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The alteration of phase stability due to the continuous production of forced atomic displacements, as is the
case under irradiation, is studied. A simple kinetic model of a binary alloy exhibiting phase separation is
investigated, and two limiting cases are considered: nearest-neighbor ballistic exchanges and arbitrary-length
ballistic exchanges. The model is simultaneously studied by direct kinetic Monte Carlo simulations, and by
theoretical approaches based in the description of the steady state by effective thermodynamics. Two theoret-
ical frameworks are considered: a microscopic description based in effective interactions, and a macroscopic
description based in effective free energies constructed over a modified Cahn-Hilliard equation. Developments
of these models are proposed to allow for quantitative predictions. For nearest-neighbor ballistic exchanges, the
steady-state phase diagram is evaluated for each of the approaches and the results are directly compared. In the
case of arbitrary-length ballistic exchanges, the appearance of labyrinthine mesoscopic structures at steady
state is rationalized in terms of the competition between short-range attractive and long-range repulsive effec-
tive interactions. The favorable comparison between the theoretical results and the direct Kinetic Monte Carlo
simulations shows that the long-term behavior of this inherently far-from-equilibrium system can be described
in terms of effective thermodynamic potentigl§0163-18209)05146-3

[. INTRODUCTION characteristics of the driving force, must be introduced to
specify the steady state.

In several types of applications, materials are continu- For a solid under irradiation, the atomic rearrangements
ously maintained away from thermodynamical equilibrium produced by a colliding particle have been extensively inves-
by an external driving force. As examples, we can cite matigated by molecular dynamics simulatiosee Ref. 3 for a
terials under continuous plastic deformation, such as cyclicecent review. For metals, the magnitude of the atomic dis-
fatigue or ball milling, and materials under irradiation, suchplacements produced in the matrix vary according to the en-
as nuclear reactor core components or compounds producedgy transferred by the impinging particlg,. Above a
by ion implantation. The terndriven alloyshas been intro- threshold energy, a sequence of collisions, or ballistic dis-
duced to refer to this class of systembinder the forcing placements, is originated with the creation of a primary
condition, the material can reach a steady-state configuratioknock-on atom, which is any target struck by the irradiation
the properties of which will, in general, be different from the particle. Lighter particles, such as high-energy electrons, can
equilibrium properties. In particular, irradiation can affect produce a localized replacement collision sequefRES),
phase stability in alloys in many different, and seeminglyin which a row of atoms is displaced, with the creation of a
contradictory, ways. For example, while for certain experi-vacancy in the first position and an interstitial at the end. On
mental conditions irradiation-induced solute precipitationthe other hand, neutrons and more massive particles can
can take place, in some other conditions enhanced solubilitiransfer more energy, generating a collision cascade. Local-
is observed. ized regions of the lattice become highly disturbed, and a

For equilibrium systems, thermodynamics and statisticalarge amount of mixing takes place. In alloys with positive
mechanics provide us with a framework to describe theheat of mixing, for not too energetic cascades, ey,
steady state of any system. Driven alloys are, however, syss1 keV in Cu (Ref. 4, this atomic mixing appears to be
tems far from equilibrium, for which thermodynamical con- ballistic, in the sense that it is not affected by the chemical
cepts cannot be directly applied. The temporal evolution ofnteractions between atoms. The situation changes for more
the driven alloy is described by a non-Hamiltoni@hssipa- ~ energetic cascades, as it is the casespr5 keV in Co-Cu
tive) dynamical system, so the steady-state probability distriand Cu-Ni alloys, where it has been observed that an in-
bution cannot be written using the equilibrium Gibbs distri- crease in the positive heat of mixing results in a decrease of
bution. In fact, no general method exists to find the steadythe atomic mixing. This indicates that the mixing is no
state probability distribution. Several authors have proposetbnger purely ballistic. In the present work, we restrict our-
the construction okffectivethermodynamical potentials to selves to the case of purely ballistic mixing, as is produced
describe the steady-state properties of the driven alloy. Corby RCS’s or by not too energetic cascades.
trary to equilibrium potentials, these effective potentials de- A rich gamut of physical situations arise when irradiation-
pend explicitly on the forcing parameters, since additionainduced mixing acts in opposition to the thermodynamically
intensive variables, related to the strength and particuladriven kinetics. Binary systems exhibiting either ordering or
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phase separation can be led to different steady-state configmaster equation. By considering the general symmetry prop-
rations under the continuous external forcing. The effect ofrties, Vaks and KamyshenKchave shown that the steady-
continuous irradiation upon systems with order-disordesstate probability distribution can be rewritten as a Gibbs dis-
transformations has been investigated by numerical simuldfibution if one is to define an effective Hamiltonian in terms
tions and mean-field calculatiofisyhere not only extensive of pair, triplets, etc., effective interactions. In this way, the

solubility has been observed, but also a change of the natufg®Plem is reduced to the evaluation of these effective ener-
of the A2-B2 ordering transition from second to first order. 9€S Although it may seem that the existence of an effective

) i fing fransition from s Z Irs ' Hamiltonian contradicts the statement that no general solu-
which has been later confirmed experimentalior an alloy  jon of the problem exists, it must be borne in mind that the

exhibiting phase separation, on the other hand, only limitegffective Hamiltonian will in general be a function of both
cases have been simulafédnd an analysis of the steady the temperature and the forcing paramet&r&6 in this
state has only been performed in the mean-fieldvork we propose a method to numerically evaluate these
approximatior?*® Experimental studies of irradiation effects effective interactions, from which an analysis of the steady
in these types of alloys have been performed extenshigly. state is carried out by standard equilibrium calculations.
particular, with 1.0 MeV Kr irradiation, in Ag-Cu samples, In this paper we study phase stability in a binary alloy
Wei and Averback! have been able to obtain a solubility with a positive heat of mixing, which continuously under-
enhancement at moderate temperatures, and full solubility goes ballistic atomic exchanges due to irradiation. Our focus
low temperatures, which can be described as a reentraif in the long-term, steady-state response of such alloy. By
steady-state miscibility gap. performing direct numerlca_l s_|mulat|0ns, and comparing the
To explain this type of irradiation-induced mixing experi- result of these to the predlct!o_ns of the theoretical models,
ment, Marti! proposed a macroscopic, continuum-basecPUr purpose is to test the validity range of these approaches
model. In this description, it is assumed that ballistic dis-&t the level of approximation required to perform numerical

placements produce a local mixing of the atoms, and caRredictions. Regarding the range of the ballistic exchanges,

effectively be described as a diffusion process. Using thdwo limiting models are considered: nearest neighbors and

Cahn-Hilliard equations, Martin shows that after the additiona_rb'trary'Iength atomic jumps. Each model case Ieads. 0 a
of the extra diffusion term, an effective free-energy func.different type of microstructure. Nearest-neighbor ballistic

tional can be defined, which is minimum at steady state. Fo xchanges represent the mixing produced by a very_shprt
their experimental situation in Ag-Cu, Wei and Averb&ck CS, and they |r_1duce an enhancement .Of _”.‘? solubility in
perform a numerical study based on Martin’s formulation toeaCh phase, leading to a closure of the miscibility gap at low

explain qualitatively their results. A similar continuum treat- temperatures. Arbitrary-length ballistic exchanges, although

ment can be performed for a model of arbitrary-length baI-rTOI corresponding to any specific physical irradiation condi-

listic exchanges, where at a certain frequency the position dion. deserve some attention since they pr(_)vid_e usefu_l insight
two atoms is interchanged regardless of their separation. |pto understandmg of the nature of effective interactions in
has been observed that an immiscible binary alloy under thid/'ven alloys. This type of exchange leads to the formation

type of irradiation develops a steady-state labyrinthine mi_of labyrinthine mesoscopic structures at steady state. In the

crostructure. An effective free energy can be also defined hr]nofde:s, 'for the sal;e tofrsllmphcny,ghg contcenéranln of poljntth
this case, which contains an extra term describing an electréj-e ects IS assumed 1o nave reached a steady value, an €
staticlike repulsion between atoms of the same &pEne contnpunon of interstitials, as well as defe_ct sinks and clus-
same microstructure can be observed if the alloy undergoegers’ is neglected. Under these assumptions, the proposed
instead, a nonequilibriuM=B chemical reactiof’ model excludes phenomena related to macroscopic solute
A different picture of the problem can be constructedm'grf"‘t.'on.’ nzsuch as irradiation-induced heterogeneous
starting from an atomistic description. An Ising-type model Precipitationt. . . oo
of competing dynamics, where thermal diffusion and The structure of this paper is as follows. We first intro-

irradiation-induced ballistic exchanges act against each othéi.“ce th_e microscopic and macroscopic models, an_d the KMC
to drive the system into different directions, has bee simulation method. Then we focus on nearest-neighbor bal-

proposed. At the same time, it allows us to carry out simu- iStiC. exchanges, .performing a direct .evaluation Of. the dy-_
lations in a statistically meaningful amount of material. Ki- namlqal .phase diagram. The dy”am'c‘?" phase diagram is
netic Monte Carlo(KMC) simulations are required for the quantitatively compared to the one denveql from Vaks and
system to follow a temporal trajectory, where the meaning O]Kamyshenkos approach, where we devise a method to

an external irradiation frequency can be maintained Aevaluate numerically the effective interactions, and to the

residence-time algorithm serves to this purpose. This IsingQne derived from Martin's model, where we perform quan-

type model shares the same formal structure with the Isin%iat'vﬁ p“.ed'ftc'ﬁff‘s l.)y mtro?fgqnq[ ane{ahn'f'etld mhodelmg tﬁf
model in an external fiel@wo-temperatures system or com- e chemical diffusion coetlicient. We then touch upon the

peting dynamics systenthat has received attention from the p_rob_lem of arbitrar_y -length ballistic exchanges, where Iab_y-
statistical mechanics c,ommunﬁﬁ‘/‘”’Both for the driven al- rinthine mesoscopic structures are observed. By calculating

loy and the Ising equivalent, only solutions for low- effective interactions, we test the appearance of long-range

dimensionality systems or in the mean-field approximationrepUISiVe effegFive_interactions, Whi.Ch have been used to ex-
have been found plain the stabilization of mesoscopic structures.

The_lsing-type description of the system can immed_iately Il. MICROSCOPIC MODEL
be put into the form of a master equation for the evolution of
the probability of each state of the system. The steady-state The microscopic description is based in an Ising-type
probability distribution is the homogeneous solution of themodel, suited for kinetic Monte Carlo simulations. We con-
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sider a binary AB) alloy on a rigid fcc lattice. Two separate vacancy concentratiof, = 1/64°. The competition between
dynamics compete to drive the system into different configuthe frequencies for vacancy and ballistic exchanges deter-
rations. On one hand, we have vacancy assisted thermal emines which transition takes place at each time step.
changes that drive the system to thermodynamical equilib- The purpose of the kinetic Monte Carlo simulations is
rium, i.e., phase separation. On the other hand, we havevofold. First, we use it to study the global behavior of the
irradiation-induced ballistic exchanges producing random insystem. Second, we use it to perform a direct numerical
terchanges of atomic positions. A more detailed presentatioavaluation of the effective interactions in Vaks and Kamysh-
of the model can be found in Ref. 17. enko formalism, as it is shown below. The material param-
The probabilistic evolution of the system is governed by aeters used in the simulation follows the choice made in Ref.
master equation that describes the transition probability bet7, and are the followinge,,=ep,=—0.7233 eV, w,y,
tween states of the system: =2e,p— €a1a— €p=0.0553 eV, e, =€, =—0.255 eV.
The latter parameters are the vacagbpstinteractions. The
ordering energy was chosen so as to reproduce an estimated
critical temperature of T,=1573 K=0.1355 eV in the
u-Co system. The vacancy migrates with an attempt fre-
(guencywoz 10 s, and the migration energy for the pure

dP(a)
dt

=§ W oP(B)—W,_ zP(a). (1)

These transition probabilities are the sum of thermal an

foti _\pth ball ) _ i
22!’?2;§%§3§’;‘;§;_9Nwﬁ_Waﬂﬁ’LWaﬂﬁ' Each compo-  glements is set @™=0.8 eV, values typical for Cu.
wih 5= sth Bwoefﬁ(EZH(Eﬂ) ) B. Effective interactions description

Vaks and Kamyshenk® have studied driven binary al-
Wbi” = 6bi”, Iry. ©)] loys using an effective interactions formalism. Starting from
a—=p~ Pa—p Yy g g
the master equation that describes the time evolution of the

Here, 6aaﬁbtakes the_ _value dl of r:he _statc_as ?]nd B are system, Eq(1), they point out that the most general expres-
connected by a transition and 0 otherwisg, is the attempt  gjop for the steady-state probability distribution can be re-
frequency for vacancy exchandg, . ; the saddle-point en- \ritten in the form:

ergy, E¢ the energy of the configuration, ard, the fre-

qguency for ballistic exchanges. The saddle-point energy is R

independent of the direction of the transitiorE3(, , P{ni}=eXP(A+E )\ini_Q): (4)
=Ej .,=E. ). In this model, the total energy of the con- '

figuration is obtained as a sum of bonds linking the atomswhere A is a normalization factorn; represents the occu-
Ghost interactions between the vacancy and the atoms a ncy of a lattice site by B atom, and plays the role of an

also included to model both the cohesive energy and thggsectiveHamiltonian, which can be expressed as an expan-

vacancy formation energy. In this fashion, the exponent ingjon o pair, triplets, etc, effective interactiofsotice that
Eq. (2) is simply a sum of a constant saddle-point energyq factork,T has been absorbed into the energies
plus the energy required to break the bonds linking the va-

cancy and the exchanging atom to their environment. The .

constant saddle-point term can be fixed by setting a value for Q=Z ajjninj+ 2 ajjninnt - - - (5)

the vacancy migration energy at a given concentration. <] i<i<k

. Alt_ho_ugh under eac_h separate dynam_lcs detalle_d b"’.‘lancﬁnis reformulation does not, however, introduce any simpli-
is satisfied, when conS|de_r|ng the competing dynamics, in th"I“'Ication to the problem. Since the coefficients in this effec-
most gene_rfil case, deta||ed. balancg is lost. Thgre are, ho ve Hamiltonian are, in general, functions of both the tem-
ever, specific models for which detailed balance is preserve erature and the f(')rcing para’meters 19r particles we
even in the presence of the two dynamics. For these model imply have a transformation in whicr{‘"ZJnknown quanti-

discussed in the Appendix, the equation of detaileo_l .balancﬁes(the probabilities of each stgtare mapped into a differ-
also acts as a mean to find the steady-state probability distr nt set of 2 unknown quantitiesthe a’s coefficients. Still,

bution. there is a value in performing this change of variables: a
picture in terms of effective interactions is one upon which
A. Kinetic Monte Carlo simulations we can use all the available tools for equilibrium systems.
A residence-time algorithm is used for the kinetic Monte ~ Unfortunately, no general method exists to perform the
Carlo simulationga review of this method can be found in €valuation of the effective interactions, beyond mean-field
Ref. 1). In this way, the system evolves according to Ej. ~ approximations. In principle, if the steady-state probability
following a temporal trajectory. This property allows for a distribution for any arbitrary configuration is known, evalu-
meaningful comparison between the frequencies of randoration of the effective interactions can be performed by in-
and vacancy exchanges at each simulation step. verting Eq.(4). In this paper, we propose a strategy to evalu-
The simulation domain is Bx L X L rhombohedric crys- ~ ate the effective interactions based on a reduced set of KMC
tal with periodic boundary conditions. The faces of theSimulations, as we explain in the following.
rhombohedron aré111} planes in the fcc crystal. A single ~ Given two states andj, the individual probabilities of
vacancy is placed in the simulation domain. Most of theeach state are writtep;N;exp(—¢;) and p;=N;exp(-q),
simulations are carried out fdr=64. When this is not the where q; represents the value @& for the corresponding
case, time is rescaled so as to maintain the value for theonfiguration and\; the multiplicity. Keeping in mind that
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the proportionality constants for the previous equations are kT D,
the same, we can write the differencesdfiective energgas ¢"(c)=1"(c)+ EEE (8)
—a—In PiN; 6) Martin shows that the quantity is a Lyapunov function of
4i=9; Nipj/” the system, and proposes that it can be used as an effective

free energy for the driven alloy. Assuming a constant chemi-

In particular, to evaluate the pair effective interactionc@l diffusion coefficient and using the Bragg-Williams ap-
term (first term in the expression f(f@) we perform a simu- prOX|mat|0n',. M.artln shows that the system behayes as if it
lation of two single B atoms in a pureA matrix. The was at equilibrium, but at a higher temperature given by

residence-time algorithm, on which the KMC simulations are
based, makes certain that the physical time the two atoms T =T
spend at each separation distance can be measured. This time
is proportional to the separation probabilities, and by using
Eq (6), we obtain the pair effective interactions. These Ca|.WhiCh is known as the effective-temperature criterion. How-
culations are performed below for the system under investiever, to predict phase stability from E(B), one needs to
gation. take into account the full dependence of all the terms upon
The effect of the vacancy in this description must also beconcentration and perform the required integrations in a self-
analyzed. Strictly speaking, incorporation of a vacancy transconsistent manner. Evaluation of the phase diagram from a
forms the binary system into a ternary system, and an addeffee energy makes use of the tangent rule, which is not a
set of effective interactions must be considered. However, ifPcal procedure but a global one. A local error in the evalu-
the limit of a very diluted concentration of vacancies, theation of ¢ can have nonlocal consequences in the phase dia-
description of the system as a binary alloy must hold. In factgram, and the appearance or stability of new phases can be
the concentrations of vacancies in our simulations is at almissed by an approximate integration.
times small. During our modeling, the pair effective energies In this paper we go beyond Martin’s initial assumptions,
are measured when the vacancy is away from the neighboend take into account the functional dependenc® dfy a
hood of theB atoms. In this way, we can assure that only themean-field-based modeling. This allows us to perform quan-
interactions between thB atoms is measured: It can be titative predictions, from which a confrontation to the results
shown that the pair effective interactions between the vaef the direct KMC simulations is made.
cancy and & atom is limited to the first neighboring shell, Pavlovitch and Dobretsd% studied the case of arbitrary-
just by direct solution of the corresponding master equationlength ballistic exchanges. Rather than a diffusion term, this
phenomena is described by an exponential decay of the de-
viations of the concentration around the average value. The
equation governing the time evolution of the concentration is
An heuristic, macroscopic description of phase evolution
under irradiation was introduced by MarfimPAn extension dJc (

1+ &> 9
5/

. MACROSCOPIC MODEL

oF _
MV —|—-TI',(c—c), (10

a ¢

for treating arbitrary-length ballistic exchanges was proposed ot

by Pavlovitch and Dobretso¥.In each model, the starting o

point is Cahn and Hilliard’s description of thermal diffusion wherel',, is the ballistic exchange frequency andhe aver-

in a binary mixture. An extra term, associated to ballisticage concentration.

mixing, is added to the governing equations. Pavlovitch, following an approach first introduced by
For nearest-neighbor ballistic exchanges, irradiation mixLeibler® and used by Liu and Goldenféfion a similar

ing can be described as a diffusion process. In this way, thequation, points out that if we consider Green’s function for

interdiffusion flux can be written Laplace’s equatiofiwhich is the solution of the electrostatic

potential for a point charge

SoF
~0J=MV—-+DyVc, V-Vg(r—r')y=—=46(r—r’"), (1)
and write a new quantity-*, to be interpreted as a new
_c(l-c) effective energy term:
-QJ=D T f"Vc+ Dy Ve, (7)
B

1 — _
F*zzf drf dr'[c(r)—clg(r—=r")[c(r")—c]. (12
where(} is the volume associated to an individual atahis
the interdiffusion flux,M the mobility, c the atomic fraction

of componenB, D the chemical diffusion coefficienf), the

ballistic diffusion coefficientf the total free energy, anfl Jc
the free energy per unit volume. Having the gradient of com- ot v
position in both terms in the latter equation allows us to

extract common factors. We can then see that the flux i§o analyze the meaning of this extra term, we can assume
identical to the one for a system in thermodynamical equithe mobility M to be a constant. We can then regroup terms
librium whose free energy has a second derivative: and define an effective free ener@y as

We can then rewrite the diffusion E¢LO) as

MV5F FV—5F* 13
sc P sc | (13
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Fb 0.14
G=F+ VF*' (14 0.13
0.12
Therefore, we reach the conclusion that the system acts as if < on
the effective free energy has an added part that behaves as an % 0.10
electrostatic repulsion between particles of the same type. & 90
Since electrostatic fields decay, in three dimensions,igs 1/ & %08 IR
these interactions are long range. Mesoscopic structures, § 0.07 r
such as those observed in ferrofluids and Langmuir fluids, = 006 ¢
can be expectetf. We show below that long-range repulsive 0.05
interactions also appear in the microscopic description based 0.04
in effective interactions. 0.03 —t

0 01020304 05 06 07 08 09 1
c

IV. NEAREST-NEIGHBOR BALLISTIC EXCHANGES FIG. 1. Steady-state dynamical phase diagrams at three constant

In a binary alloy exhibiting phase separation, a constanfrequencies ciflnearest-neighbor ballistic exchanfgs: 107, 10,
frequency of nearest-neighbor ballistic exchanges produces"’a‘[‘OI 5<10° s+
solubility enhancement. At low enough temperature, it . . .
causes solubility in the whole concentration range. Phase '.A‘S explained before, to evaluat(_e the effective pair inter-
segregation still proceeds in a way similar to equilibrium,actlons We measure the t]me t.WO |so!al3datoms spent at
with the system separating into two macroscopic phases o%a(.:h separation dlsta_n_c_e in a riématrix. The accuracy by
rich A andB. At steady state, we can still evaluate a steady-WhICh r_elatlve_probabllmes can be measured in th'.s way de-
state dynamical phase diagram, describing the phases atCays W|th_the inverse of the root of th.e number of |terat|qns.
given temperature and ballistic frequency. This dynamicalﬁue to this slow convergence, long simulations are requwed.
phase diagram is described in a three-parameters spac 0 re_duce the computauqn time, we perform_ these simula-
(c,T.T,). We first consider thed,T) space, evaluating the tions in a smaller box, of size=12. Smce_ we still have only _
dynamical phase diagram for three given value$ of The one vacancy, and the temporal evolution of the system is

results are then compared to the predictions of the microproportional_ to the vacancy concentration, we rescale the
time accordingly to maintain the reference vallig=1/64°.

scopic model based in effective interactions, and of the mac-, . .
P a/\/e keep track of the time spent by the two atoms at the first

roscopic model based in effective free energies. At the end, . . ) .
we show the results for the chosen parameters in ThE ) ent_h separation distances, and since only differences of ef-
space. fective energies can be measured, as sta}ted by(@qwe
use as reference the longest separation distance.
Proceeding in this way we obtain a series of effective
A. Dynamical phase diagram energies as a function of temperature, as shown in Fig. 2 for
Due to the lack of a grand canonical formalism for therbzl.02 s *. As we can observe in the figure, effective in-
driven alloy, only simulations that conserve the global com-teractions are temperature dependent. At high temperatures,
position can be performed. The miscibility gap is built by where thermal diffusion is dominant, the effective interac-
letting the system evolve into steady-state separate phases
and measuring the local concentration in each phase. 0.06 ' ' ' '
The lower and upper limits of the miscibility gaphich 0.05
we shall call the lower and upper critical temperaturas
determined using the fourth-order cumulant methbyigld-
ing these critical temperatures with excellent accuracy
(=~0.3%). The finite-size analysis of the fourth-order cumu-
lant is made with statistical analysis of small boxes of sides
L,=4,6,8,10,12 contained in the simulation domain. This
analysis shows to be unaffected by the constraint of con-
served global concentration. 0
Figure 1 shows a series of dynamical phase diagrams at T
the ballistic frequencie¥,=10?, 10, 5x10° s 1. 0,01 - - . -

0.035 0.04 0.045 0.05 0.055 0.06
Temperature (eV)

0.04

0.03

0.02

0.01

Effective Energies (eV)

B. Effective pair interactions

The dynamical phase diagram can also be evaluated from FIG. 2. Effective pair interaction energies for several separation
. . . distances as a function of the temperature, for a condfgnt

a different perspective using Vaks and Kamyshenko formal-_ 1 N ;

. o the effective int i btained i 10? s 1. Nonzero effective interactions are observed up to the

lsgll‘ n(r:]e_ € ? ec 'V? m_eracflonsllffltr)e_ 0 alr?e ’ g.ny avalle, rih nearest-neighbddth nn shell. The remaining pair effective

able technique for evaluation ot equilibrium phase Iagramsi’nteractions are also plotted as lines, and have a negligible value.

such as grand canonical calculations, can be used. In thllsne solid line corresponds to the prediction of the first nearest-

paper we consider an approximate effective Hamiltor@an neighbor effective ordering energy using Martin's effective-
by neglecting terms beyond pair effective interactions. temperature criterion.
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tions simply match the physical ones. At low temperatures,
on the other hand, where thermal diffusion is slow and bal-
listic exchanges dominate, the system is led to a random
solid solution, what is reflected by a negligible value of the
effective ordering energies. At intermediate temperatures we
have a competition between the two regimes, and what is
interesting, we observe that the effective interactions extend
beyond the range of the physical ones, i.e., beyond the first
shell. In fact, nonzero effective ordering energies are ob-
served up to the fourth nearest-neighbor shell. As it is shown
in the Appendix, this is a reflection of the lack of detailed
balance in this driven alloy.

From the set of effective energies for the three values of
I'y, we evaluate the corresponding equilibrium phase dia-
gram, using standard grand canonical equilibrium Monte
Carlo simulations. The fourth-order cumulant method is used

Temperature (eV)

0.14

0.12

0.10

0.08

0.06

0.04
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to obtain the critical temperatures. This series of phase dia- 0.14 ' ' ' '
grams compare surprisingly well with the original phase dia-
gram, as we can see in Fig. 3, even though we restricted 012 |
ourselves to pair effective interactions. -
i’/ 0.10
C. Effective free energy 15’
Here we obtain the dynamical phase diagram using Mar- g 0.08 -
tin's effective free-energy formalism. Evaluation of the ef- &
fective free energy requires knowledge of functional form of & 0.06 F -
the equilibrium free energyf,(c,T), and the chemical diffu-
sion coefficientD (c,T). In this work, as in Martin’s original 0.04 F i
paper’ we use forf(c,T) the expression obtained in the ! L ! L
Bragg-Williams approximation. We, however, introduce a 0 0.2 0.4 0.6 0.8 1
mean-field-based modeling to obtain the chemical diffusion
coefficient, as it is shown in the following. 0.14 . . . .
The chemical diffusion coefficient is writte®=cD? ’
+(1—-c)D3 , whereD}" are the individual tracer diffusion 012 L
coefficients. These can be expressedDds= C, fa3();, )
where(); is the exchange frequency aridthe correlation Y
factor, for an atom of typé. % 0.10 |,
The correlation factor is an important contribution to the 2 ,"
diffusion coefficient when trapping occurs: At low tempera- g 0.08 |
ture and low concentrations, a vacancy exchanging with a & \
solute atom will exchange with it again with a great prob- & 0.06 F i
ability. For f;, we use the expression recently derived by
Nastaret al,*
0.04 | .
1 1 1 1
(2—ciMfg 0 02 04 06 08 1

f; (15

T 2-N(2—c,—2fg+2Cfo) "

where f, is the correlation factor for vacancy mechanism
diffusion on a fcc lattice, and the quantityis defined as

N=1—exp{B[ — ZWa,Cat z(U +wy,)/2]},

wherezis the coordination number of the lattice adds the
asymmetry parametel =e,,— €pp,-

The frequencies for vacancy-atom exchange are evaluated

in a mean-field approximation, assuming that each particle i

surrounded by an average environment determined by the

local composition. In this way, for aA atom neighboring to
a vacancy, thisnean-fieldenergy required to break the bonds
is

C

FIG. 3. Dynamical phase diagram computed using effective pair
interactiongsolid line). The actual dynamical phase diagram is also
shown(dashed linesfor comparison. Plotted lines are linear inter-
polation between computed data points). I',=10° s . (b) Ty
=10° s (¢ I',=5%x10° s 1.

(EZD)@=(z—1)cey,+(z—1)(1-C)ey,

+eyt(z—1)cept(z—1)(1-c)eyp.-

S (16)

The corresponding exchange frequency is then obtained us-
ing Eq. (2).
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FIG. 4. Phase diagram computed using the effective free energy from Martin’s macroscopic(sudideling). The exact dynamical
phase diagranfdashed lingis also shown for comparisorta) I' ;=10 s 1. (b) Close up at low temperatures showing a three-phase
coexistence line(c) I',=10° s 1. (d) I',=5x10° s 1.

From the detailed dependence fofind D with the con- D. Discussion

centration and temperature, we perform numerically the To summarize the results of this section, Fig. 5 represents
QOubIe integration requwgd !n.I_EQB) to gvaluate the effec- 5 cut of the dynamical phase diagram in tfel{,) space, at
tive free energy . The miscibility gap is constructed mak- {hec= 0.5 composition. This plot contains the predictions for

ing use of the common tangent rule. Singeis only &  he |ower and upper critical temperature for all the models
Lyapunov functior?, the common tangent rule may not apply considered. This type of cut can be thought of asPaT)
strictly, but it should be a reasonable approximation. Thediagram in an equilibrium system

resulting phase diagrams are shown in Fig. 4 for the three . : .
ballisticgfrgquenciesq For comparison, the gé\ctual dynamical EfOth F|g.'3 a.nd E'g' ° S_hOW thét a'truncaulon of the gf-
phase diagram is plotted in dashed lines. At high temperaf-ECt'Ve HamiltonianQ to pair effective interactions consti-
tures, in all the plots, we observe the well-known discrepantutes a very good approximation to the behavior of the sys-
cies due to the Bragg-Wiliams approximation. At,  tem. The d.iffer(.ances between the actual phase diagram and
=10 s !, the macroscopic model reproduces very well thethis approximation are due to the many-body terms that were
closure of the miscibility gap at low temperatures. The accudropped out. The next approximation level, the three-body
racy of the prediction decreases, howeverl gés increased.  effective interactions, can be evaluated in a similar fashion as
Quite surprisingly, the macroscopic model presents a featuré® pair terms, by performing a simulation of B8 atoms

not observed so far in the simulations: the existence of #Itling in a pureA matrix. This term would be required if we
three-phase line at low temperatures, what we will refer to a¥/ere interested in an alloy with an asymmetrical dynamical
a quasiperitectoid. This feature appears because of the extPase diagram, which would appear, for examplegf

term in ¢, which having its own curvature when plotted as a7 €ob- .

function of the concentration, causes the existence of two Quite interestingly, the temperature dependence of the
local maxima at low temperatures. These maxima disappedst nearest-neighbor ordering energy, as seen in Fig. 2, is
at high temperatures, and the transition point between thgery well described by Martin’s effective-temperature crite-
two regimes can be found by locating the zero of the fourthrion, Eq.(9), where we have sé&=D(c=0.5T). The solid
derivative of ¢, and takes the set of numerical valuégT  line in this figure represents the increase of the effective
=0.0752 eV, I',=6.5x10* s 1). temperature as an effective reduction of the ordering energy.
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L e e e e e LI e stability, its existence should not be completely discarded at
] lower temperatures. A quasiperitectoid structure in the phase
2 10} ] Qiagram is appealing when considering expgrimental results
= 3 in other types of driven alloys. In ball milling of Ag-Cu
; ] powders, where the continuous mixing produced by the plas-
2 10°F 3 tic deformation parallels mixing by irradiation, the dynami-
g ] cal coexistence of a 50% composition phase with the two
S rich solid solutions has been proposed to rationalize x-ray
u‘i 10°F 3 diffraction results®
=
2 10k ] 3
g ~~~~~~~~ o--- Dynamical phase diagram V. ARBITRARY-LENGTH BALLISTIC EXCHANGES
& Effective palr interactions We now turn our attention to the case of arbitrary-length

1 M| L 1 N
902 004 006 008 010 012 014 016 018 ballistic exchanges. As it was mentioned in the Introduction,
Temperature (eV) it does not re_presgnt striqtly a physical situatiqn, although it
could be realized in certain experimental conditions. Indeed,
FIG. 5. Dynamical phase diagram in th&,[",) space, at a during a collision cascade, vacancy and interstitial clusters
concentratiorc=0.5. The line is the prediction of the macroscopic can be createtf. Some of these interstitial clusters have a
model. The dashed part of this line corresponds to the set of tengreat mobility?® in some cases with an apparent activation
peratures at which there is a three-phase coexistence line. For tiarrier as low as 0.02 e¥f,and as a consequence atoms can
three values ofl’, investigated, the results for the actual phaserelocate at much greater speed than by vacancy-assisted ther-
diagram are shown as triangles, and the predictions of the effectivmnal diffusion. Arbitrary-length ballistic exchanges represent
pair interactions formulation are shown as squares. a limit case for this fast relocation of interstitials created in
collision cascades; it is also worthwhile to study because it
Not only is the lower critical temperature well predicted, butinduces a very different steady-state microstructure, with a
also the behavior for the whole temperature range. At highelabyrinthlike pattern, and suggests that this kind of pattern
temperatures, the favorable qualitative comparison remaingan be generated by irradiation.
although the quantitative comparison fails. Labyrinthine mesoscopic structures can be observed in
In Fig. 5, the plotted line represents actually the lower andhe KMC simulations for a range df,, values. Ifl';, is too
upper limits of the spinodal line in Martin’s model. Here, the high, the dominant ballistic exchanges produce a random
existence region for the quasiperitectoid is indicated by esolid solution. However, at lower values Bf, for instance,
dashed line. In the ordinary two-phase region, the lower limifor ksT=0.03447 eV,T',<10? s, the type of micro-
of the spinodal equals the lower critical temperature, and irstructure shown in Fig. 6 can be found. This figure {4 &1)
the quasiperitectoid region, it is a good approximation to itcut of the simulation cell at steady state. Although the mi-
due to the short temperature interval at which the coexistencerostructure fluctuates in time, the width of the ritlandB
of three phases appear. The right-hand side of the curve faegions have reached a steady value. This characteristic
the macroscopic model shows clearly the limitations of thedength increases &s;, is decreased, following a power law
Bragg-Williams approximation. These results could havewith a —1/3 exponent, in agreement with the analysis per-
been plotted in terms of a reduced temperature, by scalintprmed by Liu and Goldenfefd on a modified Cahn-Hilliard
respect to the critical temperature. However, this scalinggquation similar to Eq(10), but used for modeling block
would be extraneous to the modeling presented here, whictopolymer melts. The steady-state characteristic length can
is based in evaluating free energies at given temperatures ahe made as large as the size of the simulation cell, and we
concentrations, and does not allow for intermediate expressan assume that if larger simulation cells are uéetich
sion of the involved parameters in terms of reduced temperaxould require longer simulation timgslarger steady-state
tures, due to the functional complexity of the chemical dif- characteristic lengths could be observed.
fusion coefficient. The left-hand side of the curitkee lower By measuring the effective pair energies in the same way
critical temperaturg shows a very good agreement to theit was done for the nearest-neighbor ballistic exchanges
actual dynamical phase diagram, especially at low tempergroblem, we can test the explanation of the origin of the
tures. mesoscopic structures, which was based in the existence of a
For the macroscopic description of the system underepulsive long-range effective energy. Figui@ &shows ef-
nearest-neighbor ballistic exchanges, we observe that bfgctive energies for different ballistic frequenciEg, at a
considering a concentration dependent chemical diffusiortonstant temperaturesT=0.03447 eV. Figure (b) shows
coefficient, irradiation effects are not simply equivalent to athe same effective energies, but now plotted as a function of
higher effective temperatufeFurthermore, this new evalua- 1/r, the inverse of the separation distance, for each value of
tion of Martin’s model suggests that three phases may coeX-;,. Notice that only energies beyond the first shell are plot-
ist in dynamical equilibrium at low temperatures. This pre-ted. The straight line appearance of the energies in this plot
diction has not been observed so far in our KMCshows us the consistency between the idea of an effective
simulations, where tests were carried out around the loweglectrostaticlike repulsion and the measured effective pair in-
critical temperature to detect it. Although this feature couldteractions.
be an artifact created by either the mean-field approximation, Labyrinthine mesoscopic structures have also been ob-
or the use of a Lyapunov function as a potential for globalserved by Glotzeet al,*® in an Ising model where a Ka-
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FIG. 7. Effective energies at several ballistic frequencies for
arbitrary-length ballistic exchanges at a constant temper#igife
=0.03447 eV.(a) Plotted as a function of the ballistic frequency
for each separation distance. The interactions are attractive in the
short range, but change sign and are repulsive beyond the first shell.
(b) Plotted as a function of the inverse of the separation distance
(1/r) for each ballistic frequency, showing the long-range behavior.
The lines connecting the points are a visual aid to follow each set of

FIG. 6. Steady-state microstructure for arbitrary-length ballisticresults

exchanges. Figure shows a (111) cut of the simulation cell, where

andB atoms are represented as white and dark discs, respectivelg. . | Ki ded i d d . heth
keT=0.03447 eV,[,=10"1 s L. xperimental work is needed in order to determine whether

this microstructure is a result of the kinetic effects studied

) _ ) _ here, or whether it is induced by a distribution of dislocation
wasaki exchange dynamics competes with a chemical reaggops, as observed, for instance, in,Mp.?

tion A=B. The similarity between this chemical reaction
and arbitrary-length ballistic exchanges can be immediately
drawn, by considering that “for eachA that becomes &,
there is @B that becomes aA.” ¥ Indeed, the Cahn-Hilliard- The steady-state of a binary alloy with a positive heat of
type macroscopic equation describing both systems is thmixing subjected to continuous ballistic atomic exchanges is
same. Another system sharing the same macroscopic descripodeled using several tools: KMC, microscopic effective in-
tion is a block copolymer melt, where the labyrinthine struc-teractions, and macroscopic effective free energies. Nearest-
tures have been studied both experimentally ancheighbor ballistic exchanges, simulating short replacement
theoretically*®9In fact, an effective free-energy functional collision sequence$RCS, lead to an enhancement of the
with a long-range electrostaticlike repulsion was first derivedsolubility in the immiscible system, which in analogy to the
by Leibler® for these polymer systems. equilibrium situation, can be described bgynamicalphase

It is worth noting that mesoscopic structures, in the formdiagram with a miscibility gap closing down at low tempera-
of a distribution of LL ordered precipitates in coexistence tures. In the opposite limit for the atomic displacements,
with the fcc solid solution, have been reported in Ni-Al after arbitrary-length ballistic exchanges lead to the stabilization
100 keV Ni" ion irradiation at 550 °Q(Ref. 27. Starting  of labyrinthine mesoscopic structures.
from a sample with a distribution of precipitates, iamerse Kinetic Monte Carlo simulations are performed to evalu-
coarseningeffect is observed under irradiation, with the av- ate the dynamical phase diagram, and by direct comparison
erage precipitate diameter shrinking to a final size. Furtheto the predictions of two theoretical approacheffective

VI. CONCLUSION
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interactions and effective free energiewe show the suit- rations, i.e., a sequence of the type

ability of these frameworks to approximate the dynamical

phase diagrams. Small discrepancies are found, attributable a—Boy—- - oe—a,

to the approximations made in each case. However, thg, mtiplying all the equations of detailed balance for the
agreement is encouraging enough to state that these inhgfyividual transitions we obtain

ently far from equilibrium systems admit a description in

terms of effective thermodynamics. In particular, is surpris-  P(a) P(B) P(w) W, .zWs ., W
ing the accuracy of the predictions based on pair effective = P(v) P =W W W
interactions, where a huge extrapolation is made: The behav- (B) Py (a) B
ior of the whole system is predicted by simulations of twoln terms of the dynamical parameters, this equation can be

w—a

a—w

Y—B

particles in a lattice. written

A microscopic description in terms of effective interac-
tions shows us that although physical interactions are re- Fb+W§LB Fb+W‘[Ly FﬁWﬁLa

; : ) L : . . =1. (Al
stricted to first nearest neighbors, effective interactions ex T, +W?_>a T, +Wt:,]_,ﬁ T, +W3Lw

tend beyond the first shell. This change in the nature of the
interactions can be a way to understand the change of micrgxccording to our assumption, this equation must hold for all
structural features in driven alloys, such as the change ofalues ofl",,. But in terms ofl’,, what we have is the ratio
shape of precipitates under irradiatiiThis change in the of two polynomials equal to one, each polynomial with a
nature of the interactions occur in a more dramatic way forunity leading coefficient. Therefore, the roots of each poly-
arbitrary-length ballistic exchanges, where long-range repulnomial must be equal, which simply means that the exponen-
sive effective interactions help to rationalize the stabilizationtjal terms in the jump frequencies for diffusion must coin-
of steady-state mesoscopic structures. cide. Let us make the assumption that this can only impose a
As discussed earlier, nearest-neighbor ballistic exchangéscal condition upon the transitions in each state or upon the
can be viewed as a very short RCS, involving only two at-transitions between two states.
oms. Experiments and computer simulations indicate that the These requirements of locality can only be satisfied in two
length of these RCS'’s is rather in the range of 3 to 10 at%ms.ways, The first possible condition is that
In our current studies, preliminary results indicate that me-
soscopic structures can be observed at steady state with such Wtah_, ﬁswﬁ, (A2)
RCS’s, in agreement with results already obtained by . - .
Haider?® Further work is under progress to understand Whywhere terms for transitions beginning at one state will cancel
etc), and is equivalent to

the stabilization of mesoscopic structures is so sensitive t§2¢h otherWV,_.z cancelsw,, ., S
the length of the RCS. a constant saddle-point energy for all transitions. The second

possible condition is that
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Let us suppose that we are dealing with one of these sys-

APPENDIX: DETAILED BALANCE IN THE DRIVEN tems. Then, for two connected states:

ALLOY
_ S _Ea
The idea in this short section is to present a discussion E_ Tp+woe #Eacps™EY A4
about the connection between the loss of detailed balance PB_ Fb+w0e—ﬁ(EiHB—EB)' (A4)

and the change in the nature of the effective interactions. In
the following, we will show that(1) Certain models of com- which means that if their original energy is the same, their
peting dynamics can obey detailed balan@. When de- steady-state probabilities must be the same. Hence, by Eq.
tailed balance is obeyed, the range of the effective interac4), their effective energies must coincide. From here, the
tions is restricted by the range of the physical interactionsproof that the range of the effective interactions is limited by
Rather than perform strict formal proofs, our intention is tothe range of the physical ones can be performed in a con-
sketch the underlying relationship. structive manner, starting from the pair terms and moving
Let us start by assuming detailed balance holds in a drivepnto the many body terms. By considering tB@toms in a
alloy. Without considering any particular dynamics in the pure A matrix that are, already, far away from their physical
phase space of possible configurations, let us assume it igfluence, we see that the atoms can be separated even fur-
complex enough to be far from one dimensional. It is cleather away by a thermal diffusion step. Both states must there-
that detailed balance holds when states can be ordered infare have the same effective energy, which proves that the
line, with transitions occurring only between neighboring effectivepair interaction cannot have a range longer than the
states. Now, if we take a close path in the space of configuphysical pair interaction. In the same manner, by adding
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anotherB atom and repeating the argument, we can see thaffective interactions can only appear when detailed balance
the effective triplet interaction term must have a range is lost. Notice that even if detailed balance is observed, these
bounded by the physicatiplet interaction, and so on. As a effective interactions are still a function of both the tempera-
result, if detailed balance holds, effective energies must shartere and the external driving forqexpressed by, in this

the range of the original physical energies, and long-rangease.
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