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Resonant tunneling through linear arrays of quantum dots

M. R. Wegewijs and Yu. V. Nazarov
Faculty of Applied Sciences and Delft Institute of Microelectronics and Submicrontechnology (DIMES), Delft University of Techn

2628 CJ Delft, The Netherlands
~Received 5 June 1998; revised manuscript received 7 May 1999!

We theoretically investigate resonant tunneling through a linear array of quantum dots with subsequent
tunnel coupling. We consider two limiting cases:~i! the strong Coulomb blockade, where only one extra
electron can be present in the array;~ii ! the limit of almost noninteracting electrons. We develop a density-
matrix description that incorporates the coupling of the dots to reservoirs. We analyze in detail the dependence
of the stationary current on the electron energies, tunnel matrix elements and rates, and on the number of dots.
We describe interaction and localization effects on the resonant current. We analyze the applicability of the
approximation of independent conduction channels. We find that this approximation is not valid when at least
one of the tunnel rates to the leads is comparable to the energy splitting of the states in the array. In this case
the interference of conduction processes through different channels suppresses the current.
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I. INTRODUCTION

In recent years, arrays of quantum dots have received
increasing amount of interest. With the progress of fabri
tion techniques, quantum dot arrays are coming within
reach of experimental investigation.1 If the electron levels in
the individual dots are aligned, we encounter here a situa
of resonant tunneling. In this regime, the transport in
array becomes sensitive to precise matching of the elec
levels in the dots that can be controlled by external ga
This opens up new possibilities to control the transport a
perform sensitive measurements even in the simplest cas
two dots.2

Resonant tunneling in arrays of quantum dots and laye
semiconductor heterostructures exhibit some similarit
The latter situation has been intensively studied in the c
text of possible Bloch oscillations.3 However, the Coulomb
blockade dominates the properties of the arrays of quan
dots so that electron-electron interaction cannot be negle
as in the case of layered heterostructures.4,5 A way to cir-
cumvent this difficulty is to perform an exact diagonalizati
of electron states in the array of coupled dots. Then
considers independent tunneling transitions between the
sulting many-electron states.6 This we call the independen
channel approximation. This is approximate because it di
gards the simultaneous tunneling of an electron through m
tiple conduction channels. Another approach is to restrict
basis to the resonant states of the uncoupled dots. Then
tunneling between the dots and the reservoirs is incorpor
into a modified Liouville equation for the density matrix
this basis. For two quantum dots this has been done in R
and here we extend this approach to the case of an arra
an arbitrary number of dots.

In this paper we concentrate on an array of quantum d
where dots are connected in series and a tunnel coup
exists only between neighboring dots. This is the most in
esting case because there is a unique path for the curren
changes in any dot strongly affect the transport through
whole array. The first and last dot of the array are connec
PRB 600163-1829/99/60~20!/14318~10!/$15.00
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to leads. We assume that the voltage bias is sufficiently h
so that the energy change during the tunneling of an elec
between a reservoir and the array is much larger than
energy uncertainty due to this tunneling. We also assu
that the resonant electronic energies in the array lie w
between the Fermi levels of the leads. This enables us to
the density-matrix approach. We consider two limiting cas
of the electron-electron interaction within the array. In t
first case we assume that the long-range Coulomb repul
between electrons in different dots of the array is so stro
that only one or no extra electrons are present in the a
~Coulomb blockade!. This is to be contrasted with the case
‘‘free’’ electrons. As we explain below~Sec. II!, we do not
disregard interactions completely in the latter case but ra
account only for strong repulsion within each dot.

Using the density-matrix approach in the basis of loc
ized states, we have obtained analytical results for the
tionary current. Our results hold for arbitrary values of t
parameters~within the applicability of our model! character-
izing the arraylike dot energies and tunnel couplings: no
sumption about homogeneity of the array has been ma
This may facilitate the comparison with experiments and
design of resonant tunneling devices. We report the effect
localization and Coulomb repulsion on the resonant curr
when the energy level of the first and the last dot are in
pendently varied. We have also considered another pictur
the transport using the approximation of independent c
duction channels in the array of dots. Using the dens
matrix approach in the basis of delocalized states, we h
calculated the occupations of the channels and their co
butions to the current. We discuss in detail the range of
lidity of this approximation. In the limit of both weakand
strong coupling to one or both of the leads, we obtain res
in agreement with the former more general calculatio
However, there can be substantial deviations from the p
dictions of this model when the tunnel rates and the cohe
interdot couplings are comparable. To illustrate this,
study the dependence of the current on the transparencie
the tunnel barriers and find unusual features due to the in
14 318 ©1999 The American Physical Society
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ference of electrons during tunneling.
The outline of the paper is as follows. In Sec. II we intr

duce the density-matrix description of a multidot syste
coupled to leads which we apply to the Coulomb blocka
case in Sec. III and to the ‘‘free’’ electron case in Sec. IV.
Sec. V we compare the results with those obtained from
independent channel approximation and we discuss the
viations. We formulate our conclusions in Sec. VI.

II. ARRAY OF QUANTUM DOTS COUPLED TO
RESERVOIRS

Let us first consider an array ofN quantum dots~the ‘‘de-
vice’’ ! without any contacts~Fig. 1!. We consider a quantum
dot as some complex system with discrete many-elec
states of which only two ground states participate in reson
transport. The one state is related to the other by the add
of an extra electron costing an addition energy which i
cludes intradot charging, i.e., the Coulomb interactions
tween electrons in the dot.~For simplicity, we disregard the
electron’s spin degrees of freedom.8! We label the resonan
states of doti 51, . . . ,N by the number of extra electron
ni50,1 and introduce fermionic operatorsâi

† ,âi which cre-
ate and annihilate, respectively, an extra electron in doi.
The many-electron eigenstates of the array ofuncoupleddots
will be denoted byun1•••nN&5u$nk%&5)k51

N âk
†nku$0%&. Let

« i denote the energy for adding an electron to doti and let
uu i 2 j u>0 be the interdot charging energy due to the repuls
Coulomb interaction between the pair of extra electrons
dots iÞ j . A coherent interdot coupling with matrix eleme
t i5t i* accounts for the tunneling of electrons between doi

and i 11. We obtain a Hubbard-type HamiltonianĤ5Ĥ0

1Ĥu for the array ofcoupleddots:

Ĥ05(
i 51

N

« i âi
†âi1 (

i 51

N21

t i~ âi 11
† âi1âi

†âi 11!, ~1a!

Ĥu5 (
i , j 52

N

uu i 2 j uâi
†âi â j

†â j . ~1b!

The density operator of the deviceŝ evolves according to
the Liouville equation] tŝ52 i@Ĥ,ŝ# (\[1) which con-

FIG. 1. Linear array ofN quantum dots coupled to leadsL and
R. The energy levels of the uncoupled dots are given by full lin
when relevant for resonant transport and dashed lines when
evant.
e

e
e-

n
nt
on

-

e
n

serves probability, i.e., Trŝ(t)51. By expandingŝ in the
many-electron eigenstates of the uncoupled dots, we obta
2N32N density matrixs5(s$nk%,$nk8%):

ŝ5 (
$nk%,$nk8%

s$nk%,$nk8%u$nk%&^$nk8%u.

We additionally introduce anN3N Hermitian matrixr with
expectation values of single-electron operators (i , j
51, . . . ,N):

r i j 5^â j
†âi&5Tr â j

†âi ŝ.

Using the fermionic commutation relations, we find

r i i 5 (
$nkÞ i %

sn1•••1
i
•••nN ,n1•••1

i
•••nN

, ~2a!

r i j 5 (
$nkÞ i , j %

~21!ni 111•••1nj 21

3sn1•••1
i
•••0

j
•••nN ,n1•••0

i
•••1

j
•••nN

, ~2b!

where $nkÞ i , j% indicates that we sum overnk50,1 for all
dotsk51, . . . ,N excepti , j . We will refer to r as the aver-
age occupation matrix with respect to electrons in individ
dots whereass is the probability-density matrix with respec
to many-electron states of the array.

Now we include leadsL andR connected to the first and
last dot of the device by a tunnel barrier, respectively~Fig.
1!. The leads are considered here as electron reservoi
zero temperature with a continuum of states filled up to th
Fermi levelsmL and mR , respectively. We assume that th
energy levels of the device are located well between
chemical potentials of the leads, i.e.,mL@« i ,t i@mR ~large
bias!, and that the level widths are much smaller than
bias, i.e.,mL2mR@GL,R ~discrete states!. Under these as-
sumptions an evolution equation for the density matrixs of
the device can be derived9,10 by incorporating the details o
the lead states into tunnel rates. Due to the high bias, e
trons only tunnel through the barrier from leadL to dot 1
with a rateGL52pDLutLu2 and from dotN to leadR with
rate GR52pDRutRu2. We assume that the density of stat
DL,R in leads is constant and that the tunneling matrix e
mentstL,R between lead and dot states depend only wea
on the energy. Due to the destructive interference of an e
tron tunneling between a discrete state in the device and
continuum of states in a reservoir, the rate for tunneling
one direction (L→1,N→R) is constant in time whereas th
rate of the reversed process (L←1,N←R) is zero.11 In gen-
eral, transitions between discrete many-electron statesa,b of
a device with HamiltonianĤ induced by tunneling to and
from reservoirs can be included in a modification of t
Liouville equation:10

] tsab52 i@Ĥ,ŝ#ab2
1

2 S (
a8

Ga→a81(
b8

Gb→b8Dsab

1 (
a8b8

Gab←a8b8sa8b8 . ~3!
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The first term of the modification describes theseparatede-
cay of statesa→a8 andb→b8 due to~in general! different
tunneling events between the device and the reservoir
ratesGa→a8 and Gb→b8 , respectively. The second term d
scribes thejoint generation of statesa←a8 andb←b8 due to
a single tunneling event occurring with rateGab←a8b8 : the
coherence lost by the simultaneous decay of statesa8,b8 is
transferred to statesa,b. When we assume that there is
unique path for the current, then each statea is generated
from a unique statea8 by the tunneling of an electron to o
from a reservoir: Gaa←a8b85Ga←a8da8b8 . The modified
Liouville equation conserves probability: summing the eq
tions for the diagonal elements gives] tTr ŝ(t)50, so

(
$nk%

s$nk%,$nk%51. ~4!

We consider the following two cases for resonant tra
port through the array:~i! The ‘‘free’’-electron ~F! case
where interdot Coulomb repulsion is negligible, i.e.,uu i 2 j u
[0; up to N electrons can populate the array and allN

many-electron states lie between the chemical potentialsmL
@mR and participate in resonant transport.~ii ! The Coulomb
blockade~CB! case where the interdot Coulomb repulsion
so strong that the smallest charging energy is large relativ
the bias, i.e.,uN21@mL2mR ; many-electron states with
more than one electron are highly improbable and can
neglected for resonant transport. We point out that in gen
the presence of electrons in the array modifies the rates
tunneling to or from the leads by Coulomb repulsion.9 How-
ever, in the limiting cases considered here there is eithe
repulsion~F! or no other electron present in the array~CB!
so two parametersGL andGR suffice to incorporate the de
tails of the electronic states in the respective leads. The
rent flowing from dotN to reservoirR is determined by the
average occupation and the tunnel rate:

I N~ t !

e
5GRrNN~ t !. ~5!

With the leads included, the dynamics of the average oc
pation matrixr should be calculated from the full densi
matrix s which evolves according to an equation of the ty
~3!. However, in both cases considered here we can deri
dynamical equation for the matrixr which is solved more
easily.

III. CURRENT IN THE COULOMB BLOCKADE CASE

When the long-range Coulomb repulsion is so strong t
at most one electron can be present in the array of dots
can restrict the set of many-electron basis states to

u0•••0&,u0•••1
i
•••0&, i 51, . . . ,N.

The average occupations of individual dots are simply eq
to the nonzero probability densities of these states and
th

-

-
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e
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o
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a

t
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r i j 5s0•••1
i
•••0,0•••1

j
•••0 .

Conservation of probability~4! suggests that we additionall
define an average occupation of the many-electron vacu
state:

r005s0•••0,0•••0 .

This quantity is positive 0<r00<1 and satisfies a conserva
tion law:

r001 (
k51

N

rkk51. ~6!

In the restricted basis, the matrix elements of the Ham
tonianĤ which describe the coherent part of the evolution
the state only involveĤ0 @Eq. ~1a!#. Modifying the Liouville
equation according to Eq.~3!, we obtain a dynamical equa
tion for the average occupation matrix,

] tr0052GLr001GRrNN , ~7a!

] tr i i 5 i~ t i 21r i i 211t ir i i 112t i 21r i 21i2t ir i 11i !

1GLr00d i12GRrNNd iN , ~7b!

] tr i j 5 i~« j2« i !r i j 1 i~ t j 21r i j 21

1t jr i j 112t i 21r i 21 j2t ir i 11 j !2
1

2
GRr iNd jN ,

~7c!

wherej . i 51, . . . ,N andt05tN[0. On the right-hand side
of Eq. ~7a! the negative contribution describes the decay
the vacuum state due to the tunneling of an electron fr
leadL to dot 1 with rateGL whereas the positive contributio
describes the generation of this state due to the tunnelin
the ~only! electron in the device from dotN to leadR. In Eq.
~7c! there is only a negative contribution due to the tunnel
of an electronout of dot N to reservoirR with rateGR . There
is no negative contribution withGL because we have incor
porated the Coulomb blockade: we disregard the decay
many-electron states with one electron to a state with
electrons which occurs when an electron tunnels from leaL
into dot 1. We can eliminater00 from Eqs.~7! using Eq.~6!
and obtainN2 equations for the average occupations.

Equations~7! can be used to describe nonstationary tra
port with a typical relaxation time scaleGL,R

21 . Here we are
interested in the stationary limit] tr50 only. In general, the
solution of Eq.~7! can be obtained by inverting a matrix o
dimensionN2. However, since the system under consid
ation is an array with subsequent tunnel coupling, most
the equations only relate matrix elements ofr on neighbor-
ing dots. One can obtain the solution by iteratively expre
ing all matrix elements in terms ofr00 and finally making
use of the normalization constraint~6!. The resulting station-
ary current in general reads

I N
CB

e
5

1

1

GL
1

1

GR
FN1

GR

4tN21
2

FN21

. ~8!
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Here the dimensionless expressionFN depends only on
«1 , . . . ,«N through the differences« i j [« i2« j ,i , j and on
t1 , . . . ,tN21. Note the curious property of Eq.~8!: FN enters
the expressions for bothI N and I N11. This helps when de-
riving expressions for the current through an array with
increasing number of dots. ForN52 we reproduce the resu
of Stoof and Nazarov:12
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I 2
CB

e
5

1

1

GL
1

1

GR
F21S «12

t1
D 2G1

GR

4t1
2

. ~9!

For N53 we obtain for the current through a triple dot sy
tem,
I 3
CB

e
5

1

1

GL
1

1

GR
S 31

«12«1312t1
22t2

2

t1t2

«12«131t1
22t2

2

t1t2
1

«1212«23

t2

«121«23

t2
D 1

GR

4t2
2 S 21

«12

t1
D . ~10!
un-
-
kes
rate

tark
.
ur-
ith

re-

le
n

One can showFN(«1 , . . . ,«N ,t1 , . . . ,tN21)5N for « i j
!t i5t. This property will be used later on and it is derive
in another way in Sec. V A.

We consider Eq.~8! in more detail for equal interdot cou
plings t i5t and several different configurations of the leve
« i . At resonance« i j 50 we find

r i i 5

1

GR
1

GR

4t2
~12d iN!

1

GL
1

1

GR
N1

GR

4t2
~N21!

and the current is maximal:

I N,max
CB

e
5

1

1

GL
1

1

GR
N1

GR

4t2
~N21!

. ~11!

Clearly the current is reduced when the array increase
size: the number of states participating in transport relativ
the number of states of the array decreases}1/N due to the
Coulomb blockade. In an actual system we expect a pos
deviation from this decrease to occur when the spatial siz
the array exceeds some range over which the Coulomb
pulsion cannot exclude the occupation of a second dot in
array. Away from resonance, i.e.,« i j 5O(«)@t, the conduc-
tion of the device decays exponentially with the size of
arrayN due to the localization ofthe electron in one of the
individual dots:I N

CB/e}GR(«/t)22(N21). To illustrate this we
vary only the last level@Fig. 2~a!#, i.e., we consider the so
lution of Eq. ~7! for « i5«Nd iN :

I N
CB

e
5

1

1

GL
1

1

GR
FN1~N21!S «N

t D 2G1
GR

4t2
~N21!

.

As we increase the number of dots, the curve keeps
Lorentzian shape with respect to«N and always depends o
both t andGR since the electron is localized only just befo
tunneling out of the array:
in
to

e
of
e-
e

e

ts

I N
CB

I N,max
CB

5
N→` 11S GR

2t D
2

11S GR

2t D
2

1S «N

t D 2 .

Now we vary only the first level@Fig. 2~b!#, i.e., we consider
the solution of Eq.~7! for « i5«1d i1:

I N
CB

e
5

1

1

GL
1

1

GR
H N1F S «1

t D 2

1S GR

2t D
2G (

k51

N21

kS «1

t D 2(N212k)J .

For largeN the normalized current vanishes when the det
ing exceeds the tunnel coupling~since an electron is local
ized in the first dot! whereas near resonance the peak ta
on a parabolic shape which is independent of the tunnel
GR :

I N
CB

I N,max
CB

5
N→`H 12S «1

t D 2

, «1 /t,1

0, «1 /t.1.

For the case where the energies are configured as a ‘‘S
ladder’’ of total width«, we have plotted the current in Fig
3~b!. The localization of electrons clearly dominates the c
rent since the tails of the current peak decrease rapidly w
increasingN as in Fig. 2~a!.

IV. CURRENT IN THE ‘‘FREE’’-ELECTRON CASE

When interdot Coulomb repulsion is altogether dis
garded, all 2N many-electron statesu$nk%& of the array of
dots must be taken into account. Modifying the Liouvil
equation withĤ5Ĥ0 according to the general prescriptio
~3!, we obtain the following set of 22N equations for the
density matrix:
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] tsn1•••nN ,n
18•••n

N8
52 i@Ĥ0 ,s#n1•••nN ,n

18•••n
N8

~12a!

2
1

2
GL@~12n1!1~12n18!#sn1•••nN ,n

18•••n
N8
2

1

2
GR~nN1nN8 !sn1•••nN ,n

18•••n
N8

~12b!

1GLn1n18s0n2•••nN,0n
28•••n

N8
1GR~12nN!~12nN8 !sn1•••nN211,n

18•••n
N218 1 . ~12c!
go
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Here Eq.~12a! describes transitions between the nonortho
nal states of the device with a fixed number of electrons
to the tunneling between neighboring dots. In contrast to
Coulomb blockade case, both tunneling into (GL) andout of
the array (GR) give negative contributions~12b!. Further-
more, there are tunnel processes which induce a trans
between two pairs of many-electron states and give a p
tive contribution~12c! to the coherences. Only a subset
Eq. ~12! forms a closed system of equations for the diago
and some nondiagonal elements ofs ~the remaining equa
tions only couple a closed set of nondiagonal elements wh
are irrelevant!. From this subset we can derive an even si
pler dynamical equation for the average occupation matrir.
Let us first derive the coherent part of this equation by c
sidering ‘‘free’’ electrons in the array of dots without th
leads. Because the Hamiltonian consists of only one-elec
operators (H05(kl51

N H0klak
†al), the commutator in the

FIG. 2. Normalized resonant current for the Coulomb blocka
case withN52,3,4,5,6~full curves downwards! and N5` ~thick
full curve!. ~a! Variation of the last level, i.e.,« i5«Nd iN . Increas-
ing N does not alter the Lorentzian form of the curve.~b! Variation
of the first level, i.e.,« i5«1d i1. Electrons are localized in the firs
dot after tunneling through the left barrier resulting in the expon
tial decay of the current tails withN. For N52, the curves in~a!
and ~b! coincide.
-
e
e

on
i-

f
l

h
-

-

on

Heisenberg equation of motion forr i j 5^aj
†ai& is readily ex-

pressed in other one-electron operators and the matrix
ments ofĤ0:

i] tr i j 5^@aj
†ai ,Ĥ0#&

5(
l 51

N

H0i l ^aj
†al&2 (

k51

N

^ak
†ai&H0k j

5@H0 ,r# i j , ~13!

where i , j 51, . . . ,N . This equation can also be derived b
taking the average@defined in Eq.~2!# of the coherent part
~12a!. The contributions which describe the coupling to t
leads are found by adding the average of the incoherent
tributions~12b! and~12c! to the right-hand side of Eq.~13!.
We obtain the following closed system of onlyN2 equations,
which describes the dynamics of the average occupa
number matrix:

e

-

FIG. 3. Normalized current through an array ofN52,3,4,5,6
dots with energies configured as a Stark ladder« i5 i /(N21)« of
varying width «. ~a! ‘‘Free’’-electron case: the curves forN52,3
~indicated by the arrow! coincide for an isotropic arrayt i5t with
GL5GR . ~b! Coulomb blockade case.
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] tr i i 5 i~ t i 21r i i 211t ir i i 112t ir i 11i2t i 21r i 21i !

1GL~12r11!d i12GRrNNd iN , ~14a!

] tr i j 5 i~« j2« i !r i j 1 i~ t j 21r i j 21

1t jr i j 112t i 21r i 21 j2t ir i 11 j !2
1

2
GLr1 jd i1

2
1

2
GRr iNd jN , ~14b!

where j . i 51, . . . ,N and t0[tN[0. These equations
closely resemble those for the Coulomb blockade case:
coherent contributions are exactly the same, but in cont
to Eq.~7b! the average occupationsr11,rNN in Eq. ~14a! are
not coupled by incoherent transitions to some vacuum st
Furthermore, in Eq.~14b! there is a negative contributio
due to the tunneling of an electroninto dot 1 with rateGL ,
which is absent in Eq.~7c! due to the Coulomb blockade.

Despite the close resemblance to Eq.~7! the ~calculation
of! stationary solution of Eqs.~14! for the general case is fa
more complicated. An analytical expression seems nei
t
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feasible nor instructive and we consider only a few repres
tative cases here. Assuming equal couplingst i5t, one finds
that the resonant current peak (« i j 50) is independent ofN:

I N,max
F

e
5

1

1

GL
1

1

GR
1

GL

4t2
1

GR

4t2

. ~15!

This result was previously obtained by Frishman and Gurv
for tunneling through multiple-well heterostructures5 using
essentially the same approach as for the derivation of
modified Liouville equation10 which we have used@Eq. ~3!#.
By solving Eqs.~14! for N52 we reproduce the result ob
tained by Gurvitz13,10 from Eqs.~12!,

I 2
F

e
5

1

1

GL
1

1

GR
1

1

GS «12

t1
D 2

1
GL

4t1
2

1
GR

4t1
2

, ~16!

whereG5GL1GR . For N53, solving Eqs.~14! gives the
current through a triple dot:
I 3
F

e
5

1

1

GL
1

1

GR
1

1

GL
S «12

t1
D 2

1
1

GR
S «23

t2
D 2

1
1

GS t1

t2
2

t2

t1
D 2

1
GL

4t1
2

1
GR

4t2
2

2

F 1

GL

«12

t1
2

1

GR

t1

t2

«23

t2
2

1

G S t1

t2
2

t2

t1
D «13

t2
G2

1

GL
1

1

GR
S t1

t2
D 2

1
1

G S «13

t2
D 2

1
G

4t2
2

. ~17!
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If one would first calculates, then the subset of 20 relevan
equations of Eqs.~12! ~containing in total 64 equations!
needs to be solved. For the case where the energies are
figured as a ‘‘Stark ladder’’ of total width«, we have plotted
the current in Fig. 3~a!. Comparison with Fig. 3~b! shows
that the current for the ‘‘free’’-electron case is less sensit
to localization effects than in the Coulomb blockade case

V. APPROXIMATION OF INDEPENDENT CONDUCTION
CHANNELS

It is instructive to consider an approximate approach
independent conduction channels to our problem. In S
V A this approximation is introduced assuming that both r
ervoirs areweaklycoupled to dots in the array. In this cas
the timeG21 needed for tunneling to or from a reservoir
much longer than typical timet21 of the evolution of a co-
herent state in the array. Therefore, an electron compl
many coherent oscillations in the array before tunneli
Somewhat surprisingly, this approach can also be used in
opposite limit of verystrongcoupling to the reservoirs as i
shown in Sec. V B. In Sec. V C we compare the results
the independent channel approximation and discuss som
culiar features of the more general results obtained in S
III and IV.
on-
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A. Weak coupling to the leads

We first consider the array of dots without the leads. L
us denote theN localized~delocalized! eigenstates of asingle
electron in the array of uncoupled~coupled! dots by u i &
(u i 8&), wherei 51, . . . ,N and the single-electron vacuum b
u0&. By transforming to the basis of delocalized states t
diagonalizesĤ0 @Eq. ~1a!#, we obtain new fermionic opera
tors

âi8
†5 (

k51

N

^ku i 8&âk
† , âi85 (

k51

N

^8i uk&âk .

Since in a delocalized state there is a nonzero probability
finding an electron in both dot 1 and dotN, such a state can
be regarded as aconduction channelwhich carries a current
The new operators add an electron to channelu i 8& and re-
move an electron from channelu i 8&, respectively. By ex-
panding the density operator of the arrayŝ in the ‘‘many-
channel’’ basis statesun1•••nN8 &5u$nk%8&5)k51

N âk
8†nku$0&,

we obtain a new density matrixs8. As in Sec. II, we define
an average occupation matrix for the channelsr i j8 5^â j8

†âi8&
which can be expressed in the density matrixs8 . The ad-
vantage of the new basis is that the dynamical equations
the average occupationsr i i8 are decoupled from the nond



l-
o

r
is
e

a

e
an
n

tu
al

pl
ad

a
-

ric
e

n
u

ent

ble
ng
ng

only

el

of
e

ed
ng

tron
m
the
of

f.

de-
re

ha
ay
n
e

14 324 PRB 60M. R. WEGEWIJS AND YU. V. NAZAROV
agonal elements when we only takeĤ0 into account:] tr i j8

52 i(« i82« j8)r i j8 , where« i , j8 are the energies of the deloca
ized statesi , j . In the Coulomb blockade case the effect

Ĥu is easily translated since the basis transformation p
serves the trace ofr: the total occupancy of the channels
restricted to values<1 whereas in the ‘‘free’’-electron cas
all N channels can be occupied~Fig. 4!.

Now we include the coupling to the reservoirs by
Golden Rule approach. Each channelu i 8& is connected to
leadL with modified matrix elementtL

i 5^ i 8u1&tL and to lead
R with tR

i 5^ i 8uN&tR : an electron in leadL can tunnel
throughany channel to leadR. The rate for tunneling into
channel u i 8& is proportional to the probability to find th
electron in dot 1 whereas the rate for tunneling out of ch
nel u i 8& is proportional to the probability to find the electro
in N:

GL
i 5GLz^ i 8u1& z2, GR

i 5GRz^ i 8uN& z2. ~18!

These probabilities depend on the energies« i of the localized
states and the matrix elementst i which couple them. When
we assume that the uncertainty in the energy during the
neling of an electron between leads and dots is much sm
than the level splitting, we can disregard correlations due
the simultaneous tunneling of one electron through multi
channels. Thus for weak coupling we can include the le
by only modifying the equations for thediagonalelements of
r8, i.e., the channel occupations. The channels can be tre
asindependentand their contributions to the current can sim
ply be added.

In the Coulomb blockade case@Fig. 4~a!# the interdot re-
pulsion couples the occupations of the channels and rest
their sum( i 51

N r i i8 ,1 . The tunneling of an electron into th
empty device with rateGL

i fills a channelu i 8&. This electron
must tunnel out with rateGR

i before another electron ca
tunnel into the device and occupy one channel. The eq
tions for the occupations are

FIG. 4. Tunneling throughN independent channels.~a! Cou-
lomb blockade case: an electron tunneling through one of the c
nels blocks the remainingN21 channels. The state must first dec
to the vacuum before another electron can enter one of the chan
~b! ‘‘Free’’-electron case:N parallel channels for tunneling ar
available.
f
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] tr008 5(
i 51

N

GR
i r i i8 2S (

i 51

N

GL
i D r008 ,

] tr i i8 5GL
i r008 2GR

i r i i8 .

Using the implied conservation of probability@( i 50
N r i i8 (t)

51#, the stationary solution@ limt→`] tr i i8 (t)50# is easily
found. Summation of the contributions of the independ
channels gives the stationary current:

I N
CB

e
5(

i 51

N

GL
i r i i8 ~`!5

(
i 51

N

GL
i

11(
i 51

N
GL

i

GR
i

5
1

1

GL
1

1

GR
FN

. ~19!

This is just the expression for the current through one dou
barrier: the tunneling time is just the sum of the tunneli
times of the individual barriers where the time for tunneli
through the right barrier is increased by a factor

FN5(
i 51

N u^ i 8u1&u2

u^ i 8uN&u2
.

(
i 51

N

u^ i 8u1&u2

(
i 51

N

u^ i 8uN&u2
51. ~20!

In the ‘‘free’’-electron case@Fig. 4~b!# the occupations of
the channels are not coupled and their sum is restricted
by ( i 51

N r i i8 ,N . The device is equivalent toN independent
double barriers in parallel where the occupancy of channi
obeys

] tr i i8 5GL
i ~12r i i8 !2GR

i r i i8 .

From the stationary solution@ limt→`] tr i i8 (t)50# the current
is readily found:

I N
F

e
5(

i 51

N

GL
i r i i8 ~`!5(

i 51

N
1

1

GL
i

1
1

GR
i

. ~21!

The tunneling time through each double barrier is the sum
the tunneling times (GL,R

i )21.GL,R
21 whereas the tunnel rat

of the device is the sum of the tunnel rates of theN double
barriers.

For a few representative cases we have explicitly work
out the approximate approach in the limit of weak coupli
to both leadsGL,R!« i j ,t i . For the case ofN52 dots we
have first calculated the two exact eigenstates of one elec
in the array of coupled dots without the reservoirs. Fro
these we obtained the tunnel rates to and from each of
delocalized states. Finally we summed the contributions
the independent channels to the total current: Eq.~19! pre-
cisely gives the result~9! without the term (GR/2t1)2

whereas Eq.~21! gives the result~16! without the term (GL
1GR) /(2t1)2 ~the latter result was previously found in Re
4 for the case of a double quantum well!. For the case ofN
dots with equal interdot couplingst i5t and aligned levels
« i5« j , a simple result is also possible because in each
localized stateu i 8& the electronic densities in the dots a

n-

els.
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spatially symmetric. Then the modification factors of t
rates are equal for each channel (z^ i 8u1& z25 z^ i 8uN& z2) and
they cancel in Eqs.~19! and~21!. Thus for weak coupling to
both reservoirs we obtain

I N,max
CB

e
5

1

1

GL
1

1

GR
N

, ~22!

I N,max
F

e
5

1

1

GL
1

1

GR

, ~23!

which is just Eqs.~11! and ~15! without the terms (N21)
3(GR/2t)2 and GLGR /(2t)2, respectively. Coulomb block
ade increases theeffectivetime for tunneling out of the de
vice by a factorN with respect to the ‘‘free’’-electron case
The current increaseslinearly with each rateGL ,GR!t as
expected from the enhanced tunneling.

B. Strong coupling to the leads

The terms which were found missing above become
portant when one of the tunnel rates to the reservoirs is c
parable to the coherent interdot coupling. The correlati
between the conduction channels can no longer be d
garded in this case: Eqs.~7! and ~14! do not decouple into
separate sets of equations for diagonal and nondiagonal
ments on the basis of delocalized states. However, we
now show that in the limit ofstrongcoupling to one or both
of the reservoirs, we can use the independent channel
proximation again.~Note that the energy uncertainties a
assumed to be smaller than the biasGL,R!mL2mR .)

First we consider the case where only the last dotN is
strongly coupled to the right lead:GL!« i j ,t i!GR . The
electronic state of the dotN and reservoirR form a con-
tinuum of states with a Lorentzian spectral density which
approximately constant over the energy rangetN21!GR :

DN1R~«!5
1

2p

GR

~«2«N!21~GR/2!2
'

1

2p

4

GR
.

The array of the remainingN21 dots isweaklycoupled to
this continuum of states with matrix elementtN21. Therefore
we can apply the independent channel approach: the tu
rate from dotN21 to the continuum on the right is foun
with the Golden Rule,

G̃R52ptN21
2 DN1R~«!5

4tN21
2

GR
. ~24!

For the case of aligned levels« i j 50 and equal couplingst i

5t, substitution ofGR→G̃R andN→N21 in Eqs.~22! and
~23!, respectively, gives the maximum current in the limit
strong coupling to the right lead:

I N,max
CB

e
5

1

1

GL
1

N21

G̃R

5
1

1

GL
1

GR

4t2
~N21!

, ~25!
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I N,max
F

e
5

1

1

GL
1

1

G̃R

5
1

1

GL
1

GR

4t2

, ~26!

which is in agreement with our results~11! and~15!, respec-
tively. For strong coupling to the right lead, the currentde-
creasesasGR

21 , which is somewhat surprising because tu
neling is enhanced. The origin of this effect is the formati
of linear combinations of the discrete state in dotN with
reservoir states with energies roughly between«N6GR . Be-
cause the tunnel processes from reservoir states back int
discrete state destructively interfere,11 the discrete state irre
versibly decays into the continuum. The resulting spec
density decreases with the energy uncertaintyGR . The even-
tual decrease of the current with the tunnel rateGR can also
be interpreted as a manifestation of the quantum Zeno ef
as discussed in Ref. 10. More generally we have the follo
ing relation: forGL!« i j ,t i!GR ,

I N
CB~«1•••«N ,t1•••tN21 ;GL ,GR!

5I N21
CB S «1•••«N21 ,t1•••tN22 ;GL ,

4tN21
2

GR
D ,

I N
F~«1•••«N ,t1•••tN21 ;GL ,GR!

5I N21
F S «1•••«N21 ,t1•••tN22 ;GL ,

4tN21
2

GR
D .

This is clearly satisfied by Eqs.~10! and ~17!, respectively,
and the general form~8! has this property.

Now consider the case where the array is coupled stron
to both leads, i.e.,« i j ,t i!GL,R . In the ‘‘free’’-electron case
the reservoirL coupled to dot 1 gives a new continuum
states with a spectral density which is approximately c
stant over an energy ranget1!GL :

D11L~«!5
1

2p

GL

~«2«1!21~GL/2!2
'

1

2p

4

GL
.

The tunnel rate from this continuum to dot 2 is

G̃L52pt1
2D11L~«!5

4t1
2

GL
.

The remainingN22 dots are weakly coupled to a continuu
on the left with matrix elementt1 and to the right withtN21
and we can apply the independent channel approach to
N22 conduction channels. For the case of aligned lev
« i5« j and equal couplingst i5t, substitution of bothGL

→G̃L andGR→G̃R in Eq. ~23! gives the maximum current in
the limit of strong coupling to both leads,

I max
F

e
5

1

1

G̃L

1
1

G̃R

5
1

GL1GR

4t2

,

in agreement with result~15!. More generally, we have the
relation for« i ,t i!GL,R :
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I N
F~«1•••«N ,t1•••tN21 ;GL ,GR!

5I N22
F S «2•••«N22 ,t2•••tN22 ;

4t1
2

GL
,
4tN21

2

GR
D ,

which is satisfied by Eq.~17!. In the Coulomb blockade case
interdot repulsion prevents the discrete state in dot 1 fr
mixing with the reservoir: even if the energy uncertain
allows tunneling into dot 1 to occur on a small time sca
GL

21 , the next electron will have to wait for the previous o
to tunnel out, which occurs on the much larger time sc
max$«ij

21 ,t21,GR
21%. In the limit of strong coupling to both

leads, the current in this case isindependentof GL and is
correctly given by Eq.~25! in agreement with result~11!.

Finally, we consider the case where only dot 1 is stron
coupled to the left lead, i.e.,GR!« i j ,t i!GL . In the Cou-
lomb blockade case, the weak-coupling result still applies
explained above. In the ‘‘free’’-electron case the discuss
is completely analogous to the case of strong coupling of
N to the right lead and the result is obtained by simply int
changingL↔R and 1↔N.

C. Intermediate coupling to the leads: Maximum current

The competition between enhanced tunneling for we
coupling to the leads and destructive interference in the
posite limit implies that the current reaches amaximumvalue
when the rate for tunneling into a dot is comparable to
coherent coupling to the neighboring dot. We can find
precise location and value of this maximum with the resu
obtained in Secs. III and IV, which also hold in this interm
diate case.

First we consider the resonant current peak~11! and~15!
as a function of the transparencyGR of the right tunnel bar-
rier as plotted in Fig. 5. Starting from zero, the current i
tially increases linearly as expected from the enhanced
neling to the right lead. Then a maximum is reached:

I max
CB

e
5

1

1

GL
1AN~N21!

1

t

, GR5A N

N21
2t, ~27a!

FIG. 5. Maximum resonant current as a function of the tra
parency of the right barrier: Coulomb blockade case forN
51,2,3,4,5,6 ~solid lines downwards! and ‘‘free’’-electron case
~dot-dashed line for anyN.1). The dotted lines show the positio
of the maxima.
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I max
F

e
5

1

1

GL
1

GL

4t2
1

1

t

, GR52t. ~27b!

Increasing the transparency further willreducethe current as
explained above. The maximum occurs when there is an
timal balance of the coherent tunneling into dotN and inco-
herent tunneling from this dot to reservoirR. At this point
the effectivetime for tunneling out of the device is the sam
for weak @Eqs.~22! and ~23!, respectively#, and strong cou-
pling to the right lead@Eqs.~25! and~26!, respectively#, i.e.,
at these values ofGR we have

1

GR
N5

1

G̃R

~N21! ~CB!,

1

GR
5

1

G̃R

~F!,

whereG̃R is given by Eq.~24!. For the case of ‘‘free’’ elec-
trons the effective time for tunneling out and therefore t
position of the maximum is independent of the number
dots N. ~For this case theGR dependence of the resona
current peak has been discussed for a double dot syste
Ref. 11.! In the Coulomb blockade case the nonmonoto
variation of the current withGR persists for allN. The maxi-
mum occurs at a slightly higher value ofGR than for the
‘‘free’’-electron case: atGR52t5G̃R the effective tunneling
time for weak coupling is still larger than for strong couplin
because the fraction of channels excluded by Coulomb re
sion is larger forN dots than forN21 dots. The tunnel rate
must be increased by a factorAN/(N21) to exactly balance
the effective tunneling times. For largeN this difference be-
comes negligible and the maximum occurs at the same p
tion as for the ‘‘free’’-electron case but with a much small
amplitude~Fig. 5!.

Next we consider the resonant current peaks~11! and~15!
as a function of the transparencyGL of the left tunnel barrier.
In the ‘‘free’’-electron case the maximum current~15! re-
mains unchanged when we interchangeGL and GR . There-
fore, the resonant current peak~15! also displays a maximum
as a function ofGL at GL52t. As a function of both rates the
maximum current is

I N,max
F

e
5

t

2
, GL5GR52t.

As discussed in Sec. V B, there is no such effect in the C
lomb blockade case: due to interdot repulsion, the reson
current peak~27a! will increase withGL and saturate at a
maximal value whenGL@t,

I N,max
CB

e
5

t

AN~N21!
, GL@GR5A N

N21
2t.

For N52, the maximal current as a function of the rates
larger in the Coulomb blockade case whereas forN.2 it is
larger in the ‘‘free’’-electron case.
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VI. CONCLUSIONS

We have extended the density-matrix approach to re
nant tunneling to the case of a linear array of quantum d
with strong, long-range electron-electron interaction. W
have found exact analytical expressions for the station
current in the array for an arbitrary set of parameters~within
the applicability of our model! characterizing the array. Cou
lomb repulsion was found to reduce the resonant current
factor of the order of the number of dots. The formation o
localized state in one of the dots when the energy leve
displaced results in an exponential decay of the current w
increasing size of the array. Our approach takes into acc
correlations between conduction channels in the array du
. P
ev

.
n,
.
rt,

III

e

o-
ts
e
ry

a

is
th
nt
to

the coupling to the electron reservoirs. This makes our
sults also valid for relatively strong tunnel coupling to th
reservoirs where the independent channel approxima
does not work. These correlations manifest themselves in
eventual decrease of the resonant current when the rate
tunneling into the reservoir is increased.
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