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Spin-wave contributions to nuclear magnetic relaxation in magnetic metals

V. Yu. Irkhin* and M. I. Katsnelson
Institute of Metal Physics, 620219 Ekaterinburg, Russia

~Received 30 April 1999; revised manuscript received 15 June 1999!

The longitudinal and transverse nuclear magnetic relaxation rates 1/T1(T) and 1/T2(T) are calculated for
three-dimensional~3D! and two-dimensional metallic ferromagnets~FM! and antiferromagnets~AFM! with
localized magnetic moments in the spin-wave temperature region. The contribution of the one-magnon decay
processes is strongly enhanced in comparison with the standardT-linear Korringa term, especially for the FM
case. For the 3D AFM case this contribution diverges logarithmically, the divergence being cut at the magnon
gap v0 due to magnetic anisotropy, and for the 2D AFM case asv0

21. The electron-magnon scattering
processes yieldT2 ln(T/v0) andT2/v0

1/2 terms in 1/T1 for the 3D AFM and 2D FM cases, respectively. The
two-magnon~‘‘Raman’’! contributions are investigated and demonstrated to be large in the 2D FM case.
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Nuclear magnetic resonance~NMR!, which is one of most
powerful tools for investigating various physical propertie
has a number of peculiarities for magnetically ordered ma
rials. Last time, a number of new classes of magnets h
been studied by this method, e.g., heavy-fermion co
pounds, ferromagnetic films and monolayers, lo
dimensional systems including copper-oxide perovskites,
Thus the problem of theoretical description of various NM
characteristics of magnets is topical again. This problem
already a subject of great interest since the 1950’s
1960’s when the interaction of nuclear magnetic mome
with spin waves in the localized-spin Heisenberg model w
studied.1,2 However, this model is inadequate to describe
most interesting systems mentioned above where the ro
conduction electrons is essential in magnetic properties. U
ally the data on the longitudinal nuclear magnetic relaxat
rate 1/T1 are discussed within itinerant-electron models su
as Hubbard model or phenomenological spin-fluctuat
theories.3–6 On the other hand, in a number of systems~e.g.,
in most rare-earth compounds which are also a subjec
NMR investigations, see, e.g., Ref. 7! the s-d( f ) exchange
model with well-separated localized and itinerant magne
subsystems is more adequate. Magnetic properties in su
situation differ essentially from those in the paramagnon
gime ~see, e.g., discussion in Refs. 8,9!. At the same time,
the contributions to nuclear magnetic relaxation rate ow
to electron-magnon interaction were not investigated in
tail. In the present work we obtain the dependences
1/T1(T) and the linewidth 1/T2(T) in the spin-wave region
for three-dimensional~3D! and two-dimensional metallic
magnets with well-defined local magnetic moments.

We start with the standard Hamiltonian of the hyperfi
interaction10 Hhf5hI , whereha5AabSb andÂ is the hyper-
fine interaction matrix. This Hamiltonian contains the Fer
~contact! and dipole-dipole contributions,Aab5AFdab

1Aab
dip . According to Ref. 10 we have

h25S AF1
1

3
aF(0)DS21aF(2)S112aF(1)Sz, ~1!
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hz5S AF2
2

3
aF(0)DSz1a~F (1)S11aF(1)* S2!, ~2!

where

F (0)5^~123 cos2 u!/r 3&,

F (1)5^sinu cosu exp~2 if!/r 3&,

F (2)5^sin2 u exp~22if!/r 3&, a52
3

2
gegn , ~3!

^•••& is the average over the electron subsystem statesge
andgn are gyromagnetic ratios for electron and nuclear m
ments, respectively. In the case of thelocal cubic symmetry
we haveF (a)50. The Fermi hyperfine interaction is propo
tional to the electron density at the nucleus and theref
only s states participate in it, the contribution of cores states
~which are polarized due to local magnetic moments! being
much larger than of conduction electrons. It is just the co
sequence of considerably smaller localization area~and
therefore higher density on nuclei! for the core states. It is
obvious that magneticf or d electrons dominate also in di
pole interactions because of large spin polarization. He
the direct interaction of nuclear spins with that of conducti
electrons can be neglected in magnets with well-defined
cal magnetic moments. Nevertheless, conduction elect
do effect nuclear relaxation via their influence on the loc
moment system; besides that, as we shall see below,
contributions possess large exchange enhancement fact

Using the expressions for these contributions in terms
the Green’s functions11

1

T1
52

T

2p
Im(

q
^^hq

1uh2q
2 &&vn

/vn , ~4!

1

T2
5

1

2T1
2

T

2p
lim
v→0

Im (
q

^^hq
zuh2q

z &&v /v

~5!

(vn5^hz&!T is the NMR frequency! we derive
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1

T1
5

T

2 H F S AF1
1

3
aF(0)D 2

1a2uF (2)u2GK12

12aS AF1
1

3
aF(0)DReF (2)K1114a2uF (1)u2KzzJ ,

~6!

1

T2
5

1

2T1
1

T

2 H S AF2
2

3
aF(0)D 2

Kzz1a2@2uF (1)u2K12

1~F (1)!2K111~F (1)* !2K22#J , ~7!

Kab52~1/p! lim
v→0

Im (
q

^^Sq
1uS2q

2 &&v/v. ~8!

We proceed with thes-d( f ) exchange model Hamiltonia

H5(
ks

tkcks
† cks2I(

iab
Sisabcia

† cib1(
q

JqS2qSq

1Ha ,

where tk is the band energy,Si and Sq are spin-density
operators and their Fourier transforms,s are the Pauli ma-
trices,Ha is the anisotropy Hamiltonian which results in o
currence of the gapv0 in the spin-wave spectrum. It shoul
be noted that similar results may be reproduced for
localized-moment Hubbard magnets~see Refs. 8,12!.

First we consider the ferromagnetic~FM! case. Then
K1150 and the relaxation rates~6!,~7! are the sums of
transverse (}K12) and longitudinal (}Kzz) terms. Passing
to the magnon representation we obtain

^^Sq
1uS2q

2 &&v52S/@v2vq1 igq~v!#, ~9!

where vq52S(Jq2J0)1v0 is the magnon frequency,
gq(v)}v is the magnon damping. Then we have

K125
2S

pvn
(
q

gq~vn!

vq
2

~10!

~see Refs. 8,13!. The damping in the denominator of Eq.~10!
can be neglected for both localized-moment and itinera
electron magnets@in the latter case the expression~9! corre-
sponds to the RPA structure, see Ref. 8# due to smallness o
vn . On the contrary, temperature dependences of mag
zation, resistivity, etc., in weak itinerant magnets are j
determined by the damping in the denominator, i.e., by pa
magnon excitations rather than by spin waves.4

The damping owing to the one-magnon decay process
given by the imaginary part of the RKKY-type polarizatio
operator

gq
(1)~v!.2pI 2Svlq , lq5(

k
d~ tk↑!d~ tk2q↓!,

~11!

where tks5 tk2sIS, nks5n(tks) is the Fermi function.
The linearity of spin fluctuation damping invq is a charac-
teristic property of metals. According to Eq.~6!, this leads to
T-linear contributions to 1/T1 which is the Korringa law.
Note that the simplest expression for the Korringa relaxat
1/T1.1/T2.A2r↑r↓T, whereA is an effective hyperfine in-
e

t-

ti-
t

a-

is

n

teraction constant,rs are the partial densities of electro
states at the Fermi level, is practically never applicable
magnetic metals@e.g., exchange enhancement factors c
change even the order of magnitude of 1/T1 ~Refs. 4,13!#.
Accurate expression for the ‘‘Korringa’’ contribution in th
case under consideration can be derived by the substitu
of Eqs.~10! and ~11! into Eq. ~6!.

The damping~11! has the threshold value ofq, which is
determined by the spin splittingD52uI uS, q* 5D/vF (vF is
the electron velocity at the Fermi level!. The quantityq*
determines a characteristic temperature and energy s
v* 5v(q* )5D(q* )2;(D/vF)2TC with D the spin-wave
stiffness.

In the 2D case~which may be relevant, e.g., for layere
magnets! we have

lq5u~q2q* !3H ~qvF!21, D53,

1

p
~q2vF

22D2!21/2, D52.
~12!

After integration for the parabolic electron spectrum (q*
plays the role of the lower cutoff!, the one-magnon dampin
contribution to Eq.~10! takes the form

d (1)K125
r↑r↓
D 2m2

3H 1/4, D53,

1/~pq* !, D52,
~13!

rs5
mV0

2p
3H kFs /p, D53,

1, D52
~14!

with m the electron effective mass,V0 the lattice cell volume
~area!. Thus in the 3D case the factor ofI 2 is canceled, and
the factor ofI 21 occurs in the 2D case, so that we obtain
strongly enhancedT-linear Korringa-type term~remember
that D;J;I 2r for the RKKY interaction!. This means that
the contribution of conduction electrons toT-linear relax-
ation rate via their interaction with localized spins is inde
much more important than the ‘‘direct’’ contribution: pertu
bation theory in thes-d exchange coupling parameterI turns
out to be singular. Earlier such contributions~for the 3D
case! were calculated by Weger14 and Moriya15 for iron-
group metals. However, Moriya has concluded that for th
materials they are not important in comparison with orbi
current contributions. In the case under consideration~where
magnetic subsystem is well separated from the conducti
electrons! the situation is different and the spin-wave cont
bution in 1/T1 is normally the most important.

The damping in a conducting ferromagnet owing
electron-magnon~two-magnon! scattering processes, calcu
lated in Refs. 8 and 17, can be represented as

gq
(2)~v!

v
5pI 2 (

kps
S tk1q2tk

tk1q2tk12sISD 2

~vp

2v!
]nks

]tk

]Np

]vp
3d~ tk2tk2p1q!, ~15!

where Np5N(vp) is the Bose function. Substituting this
into Eq. ~10! and performing integration we obtain forD
53
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d (2)K125
V0T1/2

128p2Sm2D 7/2 (
s

rs
2

3H 3p1/2zS 3

2DT, T!v* ,

8M3v* , T@v* ,

~16!

M35E
0

`

dxF 1

x2
2

x2 expx2

~expx221!2G.0.65, ~17!

wherez(z) is the Riemann function. The contribution~16!
should play the dominant role in the half-metall
ferromagnets.13,16 In addition to that, this contribution ma
modify considerably the temperature dependence of 1/T1 in
‘‘usual’’ ferromagnets, a crossover fromT5/2 to T3/2 depen-
dence of the correction taking place.

For D52 at T,v* @v0 small magnon momenta of orde
of (v0 /D)1/2 make the main contribution to Eq.~10!. On
using the high-temperature expressionNp5T/vp one gets

d (2)K125
V0

3kFM2

8p4SD 5/2v0
1/2

T, ~18!

M25E
0

` dx

11x2E0

p/2 dw sin2 w

~sin2 w1x2!3/2
.1.23. ~19!

Thus in the 2D FM case, in contrast with 3D one, the rel
ation rate 1/T1 is strongly dependent on the anisotropy ga
It is worthwhile to note an important difference between
laxation processes via phonons and via magnons. The m
difference is due to the gap in magnon spectrum. Usu
v0.vn and therefore one-magnon processes contribut
the relaxation rate due to magnon damping only~see the
discussion of the phonon-induced relaxation processe
Ref. 10!. However, the mechanisms of magnon damping
magnetic dielectrics~magnon-magnon interactions! are dif-
ferent from those in magnetic metals and degene
semiconductors.17,9

Consider now the second term in the transverse relaxa
rate 1/T2(T), Eq. ~7!, which is normally determined byKzz,
and the longitudinal contribution to the relaxation rate 1/T1
in Eq. ~6!, which is due to dipole-dipole interactions with th
characteristic constantÃ;auF (1)u. The simplest calculation
from the longitudinal Green’s function for the localized-sp
subsystem gives

Kzz5(
qp

~2]Np /]vp!d~vq2vp!. ~20!

The quantity~20! has been considered in Refs. 18,2 as
contribution to the NMR line width 1/T2. The integration in
the 3D case gives the logarithmic singularity

Kzz5
V0

2

16p4D 3
T ln

T

v0
. ~21!

For D52 this singular term is inversely proportional to th
magnetic anisotropy parameter and very large:
-
.
-
in

ly
to

in
n

te

n

a

Kzz5S V0

4pDD 2

N~v0!.S V0

4pDD 2 T

v0
, T@v0 . ~22!

For small enoughv0 and Ã;A this contribution can domi-
nate over the ‘‘Korringa’’ contribution~13! in 1/T1 at T
.v0 /uIru. The contributions toKzz from thes-d interaction
are not singular inv0 and practically never important.

Now we consider the two-sublattice antiferromagne
~AFM! structure with the wave vectorQ. The expressions for
the spin Green’s functions are obtained in Refs. 9,19.
have

K1252~2S/p! lim
v→0

Im (
q

v21Cqv /vq
2 , K1150

~23!

with v1Cqv being the numerator of the spin-deviatio
Green’s function. The one-magnon damping is given ag
by the imaginary part of the RKKY-type polarization oper
tor. The intrasubband part~which is absent in the FM case! is
finite at arbitrarily smallq.20 Similar to the FM case, the
contributions of intersubband transitions~which correspond
to smalluq2Qu) are cut at the characteristic temperature a
energy scalev* 5v(q* )5cq* ;(D/vF)TN , wherec is the
magnon velocity defined byvp

25vp1Q
2 5v0

21c2p2. In the
3D case takes integration yields

d (1)K125
S2V0

p2c2 S P0 ln
vmax

v0
1PQ ln

vmax

v0*
D , ~24!

Pp5I 2 lim
q→0

uq2pu(
k

d~ tk!d~ tk2q1p!, ~25!

the second logarithm in the brackets of Eq.~24! contains the
cutoff v0* 5@v0

21(v* )2#1/2. The ‘‘enhancement’’ factor in
Eq. ~24! is smaller than in the FM case because of line
dispersion law of magnons, but this contribution still dom
nates over the ‘‘usual’’ Korringa term. Besides that, a lar
logarithmic factor occurs~in the isotropic case, this is cut a
vn only!. Note that a similar logarithmic singularity in 1/T1
takes place for 3D itinerant-electron antiferromagnets.3 It is
interesting that the intersubband contribution does not l
here to enhancing the singularity~even in the nesting situa
tion!, unlike the results for the magnon damping, magne
and transport properties.21,9The singularity becomes stronge
in the 2D case where integration gives

d (1)K125
S2V0

pcv0
S p

2
P01PQ arctan

v0

v*
D . ~26!

This fact may be important when treating experimental d
on layered AFM metals.

The contribution owing to electron-magnon scatteri
processes is determined by the imaginary part of the func
F from Ref. 9. After a little manipulation we obtain

d (2)K12.2SL (
p→0,q

1

qvq1p
2 S 2

]Np

]vp
D @P01PQf~q!#,

where L52S(J02JQ), f(q,q* )50, f(q@q* )51. The
integration in the 3D case yields
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d (2)K125
SLV0

2

8p4c4
@P0f ~T,v0!1PQf ~T,v0* !#, ~27!

f ~T,v0!5E
v0

`

dvvS 2
]N~v!

]v D ln
vmax

v

.T ln
T

v0
S ln

vmax

v0
2

1

2
ln

T

v0
D , T@v0 . ~28!

Thus we have 1/T1}T2 ln T. In the 2D case we derive

d (2)K12.T
SLV0

2

4p4c4 S P0 ln2
T

v0
1PQ ln2

T

v0*
D , ~29!

so that the singularity is not enhanced in comparison with
3D case.

The contributions owing to longitudinal fluctuations wi
be estimated for the localized subsystem only. We obtain

Kzz.(
pq

L2

2vp
2 S 2

]Np

]vp
D d~vq2vp!. ~30!

The corresponding contribution to 1/T2 was considered in
Ref. 1. The term in the longitudinal relaxation rate dete
mined by Eq.~30! is estimated as

d (z)~1/T1!}Ã23H T3/J4, D53,

T2/J3, D52.
~31!

Provided that the dipole-dipole contributions in Eq.~6! are
considerable (Ã;A), this term can dominate over the ‘‘Ko
e

-

rringa’’ term ~24! of order of A2I 2r2T lnuJ/v0u/J2 at T/uJu
.uIru ln1/2uJ/v0u only. Note that this two-magnon contribu
tion is similar to the two-phonon~Raman! contribution in the
spin-lattice relaxation. The existence of the gapv0 is not
important here~at least if it is sufficiently small!, but the
matrix elements of interaction of nuclear spins with magno
are singular, unlike those for acoustic phonons (uMq→0u2
;1/q instead ofq). Therefore we have aT3 law instead of
T7 one for the phonon scattering.10

To conclude, in most cases the main contribution to 1T1
in the localized-moment magnetic metals is of Korringa typ
but its physical origin is more complicated than in the pa
magnetic case. Formally, it results from the interaction
nuclear magnetic moments with thelocalizedelectronic sub-
system with taking into account the ‘‘Stoner’’~Landau!
damping of spin waves via conduction electrons. This c
tribution is greatly enhanced in comparison with the stand
Korringa term by inverse powers of exchange interact
@s2d( f ) parameter#, especially in ferromagnets. In the AFM
case we have 1/T1} lnv0 (D53), 1/T1}v0

21 (D52). Thus
the ‘‘Korringa’’ relaxation rate in the magnetic meta
should be much larger than in paramagnetic ones where
relaxation is determined by direct interaction with condu
tion electrons~such a term is also present in the magnetica
ordered state, but is much smaller than the contribution
cussed!. More complicated electron-magnon scattering p
cesses may result in considerable deviations of the temp
ture dependence of 1/T1 from the linear Korringa law.
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