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Spin-fluctuation exchange study of superconductivity in two- and three-dimensional single-band
Hubbard models
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In order to identify the most favorable situation for superconductivity in the repulsive single-band Hubbard
model, we have studied instabilities fdrwave pairing mediated by antiferromagnetic spin fluctuations and
p-wave pairing mediated by ferromagnetic fluctuations with the fluctuation exchange approximation in both
two dimensions and three dimensions. By systematically varying the band filling and band structure we have
shown that(i) d pairing is stronger in two dimensions than in three dimensions (&g pairing is much
weaker thard pairing.[S0163-182809)04446-X

The discovery of high-temperature superconductivity inTakada’ discussed the possibility giwave superconductiv-
copper oxides by Bednorz and Mer! has kicked off inten- ity in the dilute electron gas with the Kukkonen-Overhauser
sive studies for electron mechanisms of superconductivitymodel.18 As for lattice systems, the 2D Hubbard model with
Specifically, it is becoming increasingly clear that superconlarge enough next-nearest-neighbor hopping has been
ductivity can arise from repulsive electron-electron interac-Shown to exhibit p pairing for small band fillings?
tions. A persuasive scenario is that the superconductivitWUbinf3120 reached a similar conclusion by evaluating the su-
comes from a pairing interaction mediated by antiferromag:Perconducting vertex in a perturbative V\'?éWOWGV?f, the
netic (AF) spin fluctuations. A phenomenological €nergy scale of thp pairing in the Hubbard model, i.€T,
calculatio® along this line has succeeded in reproducing@S not been evaluated so far.
anisotropicd-wave superconductivity as well as anomalous, S for 3D systems, Scalapire al." showed for the Hub-
normal-state properties. Analytic calculations on a micro—bard r_nodel _t_hat paramagnon exchang_e hear a spm-_densﬂy-
scopic level with the fluctuation exchan@eLEX) approxi- wave |n.stab|l|ty gives rise to a gtrong singtewave pairing
mation, developed by Bickerst al.® has also been applied interaction, butT: was not discussed there. Nakamura

23 . y . .
to the Hubbard model on the two-dimensioiiaD) square etal. extenq_ed Moriya’s spin fluctuation theory_ of
T o superconductivity to 3D systems, and concluded th&g is
lattice™® to show the occurrence of superconductivity. Nu-

call tum Monte Carlo study has indicated ._similar between the 2D and 3D cases provided that common
msr;gztgk’)iﬁtﬁguan um Monte Larlo study has indicate palr'parameter valuegscaled by the bandwidthare taken. How-

o o ever, the parameters there are phenomenological ones, so we
These results indicate that the superconductivity near thg;isp, 1o see whether the result remains valid for microscopic

AF instability in 2D has a “lowTs” ~O(0.01) (t is the  mpodels.
transfer integral i.e., two orders of magnitude smaller than  Here we shall show thai) d-wave instability mediated
the original electronic energy, but still “highTc” by AF spin fluctuations in a 2D square lattice is much stron-
~0O(100 K) for t~O(1 eV). Then the next fundamental ger than those in 3D, whiléi) p-wave instability mediated
questions, which we address in this paper, are the followingby ferromagnetic spin fluctuations in 2D are much weaker
(i) Is the 2D system more favorable for spin-fluctuation-than thed instability. These results, which cannot be pre-
mediated superconductivity than in three dimensi(8i3)?  dicted a priori, suggest that for the Hubbard model the
(i) Can other pairing, such as a triplepairing in the pres- “best” situation for the pairing instability is the 2D case
ence offerromagneticspin fluctuations, become competi- with dominant AF fluctuations.
tive? We take the single-band, repulsive Hubbard model as We consider the single-band Hubbard model with transfer
the simplest possible model, and look into the pairing withenergyt;; =t (=1 hereafterfor nearest neighbors along with
the FLEX method both in 2D and 3D. The FLEX method hast;;=t’ for second-nearest neighbors, which is included to
the advantage that systems having large spin fluctuations cafcorporate the band structure dependence. The FLEX ap-
be handled. proximation starts from a set of skeleton diagrams for the
Let us touch a little more upon the background to theLuttinger-Ward functional to generate &-(lependentself-
above two questions. The possibility of triplet pairing medi-energy based on the idea of Baym and Kadafibfence the
ated by ferromagnetic fluctuations has been investigated fqFLEX approximation is a self-consistent perturbation ap-
superfluid®He,' the heavy fermion system UPt and most  proximation with respect to on-site interactioh
recently, the oxide SRuQ,.* It was shown that ferromag- ~ To obtain Tc, we solve, with the power methSdthe
netic fluctuations favor triplet pairing by Layzer and Ehy eigenvalugEliashberg equation
before the experimental observation pfwave pairing in
3He. For the electron gas model, Fay and Layzer later T
ChubukoV® has extended the Kohn-Luttinger theoréro p AS@ (k)= — > SOK)|GK)ZVA(k—K'), (1)
pairing for 2D and 3D electron gas in the dilute limit. N 4
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FIG. 1. The squared absolute value of the Green’s function for 1"
the smallest Matsubara frequenéw,=imkgT (left), and the ran- 0.0 —
dom phase approximatioiRPA) spin susceptibility(right) against (b) 2D U=4. t=0.5
the wave number for the 2D Hubbard model with=0, n=0.85, x 0.8¢ ’ n=0.3
andU=4. = e

< 0.6}
where .
: o : 2 0.4}
V(Z)(q): E UZXO(q) _ § UZXO(q) (2) 1\_
2[1+Uxo(q)] 2[1-Uxo(q)] 02t
for spin singlet pairing and
0.0
1[ U2xo(a) | 1] UPxo(a) |
V@(q)=3 +35| 12 3 0.8
2[1+Uxo(a)| 2[1-Uxo(q) .
for spin triplet pairing, whereyo(q)=—T/NZ,G(k)G(k 067
+q) is the irreducible susceptibilityG(k) the dressed
Green’s function, and (®)(k) the anomalous self-energy. At 0.4}t
T=Tc, the maximum eigenvalug,, reaches unity. We
take N=64° sites withn.=2048 Matsubara frequencies for 0.2}
2D, or N=32% with n,=1024 for 3D.

Let us start with the 2D case having strong AF fluctua- 0.0 .
tions. In Fig. 1, we plotygpa(d) = xo/(1—Uxp) as a func- 0.00 0.02 0.04 0.06 0.08
tion of momentum for the 2D Hubbard model with=0, Th
n=0.85(nearly half-filled with U=4 andT=0.03. A domi-
nant AF spin fluctuation is seen fromrpa peaked near FIG. 2. The maximum eigenvalue of thdidshberg equation
(m, 7). (solid lineg and the reciprocal of the peak afzpa (€ither ferro-

We can then solve thelishberg equatiotl) to plot i magnetic or antiferromagnetic, dashed linegainst temperature
Fig. 2@ \vax @s a function of temperatuiie(normalized by  for the Hubbard model ifa) 2D with t’ =0, n=0.85, andU=4,
t). The behavior of|G(k,imkgT)|? that appears in the (b) 2D with t'=0.5, n=0.3, andU=4, and (c) 3D with t'=
Eliashberg equation is indicated in Fig. 1. How.y is close  —0.2,-0.3,n=0.8, andU=8. The inset in(c) is the results for a
to unity measures the pairing, angy,, tends to unity aff ~ larger number of Matsubara frequencies2048 for t'=—0.3.
~0.02, in accordance with previous resuttS.We also plot

the reciprocal of the peak value qirpa(k.,0), where 1Y 1_( 03 and have found thaty,, becomes largest fon

—0 indicates the magnetic ordering. While we cannot com-_ , .
. . . =0.3,t'=0.5, so we concentrate on this parameter set here-
pare\vax and xyrpa ON an equal footing, since pairing fluc-

tuations are neglected in thdi&hberg equation while the fg?&‘il;ﬁv?r)kifl;:é n Fl%)?tms gzr;wiﬂgzdjpender;ge of
susceptibility is treated beyond the mean field, we can dis+ q 7d B ked 4t )ﬁR_PA H ion th ' ?‘RF’Q b
cuss the behavior of,,,, when the situation is varied. indeed peake [k=(0,0)]. The question then is the be-

Keeping the above result in mind as a reference, we move
on to the case with ferromagnetic spin fluctuations, where 8.0

triplet pairing is expected. This situation can be realized for

relatively larget’ (~0.5) and electron density away from |g? 6.0

half-filling in the 2D Hubbard model. Physically, the van , X 40

Hove singularity shifts toward the band bottom with and

the large density of states at the Fermi level for the dilute 2.0

case favors ferromagnetism. It has in fact been shown from i . 0.0 —
guantum Monte Carlo study that the ground state is fully x 0,0) (@@0) (mm (0,0

spin polarized at’=0.47,n~0.426% .
We have calculated o, for the density varied over 0.2

<n=0.6 andt’ varied over 0.3t'<0.6 for U=4.6 with FIG. 3. A similar plot as in Fig. 1 for the 2D Hubbard model for

a finitet’ =0.5 with a smallen=0.3 withU=4.
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FIG. 4. A plot for the Green’s function againkt andk, with
k,=0,7/2,7 for the 3D Hubbard model with’'=—-0.2, n=0.8,
U=8, andT=0.03.

havior of \ ya¢ @s a function off, Fig. 2(b), which shows that
Mmax IS much smaller than that in the AF case, Fi¢p)2
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FIG. 5. (8 Im yxrpa(Kmax,®) (normalized by its maximum
valug as a function ofw/t for the 3D Hubbard model with' =
—0.2,n=0.8, U=8, andT=0.03,0.04(dashed ling and for the
2D Hubbard model witht’ =0, n=0.85, U=4, andT=0.03,0.04
(solid ling). For T=0.03 2D and 3D results almost overlap with
each other(b) RPA spin susceptibilityygpa(k,0) as a function of
the wave number for the 3D Hubbard model with=—-0.2, n
=0.8, T=0.03, andU=38.

Matsubara frequencies,= 1024 there are some finite-size
effects forT<0.02. As the inset for a larger,=2048 ex-

A low T for the ferromagnetic case contrasts with a na-emplifies, howeverj . tends to increase withl and n,

ive expectation from the BCS picture, in which the Fermi

and we believe that a finit€: (<0.01) may be obtained at

level located around a peak in the density of states favorkeast fort’=—0.3, U=8, andn=0.8 in the limit of largeN
superconductivity. We may trace back twofold reasons whyandn., but this is still significantly smaller than in 2D.

this does not apply. First, if we look at the dominant
(11— Uxo(q)]) term of the pairing potential® itself in
Egs. (2) and (3), the triplet pairing interaction is only one-
third of that for singlet pairing. Second, the facl@|? for
the ferromagnetic cag€ig. 3) is smaller than that in the AF
case(Fig. 1), which implies that the self-energy correction is
larger in the former. A larger self-energy correcti@maller
|G|?) leads to smaller eigenvalues of thkaBhberg equation
(1). Even when we take a larger repulsibnto increase the
triplet pairing attractior(susceptibility, this makes the self-

Having confirmed this, the question now is, why is the
superconductivity much stronger in 2D than in 3D? We can
pinpoint the origin by looking at the various factors involved
in the Hiashberg equation. Namely, we question the height
of V() and|G|? along with the width of the region, both in
the momentum sector and in the frequency sector, over
which V()(k) contributes to the summation ovek
=(k,iwy,).

We first plot|G|? for k,=0,7/2,7 as a function ok, and
Ky in the 3D Hubbard model fot’=—0.2, n=0.8 with U

energy correction even stronger, resulting in only a smal=8 in Fig. 4. We can see that the maximum| &2 in 3D,

change in\.

Let us now move on to the case @dfwave pairing in the
3D Hubbard model. In this case, we find that Thg repre-
sentation of theD,, group’” has the largest .., so we look
at this pairing symmetry hereafter. We have calculatgg,
for the density varied over 0.#5n<0.9 andt’ varied over
—0.5<t'<+0.4 forU=4,6,8,10,12 withT=0.03. Among
these parameter sets, we have found Mgt becomes larg-
est forn=0.8,t'=—-0.2 to —0.3, andU=8-10, so hereaf-
ter we concentrate on this parameter set.

In Fig. 2(c), we again plof\ ., along with the reciprocal
of the peak value ofyrpa(k,0) as a function ofT for t' =
—0.2,-0.3,U=8, andn=0.8. We can immediately see that
the pairing tendency in 3D is muakieakerthan that in 2D.
Technically, for the sample sizd=32% and the number of

if multiplied by U? arising in the Bashberg equation, is in
fact larger than in 2D. Were this factor the origin, a larger
Nmax Would result in 3D.

We can then question how the peakyiges Spreads in the
frequency axis. Figure(8) displays Imyrpa(Kyax, @) [Kmax
is the momentum for whicly(k,0) is maximun) as a func-
tion of w (obtained by an analytic continuation with Pade
approximatior®). The figure compares the “best 3D” case
(t'=-0.2n=0.8U=8) with a typical 2D case witht’
=0, n=0.85, andU=4 having a similar magnitude of.
We can see that Inp(w), when this quantity is normalized
by its maximum value whilaw by t, exhibits surprisingly
similar behaviors for 2D and 3D. So we can exclude the
frequency width from the reason for the 2D-3D difference.
Note that if the frequency spread of the susceptibility scaled
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not witht but with theband width as Nakamurat al* have  ever, our conclusion has been obtained for the simplest pos-

assumed\ ., Would have become larger. So this is onesible single-band Hubbard model, while the detailed behav-
reason why we stress that the present result, that 2D is ther of Tc may depend on the model. Indeed, if we turn to
best, is by no means readily predictable. other 3D superconductors, the heavy fermion system, in
If we turn to the momentum sector, Fig.(5 for ~ Which the pairing is thought to be meditated by spin fluctua-
xrea(k,0) shows that the widtl of the ygrpa(k,0) peak in  tions, the Tc, when normalized by_ the bandwid¥, is
each momentum direction is similar to those in gHg. 1).  known to be of the order of 0.0V Since the present result
Since the right-hand side of thei&hberg equatiortl) is  Indicates thallc, normalized byw, is ~0.000W at best in
normalized byN=LP with L being the linear dimension of the 3D Hubbard model, we may envisage that the heavy
the system) o (a/L)® is smaller in 3D than that in 2D when fermion system is an instance in which larger frequency

the main contribution o¥/(?) to \ is confined around+, ) a%(gg;rgm%netlum spreads j{k, ») are utilized than in the

or (7,7, ). SO we can conclude that this is the main reason : .
. After completion of this study, we came to know the work
why 2D differs from 3D. b h d P Usi h logical
We have also obtained resultsot shown hergin 3D for y Monthoux and Lonzariclt. Using a phenomeno ogica
approach, they conclude for 2D systems thatdiveave pair-

the body-centered-cubic lattice near half-fillingvhere "% o A .
. A ing is much stronger thamrwave pairing, which is consistent
strong AF fluctuations are expecjedut thed pairing is ;
with the present result.

again weak. The pairing in the face-centered-cubic lattice
with low band filling (where ferromagnetic fluctuations are  We would like to thank K. Ueda and H. Kontani for illu-
expectedl is found to be even weaker. These results will beminating discussions. R.A. would like to thank S. Koikegami
published elsewhere. for discussions on the FLEX approximation. R.A. is sup-

To summarized pairing in 2D is the best situation for the ported by JSPS while K.K. acknowledges a Grant-in-Aid for
repulsion-originated(i.e., spin-fluctuation-mediatg¢dsuper-  Scientific Research from the Ministry of Education of Japan.
conductivity in the Hubbard model. In this sense, the layerNumerical calculations were performed at the Supercom-
type cuprates do seem to hit upon the right situation. How-puter Center, ISSP, University of Tokyo.
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