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Determination of pore fractal dimensions and porosity of silica glasses
from the dielectric response at percolation
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The analysis of the dielectric relaxation spectrum at percolation was used for the determination of the
dimensions of pore fractals and porosity of silica glasses. The percolation phenomenon in the porous glasses is
related to the transfer of the electric excitation within the developed network of open pores due to migration of
protons and ions along the pore surface of connected pores. The dielectric spectroscopy technique allows us to
identify the relaxation process related to percolation, and to extract the fractal dimensions of the paths of
excitation transfer associated with migration of charge carriers within the porous medium. The random fractal
model describes the geometrical disorder of the porous matrix. In the framework of this model, the relationship
between the porous space fractal dimension and the porosity of the medium has been obtained. The juxtapo-
sition of the structural and the relaxation models enables us to derive the relationship between the value of
porosity and the fractal dimensions of the paths of excitation transfer within the porous medium. The experi-
mental porosity values for several porous silica glasses obtained by means of the developed theoretical ap-
proach and dielectric spectroscopy measurements are presented. The porosity values obtained from the dielec-
tric spectroscopy method are found to be in good agreement with the data obtained from the measurements of
the relative mass decrements.@S0163-1829~99!11743-0#
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I. INTRODUCTION

Recently, much attention has been paid to porous si
glasses obtained from sodium borosilicate glasses. The
regular structure and the morphology of the involved poro
medium are a matter of interest in many industr
processes.1–3 For instance, the moisture-holding capaci
transport phenomena, and dynamics of molecules of liqu
and solids confined in the pores are all related to the p
geometry.

A silica porous glass can be defined as a bicontinuos
dom structure of two interpenetrating percolating phas
namely the solid and the pore networks. The pores in
glasses are connected to each other and the pore size d
bution is narrow. The characteristic pore spacing depend
the method of preparation, and can be between 2 and
nm. The bicontinuos structure is obtained as a result of s
odal decomposition of the two phases SiO2 and B2O31Na2O
and formation of the interfacial layer during the formatio
process. This layer can be destroyed after leaching out
acid-soluble phase B2O31Na2O with formation of the devel-
oped porous morphology and large surface to volume ra
A typical example of silica glasses is Vycor glass. The pro
erties and morphological characteristics of Vycor glass h
been studied extensively due to the features of this glass
in common with porous materials of technological interes

In order to augment our understanding of the effect of
structure on the properties of the silica glasses, the first
and challenge is to characterize the morphology of such
terials and, in particular, such parameters as pore and su
fractal dimensionsas well as theirporosity. The fractal di-
mensions of solids are determined mainly by small an
x-ray and neutron scattering~SAXS and SANS!,4–16

microscopy,17,18 electronic energy transfer techniques,19–23
PRB 600163-1829/99/60~20!/14348~12!/$15.00
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etc. The molecular probe method and its modifications us
adsorption can also play an important role in the determi
tion of the fractal dimensions of a porous medium.24–29

There are numerous contradictions and discussions in
literature regarding both thevolume and surface fracta
structuresin Vycor glasses.12–14,20,21,23,25,30,31A significant
chemical interaction between the adsorbed water and
pore surface with the possible formation of a gel-like st
can significantly modify the surface morphology of the por
in silica porous glasses. Most of the information related
the pore morphology was obtained from transmission e
tron microscopy, adsorption techniques, and small-an
scattering techniques.12–14,21,22,25,30–36 For example, an
analysis of the small-angle scattering pattern from dry Vyc
suggest that the glass possesses a rough surface with a f
dimension ofD;2.5, and with the upper length cutoff,20
Å ~Ref. 14!. However, several other investigations show
evidence of surface fractality in H2O-saturated samples.12,37

In recent investigations6,13,31,35it has been shown that a frac
tal surface can defractalize upon deposition of an adsor
film of water. Particularly, a small amount of water, 3
w/w, is sufficient to render the surface smooth. Regard
the fractality of the pore volumes, the question is hithe
even more puzzling. On the one hand, the energy-tran
measurements suggest that the pore structure of Vycor g
is fractal on the length scale,100 Å with a fractal dimen-
sion of 1.7460.12~Refs. 21 and 38!. This rather small value
of D was imputed to a three-dimensional percolation clus
backbone without dangling bonds.38 On the other hand, a
fractal geometry was indicated in Vycor glass on a len
scale larger than 1000 Å with the percolation netwo
formed by the empty pores and the value of fractal dim
sion of 1.7~Refs. 6 and 30!. This value concurs well with the
data obtained from the energy-transfer measurements. C
14 348 ©1999 The American Physical Society
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trary to that result, it was noted14 that the SANS, and SAXS
data leave little room for the idea that Vycor glass ha
fractal pore network on a scale above 40 Å.

For characterization ofporosity in glasses, the most suc
cessful and popular techniques are image analysis, scatt
techniques, adsorption techniques, and merc
porometry.4,12,20,24,25,30,39–47The most significant drawbac
of the traditional methods of porosity determination is th
they are not always accurate regarding the length scale
volved in the measurement. Indeed, it is important to bea
mind that each of the above-mentioned techniques ha
own range of applicability depending on the sizes of
pores.48 In particular, gas-adsorption methods are sensitiv
micro- and mesopores on a length scale of 10210-1027 m
~Ref. 41!, scattering methods SAXS and SANS allow one
study the mesoscale range of pore sizes of 1029-1027 m
~Refs. 4, 12, and 30!, and the mercury porosimetry method
appropriate for the macroscopic scales of 1025-1027 m ~Ref.
40!. Therefore, both the porosity values for the fractal m
dium and the aforementioned fractal dimension depend
the scale for which the measuring technique is appropria49

In addition to the techniques mentioned above, the NM
and dielectric relaxation properties of porous media are a
found to be very sensitive to the geometrical micro and m
sostructural features of the porous matrix.48,50 The dielectric
spectroscopy can be applied when the pore space is fi
with a conductive or nonconductive dielectric material. T
response also depends on the properties of the materials
ing the pores.51–56 The determination of porosity from di
electric spectroscopy is mainly based on the mixt
formulas.55–60 Recently a theoretical framework, based on
geometric characterization of porous media whose the p
space is filled with a conductor, introducing the local poro
ity distribution and local probabilities has bee
proposed.48,61,62 This local porosity theory is based on th
effective medium approximation and percolation scal
model employed for the matrix-filler two-phase medium. A
application of these approaches to the determination of
rosity requires a filling of the whole pore space with a co
ductor or dielectric material in order to make the matrix-po
media a two-phase system. However, the filling the en
pore space can be only performed in the case of conne
pores. Meanwhile, even in the percolating porous space
the pore surface has a fractal nature, then it is an imposs
task to fill up all the voids.

One alternative to the aforementioned approach for in
ring the morphology of porous glasses is a method base
the analysis of the dynamics of water molecules that
easily be absorbed from ambient air. Indeed, as it has b
shown in Ref. 35 even ‘‘dry’’ silica glasses can contain thr
types of adsorbed water on the pore surface. The first t
forms a physisorbed layer, which is desorbed by heatin
90 °C. The second and third types form a chemisorbed la
associated with spatially distributed individual molecules~or
groups of several molecules! on the surface. The second typ
of water comes off above 190 °C, while the third type is
more strongly chemisorbed layer, consisting of water cl
ters of 40–60 molecules,35 connected to each other by hy
drogen bonds and forming an ordered array of water m
ecules. The dynamic properties of adsorbed water
different from those of bulk water.63 The dielectric spectros
a

ing
y

t
in-
in
its
e
to

-
n

.

o
-

ed

ll-

e

re
-

o-
-

e
ed
if
le

r-
on
n
en
e
e

at
er

-

l-
re

copy method based on the analysis of the dynamics of w
does not require the above-mentioned water saturation
periments and deals only with a thin layer of water m
ecules adsorbed from the atmosphere.

In our prior paper,64 we investigated the dielectric prop
erties associated with the relaxation of water molecules
the adsorption layer of several silica glasses over broad
gions of frequency and temperature with the purpose
studying the dynamics and inferring the morphological pro
erties of the porous materials. It was shown that the comp
dielectric behavior could be described in terms of the fo
distributed relaxation processes. The typical spectrum of
dielectric losses associated with the relaxation of water m
ecules from the adsorptive layer for the studied poro
glasses versus frequency and temperature is displayed in
1. The first relaxation process which is observed in the l
temperature region2100 °C to110 °C is due to the reorien
tation of water molecules in icelike structures of water clu
ters. The second relaxation process has a specific saddl
shape and is well marked in the temperature range250 to
1150 °C. This relaxation process is thought to be a kine
transition due to the water molecule reorientation in the
cinity of defects. The third process is located in the lo
frequency region and the temperature interval 50–80
This process shows several specific features. Thus, the
plitude of this process essentially decreases when the
quency increases. Further, the maximum of dielectric los
has almost no temperature dependence. At last, when
temperature approaches to the magnitude related to the
relaxation process, electric conductivity significantly i
creases~Fig. 2!. As shown in the literature,65 these aforemen-
tioned features indicate that this process is related to pe
lation. Indeed, the percolation associated with the pro
transport in silica glasses is known in the literature65,66 in the
temperature range of the third process. Therefore, we a
ciate the third relaxation process with the percolation of
electric excitation within the developed fractal structure
connected pores due to migration of the protons and i
filling the porous space.

In the high-temperature region, above 150 °C, the glas
show an increase in dielectric constant and dielectric los

FIG. 1. Three-dimensional plot of the frequency and tempe
ture dependence of the dielectric losses of sample 2~see Sec. III!.



h
ro
t t
rg
tio

le
i
la
o

th
en
n
l
-

tio
ed
ilic

t
o
l
th
ia
io
er
se
te
it
a

ne
u

of a

io of

ibed
-
on
can

e is

of
n

in

of

tal
-
t

ex-
ned
-
e
elf
i-
lue.
r

a-

vals
ee
l is
nd
ful-

e of
ion.
del
n

n-
he
f-
that

u

14 350 PRB 60PUZENKO, KOZLOVICH, GUTINA, AND FELDMAN
in the low-frequency limit. This relaxation process is thoug
to be related to the Maxwell-Wagner-Sillars polarization p
cess as a result of the trapping of free charge carriers a
interface, thus causing a build up of macroscopic cha
separation, or space charge with a relatively long-relaxa
time.

The aim of this paper is to further analyze the comp
relaxation behavior of the third relaxation process, which
associated with transfer of the electric excitation at perco
tion, with the purpose of inferring the geometrical features
the porous silica glasses from its dielectric response. In
paper, we will use the idea of the method of electronic
ergy transfer dynamics developed by Klafter, Blumen, a
Shlesinger67,68 and further employed by severa
authors21,22,38 in order to determine the fractality of the po
rous silica glasses. The idea will be used for the descrip
of the electric excitation at percolation within the develop
fractal structure of the porous glasses. Note that in the s
porous glasses the excitation transfer is associated with
migration of ions and/or protons along the pore surface
connected pores.65,66,69We shall further develop a statistica
fractal model, which establishes a relationship between
fractality of the porous space and porosity of the mater
The approach developed will be applied to the investigat
of porous glasses with controlled morphological paramet
The dimensions of pore fractals and porosity of silica glas
corresponding to the macroscopic length scale will be de
mined from dielectric spectroscopy study and compared w
the data obtained from measurements of the relative m
decrements.

II. THEORETICAL BACKGROUND

A. Description of a porous medium in terms of regular
and random fractals

1. Porosity in the regular fractal model

Porous materials are complex systems with a big in
surface of boundaries between different phases of compo

FIG. 2. Temperature dependence of the low-frequency cond
tivity of sample 2~see Sec. III!.
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substances. The fundamental numerical characteristic
porous matrix is the macroscopic porosity. The porosityf of
a two-phase solid-pore system can be defined as the rat
the mean volume of the whole empty space volumeVp , to
the whole volumeV, of a sample

f5
Vp

V
. ~1!

Disordered porous media have been adequately descr
by a fractal concept.70–72 As we mentioned in the introduc
tion, many real porous materials show fractal structures
some pore space length scales. The solid-pore interface
also be fractal. By assuming that the volume of pore spac
determined by the fractal structure, theregular fractal model
can be applied. This implies that for a volume element
linear macroscopic sizeH, the volume of pore space is give
in units of the characteristic pore sizeh by Vp5G(H/h)D,
whereD is the regular fractal dimension of the system,H
coincides with the upper andh with the lower limit of the
self similarity. The constantG is a geometric factor. By the
same token, the volume of the whole sample is scaled
units of h asV5G(H/h)d, whered is the Euclidean dimen-
sion (d53). Hence, the formula for the porosity in terms
the regular fractal model can be derived from Eq.~1!, and it
is given by

f5S h

H D d2D

, ~2!

Equation~2! has been used for the analysis of the frac
sandstone pores.17 It was also applied for porosity estima
tions in porous Vycor glass.49 We note that the agreemen
between the value of the porosity obtained from various
perimental techniques and the value of porosity determi
from Eq. ~2! will be only in the case when the three follow
ing conditions are fulfilled. Firstly, the scale interval of th
measuring technique must coincide with the interval of s
similarity of the porous medium. Secondly, the fractal d
mension in the measuring interval must be a constant va
Thirdly, the value of the ratioh/H is a determined value fo
a selected measured sample. In this case, the parameterf in
Eq. ~2! has a meaning of the macroscopic porosity of a m
terial.

2. Porosity in the random fractal model

In general, real porous systems and measuring inter
used in different techniques do not comply with the thr
conditions mentioned above and the regular fractal mode
not valid. In order to embrace variety of porous media a
experimental techniques when these conditions are not
filled, the random fractalmodels can be considered.70 This
model enables us to take into account the dependenc
measuring porosity of a medium on the scale of observat
Randomness can be introduced in the regular fractal mo
of porous medium by one or both of the following: we ca
assume that~i! the fractal dimension of the structure is ra
dom; and/or~ii ! the scale parameter, which is equal to t
ratio j5h/H of the lower and upper cutoffs of the sel
similarity range is a random value. Further, we assume
parameterj is distributed in the interval@l/L, 1#, wherel

c-
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TABLE I. The several known distribution laws derived from the general exponential distribution fun
w(j)5Aja exp(2bjb) at various values of the parameters.

N0 Values of the parameters
Region of changes of the

function argument
Type of

distribution

1 a,0, b50 m<j<1 Power
2 a50, b.0, b52 2`<j<` Normal
3 a51, b.0, b52 0<j<` Reyleigh
4 a51,2,3...,b.0, b51 0<j<` Poisson
5 21<a<`, b.0, b51 0<j<` Gamma
6 a5u/221, b51/2, b51,

whereu is the number of the
degrees of freedom

0<j<` x2

7 a50, b.0, b51 0<j<` Exponential
8 a53, b.0, b51 0<j<` Plank
9 a50, b.0, b50 m<j<1 Uniform
10 a,0, b.0, b.0 m<j<1 Percolation
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andL are the minimal and maximal boarders of the meas
ing interval@l, L#. If the whole volume is divided into mac
roscopic cells of the linear sizeL ~for organization of a sta-
tistical ensemble!, then the probability for a given cell to find
some scale parameter and fractal dimension within the r
angle from j to j1dj and from D to D1dD is
W(j,D)djdD. The bulk porosity can be considered as t
integral over statistical ensemble of the cells and is de
mined by

F[^f&5E
V
E f~j,D !W~j,D !djdD, ~3!

where the angular brackets denote an ensemble averag
V is the boundary region of the possible changes ofj andD.
In the first limiting case, when the fractal dimension is ra
dom but the scale parameter is a constant independent oD,
Eq. ~3! is equivalent to a multifractal model of
medium.73,74 In the second limiting case,70 when the scale
parameter is random in the interval@l/L, 1#, but the fractal
dimension in this interval is a determined constant, Eq.~3!
reads as

F5E
m

1

f~j,D !w~j!dj, ~4!

wherem5l/L is the minimal value of the scale parametej
on the interval@l/L, 1#, andw(j) measures the probabilit
density to find some scale parameter in the range fromj to
j1dj, and it is related to the distribution function of th
spatial scales on the interval@l, L#.

The measuring techniques mentioned in the introduc
provide a value of the fractal dimension on a certain sc
interval. Therefore, in this paper, for calculation of the p
rosity of a fractal medium we will be focused on the seco
statistical approach, wherein the assumption of the
changed fractal dimension on the interval@l/L, 1# is con-
sidered and the effect of pore-size polydispersity is ta
into account.

In the current approach, we permit the analytical eq
tions, which describe the pore-size distributions of vario
porous media, or even in one porous material considere
r-

t-
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-

n
le
-
d
-

n

-
s
on

the different scales, to be different. In order to take in
account this variety we use a generalized exponential di
bution function for the parameterj. This distribution in-
cludes most of the known distribution functions used in t
literature.75–77 In this case the probability density can b
written as

w~j!5Aja exp~2bjb!, ~5!

where the normalization constantA is determined from the
normalization condition*m

1 w(j)dj51, and it reads as

A5F E
m

1

ja exp~2bjb!djG21

. ~6!

The distribution function of Eq.~5! includes three empirica
parameters,a, b, andb. Table I summarizes various know
distribution laws derived from the general exponential dis
bution function@Eq. ~5!# at various values of the parameter
The parameterb is related to the effective cutoff length,jeff ,
as b;(jeff)

2b. The physical meanings of the parametersa
and b can be assigned after ascertaining the relationsh
between these parameters and the properties of fractal
phology and polydispersity of the finite-pore size.

By substituting Eqs.~2! and~5! into Eq.~4! and using Eq.
~6!, we obtain the relationship for the mean macrosco
porosity as

F5
1

b~d2D !/b

3

GS 11a1d2D

b
,bmbD2GS 11a1d2D

b
,bD

GS 11a

b
,bmbD2GS 11a

b
,bD ,

~7!

where G(q,x)5*x
`jq21 exp(2j)dj is the incomplete

Gamma function.
The stretched exponential cutoff factor, exp(2bjb), in Eq.

~5! characterizes an effective cutoff of the length scale d
tribution function. With increasingj from the range where
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j,jeff to range wherej.jeff , this factor describes a trans
tion from the scaling regime, characterizing a mesosc
range, in whichw(j);ja, to the range of macroscopi
scales, where the distribution function, in main, is det
mined by the cutoff factor. We note that for the case wh
jeff,1, due to the cutoff factor, the contribution of the int
gration over the region beyond the effective cutoff parame
jeff in the value integral~4! is small in comparison with the
contribution from the integration over the region@m,jeff#.
Several simple asymptotic relationships can be obtained
the macroscopic porosity from Eq.~7! for certain relations
between the value ofjeff , which characterizes the morpho
ogy of the medium, and the value ofjmax, which is an upper
limit of the measuring interval@l/L, 1#. Let us consider two
limiting cases.

~a! Porosity in the case when the morphological interva
significantly broader than the measuring interval.

In this limiting case the effective cutoff length of the mo
phologic interval is significantly larger than the upper lim
of the measuring interval@l/L, 1#, i.e., we havejeff@jmax
51. For the porous medium comprising a multitude of t
connected pores a distribution of the parameterj @Eq. ~5!# is
a distribution of the percolation type.78 Hence, the situation
considered in this limiting case is related to the state ab
the percolation threshold of the porous space through
macroscopic cell of the linear sizeL. We remind that the
macroscopic sells are the elementary statistical units, wh
were used for organization of the statistical ensemble of
random fractal model.

Further, taking into account that the parameterb in the
cutoff factor has a positive value around unity~see Table I!,
we obtain thatb!1. Then, by assuming that the measuri
interval is broad, i.e.,m!1, we also obtain thatbmb!1. By
using the power series expansions of the Incomplete Gam
function79

G~q,x!5G~q!2 (
n50

`
~21!nxq1n

n~q1n!
, for x,1 ~8!

and keeping only the first nonvanishing terms of the se
containing the parameterb in the numerator and denominato
of Eq. ~7!, we obtain

F'
11a

11a1d2D

12m11a1d2D

12m11a , ~9!

Note that this equation was also obtained by Nigmatulli70

on the basis of the generalized fractal conception, where
considered only a power factor in our general relations
@Eq. ~5!# for scale distribution function.

In order to make more tractable relationship for the p
rosity, further two possibilities for obtaining the asympto
equations for the macroscopic porosity on the basis of
~9! can be considered.

~i! The first simplification can be obtained when the e
ponents 11a1d2D and 11a are positive. These two in
equalities are fulfilled whena.21 ~sinced2D.0). In this
case, by taking in to account thatm!1, the macroscopic
porosity reads as
le
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F'
11a

11a1d2D
. ~10!

Then, if the rate of the change of the distribution function
the mesoscale region is small, i.e.,uau!1, for Euclidean
three dimensional space,d53, we obtain a simple approxi
mate relationship between the average porosity of a glass
the fractal dimension of the pore space, which reads

F'
1

42D
. ~11!

~ii ! The second simplification for the macroscopic poro
ity from Eq. ~9! can be obtained when the exponents 11a
1d2D and 11a are negative, which yields the conditio
a,2(11d2D). This case corresponds to the situation
the rapid decay of the distribution functionw(j) according
to the power low in the mesoscale region. For this case
havem11a1d2D@1. Hence, the macroscopic porosity rea
as

F'
11a

11a1d2D
md2D. ~12!

It is relevant to note here that despite the initial assum
tion of a scaling distribution functionw(j), depending on
the value of parametera characterizing the rate of the distr
bution function decay, the random fractal model in t
asymptotic regime yields two qualitatively different resul
expressed by Eqs.~11! and~12!. One can see that the poro
ity expressed by Eq.~11! does not obtain the scaling prope
ties, while in the second case, Eq.~12! provides a length
scaling regime due to the factormd2D.

~b! Porosity in the case when the morphological interv
is significantly narrower than the measuring interval.

In this limiting case the following condition is fulfilled
jeff!jmax51. This means that the upper boundary of t
measuring interval,jmax is essentially higher than the cuto
length jeff of the mesoscale morphological interval. In co
trast to the previous case~a!, which was related to the situ
ation above the percolation threshold of the porous sp
through the macroscopic cell of the linear sizeL, the present
limiting case corresponds to the state below the percola
threshold on this scale.78 Note that this situation correspond
to the case of the pore clusters, which are limited in size,
they do not span the sample.

For the simplification of Eq.~7! we further assume tha
the range of the scaling regime was broad enough to fu
the condition that the lower boundary of the measuring
terval will be essentially less thanjeff , i.e., m!jeff . These
two conditions yield the following equivalent inequalitie
b@1@bmb. Since, the Gamma functionG(q,x) decays
faster than exponentially in the limit of large values of t
variablex, i.e.,

G~q,x!;xq21 exp~2x!@11O~1/x!#, for x→`
~13!

we can neglect the termsG„(11a1d2D)/b,b… and G„(1
1a)/b,b… in Eq. ~7! for b@1. Hence, the macroscopic po
rosity reads as
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F5
1

b~d2D !/b

G„~11a1d2D !/b,bmb
…

G„~11a!/b,bmb
…

. ~14!

Further, by using the conditionbmb!1 and the expansion
of the Incomplete Gamma function~8!, Eq. ~14! yields

F5
1

b~d2D !/b •
11a

11a1d2D

3

GS 11a1d2D

b
11D2~bmb!11a1d2D

GS 11a

b
11D2~bmb!11a

, ~15!

where G(q)5G(q,0)5*0
`xq21 exp(2x)dx is the Gamma

function.
For the further simplification of Eq.~15! we follow the

same procedure as above and require the exponents1a
1d2D and 11a to be positive. Then the arguments of bo
Gamma functions in Eq.~15! should be larger than 1. In thi
case the Gamma functions themselves will be larger tha
and the following conditions will be fulfilled

~bmb!11a1d2D

GS 11a1d2D

b
11D !1, ~16a!

~bmb!11a

GS 11a

b
11D !1. ~16b!

Thus for the macroscopic porosity we obtain

F5
1

b~d2D !/b

11a

11a1d2D

GS 11a1d2D

b
11D

GS 11a

b
11D .

~17!

In order to obtain a more tractable relationship forF, further
simplification may be made if we assume an additional c
dition b51, which corresponds to the percolation form
the size-distribution function.78 Then, by using an assump
tion of a small rate of change of the distribution function
the mesoscale region, i.e.,uau!1, for Euclidean three-
dimensional space,d53, we obtain

F'
G~52D !

b32D

1

42D
, ~18!

Note that Eq.~18!, corresponding to the present case, wh
b@1, differs from Eq.~11!, obtained in the previous limiting
case~a!, whenb!1, by the factorG(52D)/b32D. This fac-
tor may be around or less than 1 for largeb depending onD.
~c! Scope of utilization of the random fractal model for ma
roscopic porosity.

The theoretical results of this section are summarized
Table II. As one can see, the random fractal model is cap
to describe several different structural organization of por
medium. In order to select from Table II an appropria
equation for the macroscopic porosity one has to know
1

-

n

in
le
s

a

priori information on the structure of the porous mediu
Hence, one of the features of the porous medium is whe
the pore clusters are opened or closed on the maximal le
scale of the measuring interval. This distinction is charac
ized by inequalities limiting the value of the parameterb.
Thus the case of opened pore clusters corresponds to
state of percolation above the threshold~see numbers 1
through 4 of Table II!. On the other hand, the case of clos
pore clusters corresponds to the state below the percola
threshold~see numbers 5 through 7 of Table II!.

Additionally, one has to know a width of the interval o
self similarity of porous space and a width of the measur
interval. In particular, the width of the measuring interval
determined by the parameterm. Therefore, the cases corre
sponding to the narrow measuring interval are taken in nu
bers 1, 5, and 6 of Table II. On the other hand, the ca
corresponding to broad measuring interval are taken in n
bers 2, 3, 4, and 7.

Parameterbmb characterizes the relation between t
width of the measuring interval and the width of the interv
of self similarity of porous space. This relation is charact
ized by the corresponding inequalities in Table II.

Finally, a value of the rate parameter of the distributi
function decaya affects the scaling properties of the macr
scopic porosity. Indeed, the scaling property,f(cm)
5cd2Df(m), of the porosity observed in the regular fract
model@see Eq.~2!#, is not fulfilled after statistical averaging
@see Eq.~7!#. Therefore, the porosity of porous medium d
scribed by the random fractal model built up from superp
sition of fractal objects having the same fractal dimension
general, does not demonstrate a scaling behavior. Me
while, as was mentioned above, in one special case~see
number 4 of Table II! the scaling properties are fulfilled.

B. Determination of the fractal dimension of porous glasses
from the dielectric spectroscopy measurements at percolation

The pores in porous silica glass form topologically co
nected pore channels. Charge carriers such as protons
ions can move along the pore surface. The movement res
in a transfer of the electric excitation within the channe
along random paths. As was mentioned in the introducti
in order to describe the mechanism of dielectric relaxat
associated with this transfer, we follow the ideas develop
in Refs. 67 and 68, where a transfer of the excitation o
donor molecule to an acceptor molecule in various c
densed media through many parallel channels were con
ered.

A transfer of the electric excitation along the develop
fractal structure of connected pores can be described by
normalized dipole correlation function~DCF! C(t). The
correlation function is associated with the relaxation of t
entire induced macroscopic fluctuation dipole momentM̄ (t)
of the sample unit volume, which is equal to the vector
sum of all the fluctuation dipole moments of pores

C~ t !'
^M̄ ~0!•M̄ ~ t !&

^M̄ ~0!•M̄ ~0!&
, ~19!

where the symbol̂ & denotes an ensemble average. The
locity and laws governing the correlation function are d
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TABLE II. The general relationship and the asymptotic equations for the macroscopic porosity at
ent values of the parameters.

General relationship F5
1

b~d2D!/b

GS11a1d2D

b
,bmbD2GS11a1d2D

b
,bD

GS11a

b
,bmbD2GS11a

b
,bD

~Values of the parameters!
Asymptotic equations

Porosity

N b bmb m a F

1 0,b!1 0,bmb!1 0,m<1 uau>0 11a

11a1d2D

12m11a1d2D

12m11a

2 0,b!1 0,bmb!1 0,m!1 11a.0 11a

11a1d2D
3 0,b!1 0,bmb!1 0,m!1 11a.0

uau!1
1

42D
4 0,b!1 0,bmb!1 0,m!1 11a,d2D 11a

11a1d2D
md2D

5 b@1 bmb.0 0,m<1 uau>0

1

b~d2D!/b

GS11a1d2D

b
,bmbD

GS11a

b
,bmbD

6 b@1 0,bmb!1 0,m<1 uau>0

1

b~d2D!/b

11a

11a1d2D

GS11a1d2D

b
11D

GS11a

b
11D

7 b@1 0,bmb!1 0,m!1 uau!1
d53

G~52D!

b32D

1

42D
th
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l-
rectly related to the structural and kinetic properties of
sample and characterize the macroscopic properties of
system studied. We note that a transfer of the electric e
tation through the porous medium can occur even in the c
of closed pores, which are topologically not connected on
another.80 However, the distance between neighboring clos
pores in a glass filled with dielectric or conductive mater
should be small enough in order to provide a physical c
pling between the neighboring pores separated by thin w
via the electric interaction. Note that he physical coupling
the closed pores, for example, can be due to multipo
interactions.80

A detailed description of the relaxation mechanism as
ciated with an excitation transfer based on a regular fra
model was introduced earlier,81 where it was applied for the
cooperative relaxation of ionic microemulsions at perco
tion.

According to this model, an elementary act of the exci
tion transfer along the lengthL j is described by the micro
scopic relaxation functiong(z/zj ), whereL j is the ‘‘effec-
tive’’ length of a channel of the relaxation in thej th stage of
self-similarity. In this function,zj is a dimensional variable
characterizing thej th stage of the self similarity of the fracta
system considered,z is the dimensionless time,z5t/t,
where the parametert is the minimal relaxation time neede
for an excitation to hop from one excitation center to
nearest neighbor.
e
he
i-
se
to
d
l
-

lls

r

-
al

-

-

The following assumption is invoked:zj5aLj , wherea
is a coefficient of proportionality. For each stage of the se
similarity j, the time of relaxationt j5tzj is proportional to

the lengthL j . From fractal geometry,74,82 L j can be ex-
pressed as

L j5 lk j , ~20!

where l is the minimal scale andk is a scaling factor (k
.1). We assume that the total number of activation cen
located along the segmentL j also obeys the scaling law

nj5n0pj , ~21!

wherep is the scaling factor (p.1), andn0 is the number of
the nearest neighbors near the selected center~i.e., j 50).

The macroscopic correlation function can be expresse
a product of the relaxation functionsg(z/zj ) for all the
stages of the self-similarity of the fractal system conside

C~z!5)
j 50

N

@g~z/zj !#
nj5)

j 50

N

@g~Zj j !#n0pj
, ~22!

whereZ5t/alt; j51/k andN51/lnk ln(LN /l). Here,LN is
the finite geometrical size of the fractal cluster, whereN
refers to the last stage of the self similarity.

The estimations of the product~22! for various values of
j,1 andp.1 are given in Ref. 81. The results of the ca
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culations may be written in the form of a modifie
Kohlrausch-Williams-Wats ~KWW! stretched-exponentia
relaxation law:

C~Z!/C~0!5exp@2G~n!Zn1B~n!Z#, ~23!

where the parametersG(n) andB(n) are given by

G~n!5
n0

ln~1/j!
E

0

`

y2nUg8~y!

g~y!
Udy, ~24!

B~n!5
n0a1

ln~1/j!~12n!
«12n, ~25!

where

n5 ln p/ ln~1/j!, ~26!

with 0,n,1, and for«5jN!1. We note that the paramete
G depends on the relaxation functiong and affects the mac
roscopic relaxation timetM5talG21/n, andB is a correction
parameter for the KWW function at large times.

The temporal boundariestmin andtmax of the applicability
of Eq. ~23! for describing the cooperative relaxation are d
termined by the expression:

UA1n0

ḡ F1

2
2

1

ln~1/j!~11n!GU
!

t

alt
!UF 2 ln~1/j!~22n!

n0~2a22a1
2!«22nG1/2U. ~27!

The parametersḡ, A1 , a1 , anda2 in Eqs.~24!–~27! are
related to the asymptotic properties of the elementary re
ation functiong(y)

g~y!512a1y1a2y21¯ for y!1 ~28!

g~y!5ḡ1A1 /y1A2 /y21¯ for y@1. ~29!

The relationship between the exponentn, n5 ln p/ln k, and
the fractal dimensionDp of the paths of excitation transfe
may be derived from the proportionality and scaling relatio
by using an assumption that the fractal is isotropic and
spherical symmetry. The number of pores that are loca
along a segment of lengthL j on the j th step of the self-
similarity is nj;pj . The total number of pores in the clust
is S;nj

d;(pj )d, whered is Euclidean dimension, (d53).
The similarity indexh, which determines by how much th
linear size of the fractal is enlarged at stepj, is h;L j;kj . In
this case, we obtain the simple relationship betweenn and
the fractal dimensionDp as

Dp5 ln S/ ln h53 j ln p/ j ln k53n. ~30!

Further we will focus our attention only on the time d
pendence behavior of the dipole correlation functionC(t)
defined by Eq.~23!, that is given by

C~ t !'C~ t !exp@2~ t/t!n#, ~31!
-

x-

s
s
d

whereC(t) is the slow growing function of time. By taking
into account Eq.~30! and ignoring the slow variation with
time of C(t), we obtain the asymptotic stretched-exponen
term

C~ t !;exp@2~ t/t!Dp/3#, ~32!

that can be further fitted to the experimental correlation fu
tions in order to determine the value of the fractal dimens
of the paths of excitation transfer within the porous mediu
If the fractal dimension of these paths coincides with t
fractal dimension of the pore space, then it can be used in
asymptotic equations derived above for obtaining the por
ity.

III. EXPERIMENT

A. Sample preparation

Four silica porous glasses labeled 1, 2, 3, and 4 w
fabricated by the leaching of sodium borosilicate glas
with phase separation in acid solutions according to the te
nology described elsewhere.83,84 Porosity of samples 1 to 4
was determined by the relative mass decrement method.
ditionally, for control, the porosity for sample 4 were calc
lated by Brunauer-Emmett-Teller~BET! analysis according
to the methodology.40 It is known from the technology of
sample fabrication, that sample 1 contains silica gel in
pore’s volume, albeit the silica gel is barely present in a
the other samples. The dimensions of pores were calcul
from absorption-desorption isotherms and from an opti
microscope photograph of the porous glass samples.85 The
magnitudes of pore sizes obtained from these two meth
concur. However, if the pores are filled up with silica ge
then neither of these methods is accurate for determining
pore sizes. The water content in poresr, defined as the ratio
of the mass of adsorbed water to the mass of the dry sam
was determined by weighing the samples prior to and a
the dielectric measurements. The dimensions of the po
porosity, and humidity of the samples are presented in Ta
III.

B. Experimental technique

Dielectric measurements in the frequency range of
Hz–1 MHz were performed on samples 1, 2, and 3 by us
a Broad Band Dielectric Spectrometer BDS 42
~NOVOCONTROL! with automatic temperature control b
QUATRO Cryosystem. The measurement on sample 4
performed by a BDS 4000 device in the frequency range
1022 Hz–3 MHz. The accuracy of the complex dielectr
permittivity measured, «* (v)5«8(v)2 i«9(v) @where
«8(v) and«9(v) are the real and loss parts of the compl
permittivity, respectively#, was estimated to be better tha
3%.86 The measurements were carried out by cooling
samples from 20 °C down to2100 °C. The samples wer
then measured at intervals of 5 °C upon heating them fr
2100 to 300 °C. The size and thickness of the square p
samples, used for dielectric measurements, were 30
0.31–0.32 mm, respectively.
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TABLE III. Structural parameters obtained from~A! adsorption-desorption isotherms method and fro
optical microscope photograph,~B! relative mass decrement method,~C! BET analysis, and~D! dielectric
spectroscopsy analysis.
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IV. RESULTS AND DISCUSSION

A. Determination of the fractal dimensions

A typical spectrum of the dielectric permittivity«8(v,T)
of the studied porous glasses versus frequencyv and tem-
peratureT is displayed in Fig. 3. For this figure as well as
Fig. 1, we chose sample 2 as an example for the typ
illustrations of the dielectric spectroscopy data. The peak
the permittivity at the temperature interval 50–80 °C cor
sponds to the temperature-driven percolation process as
ated with the transfer of the electric excitation within t
developed structure of connected pores. We note that
characteristic peak corresponding to this percolation proc
was also indicated on the three-dimensional plot~see Fig. 1!
for dielectric losses«9(v,T).

We shall analyze the dielectric relaxation of the glasse
the time domain since the theoretical relaxation model
scribed above is formulated for the dipole correlation fun
tion C(t). By analyzing this dependence at percolation a
using Eq.~32!, we can determine the fractal dimension of t
paths of the excitation transferDp .

The complex dielectric permittivity can be expressed
terms of the DCF as follows:

«* ~v!5«`2~«s2«`!F̂S d

dt
C~ t ! D , ~33!

FIG. 3. Three-dimensional plot of the frequency and tempe
ture dependence of the dielectric permittivity of sample 2.
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where F̂ is the operator of the Fourier transform, and t
parameters«s and«` are the static dielectric permittivity an
its high-frequency limit, respectively. Figure 4 shows a ty
cal example of the DCF, corresponding to sample 2, obtai
from the frequency dependence of the complex permittiv
at the percolation temperature. One can see that the D
displays a complex nonexponential time behavior that can
deconvoluted into the sum of two processes with the cha
teristic relaxation times of around 1025 and 1022 seconds.
The short relaxation time is related to that relaxation proc
which has a saddlelike shape in Fig. 1, while the long ti
process in Fig. 4 is associated with the percolation proc
This long time behavior of the DCF can be fitted to Eq.~32!
with the purpose of determining the fractal dimensionDp .
The resulting values ofDp are presented in Table III.

One can see that the fractal dimension of the excitat
paths in sample 1 is close to unity. Topologically, this val
of Dp corresponds to the propagation of the excitation alo
a linear path that may correspond to a presence of silica
within the pores. Indeed, the silica gel creates a subsid
tiny scale matrix with an enlarged number of hydration ce
ters within the pores. Since these centers are distribute
the pore volume, the excitation transmits through the volu
and is not related to the hydration centers located on the p
surface of the connective pores. Due to the large numbe
the hydration centers, and the short distance between

-

FIG. 4. Log-log plot of the macroscopic correlation function
sample 2 at the temperature corresponding to percolation. The
line corresponds to a fit of the sum of two KWW relaxation fun
tions.
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neighboring centers, the path can be approximated by a
with a fractal dimension around unity.

The fractal dimensions of the excitation paths in samp
2 and sample 3 have values between 1 and 2. In contra
sample 1, the silica gel in these samples is leached out,
water molecules are adsorbed on the inner pore surf
Therefore, despite the fact that according to the literature
fractal dimension of a rough pore surface should be aro
2.5 with the upper-length cutoff,20 Å ~Ref. 35!, the small
values ofDp observed in samples 2 and 3 can be explain
by one of two ways. On the one hand, the surface can
defractalized upon deposition of an adsorbed film of wa
which results in the ‘‘smoothing’’ of the surface. On th
other hand, the transfer of the excitation in these sam
occurs along the inner-pore surface from one hydration c
ter to another. The distance between the centers can be
nificantly larger than the small-scale details of the surfa
texture. Therefore, the fractal dimension observed is tha
the chords connecting the hydration centers, which shoul
lesser than 2. An investigation of the problem of which w
of these two is more appropriate for the systems studie
beyond the scope of the current paper, and it will be d
cussed in our further work.

The fractal dimensions of the excitation paths in sampl
is greater than 2. In order to explain this magnitude we n
that the characteristic size of pores in this sample is sign
cantly smaller than that in samples 1–3~see Table III!.
Therefore, the distance between the neighboring hydra
centers located on the surface can be comparable with
pore size. Thus we can expect that the transfer occurs ac
the pore bulk from the one pore wall to another wall rath
than along the pore surface.

In concluding this section it is relevant to note that t
fractal dimensions discussed here are the fractal dimens
of the excitation transfer paths connecting the hydration c
ters located on the inner surface of the pores. The ma
tudes of fractal dimensions obtained for samples 2 and
less than 2, which is in agreement with the data obtai
from the energy-transform measurements.21,38 Due to the
small value of humidityr, all the water molecules absorbe
by the materials are bound to these centers. The paths o
excitation transfer span along the fractal pore surface
‘‘depict’’ the backbone of clusters formed by the pores on
scale that is larger than the characteristic distance betw
the hydration centers on the pore surface. Thus the fra
dimension of the paths is an approximation of the real s
face fractality and it can be used for porosity calculations
this scale interval.

B. Determination of porosity

For a calculation of the macroscopic porosity of a poro
medium, the general Eq.~7! can be used. In such a gener
case, this is a difficult task due to the large number of
rameters, such asD, a, b, m, andb, which must be known.
However, when the system in the measured scale interva
certain morphological features, the more simplifi
asymptotic relationships obtained in Sec. II@Eqs. ~9!–~12!,
and Eqs.~14!–~18!# can be used.

We note that a well-developed porous structure of op
connective pores is obtained as a result of the leaching ou
the acid-soluble phase from sodium borosilicate glasses.
ne

s
to

e.,
e.
e
d

d
e

r,

es
n-
ig-
e
of
be

is
-

4
te
-

ed
he
ss

r

ns
n-
i-
is
d

the
d

en
tal
r-
n

s
l
-

as

n
of
is

ramified pore space can be considered as a system of ran
percolating pore clusters. Hence, polydispersity of the cl
ters can be described by the general distribution functio
Eq. ~5!, with the parameters corresponding to the distribut
of the percolation type.78

One has to bear in mind that the theoretical values of
percolation threshold of the bond and site percolation mod
are 0.25 and 0.31, respectively.87 The porosity of the silica
porous glasses obtained on the basis of the relative m
decrement method~see Table III! is larger than these theo
retical values of the percolation threshold. Therefore, we
sume that the glasses investigated are beyond the percol
threshold. In this casejeff→`, and the main condition,b
!1, for the application of Eq.~9! is fulfilled. Further, we
note that since the experimental time range of the dielec
measurements is wide, the corresponding interval of sp
scales is also wide, i.e. the conditionm5l/L!1 is fulfilled.
The fulfillment of that condition may allow us to use E
~10! for the determination of the porosity. A final simplifica
tion can be made after taking into account that the sca
interval in the well-developed system of pore clusters
wide. This allows us to assume that the distribution funct
decreases slowly within the measuring interval, i.e.,uau!1.
The assumptions considered allows us to choose a sim
one-parametric Eq.~11! from the set of the various
asymptotic equations, which establishes the relationship
tween the fractal dimension of the porous space and the m
roscopic porosity of the material. The results of the poros
calculation using Eq.~11! and the fractal dimension dete
mined from dielectric measurements are shown in the
column of Table III. These values can be compared with
porosity determined from the relative mass decrement m
surements shown in the same table. As one can see, the
ues obtained from dielectric spectroscopy concur well w
the porosity data obtained from the relative mass decrem
method.

V. SUMMARY

The dielectric relaxation process associated with perc
tion of the electric excitation within the developed fract
structure of connected pores was analyzed in order to de
mine the porous morphology in silica glasses. For this p
pose, we developed a statistical model of porous me
based on ideas of fractal geometry, establishing a relat
ship between the fractal dimension and the value of mac
scopic porosity of the material. Several simple asympto
relationships have been obtained in the framework of
model for a quantitative characterization of the porosity.
application of these relationships for calculation of poros
depends on certain relations between the value of the cu
length of the size polydispersity distribution function, whic
characterizes the morphology of the medium, and the va
of the upper limit of the measuring length scale interval. T
model developed has been applied in the investigation
porous silica glasses. A determination of the characteri
intervals of variations of the model parameters correspo
ing to the morphology of connected pores enabled us to
lect the appropriate asymptotic equation for the macrosco
porosity @Eq. ~11!#. In this simple equation, the porosity i
determined by one parameter, which is the fractal dimens
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of the porous space. The fractal dimension determined
the paths along which the transfer of the electric excitat
occurs in the developed morphology of the connected p
channels was used to estimate the porosity. This value of
fractal dimension was obtained from the experimental diel
tric data on the basis of the dynamic theory of the coope
tive relaxation process describing the percolation within
porous medium.

The fractal dimensions obtained for the studied poro
silica glasses vary over in the broad interval between 1
2.5. If the amount of the adsorbed water is small, then all
water molecules are bound to the hydration centers and
cated on the inner surface of the pores. The excitation tra
fers through the medium depict a path connecting the c
ters. The values obtained from dielectric spectroscopy do
contradict the literature data mentioned in the introduct
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and are also in good agreement with the values obtai
from the energy-transform measurements. The concurre
of the macroscopic porosity values obtained from dielec
spectroscopy method developed in this paper and the va
obtained from the relative mass decrements method are
sults of the accurate determination of the fractal dimensi
and the validity of the statistical model of the macrosco
porosity used here.
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