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Decay of the metastable phase ind51 and d52 Ising models
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~Received 8 April 1999!

We calculate perturbatively the tunneling decay rateG of the metastable phase in the quantumd51 Ising
model in a skew magnetic field near the coexistence line 0,hx,1, hz→20 at T50. It is shown thatG
oscillates in the magnetic fieldhz due to discreteness of the excitation energy spectrum. After mapping of the
obtained results onto the extreme anisotropicd52 Ising model atT,Tc , we verify in the latter model the
droplet theory predictions for the free energy analytically continued to the metastable phase. We also find
evidence for the discrete-lattice corrections in this metastable phase free energy.@S0163-1829~99!04341-6#
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It is widely accepted~Refs. 1 and 2, for review, see Re
3! that for all T,Tc , the free energyF(H) of the two-
dimensional Ising model analytically continued from t
positive real axisH.0 into the complexH plane, has a
branch cut singularity at the origin. Near the cut drawn alo
the negative real axisH,0, the imaginary part of the free
energy is believed to have the following form:4

Im F~e6 ipuHu!56BuHuexp~2A/uHu! ~1!

for small uHu. This expression extrapolates to the Isi
model the results obtained by Langer5 and Güntheret al.6 in
the droplet field theory analysis of the coarse-grain
Ginzburg-Landau model. In the droplet theory, the free
ergy continued to the cutH,0 is interpreted as the fre
energy of the metastable stateFms(H)[F(eipuHu). Langer
conjectured5 that ImFms(H) may be identified~up to a dy-
namical factor! with the metastable phase decay rate p
vided by the thermally activated nucleation.

The phenomenological droplet theory prediction for t
amplitudeA in Eq. ~1! is3,4,7

A5
bŜ2

8M
, ~2!

whereM is the spontaneous magnetization, andŜ2 denotes
the square of surface free energy of the equilibrium-sha
droplet divided by its area. BothŜ2 and M relate to the
equilibrium zero-field state, and are known exactly. T
quantityŜ2 can be calculated by use of the Wulff’s constru
tion from the exact anisotropic surface tension, as it w
shown by Zia and Avron,9 and M was obtained by Yang.10

The linear dependence onuHu prefactor in Eq.~1! arises in
the continuum droplet field theory6 from the contribution of
the surface excitations~Goldstone modes! of the critical
droplet.

Equations ~1! and ~2! were confirmed by Gu¨nther,
Rikvold, and Novotny7 in numerical constrained transfe
matrix calculations~see also Ref. 8!, and by Harris in nu-
merical analysis of certain power series.4 However, no ana-
lytic microscopic evaluation of Eqs.~1! and ~2! for the d
52 Ising model did exist. The purpose of the present pa
is to perform analytic verification of Eqs.~1! and~2! for the
d52 Ising model in the extreme anisotropic limit.
PRB 600163-1829/99/60~21!/14525~4!/$15.00
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We start from the anisotropic Ising model on the squ
lattice. It is characterized by the nearest-neighbor in-row a
in-column coupling constantsJ1.0, J2.0, the magnetic
field H, and the inverse temperatureb51/(kBT). The ex-
treme anisotropic limit of the model is defined as follows11

t[exp~22bJ2!→0, ~3!

J15
t

bhx
→0, H5hzJ1→0,

with constanthx and hz . The transfer matrix of thed52
Ising model in this limit can be written up to a nonsignifica
numerical factor as exp(2bJ1H), whereH denotes the quan
tum spin-1/2 Hamiltonian of the Ising chain in a skew
magnetic field:

H52 (
n51

N

~sn
zsn11

z 1hxsn
x1hzsn

z!. ~4!

Heresx,z are the Pauli matrices,N is the number of sites in
the chain, cyclic boundary conditions are supposed. The
energyF per the lattice site of the two-dimensional Isin
model is proportional in limit~3! to the ground-state energ
E(hx ,hz) of the quantum Hamiltonian~4!:

F5J1 lim
N→`

FE~hx ,hz!

N G . ~5!

Our strategy contains two steps.~i! We calculate pertur-
batively the tunneling decay rate~proportional to the imagi-
nary part of the energy! of the metastable state in model~4!
at zero temperature.~ii ! By use of mapping Eq.~5! we obtain
then the imaginary part of the metastable free ene
Fms(H) at T,Tc for the d52 Ising model in limit~3!.

It should be noted, that models like Eq.~4! have been
widely used to describe dynamical properties observed
real quasi-one-dimensional Ising ferromagnets.12,13 So, the
problem outlined in step~i! is by itself of considerable physi
cal interest.

In the small field limithx!1, hz!1 model~4! was stud-
ied by Fogedby.14 In the free-fermion pointhz50 Hamil-
tonian ~4! reduces to the form15
14 525 ©1999 The American Physical Society
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H0[Huhz50
5E

2p

p du

2p
v~u!c†~u!c~u!1const, ~6!

whereu is the quasimomentum, fermionic operatorsc†(u),
c(u) satisfy the canonical anticommutational relations

$c~u!,c~u8!%5$c†~u!,c†~u8!%50,

$c†~u!,c~u8!%52pd~u2u8!,

and

v~u!52F ~12hx!
214hxsin2

u

2G1/2

.

At zero temperature, there is a phase transition pointhx51,
which divides ordered (0,hx,1) and disordered (hx.1)
phases. Two ferromagnetic ground statesu01& and u02& co-
exist in the interval 0,hx,1. They are distinguished by th
sign of the spontaneous magnetization^06usn

zu06&56M ,
whereM5(12hx

2)1/8.
A small negative longitudinal magnetic fieldhz,0 re-

moves the ground-state degeneration. The following fer
onic representation for the Hamiltonian~4! is valid in the
thermodynamic limitN→`,

H5H01V1const, ~7!

whereH0 denotes the free-fermionic Hamiltonian~6!, V is
given by

V5uhzuM (
nPZ

:expS %n

2 D :, ~8!

%n

2
52(

j ,n
c j

(1)c j
(2) ,

c j
(1)5 i E

2p

p du

2p

exp~ i j u!

Av~u!
@c~u!1c†~2u!#,

c j
(2)5 i E

2p

p du

2p
exp~ i j u!Av~u!@2c~u!1c†~2u!#,

andc(u)u01&50 for all u. We have used the conventiona
notation :•••: for the normal ordering with respect to th
fermionic operatorsc(u),c†(u). Representation~7!, ~8! can
be obtained from Eq.~4! by applying the Jordan-Wigner16

and duality11 transformations. In performing the normal o
dering of fermionic operators in Eq.~8! we followed Jimbo
et al.17

The nonlinear interaction termV in Eq. ~7! prevents the
exact integrability of the model. So, the natural way to stu
model ~7! for small uhzuÞ0 is to use a certain perturbatio
expansion. It is clear, however, that the straightforward p
turbation theory with the zero-order HamiltonianH0 and
perturbationV is useless in the considered problem. This
due to the fact that the termV contains the long-range inter
actionV0 between fermions, which is given by

V0[Vuv(u)→15uhzuM (
nPZ

:expS 22(
j ,n

bj
†bj D :, ~9!
i-

y

r-

s

where

bj5E
2p

p du

2p
c~u!exp~ i j u!,

bj
†5E

2p

p du

2p
c†~u!exp~2 i j u!.

OperatorV0 is diagonal in the coordinate representation:

V0bj 2n

† bj 2n21

†
•••bj 1

† u01&

52hzMFN22(
l 51

n

~ j 2l2 j 2l 21!Gbj 2n

† bj 2n21

†
•••bj 1

† u01&,

~10!

where j l, j l 11. Since interaction~10! depends linearly on
the distance between fermions, it changes the structure o
energy spectrum of model~7! at arbitrary small longitudinal
magnetic fieldhzÞ0. So, to describe decay of the metasta
vacuum, one should include the long-range interactionV0
into the zero-order Hamiltonian. This phenomenon is w
known in the Stark effect.18 To describe ionization of an
atom by the uniform electric fieldE, one needs to conside
the corresponding electrostatic energyeEr in a nonperturba-
tive way.

Accordingly, we subdivide the Hamiltonian~7! into the
zero-order and interaction parts, as follows:

H5H̃01Ṽ, ~11!

where

H̃0[H01V01const, ~12!

Ṽ[V2V0 . ~13!

The numerical constant in Eq.~12! is chosen to provide
H̃0u01&50. Since the new zero-order HamiltonianH̃0 con-
serves the number of fermions, its eigenstates can be cl
fied by the fermion number. It is clear from Eq.~10!, that
fermions created by operatorsbn

† are just the domain walls
dividing the chain into oppositely magnetized domains.

One can easily verify in the smallhx limit, that the meta-
stable vacuumu01& decays preferably into a one-doma
state. We suppose, that this is true also in the general
0,hx,1. So, below we shall contract the space of cons
ered states to the two-fermion~i.e., one-domain! sector.

Let uf l& be the translation invariant two-fermion eige
state of the HamiltonianH̃0. In the coordinate representatio
the zero-order eigenvalue problemH̃0uf l&5El uf& takes the
form

(
n8PZ

Knn8f l~n8!2M unhzuf l~n!5
El

2
f l~n!,

where

Knn85E
2p

p du

2p
v~u!exp@ i ~n2n8!u#,
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f l~n!5^01ub0bnuf l&, f l~2n!52f l~n!.

If the energyEl is small enough,El,«, where«!v(0), the
wave functionf l(n) is mainly concentrated far from th
origin in the classically available region unu
.v(0)/(uhzuM ). Therefore, we can apply the ‘‘strong
coupling approximation’’19 to represent the wave function
the form

f l~n!>w l~n!2w l~2n!, ~14!

where the functionw l(n) solves the equation

(
n8PZ

Knn8w l~n8!2uhzuMnw l~n!5
El

2
w l~n!.

After the Fourier transform, we obtain

w l~n!5E
2p

p du

2p
w l~u!exp~ inu!,

where

w l~u!5CexpH 2
i

2uhzuM
@ f ~u!2Elu#J , ~15!

C5~2uhzuMN!21/2,

f ~u!52E
0

u

dav~a!.

The 2p-periodicity condition for the functionw l(u) deter-
mines the energy levelsEl :

El5
f ~p!

p
22uhzuMl . ~16!

The normalization constantC in Eq. ~15! is chosen to yield

^f l uf l 8&5
d l l 8
DE

,

whereDE52uhzuM is the interlevel distance.
To determine the decay rateG of the metastable vacuum

we use the following natural, though nonrigorous, proced
In the second-order correctionEms

(2) to the metastable vacuu
energy we shift the excitation energy levels downwards
the complexE plane:

Ems
(2)52DE(

l

z^01uṼuf l& z2

El2 ig
. ~17!

The widthg describes phenomenologically the decay rate
one-domain statesuf l&. Decay of these states can be cau
both by term~13! and by other interactions not included in
the Hamiltonian~4!. As the result, the metastable vacuu
energy gains the imaginary part

Im Ems>2pg~hz!z^01uṼuf l& zEl50
2 , ~18!

where

g~hz!5Im cotF f ~p!2 ipg

2uhzuM
G .
e.

o

f
d

In deriving Eq. ~18! we have extracted from the sum th
slowly depending onl factor u^01uṼuf l&u2 in the right-hand
side of Eq.~17!.

The metastable vacuum relaxation rateG is determined
then in the usual way,

G522 Im Ems. ~19!

It is evident from Eqs.~18! and~19! thatG oscillates inhz
21

with the period 2pM / f (p). These oscillations become con
siderable in the case of the resonant tunnelingg&DE. In the
opposite limit g@DE oscillations inhz

21 vanish and rela-
tions ~18! and ~19! transform to Fermi’s golden rule,18,20

G52p z^01uṼuf l& zEl50
2 . ~20!

In the limit hz→20 the matrix element of the interactio
operator can be asymptotically written as

^01uṼuf l&> i uhzuMNE
2p

p du

2p
w l~u!

dln@v~u!#

du

>
1

3A2
~ uhzuMN!1/2expH 2

u f ~u0!u
2uhzuM

J , ~21!

where u05 i u ln hxu is the imaginary zero of the function
v(u), v(u0)50. Substitution of Eq.~21! into Eq. ~18!
yields finally

Im Ems52
p

18
NuhzuMg~hz!expH 2

u f ~u0!u
uhzuM

J . ~22!

Perhaps, described by Eqs.~19! and~22! oscillations inhz of
the metastable state decay rate could be observed~indeed, in
somewhat modified form! in real quasi-one-dimensiona
Ising ferromagnets at very low temperatures.

Now let us map obtained results to thed52 Ising model.
Applying Eq. ~5! to Eq. ~22! we obtain

Im Fms5BuHug̃~H !exp~2A/uHu!, ~23!

where

g̃~H !5Im cotH J1@ f ~p!2 ipg#

2uHuM J , ~24!

A5
J1

M
u f ~2 i ln hx!u, ~25!

B5
p

18
M , ~26!

and H→20. These expressions should be compared w
the droplet theory predictions~1! and ~2!.

First, let us verify, that expressions~2! and ~25! for the
amplitudeA are equivalent. To do this, we need to determ
the quantityŜ2 in limit ~3!.

The droplet equilibrium shape in thed52 Ising model is
described by the equation9

a1cosh~blx1!1a2cosh~blx2!51, ~27!
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wherex1 ,x2 denote Descartes coordinates of a point on
droplet boundary, the scale parameterl determines the drop-
let size, and

a15
tanh~2bJ2!

cosh~2bJ1!
, a25

tanh~2bJ1!

cosh~2bJ2!
.

In the extreme anisotropic limit

a1>122t2~11hx
22!, a2>4t2/hx

and Eq.~27! simplifies to

x156
J1

l
v~ iblx2!.

Integrating in x2 this equation we obtain the area of th
equilibrium-shaped dropletS(l)5W/l2, where

W5
2J1

b
u f ~2 i ln hx!u.

It follows from Wulff’s theorem9 that the surface energy
S(l) also can be expressed inW: S(l)52W/l. Therefore,
Ŝ254W, and

A5
bŜ2

8M
5

J1

M
u f ~2 i ln hx!u

in exact agreement with Eq.~25!.
e Further, expression~23! differs from Eq.~1! by the oscil-
lating factorg̃(H). We interpret this factor as the correctio
coursed by the discrete-lattice effects. Those may be sig
cant at low temperatures in the presence of stro
anisotropy.21 The following observation supports such an i
terpretation.

At low temperatures (hx→0), the factorg̃(H) can be
written as

g̃~H !5Im cotH p2x1~H !2
ipgJ1

2uHuM J , ~28!

where 2x1(H)52J1 /(M uHu) is the continuum nucleation
theory value of the critical droplet diameter in thex1 direc-
tion. Maximum points in Eq.~28! just correspond to discret
values of this diameter.

The oscillatory factorg̃(H) contains parameterg, which
remains undetermined in the present incomplete theory.
would expect, however, that in the critical region (hx→1)
parameterg is large enough, so thatg̃(H)>1, and oscilla-
tions in Eq.~23! vanish. Really, in this limit spectrum~16!
becomes continuous, andG can be obtained directly from
Eq. ~20! without referring to Eqs.~17! and ~18!.

In the critical region expression~26! for the ampiltudeB
in Eq. ~23! agrees with our previous result.22
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