
enko formalism, as it is shown below. The material para
eters used in the simulation follows the choice made in R
17, and are the following:eaa5ebb520.7233 eV, wab
52eab2eaa2ebb50.0553 eV, eav5ebv520.255 eV.
The latter parameters are the vacancyghostinteractions. The
ordering energy was chosen so as to reproduce an estim
critical temperature ofTc51573 K50.1355 eV in the
Cu-Co system. The vacancy migrates with an attempt
quencyv051014 s21, and the migration energy for the pur
elements is set atEv

m50.8 eV, values typical for Cu.

B. Effective interactions description

Vaks and Kamyshenko10 have studied driven binary al
loys using an effective interactions formalism. Starting fro
the master equation that describes the time evolution of
system, Eq.~1!, they point out that the most general expre
sion for the steady-state probability distribution can be
written in the form:

P$ni%5expS A1(
i

l ini2Q̂D , ~4!

where A is a normalization factor,ni represents the occu
pancy of a lattice site by aB atom, andQ̂ plays the role of an
effectiveHamiltonian, which can be expressed as an exp
sion of pair, triplets, etc, effective interactions~notice that
the factorkBT has been absorbed into the energies!:

Q̂5(
i , j

ai j ninj1 (
i , j ,k

ai jkninjnk1•••. ~5!

This reformulation does not, however, introduce any simp
fication to the problem. Since the coefficients in this effe
tive Hamiltonian are, in general, functions of both the te
perature and the forcing parameters, forN particles we
simply have a transformation in which 2N unknown quanti-
ties ~the probabilities of each state! are mapped into a differ-
ent set of 2N unknown quantities~thea’s coefficients!. Still,
there is a value in performing this change of variables
picture in terms of effective interactions is one upon whi
we can use all the available tools for equilibrium systems

Unfortunately, no general method exists to perform t
evaluation of the effective interactions, beyond mean-fi
approximations. In principle, if the steady-state probabil
distribution for any arbitrary configuration is known, eval
ation of the effective interactions can be performed by
verting Eq.~4!. In this paper, we propose a strategy to eva
ate the effective interactions based on a reduced set of K
simulations, as we explain in the following.

Given two statesi and j, the individual probabilities of
each state are writtenpi}Niexp(2qi) and pj}Njexp(2qj),
where qi represents the value ofQ̂ for the corresponding
configuration andNi the multiplicity. Keeping in mind that
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14 652 PRB 60RAÚL A. ENRIQUE AND PASCAL BELLON
the proportionality constants for the previous equations
the same, we can write the difference ineffective energyas

qi5qj2 lnS piNj

Nipj
D . ~6!

In particular, to evaluate the pair effective interacti
term ~first term in the expression forQ̂), we perform a simu-
lation of two single B atoms in a pureA matrix. The
residence-time algorithm, on which the KMC simulations a
based, makes certain that the physical time the two at
spend at each separation distance can be measured. This
is proportional to the separation probabilities, and by us
Eq. ~6!, we obtain the pair effective interactions. These c
culations are performed below for the system under inve
gation.

The effect of the vacancy in this description must also
analyzed. Strictly speaking, incorporation of a vacancy tra
forms the binary system into a ternary system, and an ad
set of effective interactions must be considered. Howeve
the limit of a very diluted concentration of vacancies, t
description of the system as a binary alloy must hold. In fa
the concentrations of vacancies in our simulations is at
times small. During our modeling, the pair effective energ
are measured when the vacancy is away from the neigh
hood of theB atoms. In this way, we can assure that only t
interactions between theB atoms is measured: It can b
shown that the pair effective interactions between the
cancy and aB atom is limited to the first neighboring shel
just by direct solution of the corresponding master equat

III. MACROSCOPIC MODEL

An heuristic, macroscopic description of phase evolut
under irradiation was introduced by Martin.9 An extension
for treating arbitrary-length ballistic exchanges was propo
by Pavlovitch and Dobretsov.12 In each model, the starting
point is Cahn and Hilliard’s description of thermal diffusio
in a binary mixture. An extra term, associated to ballis
mixing, is added to the governing equations.

For nearest-neighbor ballistic exchanges, irradiation m
ing can be described as a diffusion process. In this way,
interdiffusion flux can be written

2VJ5M¹
dF

dc
1Db¹c,

2VJ5D̃
c~12c!

kBT
f 9¹c1Db¹c, ~7!

whereV is the volume associated to an individual atom,J is
the interdiffusion flux,M the mobility,c the atomic fraction
of componentB, D̃ the chemical diffusion coefficient,Db the
ballistic diffusion coefficient,F the total free energy, andf
the free energy per unit volume. Having the gradient of co
position in both terms in the latter equation allows us
extract common factors. We can then see that the flu
identical to the one for a system in thermodynamical eq
librium whose free energyf has a second derivative:
re
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f9~c!5 f 9~c!1
kT

c~12c!

Db

D̃
. ~8!

Martin shows that the quantityf is a Lyapunov function of
the system, and proposes that it can be used as an effe
free energy for the driven alloy. Assuming a constant che
cal diffusion coefficient and using the Bragg-Williams a
proximation, Martin shows that the system behaves as
was at equilibrium, but at a higher temperature given by

T85TS 11
Db

D̃
D , ~9!

which is known as the effective-temperature criterion. Ho
ever, to predict phase stability from Eq.~8!, one needs to
take into account the full dependence of all the terms up
concentration and perform the required integrations in a s
consistent manner. Evaluation of the phase diagram fro
free energy makes use of the tangent rule, which is no
local procedure but a global one. A local error in the eva
ation off can have nonlocal consequences in the phase
gram, and the appearance or stability of new phases ca
missed by an approximate integration.

In this paper we go beyond Martin’s initial assumption
and take into account the functional dependence ofD̃ by a
mean-field-based modeling. This allows us to perform qu
titative predictions, from which a confrontation to the resu
of the direct KMC simulations is made.

Pavlovitch and Dobretsov12 studied the case of arbitrary
length ballistic exchanges. Rather than a diffusion term,
phenomena is described by an exponential decay of the
viations of the concentration around the average value.
equation governing the time evolution of the concentration

]c

]t
5¹S M¹

dF

dc D2Gb~c2 c̄!, ~10!

whereGb is the ballistic exchange frequency andc̄ the aver-
age concentration.

Pavlovitch, following an approach first introduced b
Leibler18 and used by Liu and Goldenfeld19 on a similar
equation, points out that if we consider Green’s function
Laplace’s equation~which is the solution of the electrostati
potential for a point charge!:

¹•¹g~r2r 8!52d~r2r 8!, ~11!

and write a new quantityF* , to be interpreted as a new
effective energy term:

F* 5
1

2E drE dr 8@c~r !2 c̄#g~r2r 8!@c~r 8!2 c̄#. ~12!

We can then rewrite the diffusion Eq.~10! as

]c

]t
5¹FM¹

dF

dc
2Gb¹

dF*

dc G . ~13!

To analyze the meaning of this extra term, we can assu
the mobility M to be a constant. We can then regroup ter
and define an effective free energyG, as
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G5F1
Gb

M
F* . ~14!

Therefore, we reach the conclusion that the system acts
the effective free energy has an added part that behaves
electrostatic repulsion between particles of the same ty
Since electrostatic fields decay, in three dimensions, asr ,
these interactions are long range. Mesoscopic structu
such as those observed in ferrofluids and Langmuir flu
can be expected.20 We show below that long-range repulsiv
interactions also appear in the microscopic description ba
in effective interactions.

IV. NEAREST-NEIGHBOR BALLISTIC EXCHANGES

In a binary alloy exhibiting phase separation, a const
frequency of nearest-neighbor ballistic exchanges produc
solubility enhancement. At low enough temperature,
causes solubility in the whole concentration range. Ph
segregation still proceeds in a way similar to equilibriu
with the system separating into two macroscopic phase
rich A andB. At steady state, we can still evaluate a stea
state dynamical phase diagram, describing the phases
given temperature and ballistic frequency. This dynami
phase diagram is described in a three-parameters sp
(c,T,Gb). We first consider the (c,T) space, evaluating the
dynamical phase diagram for three given values ofGb . The
results are then compared to the predictions of the mic
scopic model based in effective interactions, and of the m
roscopic model based in effective free energies. At the e
we show the results for the chosen parameters in the (T,Gb)
space.

A. Dynamical phase diagram

Due to the lack of a grand canonical formalism for t
driven alloy, only simulations that conserve the global co
position can be performed. The miscibility gap is built b
letting the system evolve into steady-state separate ph
and measuring the local concentration in each phase.

The lower and upper limits of the miscibility gap~which
we shall call the lower and upper critical temperatures! are
determined using the fourth-order cumulant method,21 yield-
ing these critical temperatures with excellent accura
('0.3%). The finite-size analysis of the fourth-order cum
lant is made with statistical analysis of small boxes of sid
Lb54,6,8,10,12 contained in the simulation domain. T
analysis shows to be unaffected by the constraint of c
served global concentration.

Figure 1 shows a series of dynamical phase diagram
the ballistic frequenciesGb5102, 105, 53105 s21.

B. Effective pair interactions

The dynamical phase diagram can also be evaluated f
a different perspective using Vaks and Kamyshenko form
ism. Once the effective interactions are obtained, any av
able technique for evaluation of equilibrium phase diagra
such as grand canonical calculations, can be used. In
paper we consider an approximate effective HamiltonianQ̂
by neglecting terms beyond pair effective interactions.
if
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As explained before, to evaluate the effective pair int
actions we measure the time two isolatedB atoms spent at
each separation distance in a richA matrix. The accuracy by
which relative probabilities can be measured in this way
cays with the inverse of the root of the number of iteratio
Due to this slow convergence, long simulations are requir
To reduce the computation time, we perform these simu
tions in a smaller box, of sizeL512. Since we still have only
one vacancy, and the temporal evolution of the system
proportional to the vacancy concentration, we rescale
time accordingly to maintain the reference valueCv51/643.
We keep track of the time spent by the two atoms at the fi
tenth separation distances, and since only differences o
fective energies can be measured, as stated by Eq.~6!, we
use as reference the longest separation distance.

Proceeding in this way we obtain a series of effect
energies as a function of temperature, as shown in Fig. 2
Gb5102 s21. As we can observe in the figure, effective i
teractions are temperature dependent. At high temperatu
where thermal diffusion is dominant, the effective intera

FIG. 1. Steady-state dynamical phase diagrams at three con
frequencies of nearest-neighbor ballistic exchanges:Gb5102, 105,
and 53105 s21.

FIG. 2. Effective pair interaction energies for several separa
distances as a function of the temperature, for a constantGb

5102 s21. Nonzero effective interactions are observed up to
fourth nearest-neighbor~4th nn! shell. The remaining pair effective
interactions are also plotted as lines, and have a negligible va
The solid line corresponds to the prediction of the first neare
neighbor effective ordering energy using Martin’s effectiv
temperature criterion.
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tions simply match the physical ones. At low temperatur
on the other hand, where thermal diffusion is slow and b
listic exchanges dominate, the system is led to a rand
solid solution, what is reflected by a negligible value of t
effective ordering energies. At intermediate temperatures
have a competition between the two regimes, and wha
interesting, we observe that the effective interactions ext
beyond the range of the physical ones, i.e., beyond the
shell. In fact, nonzero effective ordering energies are
served up to the fourth nearest-neighbor shell. As it is sho
in the Appendix, this is a reflection of the lack of detaile
balance in this driven alloy.

From the set of effective energies for the three values
Gb , we evaluate the corresponding equilibrium phase d
gram, using standard grand canonical equilibrium Mo
Carlo simulations. The fourth-order cumulant method is u
to obtain the critical temperatures. This series of phase
grams compare surprisingly well with the original phase d
gram, as we can see in Fig. 3, even though we restric
ourselves to pair effective interactions.

C. Effective free energy

Here we obtain the dynamical phase diagram using M
tin’s effective free-energy formalism. Evaluation of the e
fective free energy requires knowledge of functional form
the equilibrium free energy,f (c,T), and the chemical diffu-
sion coefficient,D̃(c,T). In this work, as in Martin’s original
paper,9 we use for f (c,T) the expression obtained in th
Bragg-Williams approximation. We, however, introduce
mean-field-based modeling to obtain the chemical diffus
coefficient, as it is shown in the following.

The chemical diffusion coefficient is writtenD̃5cD1*
1(12c)D2* , whereDi* are the individual tracer diffusion
coefficients. These can be expressed asDi* 5 1

12 Cv f ia0
2V i ,

whereV i is the exchange frequency andf i the correlation
factor, for an atom of typei.

The correlation factor is an important contribution to t
diffusion coefficient when trapping occurs: At low temper
ture and low concentrations, a vacancy exchanging wit
solute atom will exchange with it again with a great pro
ability. For f i , we use the expression recently derived
Nastaret al.,22

f i5
~22cil! f 0

22l~22ci22 f 012ci f 0!
, ~15!

where f 0 is the correlation factor for vacancy mechanis
diffusion on a fcc lattice, and the quantityl is defined as

l512exp$b@2zwabca1z~U1wab!/2#%,

wherez is the coordination number of the lattice andU is the
asymmetry parameter,U5eaa2ebb .

The frequencies for vacancy-atom exchange are evalu
in a mean-field approximation, assuming that each particl
surrounded by an average environment determined by
local composition. In this way, for anA atom neighboring to
a vacancy, thismean-fieldenergy required to break the bond
is
,
l-
m

e
is
d
st
-
n

f
-

e
d
a-
-
d

r-

f

n

a
-

ed
is
he

~Emf
BB!(a)5~z21!cebv1~z21!~12c!eav

1eav1~z21!cebb1~z21!~12c!eab .

~16!

The corresponding exchange frequency is then obtained
ing Eq. ~2!.

FIG. 3. Dynamical phase diagram computed using effective p
interactions~solid line!. The actual dynamical phase diagram is al
shown~dashed lines! for comparison. Plotted lines are linear inte
polation between computed data points.~a! Gb5102 s21. ~b! Gb

5105 s21. ~c! Gb553105 s21.
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FIG. 4. Phase diagram computed using the effective free energy from Martin’s macroscopic model~solid line!. The exact dynamical
phase diagram~dashed line! is also shown for comparison.~a! Gb5102 s21. ~b! Close up at low temperatures showing a three-ph
coexistence line.~c! Gb5105 s21. ~d! Gb553105 s21.
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From the detailed dependence off and D̃ with the con-
centration and temperature, we perform numerically t
double integration required in Eq.~8! to evaluate the effec-
tive free energy,f. The miscibility gap is constructed mak
ing use of the common tangent rule. Sincef is only a
Lyapunov function,9 the common tangent rule may not app
strictly, but it should be a reasonable approximation. T
resulting phase diagrams are shown in Fig. 4 for the th
ballistic frequencies. For comparison, the actual dynami
phase diagram is plotted in dashed lines. At high tempe
tures, in all the plots, we observe the well-known discrepa
cies due to the Bragg-Williams approximation. AtGb
5102 s21, the macroscopic model reproduces very well t
closure of the miscibility gap at low temperatures. The acc
racy of the prediction decreases, however, asGb is increased.
Quite surprisingly, the macroscopic model presents a fea
not observed so far in the simulations: the existence o
three-phase line at low temperatures, what we will refer to
a quasiperitectoid. This feature appears because of the e
term inf, which having its own curvature when plotted as
function of the concentration, causes the existence of t
local maxima at low temperatures. These maxima disapp
at high temperatures, and the transition point between
two regimes can be found by locating the zero of the fou
derivative off, and takes the set of numerical values (kBT
50.0752 eV, Gb56.53104 s21).
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D. Discussion

To summarize the results of this section, Fig. 5 repres
a cut of the dynamical phase diagram in the (T,Gb) space, at
thec50.5 composition. This plot contains the predictions
the lower and upper critical temperature for all the mod
considered. This type of cut can be thought of as a (P,T)
diagram in an equilibrium system.

Both Fig. 3 and Fig. 5 show that a truncation of the

fective HamiltonianQ̂ to pair effective interactions const
tutes a very good approximation to the behavior of the s
tem. The differences between the actual phase diagram
this approximation are due to the many-body terms that w
dropped out. The next approximation level, the three-b
effective interactions, can be evaluated in a similar fashio
the pair terms, by performing a simulation of 3B atoms
sitting in a pureA matrix. This term would be required if w
were interested in an alloy with an asymmetrical dynam
phase diagram, which would appear, for example, ifeaa
Þebb .10

Quite interestingly, the temperature dependence of
first nearest-neighbor ordering energy, as seen in Fig.
very well described by Martin’s effective-temperature cri
rion, Eq.~9!, where we have setD̃[D̃(c50.5,T). The solid
line in this figure represents the increase of the effec
temperature as an effective reduction of the ordering ene
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Not only is the lower critical temperature well predicted, b
also the behavior for the whole temperature range. At hig
temperatures, the favorable qualitative comparison rema
although the quantitative comparison fails.

In Fig. 5, the plotted line represents actually the lower a
upper limits of the spinodal line in Martin’s model. Here, th
existence region for the quasiperitectoid is indicated b
dashed line. In the ordinary two-phase region, the lower li
of the spinodal equals the lower critical temperature, and
the quasiperitectoid region, it is a good approximation to
due to the short temperature interval at which the coexiste
of three phases appear. The right-hand side of the curve
the macroscopic model shows clearly the limitations of
Bragg-Williams approximation. These results could ha
been plotted in terms of a reduced temperature, by sca
respect to the critical temperature. However, this sca
would be extraneous to the modeling presented here, w
is based in evaluating free energies at given temperatures
concentrations, and does not allow for intermediate exp
sion of the involved parameters in terms of reduced temp
tures, due to the functional complexity of the chemical d
fusion coefficient. The left-hand side of the curve~the lower
critical temperature!, shows a very good agreement to t
actual dynamical phase diagram, especially at low temp
tures.

For the macroscopic description of the system un
nearest-neighbor ballistic exchanges, we observe tha
considering a concentration dependent chemical diffus
coefficient, irradiation effects are not simply equivalent to
higher effective temperature.9 Furthermore, this new evalua
tion of Martin’s model suggests that three phases may co
ist in dynamical equilibrium at low temperatures. This pr
diction has not been observed so far in our KM
simulations, where tests were carried out around the lo
critical temperature to detect it. Although this feature cou
be an artifact created by either the mean-field approximat
or the use of a Lyapunov function as a potential for glo

FIG. 5. Dynamical phase diagram in the (T,Gb) space, at a
concentrationc50.5. The line is the prediction of the macroscop
model. The dashed part of this line corresponds to the set of t
peratures at which there is a three-phase coexistence line. Fo
three values ofGb investigated, the results for the actual pha
diagram are shown as triangles, and the predictions of the effe
pair interactions formulation are shown as squares.
t
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stability, its existence should not be completely discarded
lower temperatures. A quasiperitectoid structure in the ph
diagram is appealing when considering experimental res
in other types of driven alloys. In ball milling of Ag-Cu
powders, where the continuous mixing produced by the p
tic deformation parallels mixing by irradiation, the dynam
cal coexistence of a 50% composition phase with the t
rich solid solutions has been proposed to rationalize x-
diffraction results.23

V. ARBITRARY-LENGTH BALLISTIC EXCHANGES

We now turn our attention to the case of arbitrary-leng
ballistic exchanges. As it was mentioned in the Introducti
it does not represent strictly a physical situation, althoug
could be realized in certain experimental conditions. Inde
during a collision cascade, vacancy and interstitial clust
can be created.24 Some of these interstitial clusters have
great mobility,25 in some cases with an apparent activati
barrier as low as 0.02 eV,26 and as a consequence atoms c
relocate at much greater speed than by vacancy-assisted
mal diffusion. Arbitrary-length ballistic exchanges represe
a limit case for this fast relocation of interstitials created
collision cascades; it is also worthwhile to study becaus
induces a very different steady-state microstructure, wit
labyrinthlike pattern, and suggests that this kind of patt
can be generated by irradiation.

Labyrinthine mesoscopic structures can be observed
the KMC simulations for a range ofGb values. IfGb is too
high, the dominant ballistic exchanges produce a rand
solid solution. However, at lower values ofGb , for instance,
for kBT50.03447 eV, Gb,102 s21, the type of micro-
structure shown in Fig. 6 can be found. This figure is a~111!
cut of the simulation cell at steady state. Although the m
crostructure fluctuates in time, the width of the richA andB
regions have reached a steady value. This character
length increases asGb is decreased, following a power law
with a 21/3 exponent, in agreement with the analysis p
formed by Liu and Goldenfeld19 on a modified Cahn-Hilliard
equation similar to Eq.~10!, but used for modeling block
copolymer melts. The steady-state characteristic length
be made as large as the size of the simulation cell, and
can assume that if larger simulation cells are used~which
would require longer simulation times!, larger steady-state
characteristic lengths could be observed.

By measuring the effective pair energies in the same w
it was done for the nearest-neighbor ballistic exchan
problem, we can test the explanation of the origin of t
mesoscopic structures, which was based in the existence
repulsive long-range effective energy. Figure 7~a! shows ef-
fective energies for different ballistic frequenciesGb , at a
constant temperaturekBT50.03447 eV. Figure 7~b! shows
the same effective energies, but now plotted as a functio
1/r , the inverse of the separation distance, for each valu
Gb . Notice that only energies beyond the first shell are pl
ted. The straight line appearance of the energies in this
shows us the consistency between the idea of an effec
electrostaticlike repulsion and the measured effective pair
teractions.

Labyrinthine mesoscopic structures have also been
served by Glotzeret al.,13 in an Ising model where a Ka
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wasaki exchange dynamics competes with a chemical r
tion A
B. The similarity between this chemical reactio
and arbitrary-length ballistic exchanges can be immedia
drawn, by considering that ‘‘for eachA that becomes aB,
there is aB that becomes anA.’’ 13 Indeed, the Cahn-Hilliard-
type macroscopic equation describing both systems is
same. Another system sharing the same macroscopic des
tion is a block copolymer melt, where the labyrinthine stru
tures have been studied both experimentally a
theoretically.18,19 In fact, an effective free-energy functiona
with a long-range electrostaticlike repulsion was first deriv
by Leibler18 for these polymer systems.

It is worth noting that mesoscopic structures, in the fo
of a distribution of L12 ordered precipitates in coexistenc
with the fcc solid solution, have been reported in Ni-Al aft
100 keV Ni1 ion irradiation at 550 °C~Ref. 27!. Starting
from a sample with a distribution of precipitates, aninverse
coarseningeffect is observed under irradiation, with the a
erage precipitate diameter shrinking to a final size. Furt

FIG. 6. Steady-state microstructure for arbitrary-length ballis
exchanges. Figure shows a (111) cut of the simulation cell, wheA
andB atoms are represented as white and dark discs, respecti
kBT50.03447 eV,Gb51021 s21.
c-

ly

e
rip-
-
d

d

r

experimental work is needed in order to determine whet
this microstructure is a result of the kinetic effects stud
here, or whether it is induced by a distribution of dislocati
loops, as observed, for instance, in Ni4Mo.28

VI. CONCLUSION

The steady-state of a binary alloy with a positive heat
mixing subjected to continuous ballistic atomic exchange
modeled using several tools: KMC, microscopic effective
teractions, and macroscopic effective free energies. Nea
neighbor ballistic exchanges, simulating short replacem
collision sequences~RCS!, lead to an enhancement of th
solubility in the immiscible system, which in analogy to th
equilibrium situation, can be described by adynamicalphase
diagram with a miscibility gap closing down at low temper
tures. In the opposite limit for the atomic displacemen
arbitrary-length ballistic exchanges lead to the stabilizat
of labyrinthine mesoscopic structures.

Kinetic Monte Carlo simulations are performed to eva
ate the dynamical phase diagram, and by direct compar
to the predictions of two theoretical approaches~effective

c

ly.

FIG. 7. Effective energies at several ballistic frequencies
arbitrary-length ballistic exchanges at a constant temperaturekBT
50.03447 eV.~a! Plotted as a function of the ballistic frequenc
for each separation distance. The interactions are attractive in
short range, but change sign and are repulsive beyond the first s
~b! Plotted as a function of the inverse of the separation dista
(1/r ) for each ballistic frequency, showing the long-range behav
The lines connecting the points are a visual aid to follow each se
results.
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interactions and effective free energies!, we show the suit-
ability of these frameworks to approximate the dynami
phase diagrams. Small discrepancies are found, attribut
to the approximations made in each case. However,
agreement is encouraging enough to state that these in
ently far from equilibrium systems admit a description
terms of effective thermodynamics. In particular, is surpr
ing the accuracy of the predictions based on pair effec
interactions, where a huge extrapolation is made: The be
ior of the whole system is predicted by simulations of tw
particles in a lattice.

A microscopic description in terms of effective intera
tions shows us that although physical interactions are
stricted to first nearest neighbors, effective interactions
tend beyond the first shell. This change in the nature of
interactions can be a way to understand the change of m
structural features in driven alloys, such as the change
shape of precipitates under irradiation.8 This change in the
nature of the interactions occur in a more dramatic way
arbitrary-length ballistic exchanges, where long-range rep
sive effective interactions help to rationalize the stabilizat
of steady-state mesoscopic structures.

As discussed earlier, nearest-neighbor ballistic exchan
can be viewed as a very short RCS, involving only two
oms. Experiments and computer simulations indicate that
length of these RCS’s is rather in the range of 3 to 10 atom3

In our current studies, preliminary results indicate that m
soscopic structures can be observed at steady state with
RCS’s, in agreement with results already obtained
Haider.29 Further work is under progress to understand w
the stabilization of mesoscopic structures is so sensitive
the length of the RCS.
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APPENDIX: DETAILED BALANCE IN THE DRIVEN
ALLOY

The idea in this short section is to present a discuss
about the connection between the loss of detailed bala
and the change in the nature of the effective interactions
the following, we will show that:~1! Certain models of com-
peting dynamics can obey detailed balance.~2! When de-
tailed balance is obeyed, the range of the effective inte
tions is restricted by the range of the physical interactio
Rather than perform strict formal proofs, our intention is
sketch the underlying relationship.

Let us start by assuming detailed balance holds in a dri
alloy. Without considering any particular dynamics in t
phase space of possible configurations, let us assume
complex enough to be far from one dimensional. It is cle
that detailed balance holds when states can be ordered
line, with transitions occurring only between neighbori
states. Now, if we take a close path in the space of confi
l
le
e
er-

-
e
v-

e-
x-
e
o-
of

r
l-
n

es
-
e
.
-

uch
y
y
to

.
-
.

rk
.

n
ce
In

c-
s.

n

is
r

a

u-

rations, i.e., a sequence of the type

a→b→g→•••→v→a,

by multiplying all the equations of detailed balance for t
individual transitions we obtain

P~a!

P~b!

P~b!

P~g!
•••

P~v!

P~a!
5

Wa→b

Wb→a

Wb→g

Wg→b
•••

Wv→a

Wa→v
51.

In terms of the dynamical parameters, this equation can
written

Gb1Wa→b
th

Gb1Wb→a
th

Gb1Wb→g
th

Gb1Wg→b
th

•••

Gb1Wv→a
th

Gb1Wa→v
th

51. ~A1!

According to our assumption, this equation must hold for
values ofGb . But in terms ofGb , what we have is the ratio
of two polynomials equal to one, each polynomial with
unity leading coefficient. Therefore, the roots of each po
nomial must be equal, which simply means that the expon
tial terms in the jump frequencies for diffusion must coi
cide. Let us make the assumption that this can only impos
local condition upon the transitions in each state or upon
transitions between two states.

These requirements of locality can only be satisfied in t
ways. The first possible condition is that

Wa→b
th [Wa

th , ~A2!

where terms for transitions beginning at one state will can
each other (Wa→b cancelsWa→g , etc.!, and is equivalent to
a constant saddle-point energy for all transitions. The sec
possible condition is that

Wa→b
th [Wb→a

th , ~A3!

where transition terms from two states will cancel each ot
(Wa→b cancelsWb→a , etc.!, and means that all the state
have the same base energy, with possibly a different sad
point energy for each transition. The inverse relation is a
true: if either of these two restrictions hold, it is straightfo
ward to show that detailed balance is satisfied, simply
inspection.

Let us suppose that we are dealing with one of these
tems. Then, for two connected states:

Pa

Pb
5

Gb1v0e2b(Ea↔b
s

2Ea)

Gb1v0e2b(Ea↔b
s

2Eb)
, ~A4!

which means that if their original energy is the same, th
steady-state probabilities must be the same. Hence, by
~4!, their effective energies must coincide. From here,
proof that the range of the effective interactions is limited
the range of the physical ones can be performed in a c
structive manner, starting from the pair terms and mov
onto the many body terms. By considering twoB atoms in a
pureA matrix that are, already, far away from their physic
influence, we see that the atoms can be separated even
ther away by a thermal diffusion step. Both states must the
fore have the same effective energy, which proves that
effectivepair interaction cannot have a range longer than
physical pair interaction. In the same manner, by addi
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anotherB atom and repeating the argument, we can see
the effective triplet interaction term must have a rang
bounded by the physicaltriplet interaction, and so on. As
result, if detailed balance holds, effective energies must s
the range of the original physical energies, and long-ra
l
. C

v.
.
s.
at

re
e

effective interactions can only appear when detailed bala
is lost. Notice that even if detailed balance is observed, th
effective interactions are still a function of both the tempe
ture and the external driving force~expressed byGb in this
case!.
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