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Stacking-fault energy of copper from molecular-dynamics simulations
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The behavior of the energy of stacking fault defects in copper as a function of external strain and tempera-
ture is investigated making use of molecular-dynamics simulations. Atomic interactions are modeled by an
effective-medium theory potential. Intrinsic, extrinsic, and twinning faults are considered. Our results suggest
that the stability of stacking-fault defects in copper increases with temperature and decreases with applied
compressive strain. In addition, we point out some difficulties posed by the application of finite range model
potentials to the study of low-energy defects. To show that these difficulties are quite general in nature we also
compute the stacking-fault energy~SFE! from an embedded atom model potential. Our results indicate that the
SFE computed from model potentials displays a spurious change of sign with increasing compressive strain.
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I. INTRODUCTION

In the theory of deformation1 of fcc crystals, stacking-
fault defects play an important role in processes such as w
hardening.2,3 The stacking-fault energy~SFE! is directly re-
lated, for example, to the dissociation of dislocations in
two Shockley partials and to the energetics of crystal tw
ning. Accordingly, great effort has been directed to the stu
of stacking-fault defects, both experimentally and theor
cally ~see Ref. 4, and references in Table I!. Experimentally,
the SFE is usually measured from the mutual distance
partial dislocations,5 and its temperature dependence can
determined for instance from x-ray measurements.6 How-
ever, we are not aware of studies to measure or calculate
dependence of the SFE on the state of strain of the sam
Such studies would provide further insight into the dynam
of dislocations.

The mobility of dissociated dislocations in a stress
sample, mainly the ability of screw dislocations to cross-s
is critically dependent on the distance between the part
This distance, in turn, is determined by the SFE, which m
vary with the local state of stress. Results from recent sim
lations, aimed at the study of dislocation emission in sm
copper systems,7 suggest that there may, in fact, be a notic
able dependence of the stacking-fault energy on the lo
state of stress. One of the purposes of this paper is to in
tigate the extent of this dependence, for small values
strain, and how it is affected by temperature. To this effe
we study the dependence of the stacking-fault energy of c
per on strain and temperature making use of the molecu
dynamics simulation method.8
PRB 600163-1829/99/60~21!/14625~7!/$15.00
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Our second objective is to call the attention for the sub
fact that even otherwise realistic model potentials may g
rise to the wrong sign for the SFE when applied to mater
under a small compressive strain. More explicitly, we sh
that the SFE computed from two model potentials, name
the embedded atom model~EAM! and the effective-medium
theory ~EMT! potential, displays a spurious change of si
with increasing compressive strain. We will argue that t
failure is a consequence of the finite range of the poten
Although our results are restricted to metals, we believe t
the conclusions drawn from them are quite general in nat

The paper is organized as follows. Basic aspects of
EMT and EAM model potentials are described in Sec.
Section III is dedicated to the description of the proced
followed in the simulations as well of the studied defects.
Sec. IV we show and discuss our results for the SFE a
function of both temperature and strain. In Sec. V, we sh
that the SFE may change sign with increasing strain
argue that this is an artifact of the finite range of the mo
potential. Finally, in Sec. VI we draw conclusions.

II. POTENTIAL MODEL

The many-atom nature of metallic cohesion is crucial
describing the mechanical properties of metals. According
many-atom potentials show clear advantages over clas
pair potentials. EMT and EAM model potentials are e
amples of many-atom potentials, which have been ext
sively used in the study of metals.9,10

Details about the EMT potential used in this paper may
found in Ref. 11. In the EMT, the total energy of a syste
14 625 ©1999 The American Physical Society
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consisting ofN metal atoms is expressed as

E5(
i

N

EC~ n̄i !1EAS, ~1!

where the first term is the sum of individual ‘‘embeddin
energies’’EC(n̄i), and n̄i is the averaged background ele
tron density over a sphere centered at atomic sitei. For finite
temperatures and for systems with a more open lattice st
ture, the atomic-sphere correction termEAS accounts for the
overlaps and neglected interstitial volume of the atom
spheres. Compared to other many-atom potentials for me
EMT has a strongab initio nature since, in principle, the
parameters in the total-energy expression can be calcu
using the jellium model. In practice, however, one expe
mental parameter, namely, the value of the elastic cons
c44, is used in the actual calculations.12 As previously, we
use a modification of the original EMT scheme, which e
tends the atomic interactions up to the third neighbors in
fcc lattice.11

The total energy in the EAM scheme is expressed as

E5(
i

N

Gi S (
j Þ i

r j~Ri j ! D 1
1

2 (
iÞ j

U~Ri j !, ~2!

where G is the embedding energy, its argume
( j Þ ir j (Ri j ), is the electron density at sitei, and U is a
two-atom electrostatic interaction. The embedding ene
together with the electron density at a given site are obtai
as follows. Educated guesses for the parameters of funct
r and U are defined. Then, with the aid of an empiric
function for E ~Ref. 13! and by fitting quantities derived
from Eq. ~2! to known experimental values of properties
the metal in question, the parameters definingr and U are
obtained. Finally, by varying the lattice parameter, a num
cal relation betweenG andr is obtained for a range of val
ues ofr. For more details about this procedure, we refer
reader to Refs. 10, 14, and 15. It should be emphasized
there are similarities between EMT and EAM model pote
tials, as discussed in Ref. 11.

III. DEFINITION OF THE SIMULATION MODEL

In a defect-free fcc structure, three types of close-pac
$111% planes that are displaced relative to one another
denoted byA, B, and C, are stacked in the following se
quenceABCABC. . . . One example of a stacking fault
formed when, from a given plane on, theA planes are moved
to the position ofB planes, theB planes to the position ofC
planes, and so on. In the fcc lattice, this is equivalent
displacing all layers from a given point on bya/6@112̄#,
where a is the lattice parameter. Hence, th
ABCABCAB. . . structure changes toABCBCABC. . . ,
when the fourth layer suffers a slip. The fault thus formed
termed an intrinsic stacking fault~SF!. If, now, the subse-
quent layer is subjected to a slip an extrinsic S
ABCBABCA. . . , is formed. If we continue, in this way
slipping subsequent layers then eventually a twin is gen
ated, where half the crystal has the stacking sequenceABC
and the other halfCBA. It should be reminded that the hex
agonal close-packed structure~hcp! is closely related to the
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fcc structure. The hcp symmetry is generated by stacking
$111% planes in theABABAB. . . stacking sequence. Thu
when an fcc lattice contains stacking faults, it may be s
that some of its layers are in the environment of an h
structure. Therefore, the SFE is closely related to the stab
of the fcc crystal structure.

In our computations of the SFE as a function of tempe
ture and strain, the temperature was set through a N´-
Hoover thermostat.16 Different states of strain were include
through dilation of the lattice, as described in detail belo
The energy of the fault has been computed from the follo
ing equation:17

g5
E82NE0

A
, ~3!

whereE8 is the total potential energy of the system conta
ing the SF,N is the number of atoms in the system,E0 is the
energy per atom in a defect free system andA is the area of
the faulty plane.

At temperatures greater than 0 K, the energies in
above equation include the kinetic energy, and have b
computed as a time average such that the higher the temp
ture, the longer the total time for averaging. For the high
temperature studied,T5700 K, averages were performe
over a time span of about 40 ps.

The calculations were performed in a structure genera
by applying periodic boundary conditions, in all direction
to a simulation box with faces (111), (122̄̄), and (011̄). The
dimensions of the simulation box were chosen such that
atoms about half the distance away separating two perio
images of the stacking fault plane could be considered
atoms in the bulk. This was checked by direct computat
of the potential energy of those atoms.

In the perfect fcc lattice, periodic boundaries in the@111#
direction are implemented by choosing the number of$111%
planes equal to 3M . For a system with an intrinsic fault
3M21 such planes must be used while for a system with
extrinsic fault, 3M22 planes are necessary. In our stud
the system size is equal to 36, 35, 37, 36, and 38 fo
structure containing 0, 1, 2, 3, and 4 slips, respectively. T
energy of a twin structure was computed from a system c
taining 42$111% planes. In all simulations, the dimensions
the system in the other two orientations, i.e.,@21̄1̄# and

@011̄#, were 43 and 39 Å, respectively. In our simulatio
the total number of atoms was always around 13 000 ato
and the zero-pressure lattice constant, for different temp
tures, was taken from Ref. 11.

Two types of strain states were studied: extension or co
pression in the@111# direction only~when the size in other
directions is kept fixed! and uniform extension or compres
sion, when the strain is uniform in all directions. Strain w
imposed by rescaling the zero-pressure coordinates~and the
periodic size! with a factor 11e, wheree is the value of the
strain. Computations were performed for eleven differe
values of the strain in the interval of23% to 3%.

IV. RESULTS AND DISCUSSION

A. Energy profile of the planes near a fault

It is noticed that if only geometrical aspects of the syst
were taken into account, i.e., making a nearest-neighbor
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PRB 60 14 627STACKING-FAULT ENERGY OF COPPER FROM . . .
proximation, the energy of an intrinsic fault (g) would be
equal to that of an extrinsic fault and both would have tw
the energy of a twin boundary.18,19Although the quantitative
results obtained with the EMT model agree quite well w
this approximation, the effect of layers beyond the nea
one shows up in several circumstances. For instance, Fig
and 2 show the energies of the atoms as a function of t
location with respect to the faulty plane. It is evident that t
SFE may not be obtained simply by counting the numbe
~111! layers in the hcp structure~i.e., B layers in theABA
structure!. Especially, in the structure containing an extrins
fault, the atomic energy is highest at the plane in the mid
of the fault, in an fcc lattice environment. In addition, th
energies of 3-slip and 4-slip faults@subfigures~c! and~d!# are
equal, but both are about 18% less thang, which represents
a significant deviation from a nearest-neighbor model. Al
in the case of the twin fault, the SFE comes fromtwo atomic
layers, those that surround the one in the hcp structure e
ronment.

FIG. 1. The energy of atoms~meV aboveE0523.56 eV! as a
function of their location in the@111# direction. The system con
tains an intrinsic~a!, extrinsic~b!, 3-slip ~c!, 4-slip ~d!, or a twin~e!
fault of the type shown in Fig. 2. Results for copper, computed fr
the EMT model potential.
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Hence, although a nearest-neighbor model may resu
quite good quantitative agreement for the energy of faults
does not at all give a good description of the atomic confi
ration near the faults. This is a relevant factor when study
the effect of faults on diffusion or on other properties th
strongly depend on the local configuration of atoms. Next
will discuss the effect of temperature and strain on the fau
energy.

B. Temperature dependence

In Table I, we present our results for the intrins
stacking-fault energy of copper for temperaturesT51 K and
T5300 K. Several other theoretical and experimental val
for this quantity are also quoted in this same table. M
theoretical values are based on minimum-energy calc

FIG. 2. The energy of atoms as a function of their location in

vertical @111# and horizontal@21̄1̄# directions. Shading indicate
the energy, cf. Fig. 1. The lines serve as guides to the eye indica
1-, 2-, 3-, and 4-slip faults and a twin fault in subfigures~a!–~e!,
respectively. The lines show theABC and CBA stacking se-
quences, at the boundary of a layer of atoms is in the hcp struc
indicated by an edge of the line. Results for copper, computed f
the EMT model potential.
e
TABLE I. Stacking-fault energy of copper in units of (ergs/cm2) taken from different references. Th
letters~t! and~e! indicate whether the value is theoretical or experimental, respectively.~* ! in the reference
indicatesnot the original reference, but a collection, the publication year of which is in brackets.

Type Intrinsic Extrinsic Twin

This work,T51 K ~t! 78.1 78.5 39.3
This work,T5300 K ~t! 64.6
~1993! ~Ref. 19! ~t! 56 57 26
~1990! ~Ref. 23! ~t! 70 73 36
~1992! ~Ref. 25! ~t! 50 44 29
~1966! ~Ref. 5! ~t! 30
~1972! ~Ref. 22!, T5973, 1073, 1148, 1173 K ~e! 25,24,22,21
~1970! ~Ref. 26!, T5973 ~e! 70 26
~1971! ~Ref. 27!, T51148 K ~e! 21
~1965! ~Ref. 28!, T5293 K ~e! 5066
~1951!* ~Ref. 20!, T51218 K ~e! 40
~-1970!* ~Ref. 20! ~e! 30, . . .,160,55
~1971! ~Ref. 21!, T5room~?! ~e! 41
~1961! ~Ref. 29!, T5room~?! ~e! 40
~1965! ~Ref. 30!, T5988 K ~e! 71.9 44.1
~1961! ~Ref. 31!, T51223 ~e! 12



r
th
u
in
m
t
u

nd
te

b
h
r
S

F
n
-

b
er
b
u
th
i

th
a
F

K
om

ffi-
la
h
T

en

he
gr
pe
.
F

im
n

w
m-
n-
00 K

e of
lier
ed,
nge
an
ir
he
in-
, in
ple.

of
e or
pe-

ain
ns

sed

wn

en
ally
hen
the

se-
nge
re,
and
y

to
en

r all
ex-
res-

f
d

re

.
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tions, and as such correspond to zero temperature. With
spect to the experimental values it happens quite often
the temperature at which the measurements are carried o
not given in the references, which is somewhat disappoint
regarding our objectives. Fortunately, however, in so
cases the value of the temperature may be inferred from
type of experiment used to measure the energy of the fa
When the SFE is measured from the ratio of the twin bou
ary energy and the average grain-boundary energy, high
peratures~about 1000 K! are necessary~cf., e.g., Ref. 20!.
Another method is based on determining the distance
tween the dissociated partial dislocations from micrograp
such as in Ref. 21. In these measurements the temperatu
most probably near the room temperature. Because the
decreases with increasing temperature,6,22 a direct compari-
son of a minimum-energy SFE and the experimental S
might be somewhat misleading. It seems that the relatiog
52g twin holds with reasonable accuracy in all circum
stances, though Gallagher20 pointed out that this may slightly
underestimate the true SFE.

From our results, it is seen that they show reasona
agreement with some of the experimental data. The z
temperature result for the intrinsic stacking fault tends to
somewhat larger than the other theoretical values, altho
there is a quite large dispersion among them. Note that
value given in Ref. 23 is quite close to the result obtained
the present calculation. From the experimental values in
table it is seen that the measured value of the SFE decre
with increasing temperature. The rate of change of the S
with temperature, dg/dT, was reported to be
20.02 ergs/(cm2 K) by Murr.22 Shetty6 gave this value pro-
portional to the SFE at 300 K. Using the SFE value at 300
proposed by Murr, the temperature coefficient obtained fr
Shetty’s estimative is20.06 ergs/(cm2 K). The value we ob-
tain for temperatures above 120 K is20.05 ergs/(cm2 K),
which is in very good agreement with the empirical coe
cients given by Murr and Shetty. The results of our simu
tions for the behavior of the SFE with temperature, in t
range 0–700 K, are given in Fig. 3. It is seen that the EM
approximation predicts a breakdown of the linear dep
dency at low temperatures~120 K!.

To summarize, the results given by the EMT for both t
SFE and its temperature dependence are in quite good a
ment with experimental data. This indicates that in cop
the stability of stacking faults increases with temperature
is important to note that the temperature behavior of the S
in a given material may change quite substantially when
purities are added to the material. For instance, experime

FIG. 3. Stacking-fault energy,g, for copper as a function o
temperature, at zero strain. Result computed from the EMT mo
potential with an abrupt cutoff radius.
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results given in Ref. 24 show that Cu doped with a lo
concentration of Al gives an SFE that increases with te
perature. However, if the concentration of Al is further i
creased, the SFE increases up to temperatures around 7
and, then, begins to decrease.

C. Strain dependence

The study of the dependence of the SFE on the stat
strain is one of the main purposes of this work. In an ear
simulation,7 where a cylindrical copper system was shear
we obtained some indications that the SFE would cha
noticeably with the state of strain. Since the SFE plays
important role in the motion of dislocations, mainly in the
ability to cross-slip, it seemed to us that studying how t
SFE changes with the state of strain would give further
sight into the dynamics of dislocations and, consequently
the mechanisms of plastic deformation in a strained sam
Despite this apparent importance of the effect of the state
strain on the SFE, we are not aware of studies to measur
to give a quantitative estimate for it. These facts have s
cially motivated the present study.

In our studies, we have investigated two situations: str
is isotropically imposed in all three perpendicular directio
~isotropic! and strain is applied in the@111# direction only
~anisotropic!. The strain states described above are impo
by rescaling the atomic positions with a factor (11e). Re-
sults for eleven different values ofe were computed:e
P$63%,62%,61.5%,61%,60.5%,0%%.

The results, for different values of temperature, are sho
in Fig. 4~a! for the case of anisotropic strain and in Fig. 4~b!
for the case of isotropic strain. From the figures it is se
that, independently of temperature, the SFE monotonic
increases with compressive strain up to a maximum and t
suddenly begins to decrease towards negative values. In
next section, we will argue that this maximum and sub
quent decreasing of the SFE are an artifact of the finite ra
of the potential. According to our interpretation, therefo
the SFE increases with increasing compressive strain
Figs. 4~a! and 4~b! show a qualitatively correct picture onl
for values of strain smaller than the strain corresponding
the maximum of the SFE. From the results, it is also se
that temperature has the effect of decreasing the SFE fo
values of strain. If these results were correct, one would
pect dislocations to move more easily when under comp

el FIG. 4. Stacking-fault energy for copper,g, as a function of
external strain.~a! Anisotropic strain perpendicular to the~111!
plane. ~b! Isotropic strain in all directions. Four temperatures a
shown: T5120 K (3), T5230 K (s), T5340 K ~1!, and T
5460 K (L). Results computed from the EMT model potential
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PRB 60 14 629STACKING-FAULT ENERGY OF COPPER FROM . . .
sive strain, provided that the positive effect of closer parti
on mobility is not overcome by the negative effect caused
an increased Peierls barrier.32

Another observation is that the dependence of the SFE
temperature is much stronger than one might expect f
thermal expansion. For example, a temperature increase
120 to 700 K changes the zero-pressure lattice constant
6.609 to 6.682~Ref. 11! and may be thought as equivalent
a uniform tension of 1.11% for the system at 120 K. Th
increase in the temperature decreases the SFE from 75
ergs/cm2 ~cf. Fig. 3!, which is substantially smaller than th
value of the SFE in a system at 120 K with 1.11% unifo
elongation@about 70, as seen in Fig. 4~b!#.

D. Failure of model potentials in describing the SFE

Model potentials, derived either by using an EMT
EAM approach, have a cutoff radius beyond which the p
tential is set to zero. The introduction of such a finite ran
in the potential greatly improves the performance
molecular-dynamics simulations. This gain in performan
however, causes a loss in the accuracy with which ener
are computed. It is our objective in this section to give e
dence that this loss in accuracy may have, in some circ
stances, quite catastrophic consequences when comp
structural energies in samples subjected to compres
strain. As advanced in the Introduction, we will illustrate th
point by considering examples given by SF defects.

Figures 5~a! and 5~b! show the zero-temperature ener
of an intrinsic SF defect as a function of isotropic stra
computed from the EMT and EAM model potentials, resp
tively. Note that the EAM result is obtained for aluminu
rather than copper: the energy obtained from the EAM
tential, in the implementation given in Ref. 15, for intrins
stacking-fault defects in copper is negative, indicating t
this potential favors an hcp structure for copper.

The EMT result, in Fig. 5~a!, shows that the SFE in
creases with increasing compressive strain up to acritical
strain, where it abruptly drops to negative values. If true, th
transition would indicate that the material undergoes a st
tural transition at this point, changing from the fcc latti
structure to the hcp structure—all dislocations in fcc str
ture would completely dissociate. It is known,33,34 however,
that none of the simple metals with fcc lattice undergoe
phase transition for linear deformations smaller than at le
12%. Hence, the abrupt drops in SFE, see Fig. 5~a!, are an
artifact of the potential. This result has been computed wi

FIG. 5. Zero-temperature stacking-fault energy,g, as a function
of isotropic strain~a! for copper, computed from the EMT potentia
and ~b! for aluminum, computed from the EAM potential.
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version of the EMT potential in which an abrupt cutoff r
dius has been used. Also a continuous cutoff for the EM
potential has been proposed in Ref. 35. However, that im
mentation gives negative values for the SFE of copper. T
sudden changes in the SFE, as will be clear in the forthco
ing discussion, are due to the discontinuous variation of
potential at the cutoff radius.

Figure 5~b! shows the result for an EAM potential. Her
as with the EMT potential, the SFE becomes negative
compressive strain beyond a given limit. This shows t
model potentials, derived either by using an EAM or EM
approach, show similar problems in the SFE for increas
values of compressive strain. The maximum of SFE and
smooth transition from positive to negative values, seen
the EAM result, is a consequence of the fact that in this c
a smooth cutoff has been implemented. An explanation
these changes in the sign of the SFE, independent of
model potential, may be given in terms of the finite range
the potential and differences in the coordination numb
between the fcc and the hcp lattice structures.

Table II gives the number of atoms in each coordinat
shell of both the fcc and the hcp structures. The coordina
shells of the fcc structure have been numbered in the
column. The positions of the cutoff radius of the EMT an
EAM model potentials are indicated in the caption of t
figure. In what follows, we will refer to the atoms that inte
act with a particular atom as interacting atoms. With incre

TABLE II. Coordination shells of the fcc lattice and the hc
structure. The lettersN andd stand for the number of atoms and th
radius in lattice units, respectively, of the shell whose order
specified in the first column. The cutoff radius of the EMT pote
tial, 1.319 in units of the lattice parameter, is located between
third and fourth coordination shells of the fcc lattice. The cor
sponding value for the EAM potential, 1.663, is located between
fifth and sixth coordination shells of the fcc lattice.

Coordination shell fcc lattice hcp structure
N d N d

1 12 0.707 12 0.707
2 6 1.000 6 1.000

2 1.155
3 24 1.225 18 1.225

12 1.354
4 12 1.414 6 1.414
5 24 1.581 12 1.581

12 1.683
6 8 1.732 6 1.732

6 1.779
12 1.825

7 48 1.871 24 1.871
6 1.915

8 6 2.000
12 2.041

9 36 2.121 12 2.121
24 2.195

10 24 2.236 12 2.236
12 2.273
2 2.309
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14 630 PRB 60P. HEINO, L. PERONDI, K. KASKI, AND E. RISTOLAINEN
ing compressive strain, the lattice shrinks and the numbe
interacting atoms abruptly increases each time the radiu
the next outer coordination shell gets smaller than the cu
radius. For instance, at zero strain, the cutoff radius of
EMT potential is localized between the third and fourth c
ordination shells of the fcc lattice and below the coordinati
shell of the hcp structure with radius 1.354~see Table II!. In
this situation, the total number of interacting atoms in the
structure is 42 while that in the hcp structure is 38. Wh
compressive strain is applied, at some point the fifth coo
nation shell in the hcp structure becomes smaller than
cutoff radius. At this point, the number of interacting atom
in the hcp structure jumps from 38 to 50, outnumbering tho
in the fcc lattice. As a result of the fact that the cohesi
energy in all model potentials increases with the number
interacting atoms, at this level of strain the hcp structu
becomes more stable than the fcc lattice and thus the
shows a change of sign. Another way of characterizing t
effect is to say that the SFE, computed from a model pot
tial in an fcc lattice, depends on the cutoff radius. The va
of thecritical compressive strain, where the abrupt change i
energy takes place, is defined by the relative position of
cutoff radius with respect to the coordination shells of bo
the fcc lattice and hcp structure.

The failure of the model potential in giving the corre
sign for the SFE isnot restricted to compressive strain
From Fig. 5~a! it is seen that the SFE decreases rapidly a
changes sign at high tensile strains. This is the result of
third coordination shell moving outside the cutoff sphere
the potential. As a result, for such a large tensile strain,
hcp structure contains 20 interacting atoms compared to
in the fcc. Due to cohesion, as discussed above, the
becomes negative. However, because of the exponentia
cay of the potential and the small number~two! of interact-
ing atoms in favor for the hcp structure, the absolute value
the SFE becomes relatively small, about22 ergs/cm2. Fol-
lowing the above reasoning, the strain valuesec , at which
these transitions should happen are found from 1.35
1ec)5r c and 1.225(11ec)5r c , where the cutoff radius is
in the middle between the third and fourth neighbors of t
fcc lattice, i.e.,r c51.132. Thus, the strain valuesec for these
transitions should be22.5% or 7.7%. As seen from Fig
5~a!, these transitions occur exactly there.
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Although not with the details given here, the above poi
have already been remarked by other authors.36,37 Most of
the events associated to deformation of materials may
related to dislocations and their dynamics. The above res
show that model potentials may give a wrong description
the structure of dislocations and their motion, in the who
material sample or in a particular region of it, when the co
pressive strain exceeds the critical strain for changes in
number of interacting atoms, as discussed above. Thus,
must be exercised when interpreting the results of simu
tions that involve model potentials.

V. SUMMARY

We have studied the temperature and strain dependen
the stacking-fault energy of copper, by using the molecu
dynamics method and a model potential based on
effective-medium theory. The results obtained with th
model potential, with the given cutoff radius, are in qu
good agreement with experimental results. The stacking-f
energy was seen to decrease with increasing temperature
to increase under compressive strain. Taking the SFE
measure of the separation between partials, these result
dicate that the mobility of dislocations decreases with te
perature and increases with compressive strain, as far a
separation into partials is concerned. The above facts i
cate that the EMT model potential, in the implementati
given in this paper, is suitable for the study of dislocati
motion in fcc metals, but limited to the low compressive a
moderate tensile strain regime.

As a second result of our studies, we have shown t
model potentials fail to give the correct sign of the SFE
fcc lattices, when the material is subjected to either comp
sive or tensile strain, beyond given limits. This failure m
be traced to the finite range imposed on these potentials.
level of compressive strain at which the SFE changes s
depends on the value of the cutoff radius of the model
tential and on the lattice parameter. If the model poten
gives a discontinuous energy at the cutoff radius, the cha
in the SFE will be abrupt. Otherwise, if the energy change
continuous at the cutoff radius, the SFE shows a beha
that resembles a parabola with negative curvature. In
case, the transition from positive to negative values of
SFE is continuous for all values of compressive strain.
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