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The analysis of the dielectric relaxation spectrum at percolation was used for the determination of the
dimensions of pore fractals and porosity of silica glasses. The percolation phenomenon in the porous glasses is
related to the transfer of the electric excitation within the developed network of open pores due to migration of
protons and ions along the pore surface of connected pores. The dielectric spectroscopy technique allows us to
identify the relaxation process related to percolation, and to extract the fractal dimensions of the paths of
excitation transfer associated with migration of charge carriers within the porous medium. The random fractal
model describes the geometrical disorder of the porous matrix. In the framework of this model, the relationship
between the porous space fractal dimension and the porosity of the medium has been obtained. The juxtapo-
sition of the structural and the relaxation models enables us to derive the relationship between the value of
porosity and the fractal dimensions of the paths of excitation transfer within the porous medium. The experi-
mental porosity values for several porous silica glasses obtained by means of the developed theoretical ap-
proach and dielectric spectroscopy measurements are presented. The porosity values obtained from the dielec-
tric spectroscopy method are found to be in good agreement with the data obtained from the measurements of
the relative mass decremenfS0163-18209)11743-(

[. INTRODUCTION etc. The molecular probe method and its modifications using
adsorption can also play an important role in the determina-

Recently, much attention has been paid to porous silicéion of the fractal dimensions of a porous meditftn?°
glasses obtained from sodium borosilicate glasses. The ir- There are numerous contradictions and discussions in the
regular structure and the morphology of the involved porouditerature regarding both theolume and surface fractal
medium are a matter of interest in many industrialstructuresin Vycor glasse$? 1420:21.23.25303 sjgnificant
processed=® For instance, the moisture-holding capacity, chemical interaction between the adsorbed water and the
transport phenomena, and dynamics of molecules of liquidpore surface with the possible formation of a gel-like state
and solids confined in the pores are all related to the porean significantly modify the surface morphology of the pores
geometry. in silica porous glasses. Most of the information related to

A silica porous glass can be defined as a bicontinuos rarthe pore morphology was obtained from transmission elec-
dom structure of two interpenetrating percolating phasesron microscopy, adsorption techniques, and small-angle-
namely the solid and the pore networks. The pores in thecattering techniqué$:1#21:222530-3¢ For  axample, an
glasses are connected to each other and the pore size dis@iRalysis of the small-angle scattering pattern from dry Vycor
bution is narrow. The characteristic pore spacing depends osuggest that the glass possesses a rough surface with a fractal
the method of preparation, and can be between 2 and 50fimension ofD~2.5, and with the upper length cutoff20
nm. The bicontinuos structure is obtained as a result of spinA (Ref. 14. However, several other investigations show no
odal decomposition of the two phases $#hd BO;+Na,O  evidence of surface fractality in J-saturated samplé&3’
and formation of the interfacial layer during the formation In recent investigatiois>*1%it has been shown that a frac-
process. This layer can be destroyed after leaching out thial surface can defractalize upon deposition of an adsorbed
acid-soluble phase B;+Na,O with formation of the devel- film of water. Particularly, a small amount of water, 3%
oped porous morphology and large surface to volume ratiow/w, is sufficient to render the surface smooth. Regarding
A typical example of silica glasses is Vycor glass. The propthe fractality of the pore volumes, the question is hitherto
erties and morphological characteristics of Vycor glass haveven more puzzling. On the one hand, the energy-transfer
been studied extensively due to the features of this glass haseasurements suggest that the pore structure of Vycor glass
in common with porous materials of technological interest. is fractal on the length scalke100 A with a fractal dimen-

In order to augment our understanding of the effect of thesion of 1.740.12(Refs. 21 and 38 This rather small value
structure on the properties of the silica glasses, the first stepf D was imputed to a three-dimensional percolation cluster
and challenge is to characterize the morphology of such mabackbone without dangling bond$.0On the other hand, a
terials and, in particular, such parameters as pore and surfafiactal geometry was indicated in Vycor glass on a length
fractal dimensionsas well as theiporosity The fractal di- scale larger than 1000 A with the percolation network
mensions of solids are determined mainly by small angldormed by the empty pores and the value of fractal dimen-
x-ray and neutron scatteringSAXS and SAN$*'®  sion of 1.7(Refs. 6 and 3D This value concurs well with the
microscopy:”*® electronic energy transfer techniqués?®  data obtained from the energy-transfer measurements. Con-
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trary to that result, it was notétithat the SANS, and SAXS . 3
data leave little room for the idea that Vycor glass has a E
fractal pore network on a scale above 40 A.

For characterization gborosityin glasses, the most suc- ]
cessful and popular technigues are image analysis, scattering EE
techniques, adsorption techniques, and  mercury
porometry*12:20.24:25.30.39-4frha most significant drawback i)
of the traditional methods of porosity determination is that
they are not always accurate regarding the length scales in-
volved in the measurement. Indeed, it is important to bear in
mind that each of the above-mentioned techniques has its
own range of applicability depending on the sizes of the
pores?® In particular, gas-adsorption methods are sensitive to 07
micro- and mesopores on a length scale of 010" m
(Ref. 41), scattering methods SAXS and SANS allow one to ‘7‘/e,,o 708
study the mesoscale range of pore sizes of 400 ' m J’//*/e/ 707200
(Refs. 4, 12, and 30and the mercury porosimetry method is
appropriate for the macroscopic scales of 30 'm (Ref. FIG. 1. Three-dimensional plot of the frequency and tempera-

40). Therefore, both the porosity values for the fractal me-yre gependence of the dielectric losses of sampige2 Sec. ).
dium and the aforementioned fractal dimension depend on

the scale for which the measuring technique is approptfate. copy method based on the analysis of the dynamics of water
In addition to the techniques mentioned above, the NMRdoes not require the above-mentioned water saturation ex-
and dielectric relaxation properties of porous media are alsperiments and deals only with a thin layer of water mol-
found to be very sensitive to the geometrical micro and meecules adsorbed from the atmosphere.
sostructural features of the porous maffix’ The dielectric In our prior papeP* we investigated the dielectric prop-
spectroscopy can be applied when the pore space is fillegrties associated with the relaxation of water molecules in
with a conductive or nonconductive dielectric material. Thethe adsorption layer of several silica glasses over broad re-
response also depends on the properties of the materials filfions of frequency and temperature with the purpose of
ing the pores!~>® The determination of porosity from di- studying the dynamics and inferring the morphological prop-
electric spectroscopy is mainly based on the mixtureerties of the porous materials. It was shown that the complex
formulas®®~%° Recently a theoretical framework, based on adielectric behavior could be described in terms of the four
geometric characterization of porous media whose the pordistributed relaxation processes. The typical spectrum of the
space is filled with a conductor, introducing the local poros-dielectric losses associated with the relaxation of water mol-
ity distribution and local probabilities has been ecules from the adsorptive layer for the studied porous
proposed®5162 This local porosity theory is based on the glasses versus frequency and temperature is displayed in Fig.
effective medium approximation and percolation scalingl. The first relaxation process which is observed in the low
model employed for the matrix-filler two-phase medium. Antemperature regior-100 °C to+10 °C is due to the reorien-
application of these approaches to the determination of paation of water molecules in icelike structures of water clus-
rosity requires a filling of the whole pore space with a con-ters. The second relaxation process has a specific saddlelike
ductor or dielectric material in order to make the matrix-poreshape and is well marked in the temperature ran@® to
media a two-phase system. However, the filling the entiret 150 °C. This relaxation process is thought to be a kinetic
pore space can be only performed in the case of connectatansition due to the water molecule reorientation in the vi-
pores. Meanwhile, even in the percolating porous space, ifinity of defects. The third process is located in the low-
the pore surface has a fractal nature, then it is an impossibleequency region and the temperature interval 50—80 °C.
task to fill up all the voids. This process shows several specific features. Thus, the am-
One alternative to the aforementioned approach for inferplitude of this process essentially decreases when the fre-
ring the morphology of porous glasses is a method based aquency increases. Further, the maximum of dielectric losses
the analysis of the dynamics of water molecules that camas almost no temperature dependence. At last, when the
easily be absorbed from ambient air. Indeed, as it has beeemperature approaches to the magnitude related to the third
shown in Ref. 35 even “dry” silica glasses can contain threerelaxation process, electric conductivity significantly in-
types of adsorbed water on the pore surface. The first typereasesFig. 2). As shown in the literatur® these aforemen-
forms a physisorbed layer, which is desorbed by heating aioned features indicate that this process is related to perco-
90 °C. The second and third types form a chemisorbed laydation. Indeed, the percolation associated with the proton
associated with spatially distributed individual molecules  transport in silica glasses is known in the literafdf8in the
groups of several moleculesn the surface. The second type temperature range of the third process. Therefore, we asso-
of water comes off above 190 °C, while the third type is aciate the third relaxation process with the percolation of an
more strongly chemisorbed layer, consisting of water cluselectric excitation within the developed fractal structure of
ters of 40—60 molecule®, connected to each other by hy- connected pores due to migration of the protons and ions
drogen bonds and forming an ordered array of water molfilling the porous space.
ecules. The dynamic properties of adsorbed water are In the high-temperature region, above 150 °C, the glasses
different from those of bulk waté¥ The dielectric spectros- show an increase in dielectric constant and dielectric losses
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substances. The fundamental numerical characteristic of a
o porous matrix is the macroscopic porosity. The porogityf

500 o a two-phase solid-pore system can be defined as the ratio of

o the mean volume of the whole empty space volwe to

/ the whole volumeV, of a sample

/ b=~ (D)

o/ Disordered porous media have been adequately described
/ by a fractal concept®="2 As we mentioned in the introduc-
tion, many real porous materials show fractal structures on
/ some pore space length scales. The solid-pore interface can
o also be fractal. By assuming that the volume of pore space is
100 0:0-00° T determined by the fractal structure, tregular fractal model
N can be applied. This implies that for a volume element of
20 -10 0 10 20 30 40 50 60 70 linear macroscopic sizd, the volume of pore space is gDiven

in units of the characteristic pore sikeby V,=G(H/h)",
Temperature (OC) where D is the regular fractal dimension 0?‘ the systerh,
FIG. 2. Temperature dependence of the low-frequency conduccoincides with the upper anid with the lower limit of the
tivity of sample 2(see Sec. Il self similarity. The constan® is a geometric factor. By the
same token, the volume of the whole sample is scaled in

in the low-frequency limit. This relaxation process is thoughtunits ofh asV=G(H/h)¢, whered is the Euclidean dimen-
to be related to the Maxwell-Wagner-Sillars polarization pro-Sion (d=3). Hence, the formula for the porosity in terms of
cess as a result of the trapping of free charge carriers at tHB€ regular fractal model can be derived from Ef), and it
interface, thus causing a build up of macroscopic chargés given by
separation, or space charge with a relatively long-relaxation h
time. _
The aim of this paper is to further analyze the complex ¢ (
relaxation behavior of the third relaxation process, which is ] )
associated with transfer of the electric excitation at percola- Equation(2) has been used for the analysis of the fractal
tion, with the purpose of inferring the geometrical features ofS@ndstone pores. It was also applied for porosity estima-
the porous silica glasses from its dielectric response. In thifons In porous Vycor glass. We note that the agreement
paper, we will use the idea of the method of electronic en_bet\_Neen the valu_e of the porosity obtained fro_m various ex-
ergy transfer dynamics developed by Klafter, Blumen, andPerimental teqhmques a_nd the value of porosity determined
Shlesinget® "and further employed by several from Eq._(_2) will be on[y in thg case when the. three follow-
author€2238in order to determine the fractality of the po- 9 congjltlons are fulfilled. Fw;tly, the_scale mterval of the
rous silica glasses. The idea will be used for the descriptiof?€asuring technique must coincide with the interval of self
of the electric excitation at percolation within the developedSimilarity of the porous medium. Secondly, the fractal di-
fractal structure of the porous glasses. Note that in the silicg€nsion in the measuring interval must be a constant value.
porous glasses the excitation transfer is associated with thENirdly, the value of the ratiéi/H is a determined value for
migration of ions and/or protons along the pore surface oft Selected measured sample. In this case, the paraghéter
connected pore®:56.6%We shall further develop a statistical Ed- (2) has a meaning of the macroscopic porosity of a ma-
fractal model, which establishes a relationship between thierial.
fractality of the porous space and porosity of the material.
The approach developed will be applied to the investigation
of porous glasses with controlled morphological parameters. In general, real porous systems and measuring intervals
The dimensions of pore fractals and porosity of silica glasseased in different techniques do not comply with the three
corresponding to the macroscopic length scale will be detereonditions mentioned above and the regular fractal model is
mined from dielectric spectroscopy study and compared witmot valid. In order to embrace variety of porous media and
the data obtained from measurements of the relative massxperimental techniques when these conditions are not ful-
decrements. filled, the random fractalmodels can be consideré¥iThis
model enables us to take into account the dependence of
measuring porosity of a medium on the scale of observation.
Randomness can be introduced in the regular fractal model
A. Description of a porous medium in terms of regular of porous medium by one or both of the following: we can
and random fractals assume thati) the fractal dimension of the structure is ran-
dom; and/or(ii) the scale parameter, which is equal to the
ratio £&=h/H of the lower and upper cutoffs of the self-
Porous materials are complex systems with a big innesimilarity range is a random value. Further, we assume that
surface of boundaries between different phases of compourghrameter is distributed in the interval\/A, 1], where\

Conductivity (10™ S/cm)

, @

2. Porosity in the random fractal model

Il. THEORETICAL BACKGROUND

1. Porosity in the regular fractal model
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TABLE I. The several known distribution laws derived from the general exponential distribution function
w(€)=A&% exp(—béP) at various values of the parameters.

Region of changes of the Type of

N Values of the parameters function argument distribution

1 a<0,b=0 u<¢é<l Power

2 a=0,b>0, B=2 —o<{éso Normal

3 a=1,b>0, B=2 Osésom Reyleigh

4 a=1,23...,.b>0, =1 Osés<w Poisson

5 —l<as<wx, b>0,8=1 Osés<w Gamma

6 a=u/2—-1,b=1/2,B=1, O<é<w X2

whereu is the number of the
degrees of freedom

7 a=0,b>0, 8=1 Osésow Exponential

8 a=3,b>0, 8=1 Osé<w Plank

9 a=0,b>0, B=0 p<és<l Uniform

10 a<0,b>0, B>0 us<Eé<1 Percolation

and A are the minimal and maximal boarders of the measurthe different scales, to be different. In order to take into
ing interval[\, A]. If the whole volume is divided into mac- account this variety we use a generalized exponential distri-
roscopic cells of the linear siz& (for organization of a sta- bution function for the parametef. This distribution in-
tistical ensemblg then the probability for a given cell to find cludes most of the known distribution functions used in the
some scale parameter and fractal dimension within the rectiterature’>="" In this case the probability density can be
angle from ¢ to ¢é+d¢é and from D to D+dD is  written as

W(&,D)dédD. The bulk porosity can be considered as the

integral over statistical ensemble of the cells and is deter- W(&)=A¢" exp( —béP), )

mined by where the normalization constaAtis determined from the
normalization conditiorfiw(§)d§=1, and it reads as

‘I’E<¢>=LJ ¢(£,D)W(§,D)dédD, )

-1

A= (6)

1

f £ exp(—béP)d¢
where the angular brackets denote an ensemble average and ®
() is the boundary region of the possible change§ afdD.  The distribution function of Eq(5) includes three empirical
In the first limiting case, when the fractal dimension is ran-narameterse, B, andb. Table | summarizes various known
dom but the scale parameter is a constant independddf of gistribution laws derived from the general exponential distri-
Eq. (3)_is equivalent to a multifractal model of a pytion function[Eq. (5)] at various values of the parameters.
medium!®™ In the second limiting cas€,when the scale The parameteb is related to the effective cutoff lengthy,
p_arame_ter i_s rar_1d(_3m in th_e inter\{allA_, 1], but the fractal asb~ (&) P. The physical meanings of the parameters
dimension in this interval is a determined constant, &).  and g can be assigned after ascertaining the relationships
reads as between these parameters and the properties of fractal mor-
phology and polydispersity of the finite-pore size.

b= fqu(g,D)w(g)dg, (4) By substityting Eqs(2).and(_5) into Eq.(4) and using Eq. .
u (6), we obtain the relationship for the mean macroscopic
. - porosity as
whereu=\/A is the minimal value of the scale parameger
on the interval\/A, 1], andw(£) measures the probability 1
density to filjd_some scale parameter in_ the range fEéam o= (@ DV/B
&+d¢, and it is related to the distribution function of the
spatial scales on the interv@l, A]. 1+ a+d—D 1+a+d-D
The measuring techniques mentioned in the introduction T,b,wg - T’b
provide a value of the fractal dimension on a certain scale X ,
interval. Therefore, in this paper, for calculation of the po- F( 1ta b,uﬁ> T 1ta b)
rosity of a fractal medium we will be focused on the second B’ B’

statistical approach, wherein the assumption of the un- @
changed fractal dimension on the interyal A, 1] is con-
sidered and the effect of pore-size polydispersity is takewhere T'(q,x)=[5&9 texp(—§dé is the
into account. Gamma function.

In the current approach, we permit the analytical equa- The stretched exponential cutoff factor, exg?), in Eq.
tions, which describe the pore-size distributions of varioug5) characterizes an effective cutoff of the length scale dis-
porous media, or even in one porous material considered amibution function. With increasing from the range where

incomplete
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E<&qi tO range wher&€> &4, this factor describes a transi- 1+«
tion from the scaling regime, characterizing a mesoscale @~m_ (10
range, in whichw(¢)~ &%, to the range of macroscopic

scales, where the distribution function, in main, is deter-Then, if the rate of the change of the distribution function in
mined by the cutoff factor. We note that for the case wherthe mesoscale region is small, i.¢q|<1, for Euclidean
&.<1, due to the cutoff factor, the contribution of the inte- three dimensional spacd=3, we obtain a simple approxi-
gration over the region beyond the effective cutoff parametemate relationship between the average porosity of a glass and
&or i the value integral4) is small in comparison with the the fractal dimension of the pore space, which reads
contribution from the integration over the regidp, &l

Several simple asymptotic relationships can be obtained for 1

the macroscopic porosity from E¢7) for certain relations b~ 4-D° (12)

between the value df., which characterizes the morphol-

ogy of the medium, and the value &f.,, which is an upper (i) The second simplification for the macroscopic poros-

I@m@t_of the measuring intervdl\/A, 1]. Let us consider two ity from Eq. (9) can be obtained when the exponents d

limiting cases. +d—D and 1+« are negative, which yields the condition
(a) Porosity in the case when the morphological interval isy, < — (1+d— D). This case corresponds to the situation of

significantly broader than the measuring interval. the rapid decay of the distribution functiow(&) according

In this limiting case the effective cutoff length of the mor- to the power low in the mesoscale region. For this case we

phologic interval is significantly larger than the upper limit haveu!***9-P>1. Hence, the macroscopic porosity reads
of the measuring intervd\/A, 1], i.e., we havefe>&nax  as

=1. For the porous medium comprising a multitude of the
connected pores a distribution of the paramétggq. (5)] is 1+«
a distribution of the percolation typ&.Hence, the situation b~ i o wd P, (12
) . SR . a+d—D

considered in this limiting case is related to the state above
the percolation threshold of the porous space through the
macroscopic cell of the linear siz&. We remind that the
macroscopic sells are the elementary statistical units, whic
were used for organization of the statistical ensemble of th%
random fractal model.

Further, taking into account that the paramegein the
cutoff factor has a positive value around unigee Table),

It is relevant to note here that despite the initial assump-
Hjon of a scaling distribution functiomv(¢), depending on

e value of parameter characterizing the rate of the distri-
ution function decay, the random fractal model in the
asymptotic regime yields two qualitatively different results,
expressed by Eq$11) and(12). One can see that the poros-

) . . ity expressed by Eq11) does not obtain the scaling proper-
we obtain thab<1. Then, by assuming that the measurlngti)els, \E)vhile in trzle sc,[ecgnd case, E{2) provides ag|2ngr':h

i i i < i B< . .
mtgrval is broad, Lep< 1, we also obtain thatu”<1. By scaling regime due to the factp® D,
using the power series expansions of the Incomplete Gamma (b) Porosity in the case when the morphological interval

functionf® is significantly narrower than the measuring interval.
In this limiting case the following condition is fulfilled:
Z(—1)nxatn Eer<émax=1. This means that the upper boundary of the
F(q,X)=F(Q)—nZO “nigEny for x<1 ~ (8)  measuring intervalé,, is essentially higher than the cutoff

length & of the mesoscale morphological interval. In con-

trast to the previous caga), which was related to the situ-

and keeping only the first nonvanishing terms of the seriegyio, apove the percolation threshold of the porous space
containing the parametérin the numerator and denominator through the macroscopic cell of the linear sizethe present

of Eq. (7), we obtain limiting case corresponds to the state below the percolation
threshold on this scal&.Note that this situation corresponds
1+a 1—plrerdD to the case of the pore clusters, which are limited in size, and
b~ doD 1 (9 they do not span the sample.

For the simplification of Eq(7) we further assume that

. . : _ . the range of the scaling regime was broad enough to fulfill
Note that this equation was also obtained by Nigmatliliin ¢ condition that the lower boundary of the measuring in-

on the basis of the generalized fractal conception, where hferval will be essentially less thafyy, i.e., p<éyr. These
considered only a power factor in our general relat|onsh|qwo conditions yield the following equivalent inequalities:

[Ec|1. (5)]dfortscalekdistributictm thmt():Ition.l tionship for th b>1>buf. Since, the Gamma functiol'(q,x) decays
N order 1o maxe more tractable refationsnip 101 € PO-¢,giar thap exponentially in the limit of large values of the

rosity, further two possibilities for obtaining the asymptotic variablex. i.e

equations for the macroscopic porosity on the basis of Eq. T

(9) can be considered. a1 _ .

(i) The first simplification can be obtained when the ex- F(ax)~xt " exp(=x)[1+O(1K)],  for x—e (13)
ponents ¥ a+d—D and 1+ « are positive. These two in-
equalities are fulfilled whea>—1 (sinced—D>0). Inthis  we can neglect the terms((1+ «+d—D)/8,b) andI'((1
case, by taking in to account that<1, the macroscopic + a)/B,b) in Eq. (7) for b>1. Hence, the macroscopic po-
porosity reads as rosity reads as
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1 I'((1+a+d—D)/B,buf) priori information on the structure of the porous medium.
= p@DVB (1t a)BbpP) (14 Hence, one of the features of the porous medium is whether
' the pore clusters are opened or closed on the maximal length
Further, by using the conditionu”<1 and the expansions scale of the measuring interval. This distinction is character-
of the Incomplete Gamma functiaB8), Eq. (14) yields ized by inequalities limiting the value of the parameker
Thus the case of opened pore clusters corresponds to the
. 1 . 1+« state of percolation above the threshdkke numbers 1
- p@DIE 1+ a+d-D through 4 of Table ). On the other hand, the case of closed
pore clusters corresponds to the state below the percolation
1+a+d-D 1| (bpByrrard-D threshold(see numbers 5 through 7 of Tablg. |l
B - Additionally, one has to know a width of the interval of
X 1+a . (19 self similarity of porous space and a width of the measuring
F(T+1 —(buf)tte interval. In particular, the width of the measuring interval is

determined by the parametar Therefore, the cases corre-

where T'(q)=T'(q,0)=fgx% exp(—x)dx is the Gamma sponding to the narrow measuring interval are taken in num-

function. bers 1, 5, and 6 of Table Il. On the other hand, the cases
For the further simplification of Eg(15) we follow the corresponding to broad measuring interval are taken in num-

same procedure as above and require the exponehts 1 bers 2, 3,4, and 7.

+d—D and 1+ « to be positive. Then the arguments of both ~Parameterbu” characterizes the relation between the

Gamma functions in Eq15) should be larger than 1. In this width of the measuring interval and the width of the interval

case the Gamma functions themselves will be larger than @f self similarity of porous space. This relation is character-

and the following conditions will be fulfilled ized by the corresponding inequalities in Table II.
Finally, a value of the rate parameter of the distribution
(buf)Ltatd=D function decayx affects the scaling properties of the macro-
1+a+d-D <1, (169 scopic porosity. Indeed, the scaling property(cu)
—+1 =c9 P¢(u), of the porosity observed in the regular fractal
B model[see Eq(2)], is not fulfilled after statistical averaging
(buP)tte [see Eq(7)]. Therefore, the porosity of porous medium de-
'“—<1. (16  scribed by the random fractal model built up from superpo-
F(H—a+ 1 sition of fractal objects having the same fractal dimension, in
B general, does not demonstrate a scaling behavior. Mean-

while, as was mentioned above, in one special qase

Thus for the macroscopic porosity we obtain number 4 of Table )lthe scaling properties are fulfilled.

1+a+d—-D
1 1+ T +1 B. Determination of the fractal dimension of porous glasses
&= ——py from the dielectric spectroscopy measurements at percolation
bd=P78 1+ a+d-D 1+a . N .
T+ 1 The pores in porous silica glass form topologically con-

an nected pore channels. Charge carriers such as protons and
ions can move along the pore surface. The movement results
In order to obtain a more tractable relationshipdarfurther  in a transfer of the electric excitation within the channels
simplification may be made if we assume an additional conalong random paths. As was mentioned in the introduction,
dition =1, which corresponds to the percolation form of in order to describe the mechanism of dielectric relaxation
the size-distribution functiof® Then, by using an assump- associated with this transfer, we follow the ideas developed
tion of a small rate of change of the distribution function inin Refs. 67 and 68, where a transfer of the excitation of a
the mesoscale region, i.e|@|<1, for Euclidean three- donor molecule to an acceptor molecule in various con-

dimensional spacej=3, we obtain densed media through many parallel channels were consid-
ered.
_I'(5-D) 1 18 A transfer of the electric excitation along the developed
T p D 4-D° (18) fractal structure of connected pores can be described by the

. normalized dipole correlation functiofDCF) W(t). The
Note that Eq.(18), corresponding to the present case, Whenggrejation function is associated with the relaxation of the

b>1, differs from Eq.(11), obtained in the previous limiting o . . . —
. B 3D . entire induced macroscopic fluctuation dipole momdrt)
case(a), whenb<1, by the factod'(5—D)/b™ . This fac- of the sample unit volume, which is equal to the vectorial

tor may be around or less than 1 for laigdepending orD. sum of all the fluctuation dipole moments of pores
(c) Scope of utilization of the random fractal model for mac-

roscopic porosity. — —

The theoretical results of this section are summarized in T(t)~ (M(0)-M(1)) 19
Table Il. As one can see, the random fractal model is capable (M(0)-M(0)) ’
to describe several different structural organization of porous
medium. In order to select from Table Il an appropriatewhere the symbo{ ) denotes an ensemble average. The ve-
equation for the macroscopic porosity one has to know docity and laws governing the correlation function are di-
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TABLE II. The general relationship and the asymptotic equations for the macroscopic porosity at differ-
ent values of the parameters.

1+a+d-D 1+a+d-D
——— b |-I|———— b
General relationship &= A A
p(d-bys 1+ab ﬁ) F1+ab
g B
Asymptotic equations
(Values of the parameters Porosity
N b bu? % a [
1 0<b<l O<buP<1l O<ps<1 la|=0 l+a  1—pltardD
1+a+d-D 1—pur*te
2 0<b<l O<buf<l O<pu<1 1+a>0 1+a
1+a+d-D
3 0<b<l O0<buf<l O<u<1l 1+a>0 1
laj<1 D
4 0<b<l O0<bwP<l O<p<l 1+a<d-D 1+a o
1tatd-D"
5 b>1 buf>0 o<u=<1 la|=0 ltatd-D
1 ( B ’b“)
b(d-bVE 1+a
5o
B
6 b>1 0<buf<1 o<u=l la|=0 1+a+d—D
1 l+a B +1)
b@-PVE 1+ a+d—D 1+a
r——+1
B
7 b>1 0<buP<1l 0O<pu<l la|<1 r5-pD) 1
d=3 b0 2-D

rectly related to the structural and kinetic properties of the The following assumption is invoked;=al;, wherea
sample and characterize the macroscopic properties of the a coefficient of proportionality. For each stage of the self-
system studied. We note that_a transfer of the ele_ctric excisimilarityj, the time of relaxatiorrj: 7, is proportional to
tation through the porous medium can occur even in the casfe lengthL; . From fractal geometr{¢2 L. can be ex-

of closed pores, which are topologically not connected one t ] !

anothe®® However, the distance between neighboring close ressed as

pores in a glass filled with dielectric or conductive material L=k (20)
should be small enough in order to provide a physical cou- ! '

pling between the neighboring pores separated by thin wallghere | is the minimal scale andt is a scaling factor K

via the electric interaction. Note that he physical coupling in>1). We assume that the total number of activation centers
the closed g)ores, for example, can be due to multipolafocated along the segmehf also obeys the scaling law
interactions .

A detailed description of the relaxation mechanism asso- n;=nop’, (21)
ciated with an excitation tr_ansfer baged on a rggular fraCta\!\/herep is the scaling factorg>1), andn is the number of
model was mtroduc_ed earl_léjr,yvhere It was ?F’p"ed for the the nearest neighbors near the selected cénéerj=0).
cooperative relaxation of ionic microemulsions at percola- e macroscopic correlation function can be expressed as
tion. a product of the relaxation functiong(z/z;) for all the

. According to this model, an _elementgry act of the .exc'ta'stages of the self-similarity of the fractal system considered
tion transfer along the length; is described by the micro-

scopic relaxation functiog(z/z;), wherel; is the “effec- N N . ,

tive” length of a channel of the relaxation in théh stage of V(z)= H [9(Z/zj)]"= H [g(Zgl)]“OpJ, (22
self-similarity. In this functionz; is a dimensional variable 1=0 1=0

characterizing thgth stage of the self similarity of the fractal whereZ=t/alr; é=1/k andN=1/InkIn(Ly/). Here,Ly is
system consideredz is the dimensionless timez=t/r, the finite geometrical size of the fractal cluster, whée
where the parameteris the minimal relaxation time needed refers to the last stage of the self similarity.

for an excitation to hop from one excitation center to its The estimations of the produ¢22) for various values of
nearest neighbor. £<1 andp>1 are given in Ref. 81. The results of the cal-
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culations may be written in the form of a modified whereC(t) is the slow growing function of time. By taking
Kohlrausch-Williams-Wats (KWW) stretched-exponential into account Eq(30) and ignoring the slow variation with

relaxation law:
V(Z)IV(0)=exd —I'(v)Z"+B(v)Z], (23

where the parametel$(v) andB(v) are given by

g (= 1g'(y)
L= g ), W‘dy’ 24
Nody —
B(V)= Wa‘l ) (25)
where
v=Inp/In(1/¢), (26)

with 0<»<1, and fore = €N<1. We note that the parameter
I" depends on the relaxation functigrand affects the mac-
roscopic relaxation timey, = rall’ ~"”, andB is a correction

parameter for the KWW function at large times.

The temporal boundaries,, and 7, Of the applicability

time of C(t), we obtain the asymptotic stretched-exponential
term

W (t)~exd — (t/7)P3], (32)

that can be further fitted to the experimental correlation func-
tions in order to determine the value of the fractal dimension
of the paths of excitation transfer within the porous medium.
If the fractal dimension of these paths coincides with the
fractal dimension of the pore space, then it can be used in the
asymptotic equations derived above for obtaining the poros-

ity.

. EXPERIMENT
A. Sample preparation

Four silica porous glasses labeled 1, 2, 3, and 4 were
fabricated by the leaching of sodium borosilicate glasses
with phase separation in acid solutions according to the tech-

of Eq. (23) for describing the cooperative relaxation are de-nology described elsewhe¥&®* Porosity of samples 1 to 4

termined by the expression:

1 1

2 In(1/é)(1+v) ‘

2In(1/¢)(2—v)
no(2a,—aj)s® "

’Alno
]

t 1/2]

alr

(27)

The parameterg, A;, a;, anda, in Egs.(24)—(27) are

related to the asymptotic properties of the elementary rela

ation functiong(y)
g(y)=1—ay+ayy?+--- for y<1 (29
g(y)=g+A ly+A,ly>+---  for y>1. (29

The relationship between the exponent=In p/In k, and

X_

was determined by the relative mass decrement method. Ad-
ditionally, for control, the porosity for sample 4 were calcu-
lated by Brunauer-Emmett-TelléBET) analysis according

to the methodolog§® It is known from the technology of
sample fabrication, that sample 1 contains silica gel in the
pore’s volume, albeit the silica gel is barely present in any
the other samples. The dimensions of pores were calculated
from absorption-desorption isotherms and from an optical
microscope photograph of the porous glass sanfpl@he
magnitudes of pore sizes obtained from these two methods
concur. However, if the pores are filled up with silica gel,
then neither of these methods is accurate for determining the
pore sizes. The water content in poggeslefined as the ratio

of the mass of adsorbed water to the mass of the dry sample,
was determined by weighing the samples prior to and after
the dielectric measurements. The dimensions of the pores,
porosity, and humidity of the samples are presented in Table
Il

the fractal dimensio,, of the paths of excitation transfer

may be derived from the proportionality and scaling relations

by using an assumption that the fractal is isotropic and has B. Experimental technique

spherical symmetry. The number of pores that are located pjglectric measurements in the frequency range of 20
along a segment of length; on the jth step of the self- ;1 \MHz were performed on samples 1, 2, and 3 by using
similarity is n;~p!. The total number of pores in the cluster ; Broad Band Dielectric Spectrometer BDS 4284
is S~n; _N(P’)(_’, whered is Euclidean dimension,d=3).  (NOVOCONTROL) with automatic temperature control by
The similarity indexs, which determines by how much the QUATRO Cryosystem. The measurement on sample 4 was

linear size of the fractal is enlarged at siefs 7/~Lj~kj. In
this case, we obtain the simple relationship betweeand
the fractal dimensio, as

Dp=InS/In »=3j Inp/j Ink=3v. (30

performed by a BDS 4000 device in the frequency range of
10 ?Hz-3MHz. The accuracy of the complex dielectric
permittivity measured, £* (w)=¢'(w)—ie"(w) [where
e'(w) ande”(w) are the real and loss parts of the complex
permittivity, respectively; was estimated to be better than
3%85 The measurements were carried out by cooling the

Further we will focus our attention only on the time de- samples from 20°C down te-100°C. The samples were

pendence behavior of the dipole correlation functiBit)
defined by Eq(23), that is given by

T (t)~C(t)exd — (t/7)"], (31)

then measured at intervals of 5°C upon heating them from
—100 to 300 °C. The size and thickness of the square plate
samples, used for dielectric measurements, were 30 and
0.31-0.32 mm, respectively.
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TABLE lll. Structural parameters obtained frofA) adsorption-desorption isotherms method and from
optical microscope photograptB) relative mass decrement methd@) BET analysis, andD) dielectric
spectroscopsy analysis.

Dimension Porosity Porosity Humidity Fractal Porosity
of the D(%) D(%) p(%) Dimension D(%)
pores D,
(nm)
Method
Sample A B C B D D
1 50+170 38*1 1.19%+0.05 0.99+0.06 33x1
2 50+170 48*1 1.21+0.05 1.89+0.06 47x1
3 280-+ 400 38*1 3.20%0.05 1.38*=0.06 38*1
4 10+30 59+1 59+1 1.4x0.05 2.47%0.06 65*1
IV. RESULTS AND DISCUSSION where F is the operator of the Fourier transform, and the
A. Determination of the fractal dimensions parameters ande., are the static dielectric permittivity and

its high-frequency limit, respectively. Figure 4 shows a typi-
cal example of the DCF, corresponding to sample 2, obtained
from the frequency dependence of the complex permittivity

Fig. 1, we chose sample 2 as an example for the typica"fu the percolation temperature. One can see that the DCF

illustrations of the dielectric spectroscopy data. The peak ofi'SpIayS a Complex honexponential time behavllor that can be
the permittivity at the temperature interval 50—80 °C Corre_deconvoluted into the sum of two processes with the charac-

i P 2
sponds to the temperature-driven percolation process asso&g/Stic refaxation times of around 1B and 10 * seconds.
ated with the transfer of the electric excitation within the ' N€ short relaxation time is related to that relaxation process
developed structure of connected pores. We note that thihich has a saddlelike shape in Fig. 1, while the long time

characteristic peak corresponding to this percolation proced¥©C€ss in Fig. 4 is associated with the percolation process.

was also indicated on the three-dimensional (e Fig. 1 | his long time behavior of the DCF can be fitted to E3p)
for dielectric losses”(w,T). with the purpose of determining the fractal dimensp.

We shall analyze the dielectric relaxation of the glasses irf N€ resulting values dD,, are presented in Table Ill.
the time domain since the theoretical relaxation model de- ©On€ can see that the fractal dimension of the excitation
scribed above is formulated for the dipole correlation func-Paths in sample 1 is close to unity. Topologically, this value

tion W(t). By analyzing this dependence at percolation and®f Pp corresponds to the propagation of the excitation along
using Eq.(32), we can determine the fractal dimension of the linéar path that may correspond to a presence of silica gel
paths of the excitation transfer, . within the pores. Indeed, the silica gel creates a subsidiary

The complex dielectric permittivity can be expressed in{inYy scale matrix with an enlarged number of hydration cen-
terms of the DCF as follows: ters within the pores. Since these centers are distributed in
the pore volume, the excitation transmits through the volume
R and is not related to the hydration centers located on the pore
8*(w)=8w—(85—8x)|:<&‘1’(t)>, (33 surface of the connective pores. Due to the large number of
the hydration centers, and the short distance between the

A typical spectrum of the dielectric permittivity’ (w,T)
of the studied porous glasses versus frequan@nd tem-
peratureT is displayed in Fig. 3. For this figure as well as in

2>
222

2>

e
222

2

T
o
22
252

Correlation Function

10° 10° 10" 10° 10?
Time (s
%@/)Oy 08 200 400 ©)
0 o ) ) )
//7?/ 702200 o mperature Cl FIG. 4. Log-log plot of the macroscopic correlation function of

sample 2 at the temperature corresponding to percolation. The solid
FIG. 3. Three-dimensional plot of the frequency and temperadine corresponds to a fit of the sum of two KWW relaxation func-
ture dependence of the dielectric permittivity of sample 2. tions.
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neighboring centers, the path can be approximated by a lineamified pore space can be considered as a system of random
with a fractal dimension around unity. percolating pore clusters. Hence, polydispersity of the clus-

The fractal dimensions of the excitation paths in samplesers can be described by the general distribution functions,
2 and sample 3 have values between 1 and 2. In contrast feq. (5), with the parameters corresponding to the distribution
sample 1, the silica gel in these samples is leached out, i.eof the percolation typ&®
water molecules are adsorbed on the inner pore surface. One has to bear in mind that the theoretical values of the
Therefore, despite the fact that according to the literature thpercolation threshold of the bond and site percolation models
fractal dimension of a rough pore surface should be aroundre 0.25 and 0.31, respectivélyThe porosity of the silica
2.5 with the upper-length cutof20 A (Ref. 35, the small  porous glasses obtained on the basis of the relative mass
values ofD, observed in samples 2 and 3 can be explainediecrement methotsee Table I} is larger than these theo-
by one of two ways. On the one hand, the surface can beetical values of the percolation threshold. Therefore, we as-
defractalized upon deposition of an adsorbed film of watersume that the glasses investigated are beyond the percolation
which results in the “smoothing” of the surface. On the threshold. In this cas€.—>, and the main conditionb
other hand, the transfer of the excitation in these samples 1, for the application of Eq(9) is fulfilled. Further, we
occurs along the inner-pore surface from one hydration cemote that since the experimental time range of the dielectric
ter to another. The distance between the centers can be sigreasurements is wide, the corresponding interval of space
nificantly larger than the small-scale details of the surfacescales is also wide, i.e. the conditipr=\/A <1 is fulfilled.
texture. Therefore, the fractal dimension observed is that ofhe fulfillment of that condition may allow us to use Eq.
the chords connecting the hydration centers, which should b&.0) for the determination of the porosity. A final simplifica-
lesser than 2. An investigation of the problem of which waytion can be made after taking into account that the scaling
of these two is more appropriate for the systems studied igterval in the well-developed system of pore clusters is
beyond the scope of the current paper, and it will be diswide. This allows us to assume that the distribution function
cussed in our further work. decreases slowly within the measuring interval, i.e|<1.

The fractal dimensions of the excitation paths in sample 4The assumptions considered allows us to choose a simple
is greater than 2. In order to explain this magnitude we not@ne-parametric Eq.(11) from the set of the various
that the characteristic size of pores in this sample is signifiasymptotic equations, which establishes the relationship be-
cantly smaller than that in samples 1+48ee Table Ill.  tween the fractal dimension of the porous space and the mac-
Therefore, the distance between the neighboring hydratebscopic porosity of the material. The results of the porosity
centers located on the surface can be comparable with thealculation using Eq(11) and the fractal dimension deter-
pore size. Thus we can expect that the transfer occurs acrossined from dielectric measurements are shown in the last
the pore bulk from the one pore wall to another wall rathercolumn of Table Ill. These values can be compared with the
than along the pore surface. porosity determined from the relative mass decrement mea-

In concluding this section it is relevant to note that thesurements shown in the same table. As one can see, the val-
fractal dimensions discussed here are the fractal dimensiongs obtained from dielectric spectroscopy concur well with
of the excitation transfer paths connecting the hydration centhe porosity data obtained from the relative mass decrement
ters located on the inner surface of the pores. The magnmethod.
tudes of fractal dimensions obtained for samples 2 and 3 is
less than 2, which is in agreement with the data obtained
from the energy-transform measureméeitt® Due to the V. SUMMARY
small value of humidityp, all the water molecules absorbed
by the materials are bound to these centers. The paths of tlg%

excitation transfer span along the fractal pore surface angdy,.qre of connected pores was analyzed in order to deter-

“depict” th? backbone of clusters formgd_ by _the POreS 0N dmine the porous morphology in silica glasses. For this pur-
scale that is larger than the characteristic distance betwe se, we developed a statistical model of porous media

the hydration centers on the pore surface. Thus the fract ased on ideas of fractal geometry, establishing a relation-

dimension of the paths is an approximation of the real surgy,i petveen the fractal dimension and the value of macro-

fape fracta_lity and it can be used for porosity calculations 'nscopic porosity of the material. Several simple asymptotic
this scale interval. relationships have been obtained in the framework of the
model for a quantitative characterization of the porosity. An
application of these relationships for calculation of porosity
For a calculation of the macroscopic porosity of a porousdepends on certain relations between the value of the cutoff
medium, the general E@7) can be used. In such a general length of the size polydispersity distribution function, which
case, this is a difficult task due to the large number of pacharacterizes the morphology of the medium, and the value
rameters, such ad, «, B, u, andb, which must be known. of the upper limit of the measuring length scale interval. The
However, when the system in the measured scale interval hamsodel developed has been applied in the investigation of
certain morphological features, the more simplifiedporous silica glasses. A determination of the characteristic
asymptotic relationships obtained in Sec[Hgs. (9)—(12), intervals of variations of the model parameters correspond-
and Eqgs.(14)—(18)] can be used. ing to the morphology of connected pores enabled us to se-
We note that a well-developed porous structure of openect the appropriate asymptotic equation for the macroscopic
connective pores is obtained as a result of the leaching out gforosity [Eq. (11)]. In this simple equation, the porosity is
the acid-soluble phase from sodium borosilicate glasses. Thidetermined by one parameter, which is the fractal dimension

The dielectric relaxation process associated with percola-
n of the electric excitation within the developed fractal

B. Determination of porosity
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of the porous space. The fractal dimension determined foand are also in good agreement with the values obtained
the paths along which the transfer of the electric excitatiorfrom the energy-transform measurements. The concurrence
occurs in the developed morphology of the connected poref the macroscopic porosity values obtained from dielectric

channels was used to estimate the porosity. This value of thepectroscopy method developed in this paper and the values
fractal dimension was obtained from the experimental dielecpptained from the relative mass decrements method are re-
tric data on the basis of the dynamic theory of the cooperagyits of the accurate determination of the fractal dimensions
tive relaxation process describing the percolation within thexnd the validity of the statistical model of the macroscopic

porous medium. . _ . porosity used here.
The fractal dimensions obtained for the studied porous

silica glasses vary over in the broad interval between 1 and
2.5. If the amount of the adsorbed water is small, then all the
water molecules are bound to the hydration centers and lo-
cated on the inner surface of the pores. The excitation trans- We would like to express our appreciation to Raoul Nig-
fers through the medium depict a path connecting the cemmatullin for inspiration in writing this paper and helpful dis-
ters. The values obtained from dielectric spectroscopy do natussions. A. G. acknowledges the support of the Israel Min-
contradict the literature data mentioned in the introductioristry of Science and Technology.
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