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The behavior of the energy of stacking fault defects in copper as a function of external strain and tempera-
ture is investigated making use of molecular-dynamics simulations. Atomic interactions are modeled by an
effective-medium theory potential. Intrinsic, extrinsic, and twinning faults are considered. Our results suggest
that the stability of stacking-fault defects in copper increases with temperature and decreases with applied
compressive strain. In addition, we point out some difficulties posed by the application of finite range model
potentials to the study of low-energy defects. To show that these difficulties are quite general in nature we also
compute the stacking-fault ener¢$FE from an embedded atom model potential. Our results indicate that the
SFE computed from model potentials displays a spurious change of sign with increasing compressive strain.
[S0163-182609)02245-

[. INTRODUCTION Our second objective is to call the attention for the subtle
fact that even otherwise realistic model potentials may give
In the theory of deformatidnof fcc crystals, stacking- rise to the wrong sign for the SFE when applied to materials
fault defects play an important role in processes such as worknder a small compressive strain. More explicitly, we show
hardening?® The stacking-fault energ¢SFE) is directly re-  that the SFE computed from two model potentials, namely,
lated, for example, to the dissociation of dislocations intothe embedded atom mod@&AM) and the effective-medium
two Shockley partials and to the energetics of crystal twintheory (EMT) potential, displays a spurious change of sign
ning. Accordingly, great effort has been directed to the studyVith increasing compressive strain. We will argue that this
of stacking-fault defects, both experimentally and theoretifailure is a consequence of the finite range of the potenual.
cally (see Ref. 4, and references in TableBxperimentally, Although our results are restricted to me_tals, we be!|eve that
the SFE is usually measured from the mutual distance the conclu5|on§ drawn .from them are quite general In nature.
partial dislocations,and its temperature dependence can beE The paper is organized as follows. Basic aspects of the

determined for instance from x-rav measurem&ntow- MT and EAM model potentials are described in Sec. Il.
y Section Il is dedicated to the description of the procedure

ever, we are not aware of studies to measure or calculate ﬂ?Sllowed in the simulations as well of the studied defects. In
dependence of the SFE on the state of strain of the samplg.ec_ IV we show and discuss our results for the SFE as a

Such studies would provide further insight into the dynamicsfunction of both temperature and strain. In Sec. V, we show

of dislocations. : Lo : i
The mobility of dissociated dislocations in a stressedthat the SFE may change sign with increasing strain and

sample, mainly the ability of screw dislocations to cross Slipargue that this is an artifact of the finite range of the model
is critically dependent on the distance between the partialsPOtemlal' Finally, in Sec. VI we draw conclusions.

This distance, in turn, is determined by the SFE, which may
vary with the local state of stress. Results from recent simu-
lations, aimed at the study of dislocation emission in small
copper system§suggest that there may, in fact, be a notice- The many-atom nature of metallic cohesion is crucial in
able dependence of the stacking-fault energy on the localescribing the mechanical properties of metals. Accordingly,
state of stress. One of the purposes of this paper is to invesaany-atom potentials show clear advantages over classical
tigate the extent of this dependence, for small values opair potentials. EMT and EAM model potentials are ex-
strain, and how it is affected by temperature. To this effectamples of many-atom potentials, which have been exten-
we study the dependence of the stacking-fault energy of cogsively used in the study of metais®

per on strain and temperature making use of the molecular- Details about the EMT potential used in this paper may be
dynamics simulation methddl. found in Ref. 11. In the EMT, the total energy of a system

Il. POTENTIAL MODEL
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consisting ofN metal atoms is expressed as fce structure. The hcp symmetry is generated by stacking the
{111} planes in theABABAB. .. stacking sequence. Thus,
— when an fcc lattice contains stacking faults, it may be said
E=2> Ec(n)+Eas, (1) that some of its layers are in the environment of an hcp
' structure. Therefore, the SFE is closely related to the stability
where the first term is the sum of individual “embedding Of the fcc crystal structure.

e (o —. _In our computations of the SFE as a function of tempera-
energies”Eq(n;), andn; is the averaged background elec ture and strain, the temperature was set through a -Nose

Hoover thermostal® Different states of strain were included
?ﬁrough dilation of the lattice, as described in detail below.

ture, the atomic-sphere correction teBRs accounts for the 4 anergy of the fault has been computed from the follow-
overlaps and neglected interstitial volume of the atomlcing equation'’

spheres. Compared to other many-atom potentials for metals,
EMT has a strongab initio nature since, in principle, the E'—NE,
parameters in the total-energy expression can be calculated V= A’ ©)

using the jellium model. In practice, however, one experi- . ) )
mental parameter, namely, the value of the elastic constafNereE’ is the total potential energy of the system contain-

Cas, is used in the actual calculatioHsAs previously, we g the SENis the number of atoms in the syste, is the
use a modification of the original EMT scheme, which ex-€nergy per atom in a defect free system ani the area of

tends the atomic interactions up to the third neighbors in athe faulty plane. o
fce latticelt At temperatures greater than 0 K, the energies in the

The total energy in the EAM scheme is expressed as above equation include the kinetic energy, and have been
computed as a time average such that the higher the tempera-
N 1 ture, the longer the total time for averaging. For the highest
E=> Gi(z_ pi(Ry) | +5 > U(Ry), (2)  temperature studiedT=700 K, averages were performed
' 171 e over a time span of about 40 ps.
where G is the embedding energy, its argument, 1he calculations were performed in a structure generated
3.ip(Ryj), is the electron density at site and U is a by applying periodic boundary condltﬂns, in allglrectlons,
two-atom electrostatic interaction. The embedding energyto a simulation box with faces (111), (2p, and (01). The
together with the electron density at a given site are obtainedimensions of the simulation box were chosen such that the
as follows. Educated guesses for the parameters of functiooms about half the distance away separating two periodic
p and U are defined. Then, with the aid of an empirical images of the stacking fault plane could be considered as
function for E (Ref. 13 and by fitting quantities derived atoms in the bulk. This was checked by direct computation
from Eq. (2) to known experimental values of properties of of the potential energy of those atoms.
the metal in question, the parameters definingnd U are In the perfect fcc lattice, periodic boundaries in {4 1]
obtained. Finally, by varying the lattice parameter, a numeridirection are implemented by choosing the numbefldfl}
cal relation betweels andp is obtained for a range of val- planes equal to Bl. For a system with an intrinsic fault,
ues ofp. For more details about this procedure, we refer the3M — 1 such planes must be used while for a system with an
reader to Refs. 10, 14, and 15. It should be emphasized thektrinsic fault, 3 —2 planes are necessary. In our studies
there are similarities between EMT and EAM model poten-the system size is equal to 36, 35, 37, 36, and 38 for a

N

tials, as discussed in Ref. 11. structure containing 0, 1, 2, 3, and 4 slips, respectively. The
energy of a twin structure was computed from a system con-
lIl. DEFINITION OF THE SIMULATION MODEL taining 42{111} planes. In all simulations, the dimensions of

the system in the other two orientations, i.EZ,l_l] and
In a defect-free fcc structure, three types of close-packe%? —

{111 planes that are displaced relative to one another an 11], vlvere f’ anfd 39 A, respelct|vely. In O(lj” §|rc1)16jcl)at|ons
denoted byA, B, and C, are stacked in the following se- € total number of atoms was always around 1 atoms,

quenceABCABC. .. . One example of a stacking fault is and the zero-pressure lattice constant, for different tempera-

: tures, was taken from Ref. 11.
formed when, from a given plane on, thelanes are moved Two types of strain states were studied: extension or com-
to the position ofB planes, theB planes to the position o yp .

planes, and so on. In the fcc lattice, this is equivalent tcpression in thé 111] direction only(when the size in other
. g ' _ y — directions is kept fixedand uniform extension or compres-
displacing all layers from a given point on B/6[112],  gjon, when the strain is uniform in all directions. Strain was
where a is the lattice parameter. Hence, the jnposed by rescaling the zero-pressure coordinged the
ABCABCAB. .. structure changes iBCBCABC... ,  neriodic size with a factor 1+ €, wheree is the value of the

when the fourth layer suffers a slip. The fault thus formed issirain, Computations were performed for eleven different
termed an intrinsic stacking faulBF). If, now, the subse- 51 es of the strain in the interval 6f3% to 3%.
qguent layer is subjected to a slip an extrinsic SF,

ABCBABCA .. , is formed. If we continue, in this way, IV. RESULTS AND DISCUSSION
slipping subsequent layers then eventually a twin is gener-
ated, where half the crystal has the stacking sequ&R€

and the other halCBA. It should be reminded that the hex- It is noticed that if only geometrical aspects of the system
agonal close-packed structuifecp) is closely related to the were taken into account, i.e., making a nearest-neighbor ap-

A. Energy profile of the planes near a fault
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FIG. 1. The energy of atom@neV aboveE,=—3.56 eV} as a
function of their location in thé111] direction. The system con-
tains an intrinsida), extrinsic(b), 3-slip (c), 4-slip(d), or a twin(e)
fault of the type shown in Fig. 2. Results for copper, computed fro
the EMT model potential.

FIG. 2. The energy of atoms as a function of their location in the
vertical [111] and horizontaI[ZTﬂ directions. Shading indicates
mihe energy, cf. Fig. 1. The lines serve as guides to the eye indicating
1-, 2-, 3-, and 4-slip faults and a twin fault in subfigul@s—(e),
respectively. The lines show thABC and CBA stacking se-

imati h f intrinsic faul id b quences, at the boundary of a layer of atoms is in the hcp structure,
proximation, the energy of an Intrinsic fau t) wou € indicated by an edge of the line. Results for copper, computed from
equal to that of an extrinsic fault and both would have twicey, . EpmT model potential.

the energy of a twin bounda®:'° Although the quantitative

re_sults obtgineq with the EMT model agree quite well with Hence, although a nearest-neighbor model may result in
this approximation, the effect of layers beyond the nea_‘resglgite good quantitative agreement for the energy of faults, it
one shows up in several circumstances. For instance, Figs.gheq not at all give a good description of the atomic configu-
and 2 show the energies of the atoms as a function of the{fyiion near the faults. This is a relevant factor when studying
location with respect to the f_aulty plane. It is evident that theyho effect of faults on diffusion or on other properties that

SFE may not be obtained simply by counting the number o&y;ong1y depend on the local configuration of atoms. Next we

(111 layers in the hcp structurg.e., B layers in theABA iy giscuss the effect of temperature and strain on the faults’
structurg. Especially, in the structure containing an extrmsmenergy_

fault, the atomic energy is highest at the plane in the middle
of the fault, in an fcc lattice environment. In addition, the
energies of 3-slip and 4-slip faultsubfiguregc) and(d)] are
equal, but both are about 18% less thanwhich represents In Table I, we present our results for the intrinsic
a significant deviation from a nearest-neighbor model. Alsostacking-fault energy of copper for temperatufes1 K and

in the case of the twin fault, the SFE comes fromo atomic  T=300 K. Several other theoretical and experimental values
layers, those that surround the one in the hcp structure envier this quantity are also quoted in this same table. Most
ronment. theoretical values are based on minimum-energy calcula-

B. Temperature dependence

TABLE |. Stacking-fault energy of copper in units of (ergsfntaken from different references. The
letters(t) and (e) indicate whether the value is theoretical or experimental, respectigelin the reference
indicatesnot the original reference, but a collection, the publication year of which is in brackets.

Type Intrinsic Extrinsic Twin
This work, T=1 K (t) 78.1 78.5 39.3
This work, T=300 K (t) 64.6
(1993 (Ref. 19 (t) 56 57 26
(1990 (Ref. 23 t) 70 73 36
(1992 (Ref. 25 (t) 50 44 29
(1966 (Ref. 5 (t) 30
(1972 (Ref. 22, T=973, 1073, 1148, 1173 K (e) 25,24,22,21
(1970 (Ref. 26, T=973 (e 70 26
(1971 (Ref. 27, T=1148 K (e) 21
(1965 (Ref. 28, T=293 K (e 506
(1952* (Ref. 20, T=1218 K (e 40
(-1970* (Ref. 20 (e 30, ...,160,55
(1971 (Ref. 21, T=room(?) (e) 41
(1961 (Ref. 29, T=room(?) (e) 40
(1965 (Ref. 30, T=988 K (e) 719 44.1

(196)) (Ref. 31, T=1223 (e 12
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FIG. 3. Stacking-fault energyy, for copper as a function of
temperature, at zero strain. Result computed from the EMT model FIG. 4. Stacking-fault energy for coppey, as a function of
potential with an abrupt cutoff radius. external strain.(@) Anisotropic strain perpendicular to th@11)

plane.(b) Isotropic strain in all directions. Four temperatures are

tions, and as such correspond to zero temperature. With rehown: T=120 K (X), T=230 K (O), T=340 K (+), and T
spect to the experimental values it happens quite often that460 K (¢ ). Results computed from the EMT model potential.
the temperature at which the measurements are carried out is
notgiven in the references, which is somewhat disappointingesults given in Ref. 24 show that Cu doped with a low
regarding our objectives. Fortunately, however, in someoncentration of Al gives an SFE that increases with tem-
cases the value of the temperature may be inferred from thgerature. However, if the concentration of Al is further in-
type of experiment used to measure the energy of the faultreased, the SFE increases up to temperatures around 700 K
When the SFE is measured from the ratio of the twin boundand, then, begins to decrease.
ary energy and the average grain-boundary energy, high tem-
peratures(about 1000 K are necessaricf., e.g., Ref. 2D _
Another method is based on determining the distance be- C. Strain dependence
tween the dissociated partial dislocations from micrographs, The study of the dependence of the SFE on the state of
such as in Ref. 21. In these measurements the temperaturesisain is one of the main purposes of this work. In an earlier
most probably near the room temperature. Because the SFfmulation’ where a cylindrical copper system was sheared,
decreases with increasing temperafifféa direct compari- we obtained some indications that the SFE would change
son of a minimum-energy SFE and the experimental SFEoticeably with the state of strain. Since the SFE plays an
might be somewhat misleading. It seems that the relagion important role in the motion of dislocations, mainly in their
=27ywin holds with reasonable accuracy in all circum- ability to cross-slip, it seemed to us that studying how the
stances, though Gallagii€pointed out that this may slightly SFE changes with the state of strain would give further in-
underestimate the true SFE. sight into the dynamics of dislocations and, consequently, in

From our results, it is seen that they show reasonabléhe mechanisms of plastic deformation in a strained sample.
agreement with some of the experimental data. The zerdDespite this apparent importance of the effect of the state of
temperature result for the intrinsic stacking fault tends to bestrain on the SFE, we are not aware of studies to measure or
somewhat larger than the other theoretical values, althougto give a quantitative estimate for it. These facts have spe-
there is a quite large dispersion among them. Note that theially motivated the present study.
value given in Ref. 23 is quite close to the result obtained in In our studies, we have investigated two situations: strain
the present calculation. From the experimental values in this isotropically imposed in all three perpendicular directions
table it is seen that the measured value of the SFE decreasg@sotropig and strain is applied in thEL11] direction only
with increasing temperature. The rate of change of the SFEanisotropi¢. The strain states described above are imposed
with  temperature, dy/dT, was reported to be by rescaling the atomic positions with a factor¥%). Re-
—0.02 ergs/(criK) by Murr.?? Shetty gave this value pro- sults for eleven different values of were computed:e
portional to the SFE at 300 K. Using the SFE value at 300 Ke {+3%,*+2%,*1.5%,*1%,%+ 0.5%),0%.
proposed by Murr, the temperature coefficient obtained from The results, for different values of temperature, are shown
Shetty’s estimative is-0.06 ergs/(criK). The value we ob- in Fig. 4(a) for the case of anisotropic strain and in Figby
tain for temperatures above 120 K 1s0.05 ergs/(criK), for the case of isotropic strain. From the figures it is seen
which is in very good agreement with the empirical coeffi-that, independently of temperature, the SFE monotonically
cients given by Murr and Shetty. The results of our simula-increases with compressive strain up to a maximum and then
tions for the behavior of the SFE with temperature, in thesuddenly begins to decrease towards negative values. In the
range 0—700 K, are given in Fig. 3. It is seen that the EMTnext section, we will argue that this maximum and subse-
approximation predicts a breakdown of the linear depenguent decreasing of the SFE are an artifact of the finite range
dency at low temperaturg420 K). of the potential. According to our interpretation, therefore,

To summarize, the results given by the EMT for both thethe SFE increases with increasing compressive strain and
SFE and its temperature dependence are in quite good agre€igs. 4a) and 4b) show a qualitatively correct picture only
ment with experimental data. This indicates that in coppefor values of strain smaller than the strain corresponding to
the stability of stacking faults increases with temperature. Ithe maximum of the SFE. From the results, it is also seen
is important to note that the temperature behavior of the SFEhat temperature has the effect of decreasing the SFE for all
in a given material may change quite substantially when imvalues of strain. If these results were correct, one would ex-
purities are added to the material. For instance, experimentalect dislocations to move more easily when under compres-
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(a) (b) TABLE Il. Coordination shells of the fcc lattice and the hcp
100 structure. The letterll andd stand for the number of atoms and the
100 radius in lattice units, respectively, of the shell whose order is
<\E 50 80 specified in the first column. The cutoff radius of the EMT poten-
2 o tial, 1.319 in units of the lattice parameter, is located between the
g 60 third and fourth coordination shells of the fcc lattice. The corre-
<. 50 40 sponding value for the EAM potential, 1.663, is located between the
-100 20 fifth and sixth coordination shells of the fcc lattice.
-10 0 10 -10 0 10
£ (%) € (%) Coordination shell fce lattice hcp structure
N d N d
FIG. 5. Zero-temperature stacking-fault energyas a function
of isotropic strain(a) for copper, computed from the EMT potential, 1 12 0.707 12 0.707
and(b) for aluminum, computed from the EAM potential. 2 6 1.000 6 1.000
2 1.155
sive strain, provided that the positive effect of closer partials 3 24 1.225 18 1.225
on mobility is not overcome by the negative effect caused by 12 1.354
an increased Peierls barriér. 4 12 1.414 6 1.414
Another observation is that the dependence of the SFE on 5 24 1.581 12 1.581
temperature is much stronger than one might expect from 12 1.683
thermal expansion. For example, a temperature increase from 6 8 1.732 6 1.732
120 to 700 K changes the zero-pressure lattice constant from 6 1.779
6.609 to 6.68ZRef. 1)) and may be thought as equivalent to 12 1.825
a uniform tension of 1.11% for the system at 120 K. This 7 48 1.871 24 1.871
increase in the temperature decreases the SFE from 75 to 43 6 1.915
ergs/cn (cf. Fig. 3, which is substantially smaller than the ) 6 2.000
value of the SFE in a system at 120 K with 1.11% uniform 12 2.041
elongation[about 70, as seen in Fig(®]. 9 36 2121 12 2121
24 2.195
D. Failure of model potentials in describing the SFE 10 24 2.236 12 2.236
Model potentials, derived either by using an EMT or 1; sggg

EAM approach, have a cutoff radius beyond which the po-
tential is set to zero. The introduction of such a finite range
in the potential greatly improves the performance of
molecular-dynamics simulations. This gain in performanceVersion of the EMT potential in which an abrupt cutoff ra-
however, causes a loss in the accuracy with which energiedius has been used. Also a continuous cutoff for the EMT
are computed. It is our objective in this section to give evi-potential has been proposed in Ref. 35. However, that imple-
dence that this loss in accuracy may have, in some circunmentation gives negative values for the SFE of copper. The
stances, quite catastrophic consequences when computisgdden changes in the SFE, as will be clear in the forthcom-
structural energies in samples subjected to compressivieg discussion, are due to the discontinuous variation of the
strain. As advanced in the Introduction, we will illustrate this potential at the cutoff radius.
point by considering examples given by SF defects. Figure 8b) shows the result for an EAM potential. Here,
Figures %a) and §b) show the zero-temperature energy as with the EMT potential, the SFE becomes negative for
of an intrinsic SF defect as a function of isotropic straincompressive strain beyond a given limit. This shows that
computed from the EMT and EAM model potentials, respecmodel potentials, derived either by using an EAM or EMT
tively. Note that the EAM result is obtained for aluminum approach, show similar problems in the SFE for increasing
rather than copper: the energy obtained from the EAM povalues of compressive strain. The maximum of SFE and the
tential, in the implementation given in Ref. 15, for intrinsic smooth transition from positive to negative values, seen in
stacking-fault defects in copper is negative, indicating thathe EAM result, is a consequence of the fact that in this case
this potential favors an hcp structure for copper. a smooth cutoff has been implemented. An explanation for
The EMT result, in Fig. B), shows that the SFE in- these changes in the sign of the SFE, independent of the
creases with increasing compressive strain up witcal model potential, may be given in terms of the finite range of
strain, where it abruptly drops to negative values. If true, thisthe potential and differences in the coordination numbers
transition would indicate that the material undergoes a strucbetween the fcc and the hcp lattice structures.
tural transition at this point, changing from the fcc lattice  Table Il gives the number of atoms in each coordination
structure to the hcp structure—all dislocations in fcc struc-shell of both the fcc and the hep structures. The coordination
ture would completely dissociate. It is knowh>* however, shells of the fcc structure have been numbered in the first
that none of the simple metals with fcc lattice undergoes aolumn. The positions of the cutoff radius of the EMT and
phase transition for linear deformations smaller than at leasEAM model potentials are indicated in the caption of the
12%. Hence, the abrupt drops in SFE, see Fig),5re an figure. In what follows, we will refer to the atoms that inter-
artifact of the potential. This result has been computed with act with a particular atom as interacting atoms. With increas-
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ing compressive strain, the lattice shrinks and the number of Although not with the details given here, the above points
interacting atoms abruptly increases each time the radius dfave already been remarked by other autf®féMost of
the next outer coordination shell gets smaller than the cutofthe events associated to deformation of materials may be
radius. For instance, at zero strain, the cutoff radius of théelated to dislocations and their dynamics. The above results
EMT potential is localized between the third and fourth co-show that model potentials may give a wrong description of
ordination shells of the fcc lattice and below the coordinationthe structure of dislocations and their motion, in the whole
shell of the hcp structure with radius 1.36ke Table ). In mater_lal sam_ple orina partlculg_r region _of it, when the com-
this situation, the total number of interacting atoms in the fcdPréssive strain exceeds the critical strain for changes in the
structure is 42 while that in the hcp structure is 38. When"umber of interacting atoms, as discussed above. Thus, care
compressive strain is applied, at some point the fifth coordiMust be exercised when interpreting the results of simula-
nation shell in the hcp structure becomes smaller than thHONS that involve model potentials.
cutoff radius. At this point, the number of interacting atoms
in the hcp structure jumps from 38 to 50, outnumbering those
in the fcc lattice. As a result of the fact that the cohesion We have studied the temperature and strain dependence of
energy in all model potentials increases with the number othe stacking-fault energy of copper, by using the molecular-
interacting atoms, at this level of strain the hcp structuredynamics method and a model potential based on the
becomes more stable than the fcc lattice and thus the SFétfective-medium theory. The results obtained with this
shows a change of sign. Another way of characterizing thisnodel potential, with the given cutoff radius, are in quite
effect is to say that the SFE, computed from a model potengood agreement with experimental results. The stacking-fault
tial in an fcc lattice, depends on the cutoff radius. The valueenergy was seen to decrease with increasing temperature and
of thecritical compressive strainwhere the abrupt change in to increase under compressive strain. Taking the SFE as a
energy takes place, is defined by the relative position of theneasure of the separation between partials, these results in-
cutoff radius with respect to the coordination shells of bothdicate that the mobility of dislocations decreases with tem-
the fcc lattice and hcp structure. perature and increases with compressive strain, as far as the
The failure of the model potential in giving the correct separation into partials is concerned. The above facts indi-
sign for the SFE isnot restricted to compressive strains. cate that the EMT model potential, in the implementation
From Fig. §a) it is seen that the SFE decreases rapidly andyiven in this paper, is suitable for the study of dislocation
changes sign at high tensile strains. This is the result of thenotion in fcc metals, but limited to the low compressive and
third coordination shell moving outside the cutoff sphere ofmoderate tensile strain regime.
the potential. As a result, for such a large tensile strain, the As a second result of our studies, we have shown that
hcp structure contains 20 interacting atoms compared to 1fhodel potentials fail to give the correct sign of the SFE in
in the fcc. Due to cohesion, as discussed above, the SFfcc lattices, when the material is subjected to either compres-
becomes negative. However, because of the exponential dsive or tensile strain, beyond given limits. This failure may
cay of the potential and the small numkiero) of interact-  be traced to the finite range imposed on these potentials. The
ing atoms in favor for the hcp structure, the absolute value ofevel of compressive strain at which the SFE changes sign
the SFE becomes relatively small, aboup ergs/cm. Fol-  depends on the value of the cutoff radius of the model po-
lowing the above reasoning, the strain valugs at which  tential and on the lattice parameter. If the model potential
these transitions should happen are found from 1.354(3jives a discontinuous energy at the cutoff radius, the change
+e)=r. and 1.225(% ;) =r., where the cutoff radius is in the SFE will be abrupt. Otherwise, if the energy change is
in the middle between the third and fourth neighbors of thecontinuous at the cutoff radius, the SFE shows a behavior
fce lattice, i.e.r.=1.132. Thus, the strain valueg for these  that resembles a parabola with negative curvature. In this
transitions should be-2.5% or 7.7%. As seen from Fig. case, the transition from positive to negative values of the
5(a), these transitions occur exactly there. SFE is continuous for all values of compressive strain.
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