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Spin-wave contributions to nuclear magnetic relaxation in magnetic metals
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The longitudinal and transverse nuclear magnetic relaxation raigéT)/and 1T,(T) are calculated for
three-dimensional3D) and two-dimensional metallic ferromagndiM) and antiferromagnetéAFM) with
localized magnetic moments in the spin-wave temperature region. The contribution of the one-magnon decay
processes is strongly enhanced in comparison with the stafidardar Korringa term, especially for the FM
case. For the 3D AFM case this contribution diverges logarithmically, the divergence being cut at the magnon
gap wo due to magnetic anisotropy, and for the 2D AFM casea@sl. The electron-magnon scattering
processes yield? In(T/wo) andelw(l)’2 terms in 1T, for the 3D AFM and 2D FM cases, respectively. The
two-magnon(“Raman”) contributions are investigated and demonstrated to be large in the 2D FM case.
[S0163-182699)09141-9

Nuclear magnetic resonan@MR), which is one of most 2
powerful tools for investigating various physical properties, hz:(AF— §aF(°)
has a number of peculiarities for magnetically ordered mate-
rials. Last time, a number of new classes of magnets hav@here
been studied by this method, e.g., heavy-fermion com-
pounds, ferromagnetic films and monolayers, low-
dimensional systems including copper-oxide perovskites, etc.
Thus the problem of theoretical description of various NMR
characteristics of magnets is topical again. This problem was 3
already a subject of great interest since the 1950’s and F@=(sir? Gexp —2i¢)/r3), a=— = Ye¥n, (3)
1960’s when the interaction of nuclear magnetic moments 2
with spin waves in the localized-spin Heisenberg model was . . -} is the average over the electron subsystem states,
studied"? However, this model is inadequate to describe theyq y, are gyromagnetic ratios for electron and nuclear mo-
most interesting systems mentioned above where the role gfents, respectively. In the case of theal cubic symmetry
conduction electrons is essential in magnetic properties. Usyye haveF (@ =0. The Fermi hyperfine interaction is propor-
ally the data on the longitudinal nuclear magnetic relaxationjona to the electron density at the nucleus and therefore
rate 1T, are discussed within itinerant-electron models suchyp|y s states participate in it, the contribution of caretates
as Hubbard model or phenomenological spin-fluctuationyhich are polarized due to local magnetic momgiising
fcheorlesg.“S On the other hand, in a number of systef@%).,  much larger than of conduction electrons. It is just the con-
in most rare-earth compounds which are also a subject dfequence of considerably smaller localization atead
NMR investigations, see, e.g., Ref) fhe s-d(f) exchange therefore higher density on nudidor the core states. It is
model with well-separated localized and itinerant magnetiGpyious that magneti€ or d electrons dominate also in di-
subsystems is more adequate. Magnetic properties in suchje interactions because of large spin polarization. Hence
situation differ essentially from those in the paramagnon reyne girect interaction of nuclear spins with that of conduction
gime (see, e.g., discussion in Refs. B,&t the same time,  glectrons can be neglected in magnets with well-defined lo-
the contributions to nuclear magnetic relaxation rate owing.g| magnetic moments. Nevertheless, conduction electrons
to electron-magnon interaction were not investigated in degg effect nuclear relaxation via their influence on the local-
tail. In the present work we obtain the dependences Ofnoment system; besides that, as we shall see below, such
1/T,(T) and the linewidth IV,(T) in the spin-wave region contributions possess large exchange enhancement factors.

for three-dimensional3D) and two-dimensional metallic  ysing the expressions for these contributions in terms of
magnets with well-defined local magnetic moments. the Green'’s functiors

We start with the standard Hamiltonian of the hyperfine

S+a(FBSt +aFb*s™), (2

FO=((1-3cog 6)/r,

F=(sing coshexp —ip)/rd),

interactio® H,=hl, whereh,=A ;S andA is the hyper- T L
fine interaction matrix. This Hamiltonian contains the Fermi T_1: - ﬂ'mzq: ((hq |h*Q>>wn/“’n’ (4)
(contaci and dipole-dipole contributionsAaﬁzAFﬁaﬁ
+A%2. According to Ref. 10 we have 1 1 T
N H Z|W\2Z
5= Zwllinolm% (hgh” Nl w
- F ! 0)) g (2)g+ 1z ®)
ho=| A+ §aF S taFfsTr2aRts, (@) (w,=(h*<T is the NMR frequencywe derive
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=

+2a

2

teraction constantp, are the partial densities of electron
+a?|F®?)?

K™~ states at the Fermi level, is practically never applicable for
magnetic metalde.g., exchange enhancement factors can
change even the order of magnitude of {L{Refs. 4,13].
ReF(Z)K+++4aZ|F(l)|2KZZ]’ Accurate expression for the “Korringa” contribution in the
case under consideration can be derived by the substitution
(6) of Egs.(10) and(11) into Eq. (6).
2 The damping(11) has the threshold value of which is
K#24+a2[ 2|F(W|2K * - determined by the spin splitting=2|1|S, g* =A/vg (vg is
the electron velocity at the Fermi leyelThe quantityg*
determines a characteristic temperature and energy scale,
+(F<1>)2K+++(F<1>*)2K"]}, (7)) w*=w(g*)=D(q*)2~(AlIvg)?Tc with D the spin-wave
stiffness.
In the 2D casdwhich may be relevant, e.g., for layered

K= —(1/m) lim Im Eq: ((Sg|3iq)>w/w. (8) magnets we have
w—0

AF+%aF(°)

AF+ %aF(O)

1 01 T 2
e R IV
T, 2T, 2[(A 3aF

-1 —
We proceed with the-d(f) exchange model Hamiltonian (ave) D=3,

ANg=0(d—g* )Xy 1 - (12)
- _ D=2.
H= tiCpCuo— 1 > S0apChCist > JoS_oS, 7 AVET AT
ko iaB q

H After integration for the parabolic electron spectruiy (
a plays the role of the lower cutgffthe one-magnon damping

wheret, is the band energy§ and S, are spin-density contribution to Eq.(10) takes the form

operators and their Fourier transforms,are the Pauli ma-

trices,H, is the anisotropy Hamiltonian which results in oc- pip, 1/4, D=3,
currence of the gapg in the spin-wave spectrum. It should SMKY = > 5 ( N B (13
be noted that similar results may be reproduced for the D"m U(mq*), D=2,
localized-moment Hubbard magndtee Refs. 8,12

First we consider the ferromagneti&M) case. Then mQy | Keg/m, D=3,
K**=0 and the relaxation rate),(7) are the sums of Po=2m 71, D=2 (14
transverse ¢K* ) and longitudinal ¢K?? terms. Passing
to the magnon representation we obtain with mthe electron effective masg, the lattice cell volume

(area. Thus in the 3D case the factor bt is canceled, and

(SIS-w=2S[0—wetiyy(w)], ©) the factor ofl ~* occurs in the 2D case, so that we obtain a
where w,=2S(J4—Jo) + o is the magnon frequency, strongly enhanced-linear Korringa-type term(remember
—yq(w)ocw is the magnon damping. Then we have thatD~J~|2p for the RKKY interaction. This means that

the contribution of conduction electrons Telinear relax-
.. 28 Yq(@n) ation rate via their interaction with localized spins is indeed
K™= Tw, ; o2 (10 much more important than the “direct” contribution: pertur-

q bation theory in thes-d exchange coupling parameteturns

(see Refs. 8,13 The damping in the denominator of H40)  out to be singular. Earlier such contributioffer the 3D
can be neglected for both localized-moment and itinerantcase were calculated by Weg¥rand Moriya® for iron-
electron magnetfin the latter case the expressi@) corre-  group metals. However, Moriya has concluded that for these
sponds to the RPA structure, see Refd8e to smallness of materials they are not important in comparison with orbital
wp. On the contrary, temperature dependences of magnetturrent contributions. In the case under consideratidmere
zation, resistivity, etc., in weak itinerant magnets are jusimagnetic subsystem is well separated from the conductivity
determined by the damping in the denominator, i.e., by paraelectrons the situation is different and the spin-wave contri-
magnon excitations rather than by spin wates. bution in 17T, is normally the most important.

The damping owing to the one-magnon decay processes is The damping in a conducting ferromagnet owing to
given by the imaginary part of the RKKY-type polarization electron-magnoritwo-magnon scattering processes, calcu-

operator lated in Refs. 8 and 17, can be represented as
FD(w)=2712Sw\,, xng S(ty) 8(ty—q), ¥ w) a2 [ terg—t \z(w
(11) 1) Kpor t\k+q—tk+ 2015 2P
wheret,,= t,—olS, n.,=n(ty,) is the Fermi function. Ny IN,
The linearity of spin fluctuation damping ia, is a charac- —) Ity dwp X 8(tk—te—p+q)r (19

teristic property of metals. According to E@), this leads to

T-linear contributions to I; which is the Korringa law. where Ny=N(w,) is the Bose function. Substituting this
Note that the simplest expression for the Korringa relaxatiorinto Eq. (10) and performing integration we obtain fa@
1/T1:1/T22A2prlT, whereA is an effective hyperfine in- =3
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i QT2 ZZ_( 0, )2 ~( Q )2 L.
S@K+ :W > p> K#%= 27D N(wq)= 27D oy’ T>wq. (22
3 For small enoughvw, andA~ A this contribution can domi-
3771’25(—>T, T<o*, nate over the “Korringa” contribution(13) in 1/T; at T
2 (180 >, /|1p|. The contributions t&? from thes-d interaction
8M;w*, T> 0*, are not singular invy and practically never important.
Now we consider the two-sublattice antiferromagnetic
« |1 X2 expx? (AFM) structure with the wave vect@. The expressions for
M3=J dx —— 5 5|=0.65, (170 the spin Green’s functions are obtained in Refs. 9,19. We
0 X< (expx—1) have
where £(z) is the Riemann function. The contributidf6)
should play the dominant role in the half-metallic K*~=—(297) lim Im >, w‘lcqwlwﬁ, K**=0
ferromagnet$1® In addition to that, this contribution may 0—0
modify considerably the temperature dependence Bf itf (23
“usual” ferromagnets, a crossover frof™'” to T3 depen-  ith w+Cyq, being the numerator of the spin-deviation
dence of the correction taking place. Green’s function. The one-magnon damping is given again

ForD=2 atT,w">wo small magnon momenta of order py the imaginary part of the RKKY-type polarization opera-
of (wo/D)"* make the main contribution to EG10). On  tor, The intrasubband pafhich is absent in the FM casis
using the high-temperature expressip=T/w;, one gets  finite at arbitrarily smallg.2° Similar to the FM case, the

contributions of intersubband transitiofwhich correspond
Q3keM, to small|g—Q|) are cut at the characteristic temperature and

5(2)K+7=— , (18) * *) — * i
84S 52,112 energy scalev™ = w(q*)=cq*~(A/vg) Ty, Wherec is the
0 magnon velocity defined bw)=w},o=w§+c’p? In the
3D case takes integration yields
_Jw dx Jw/z desite o0 g gration y
Jor+x2o (sie+x)¥2 T S0 w w
1+x (SIHZQD X9) SOK*+— = - 2 P, In max_H:)Q In nlax , (24)
Thus in the 2D FM case, in contrast with 3D one, the relax- mC @o “o
ation rate 1T, is strongly dependent on the anisotropy gap.
It is worthwhile to note an important difference between re- P,=12lim lg—p|>, 8(ty) S(tk—qp) (25)
laxation processes via phonons and via magnons. The main q—0 3

difference is due to the gap in magnon spectrum. Usuall . . .
wo>w, and therefore one-magnon processes contribute t € seco*nd lo%ath |2n f,*;e brac‘lfets of E2¢) co1r,1ta|ns th_e
the relaxation rate due to magnon damping ofgge the CUtOff wo =[wo+(w®)7]7 The “"enhancement” factor in

discussion of the phonon-induced relaxation processes igd- (24) is smaller than in the FM case because of linear

Ref. 10. However, the mechanisms of magnon damping indispersion law of magnons, but this contribution still domi-
) nates over the “usual” Korringa term. Besides that, a large

magnetic dielectric§magnon-magnon interactionare dif-

ferent from those in magnetic metals and degeneratg)garithmic factor occursin the isotropic case, this is cut at
semiconductors’-? w,, only). Note that a similar logarithmic singularity inT/

Consider now the second term in the transverse relaxatiofkes place for 3D itinerant-electron ar?tife_rromagﬁdtsis
rate 1T,(T), Eq. (7), which is normally determined b interesting that the intersubband contribution does not lead

and the longitudinal contribution to the relaxation rat&,1/ Here to enhancing the singularifgven in the nesting situa-
in Eq. (6), which is due to dipole-dipole interactions with the o, unlike the results gor the magnon damping, magnetic
characteristic constarﬁ~a|F(1)| The simplest calculation and transport properti€s?® The singularity becomes stronger

L : ; . in the 2D case where integration gives
from the longitudinal Green’s function for the localized-spin g g

subsystem gives 0. [ = ®
SK+ = 0 =Po+Pgo arctan—()). (26)
mCwq | 2 w*
K= (—dNp/dwp) 8 wg— wy). (20) _ _ _ .
ap This fact may be important when treating experimental data

. . . on layered AFM metals.
The quantity(20) has been considered in Refs. 18,2 as & g contribution owing to electron-magnon scattering

contribution to the NMR line width T,. The integration in 5 cesses is determined by the imaginary part of the function
the 3D case gives the logarithmic singularity ® from Ref. 9. After a little manipulation we obtain

02 T
KZ2=—— T In—. (22) SAKF~=2SL D — —L|[Po+Poa(a)],
1674D3 on P—04 Qg dwp e

For D=2 this singular term is inversely proportional to the where L=2S(Jy—Jq), ¢(q<q*)=0, #(q>q*)=1. The
magnetic anisotropy parameter and very large: integration in the 3D case yields
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2
0

5(2)K+7 87T4C4[P0f(T,w0)+PQf(T,wS)], (27)
® IN(w w
f(T,wo)=f dww(— ( ))I — e
wg w w
T 15) 1 7T
:Tln—(ln max—zln—, T>wy. (28
wo o wo

Thus we have T,«T?InT. In the 2D case we derive

SLOJ T T
SOKF=T=——2| Py In>—+Pg IN*—|, (29
4rtct| % e @ g
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rringa” term (24) of order of A212p2T In|Jwy|/J? at T/|J|
>|1p|InY2 3/ wo| only. Note that this two-magnon contribu-
tion is similar to the two-phonofRaman contribution in the
spin-lattice relaxation. The existence of the gap is not
important here(at least if it is sufficiently sma)l] but the
matrix elements of interaction of nuclear spins with magnons
are singular, unlike those for acoustic phonof!{ .ol
~1/q instead ofq). Therefore we have &° law instead of

T7 one for the phonon scatterif.

To conclude, in most cases the main contribution 0, 1/
in the localized-moment magnetic metals is of Korringa type,
but its physical origin is more complicated than in the para-
magnetic case. Formally, it results from the interaction of
nuclear magnetic moments with thecalizedelectronic sub-
system with taking into account the “Stoner{Landay

so that the singularity is not enhanced in comparison with thelamping of spin waves via conduction electrons. This con-

3D case.

The contributions owing to longitudinal fluctuations will
be estimated for the localized subsystem only. We obtain

N,

L2
c?a)p

KZZZE

30
pa 2w§ (30

)5(wq—wp).

The corresponding contribution toTL/ was considered in

tribution is greatly enhanced in comparison with the standard
Korringa term by inverse powers of exchange interaction
[s—d(f) paramete]; especially in ferromagnets. In the AFM
case we have Th= Inwy (D=3), 1T xw,* (D=2). Thus

the “Korringa” relaxation rate in the magnetic metals
should be much larger than in paramagnetic ones where the
relaxation is determined by direct interaction with conduc-
tion electrongsuch a term is also present in the magnetically

Ref. 1. The term in the longitudinal relaxation rate deter-grdered state, but is much smaller than the contribution dis-

mined by Eq.(30) is estimated as
T334, D=3,
T?/3%, D=2.

Provided that the dipole-dipole contributions in Ef) are

SA(LT)cAZX (31

considerable A~ A), this term can dominate over the “Ko-

cussefl More complicated electron-magnon scattering pro-
cesses may result in considerable deviations of the tempera-
ture dependence of T{ from the linear Korringa law.
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