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Decay of the metastable phase id=1 and d=2 Ising models
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We calculate perturbatively the tunneling decay fdatef the metastable phase in the quantdm1 Ising
model in a skew magnetic field near the coexistence lirehP<1, h,——0 at T=0. It is shown thatl’
oscillates in the magnetic field, due to discreteness of the excitation energy spectrum. After mapping of the
obtained results onto the extreme anisotragie2 Ising model afT<T., we verify in the latter model the
droplet theory predictions for the free energy analytically continued to the metastable phase. We also find
evidence for the discrete-lattice corrections in this metastable phase free diS04§3-18209)04341-6

It is widely acceptedRefs. 1 and 2, for review, see Ref.  We start from the anisotropic Ising model on the square
3) that for all T<T., the free energy-(H) of the two- lattice. It is characterized by the nearest-neighbor in-row and
dimensional Ising model analytically continued from thein-column coupling constant§,;>0, J,>0, the magnetic
positive real axisH>0 into the complexH plane, has a field H, and the inverse temperatufe=1/(kgT). The ex-
branch cut singularity at the origin. Near the cut drawn alongreme anisotropic limit of the model is defined as follots:
the negative real axisl<0, the imaginary part of the free
energy is believed to have the following fof: r=exp(—2BJ,)—0, 3

Im F(e*'"|H|)=+B|H|exp(— A/|H|) (1)

r
for small |H|. This expression extrapolates to the Ising Ji th—>0, H=h,J,~0.
model the results obtained by Langand Guntheret al® in . ,
the droplet field theory analysis of the coarse-grainedVith constanth, andh,. The transfer matrix of thel=2
Ginzburg-Landau model. In the droplet theory, the free enlsing model in this limit can be written up to a nonsignificant
ergy continued to the cutl<O0 is interpreted as the free Numerical factor as exp(8J;H), where} denotes the quan-
energy of the metastable stafg,(H)=F(e'"|H|). Langer tum sp|.n-1./2 Hamiltonian of the Ising chain in a skewed
conjectured that ImF,,(H) may be identifiedup to a dy- magnetic field:
namical factor with the metastable phase decay rate pro- N
vided by the thermally activated nucleation. B 7 7 M 2
The phenomenological droplet theory prediction for the H= _nzl (0707041 hxog o). )
amplitudeA in Eq. (1) is>*’
A Here 0 are the Pauli matriced\ is the number of sites in
Bx? the chain, cyclic boundary conditions are supposed. The free
~sMm’ ) energy F per the lattice site of the two-dimensional Ising
model is proportional in limi{3) to the ground-state energy
whereM is the spontaneous magnetization, &fddenotes E(hy,h,) of the quantum Hamiltoniaf):
the square of surface free energy of the equilibrium-shaped
E(hx,hz)}

droplet divided by its area. BotR? and M relate to the F=1J. lim
e e . 1
equilibrium zero-field state, and are known exactly. The N

quantityi2 can be calculated by use of the Wulff's construc-

tion from the exact anisotropic surface tension, as it was Our strategy contains two step$) We calculate pertur-

shown by Zia and Avrofi,andM was obtained by Yanyf.  batively the tunneling decay ratproportional to the imagi-

The linear dependence ghi| prefactor in Eq.(1) arises in  nary part of the energyof the metastable state in modd)

the continuum droplet field thedtyrom the contribution of  at zero temperaturéii) By use of mapping E¢(5) we obtain

the surface excitationgGoldstone modgsof the critical then the imaginary part of the metastable free energy

droplet. Fms(H) at T<T, for thed=2 Ising model in limit(3).
Equations (1) and (2) were confirmed by Gather, It should be noted, that models like E@l) have been

Rikvold, and Novotny in numerical constrained transfer- widely used to describe dynamical properties observed in

matrix calculations(see also Ref. )3 and by Harris in nu- real quasi-one-dimensional Ising ferromagréts So, the

merical analysis of certain power serfeslowever, no ana- problem outlined in stefi) is by itself of considerable physi-

lytic microscopic evaluation of Eqgl) and (2) for the d cal interest.

=2 Ising model did exist. The purpose of the present paper In the small field limith,<1, h,<1 model(4) was stud-

is to perform analytic verification of Eqél) and(2) for the  ied by Fogedby? In the free-fermion poinh,=0 Hamil-

d=2 Ising model in the extreme anisotropic limit. tonian (4) reduces to the fori

A

©)

N—c
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de where

Ho=Mln,_,= f ! w(0) ' () y(0)+const, (6)

~2m T dé
where 6 is the quasimomentum, fermionic operatgry( 6), bj= f, e w0 expij o),
(0) satisfy the canonical anticommutational relations

/ t to g AL i
{(0),4(6")}={¢'(0),4'(6")}=0, b= S_¥(O)exp—ijo).
T I\ — _
{01(0),4(0")}=2m5(6-6"), OperatorVy is diagonal in the coordinate representation:
and
TRt T
12 Vobjznbizn—l' ' .b1'1|o+>
w(0)=2[(1—hy)?+4h,sirt - n
2 =—h,M[N=23 (jz—jz-1)|b], b} ---bf[0.),

=1 n‘2n

At zero temperature, there is a phase transition pojrt1,
which divides ordered (€h,<1) and disorderedh,>1) (10
phases. Two ferromagnetic ground std@s) and|0_) co-

exist in the interval 82h,<1. They are distinguished by the

sign of the sporzlt?/geous magnetizatigh. [o7|0.) = £ M, energy spectrum of modé€¥) at arbitrary small longitudinal

whereM = (1- hx), ' L L magnetic fielch,# 0. So, to describe decay of the metastable
A small negative longitudinal magnetic field, <0 re-  yacyum, one should include the long-range interactign

moves the ground-state degeneration. The following fermiinis the zero-order Hamiltonian. This phenomenon is well

onic representation for the Hamiltonid#) is valid in the  nown in the Stark effec® To describe ionization of an

where j;<j,.,. Since interaction10) depends linearly on
the distance between fermions, it changes the structure of the

thermodynamic limitN—c, atom by the uniform electric fiel&, one needs to consider
H="H,+V+const, ) :ir\]/ee c\:l\cg/espondmg electrostatic eneefyr in a nonperturba-
where H, denotes the free-fermionic Hamiltonidh), V is Accordingly, we subdivide the Hamiltoniaf¥) into the
iven b zero-order and interaction parts, as follows:
g y
=Ho+V 11
V=|h|M >, :ex %) (8) H=TotV, (12)
nez where
n (+) () Ho="Ho+ Vy+ const (12)
= = \ \ 0 0 0 '
2 J;n l//] ¢J 1
V=V-V,. (13
= dé expij 6)

The numerical constant in Eq12) is chosen to provide

Ho|0,)=0. Since the new zero-order Hamiltoniafy con-
- de serves the numb_er of fermions,_its eigenstates can be classi-
lpj(—):-J’ %exp(ij 0)Jo(0)[— w(0)+ ' (— )], fied _by the fermion number. It is Cl_ear from EQLO}, that
- fermions created by operatob% are just the domain walls
| dividing the chain into oppositely magnetized domains.

One can easily verify in the smdil, limit, that the meta-
stable vacuum0,) decays preferably into a one-domain
state. We suppose, that this is true also in the general case
0<h,<1. So, below we shall contract the space of consid-

() —j —
'pj =l .27 m[‘/j(a)"_‘lﬁ( 0)],

and ¢(0)|0,)=0 for all 6. We have used the conventiona

notation - -: for the normal ordering with respect to the

fermionic operators/(6), (). Representatiofi7), (8) can

be obtain?ﬂ from Eq(4) by applying the Jordan-Wigntr

and duality™ transformations. In performing the normal or- =

dering of fermionic operators in E¢8) we followed Jimbo ered states to the two-fermlc(n_e., oqe-domamsec_tor. .

et all’ Let |¢)) be the translation invariant two-fermion eigen-
The nonlinear interaction ternd in Eq. (7) prevents the State of the Hamiltoniaﬁio. In the coordinate representation,

exact integrability of the model. So, the natural way to studythe zero-order eigenvalue probl@\~°tb|¢|>= E o) takes the

model (7) for small |h,|#0 is to use a certain perturbation form

expansion. It is clear, however, that the straightforward per-

turbation theory with the zero-order Hamiltoni&id, and , _E

perturbationV is useless in the considered problem. This is n%z Ko éi(n") —M|nh,| ¢(n)= - di(n),

due to the fact that the term contains the long-range inter-

actionV, between fermions, which is given by where

= dé )
Vo=Vlup-1=nIM 3 ‘exg 23 bfb,-):, 9 Knnf=f S-w(f)exdi(n—n")6],
neZ j<n X
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di1(n)=(04|bobn|d)),  d(—n)=—¢(n).

If the energyE, is small enoughk,<e, wheree<w(0), the
wave function¢,(n) is mainly concentrated far from the
origin in the classically available region |n|
>w(0)/(|hM). Therefore, we can apply the “strong-
coupling approximation®® to represent the wave function in
the form

$1(nN)=g|(n)— ¢ (—n), (14

where the functionp|(n) solves the equation

E
2 Kawei(n)=|hMnei(n)= 5 ¢i(n).

nez

After the Fourier transform, we obtain

- do ,
am= | 5= evexsing,

where

¢|(0>=Cexp[ - mme)—aa]], (15)

C=(2|h,/MN)~ 12

f(t9)=2f:daw(a).

The 27-periodicity condition for the functiorp,(6) deter-
mines the energy levek, :

f()

E|:T—2|hZ|M|. (16)

The normalization consta@® in Eq. (15) is chosen to yield
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In deriving Eq.(18) we have extracted from the sum the
slowly depending o factor |(0, |V|¢,)|? in the right-hand
side of Eq.(17).

The metastable vacuum relaxation rdtels determined
then in the usual way,

[=-2Im E.. (19)

It is evident from Eqs(18) and(19) thatT oscillates inh; *
with the period 2rM/f (). These oscillations become con-
siderable in the case of the resonant tunnefisgAE. In the
opposite limit y>AE oscillations inhz_1 vanish and rela-
tions (18) and (19) transform to Fermi’s golden rufé;°

I=2m(0.[VI¢)[Z -o. (20)
In the limit h,— —0 the matrix element of the interaction
operator can be asymptotically written as

~ i T dé din[ w(0)
(0. T gy=ingun [ 57 0 T
1 |f(90)|]
- = 172 _
_3\/§(|hZ|MN) exp{ 2TV | (21

where 6,=i|lnh, is the imaginary zero of the function
w(6), w(6y)=0. Substitution of Eq.(21) into Eq. (18)
yields finally

f(6,

Perhaps, described by Eq49) and(22) oscillations inh, of
the metastable state decay rate could be obsdimdded, in
somewhat modified forinin real quasi-one-dimensional
Ising ferromagnets at very low temperatures.

Now let us map obtained results to te= 2 Ising model.

ko
Im Eps=— 1_8N|hZ|Mg(hz)eXp{

S . .
(Il )= TE Applying Eq. (5) to Eg. (22) we obtain
whereAE=2|h,|M is the interlevel distance. Im Fns=B|H[g(H)exp(—A/[H)), (23
To determine the decay raté of the metastable vacuum \here
we use the following natural, though nonrigorous, procedure.
In the second-order correcticﬁﬁg to the metastable vacuum - Ji[f(m)—imy]
energy we shift the excitation energy levels downwards into g(H)=Im cot T 2HM | (24)
the complexE plane:
- Ji
0. [V|g)? A=—|f(—ilnhy], 2
Efnzg:_AEE |< +| |¢I>| . (17) M| ( x)| ( 5)
| E| —ly

The widthy describes phenomenologically the decay rate of B— EM 26)
one-domain statelsp|). Decay of these states can be caused 18"

both by term(13) and by other interactions not included into

the Hamiltonian(4). As the result, the metastable vacuum@ndH— —0. These expressions should be compared with

energy gains the imaginary part

Im Epe=—mg(h,)|(0, V][ o, (18)

where

f('n')—i'n'y}

g(hy,)=Im cot{ 2Th,M

the droplet theory predictiond) and (2).

First, let us verify, that expressiorfg) and (25) for the
amplitudeA are equivalent. To do this, we need to determine
the quantity>? in limit (3).

The droplet equilibrium shape in thile=2 Ising model is
described by the equatidn
(27)

a,Cosh{ BAX) +a,cosi BAX,) =1,
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wherex, ,x, denote Descartes coordinates of a point on the Further, expressio(23) differs from Eq.(1) by the oscil-

droplet boundary, the scale parameteadetermines the drop-
let size, and

B tanh(28J,) B tanh(28J,)
1= cosh2B3,)’ %27 cosh2B3,)

In the extreme anisotropic limit
a,=1-27%(1+h?), a,=47%h,
and Eq.(27) simplifies to

Jio
x1=txw(|,8)\x2).

Integrating inx, this equation we obtain the area of the

equilibrium-shaped dropled(\) =W/\?, where

W—&|f—'lh|
_B (—=ilnhy)l|.

It follows from Wulff's theoreni that the surface energy
2 (\) also can be expressed Wit X (\)=2W/\. Therefore,

32=4w, and

A B0
8M M

in exact agreement with E@25).

[f(=iInhy)|

lating factorg(H). We interpret this factor as the correction
coursed by the discrete-lattice effects. Those may be signifi-
cant at low temperatures in the presence of strong
anisotropy?* The following observation supports such an in-
terpretation.

At low temperatures {,—0), the factorg(H) can be
written as

imyd,
2|HIM |’

where X,;(H)=2J;/(M|H|) is the continuum nucleation
theory value of the critical droplet diameter in the direc-
tion. Maximum points in Eq(28) just correspond to discrete
values of this diameter.

The oscillatory factog(H) contains parametey, which
remains undetermined in the present incomplete theory. One
would expect, however, that in the critical regioh,{-1)

parametery is large enough, so that(H)=1, and oscilla-
tions in Eq.(23) vanish. Really, in this limit spectruril6)
becomes continuous, ardd can be obtained directly from
Eqg. (20) without referring to Eqs(17) and(18).

In the critical region expressiof26) for the ampiltudeB
in Eq. (23) agrees with our previous resaft.

g(H)=Imcot| w2x,(H)— (28
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