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Resonant tunneling through linear arrays of quantum dots
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We theoretically investigate resonant tunneling through a linear array of quantum dots with subsequent
tunnel coupling. We consider two limiting casd$) the strong Coulomb blockade, where only one extra
electron can be present in the arrdy) the limit of almost noninteracting electrons. We develop a density-
matrix description that incorporates the coupling of the dots to reservoirs. We analyze in detail the dependence
of the stationary current on the electron energies, tunnel matrix elements and rates, and on the number of dots.
We describe interaction and localization effects on the resonant current. We analyze the applicability of the
approximation of independent conduction channels. We find that this approximation is not valid when at least
one of the tunnel rates to the leads is comparable to the energy splitting of the states in the array. In this case
the interference of conduction processes through different channels suppresses the current.
[S0163-182609)04040-0

[. INTRODUCTION to leads. We assume that the voltage bias is sufficiently high
so that the energy change during the tunneling of an electron
In recent years, arrays of quantum dots have received apetween a reservoir and the array is much larger than the
increasing amount of interest. With the progress of fabricaenergy uncertainty due to this tunneling. We also assume
tion techniques, quantum dot arrays are coming within theéhat the resonant electronic energies in the array lie well
reach of experimental investigationf the electron levels in  between the Fermi levels of the leads. This enables us to use
the individual dots are aligned, we encounter here a situatiothe density-matrix approach. We consider two limiting cases
of resonant tunneling. In this regime, the transport in theof the electron-electron interaction within the array. In the
array becomes sensitive to precise matching of the electroifirst case we assume that the long-range Coulomb repulsion
levels in the dots that can be controlled by external gatedetween electrons in different dots of the array is so strong
This opens up new possibilities to control the transport andhat only one or no extra electrons are present in the array
perform sensitive measurements even in the simplest case @Eoulomb blockadge This is to be contrasted with the case of
two dots? “free” electrons. As we explain belowSec. I, we do not
Resonant tunneling in arrays of quantum dots and layeredisregard interactions completely in the latter case but rather
semiconductor heterostructures exhibit some similaritiesaccount only for strong repulsion within each dot.
The latter situation has been intensively studied in the con- Using the density-matrix approach in the basis of local-
text of possible Bloch oscillatiomsHowever, the Coulomb ized states, we have obtained analytical results for the sta-
blockade dominates the properties of the arrays of quanturtionary current. Our results hold for arbitrary values of the
dots so that electron-electron interaction cannot be neglectguarametersgwithin the applicability of our modeglcharacter-
as in the case of layered heterostructdréé way to cir-  izing the arraylike dot energies and tunnel couplings: no as-
cumvent this difficulty is to perform an exact diagonalization sumption about homogeneity of the array has been made.
of electron states in the array of coupled dots. Then on&his may facilitate the comparison with experiments and the
considers independent tunneling transitions between the relesign of resonant tunneling devices. We report the effects of
sulting many-electron stat8sThis we call the independent localization and Coulomb repulsion on the resonant current
channel approximation. This is approximate because it disrewhen the energy level of the first and the last dot are inde-
gards the simultaneous tunneling of an electron through mulpendently varied. We have also considered another picture of
tiple conduction channels. Another approach is to restrict théhe transport using the approximation of independent con-
basis to the resonant states of the uncoupled dots. Then tlieiction channels in the array of dots. Using the density-
tunneling between the dots and the reservoirs is incorporatethatrix approach in the basis of delocalized states, we have
into a modified Liouville equation for the density matrix in calculated the occupations of the channels and their contri-
this basis. For two quantum dots this has been done in Ref. Butions to the current. We discuss in detail the range of va-
and here we extend this approach to the case of an array bélity of this approximation. In the limit of both weak&nd
an arbitrary number of dots. strong coupling to one or both of the leads, we obtain results
In this paper we concentrate on an array of quantum dots agreement with the former more general calculations.
where dots are connected in series and a tunnel couplingowever, there can be substantial deviations from the pre-
exists only between neighboring dots. This is the most interdictions of this model when the tunnel rates and the coherent
esting case because there is a unique path for the current aimderdot couplings are comparable. To illustrate this, we
changes in any dot strongly affect the transport through thstudy the dependence of the current on the transparencies of
whole array. The first and last dot of the array are connectethe tunnel barriers and find unusual features due to the inter-
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L Iy serves probability, i.e., T&(t)=1. By expandingfr in the
f\ t, t; te m many-electron eigenstates of the uncoupled dots, we obtain a
N N H 1 — .
f_\,_ B AN 2N 2™ density matnxa—(a{nk}y{né}).
w | FH L g N
M —Hg>> rka FLa t; N 2 |{ }><{ /}|
e g, . o= U{nk}’{n'} Ny nk .
| 1] B L] €| W >> g >> Uy Inhinyy k
TR We additionally introduce ah X N Hermitian matrixp with
----- expectation values of single-electron operators,j (
= B! = LAl [ N =1,...N):

Pij :<é}.é|>:Tré:‘é|a'

FIG. 1. Linear array oN quantum dots coupled to leatlsand  Using the fermionic commutation relations, we find
R. The energy levels of the uncoupled dots are given by full lines
when relevant for resonant transport and dashed lines when irrel-
evant. pi= 2 Ty Lonng Loy (28)
ference of electrons during tunneling.

The outline of the paper is as follows. In Sec. Il we intro- pij= > (=)t
duce the density-matrix description of a multidot system (i
coupled to leads which we apply to the Coulomb blockade
case in Sec. lll and to the “free” electron case in Sec. IV. In
Sec. V we compare the results with those obtained from the o
independent channel approximation and we discuss the d¥here{nc.} indicates that we sum ovem=0,1 for all

Xo'n1~~~i1~~~(j)~~~nN,nl~~(i)~~~j1~~~nNy (2b)

viations. We formulate our conclusions in Sec. VI. dotsk=1,... N excepti,j. We will refer to p as the aver-
age occupation matrix with respect to electrons in individual
Il. ARRAY OF QUANTUM DOTS COUPLED TO dots whereagr is the probability-density matrix with respect
RESERVOIRS to many-electron states of the array.

Now we include lead& andR connected to the first and

Let us first consider an array &f quantum dotgthe “de-  last dot of the device by a tunnel barrier, respectivélig.
vice") without any contactgFig. 1). We consider a quantum 1). The leads are considered here as electron reservoirs at
dot as some complex system with discrete many-electromero temperature with a continuum of states filled up to their
states of which only two ground states participate in resonarffermi levelsy, and g, respectively. We assume that the
transport. The one state is related to the other by the additioenergy levels of the device are located well between the
of an extra electron costing an addition energy which in- chemical potentials of the leads, i.g, >¢;,t;>ug (large
cludes intradot charging, i.e., the Coulomb interactions bebiag, and that the level widths are much smaller than the
tween electrons in the dotFor simplicity, we disregard the bias, i.e.,u —ug>I"| g (discrete statgs Under these as-
electron’s spin degrees of freed&nWe label the resonant sumptions an evolution equation for the density matriof
states of doi=1, ... N by the number of extra electrons the device can be derivé by incorporating the details of
n,=0,1 and introduce fermionic operatca$,a; which cre-  the lead states into tunnel rates. Due to the high bias, elec-
ate and annihilate, respectively, an extra electron inidot trons only tunnel through the barrier from leadto dot 1
The many-electron eigenstates of the arraymfouplecdots ~ With a ratel’ =2aD, |t |* and from dotN to leadR with
will be denoted byjn, - - 'nN>:|{nk}>:H|,:‘:1alnk|{0}>' Let rate I'r=27Dg|tg/%. We assume that the density of states

&; denote the energy for adding an electron to dand let D r in leads is constant and that the tunneling matrix ele-

uji—j;=0 be the interdot charging energy due to the repulsivements’['-’R between lead and dot states depend only weakly

. . . . on the energy. Due to the destructive interference of an elec-
Coulomb interaction between the pair of extra electrons in . . : .
S ) ) . ) ron tunneling between a discrete state in the device and the
dotsi #j. A coherent interdot coupling with matrix element , ; . S
* . . continuum of states in a reservoir, the rate for tunneling in
tj=t;" accounts for the tunneling of electrons betvyeerl dots |« direction [—1N—R) is constant in ime whereas the
andi+1. We obtain a Hubbard-type Hamiltoniah=H, rate of the reversed process« 1N—R) is zero'* In gen-

+H, for the array ofcoupleddots: eral, transitions between discrete many-electron stgtesf
N N—1 a device with HamiltoniarH induced by tunneling to and
- ala + t(al a+ala. ), 1 frpm reservoirs can be included in a modification of the
0 igl Eis 21 (818 8730) (13 Liouville equation™®
N P 1
Hoe= 2 U|i—j|éréié;réj. (1b) atoab:_l[H'a]ab_E ; Faﬂa'—i_% Foor ] oa
i<j=2
The density operator of the deviee evolves according to i 2 ot Tarpr A3)

the Liouville equationd,oc=—i[H,o] (A=1) which con- a’'b’
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The first term of the modification describes theparatede- pij= 00
cay of statem—a’ andb—b’ due to(in general different [ i
tunneling events between the device and the reservoir wit
ratesI',_.,» andI',_,/, respectively. The second term de-
scribes thgoint generation of states—a’ andb«—b’ due to

a single tunneling event occurring with raté,,. ,/p : the
coherence lost by the simultaneous decay of statds’ is
transferred to statea,b. When we assume that there is a o N o
unique path for the current, then each states generated Th|s quantity is positive & pgg=<1 and satisfies a conserva-
from a unique stata’ by the tunneling of an electron to or tion law:

%onservation of probability4) suggests that we additionally
define an average occupation of the many-electron vacuum
state:

Poo=—090...0,0--0"

from a reservoir:I' ;4 o' =lacarSarp - The modified N

Liouvill ion conserv r ility: summing th -

_ou eequa‘so conse espob_ab tyAsu g the equa poot S pre=1. (6)
tions for the diagonal elements givégr o(t)=0, so k=1

In the restricted basis, the matrix elements of the Hamil-
tonianH which describe the coherent part of the evolution of
> Tinging = 1- (4) the state only in\_/olveHo [Eq.(1a)]. Modifying the ITiouviIIe
{ni} equation according to Eq3), we obtain a dynamical equa-

tion for the average occupation matrix,
We consider the following two cases for resonant trans-

port through the array(i) The “free”-electron (F) case poo=—T'Lpoot I'ronns (7a)
where interdot Coulomb repulsion is negligible, i.ay;,; _
=0; up to N electrons can populate the array and &l 2 pii =1(ti—1pii -1 tipii v 1= tim1pi—1i— tipis1i)

many-electron states lie between the chemical potengials

> ug and participate in resonant transpdiit) The Coulomb
blockade(CB) case where the interdot Coulomb repulsion is
so strong that the smallest charging energy is large relative to

+I'Lpoodii—I'roNNSinS (7b)

dwpij=1(ej— &) pij +i(tj—1pij—1

the bias, i.e.,uy_1>u —ur; Many-electron states with 1

more than one electron are highly improbable and can be Hpij 1~ tioapioajtipica) ~ S TRAINON
neglected for resonant transport. We point out that in general

the presence of electrons in the array modifies the rates for (70)
tunneling to or from the leads by Coulomb repulstafow- wherej>i=1, ... N andty=ty=0. On the right-hand side

ever, in the limiting cases considered herc_a there is either ngs Eg. (78 the negative contribution describes the decay of
repulsion(F) or no other electron present in the am&@B)  he vacuum state due to the tunneling of an electron from
so two parameters, and g suffice to incorporate the de- |eaq| to dot 1 with ratel’, whereas the positive contribution
tails of the electronic states in the respective leads. The Culjescripes the generation of this state due to the tunneling of
rent flowing from_ dotN to reservoirR is determined by the the (only) electron in the device from déd to leadR. In Eq.
average occupation and the tunnel rate: (70) there is only a negative contribution due to the tunneling

of an electrorout of dotN to reservoiR with ratel's. There

is no negative contribution with', because we have incor-
In(t) T (t) (5) porated the Coulomb blockade: we disregard the decay of
e RONNLE- many-electron states with one electron to a state with two

. . ) electrons which occurs when an electron tunnels from lead
With the leads included, the dynamics of the average ocCuz g qot 1. We can eliminatg, from Egs.(7) using Eq.(6)

pation matrixp should be calculated from the full density ;.4 optainN2 equations for the average occupations.

matrix o which evolves according to an equation of the type Equations(7) can be used to describe nonstationary trans-

(3). However, in both cases considered here we can derive ; : ; ; —1

dynamical equation for the matrig which is solved more _ﬁort with 2 typical re_laxatlor_l time scake, . Here we are
interested in the stationary limitp=0 only. In general, the

easily. solution of Eq.(7) can be obtained by inverting a matrix of
dimensionN?. However, since the system under consider-
lll. CURRENT IN THE COULOMB BLOCKADE CASE ation is an array with subsequent tunnel coupling, most of

When the long-range Coulomb repulsion is so strong thzﬁhe equations only relate matrix elementspobn neighbor-

at most one electron can be present in the array of dots, w9 dots. Or_le can Ob‘a"? the solution by ite_ratively EXpress-
can restrict the set of many-electron basis states to ing all matrix e'e’.“er!ts in terms Qfoo and flna!ly mak_mg
use of the normalization constraif®). The resulting station-

ary current in general reads

|0---0),]0---1---0), i=1,...N. |CB 1
' %: 1 r ' ®
The average occupations of individual dots are simply equal T +F_FN+ tzR Fno1
L R

to the nonzero probability densities of these states and
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Here the dimensionless expressié, depends only on ISB 1

&1, - - - ,&n through the differences;j=¢;—¢;,i<j and on —= 5 . 9
t;, ... ty_1. Note the curious property of E(B): Fy enters € i+i oy |E22 +E

the expressions for both, and Iy, . This helps when de- ' TI'r ty 4@‘

riving expressions for the current through an array with an
increasing number of dots. Fbi=2 we reproduce the result For N=3 we obtain for the current through a triple dot sys-

of Stoof and Nazaro¥? tem,
158 1
e 2_.2 2_.2 . (10)
e i+i 8126131 2t1—15 810813 11— 15 €15+ 28038101 803 +E(2+8_12>
Iy TI'g tit; tit; t to 4t3 ty
|
One can showFy(eyq, .. ..en,ty, .. tn-1)=N for g I'g\2
<t;=t. This property will be used later on and it is derived |CB N—eo 1+ 2t
in another way in Sec. V A. CS = > 5.
We consider Eq(8) in more detail for equal interdot cou- I'N max 1+(E + (8_’\‘
plingst;=t and several different configurations of the levels 2t t

&;. At resonances;; =0 we find

Now we vary only the first levelFig. 2(b)], i.e., we consider

1 Tg the solution of Eq(7) for e;=¢,6;1:
a1 8w
Ir 412
Pii=
1 r
SN+ —R(N-1) I 1
r, r 4t2 = 2 N1 2(N-1-K))
€ 1 " 1 N+ €1 n FR 2 k €1
and the current is maximal: r, Tk t 2t) |& Tt
1GB 1
N,max_ (11)  For largeN the normalized current vanishes when the detun-
e 1 ing exceeds the tunnel couplirgince an electron is local-

F_L+F_RN+P(N_1) ized in the first dot whereas near resonance the peak takes
on a parabolic shape which is independent of the tunnel rate
Clearly the current is reduced when the array increases ihRr:

size: the number of states participating in transport relative to

the number of states of the array decreas&\ due to the

. 2
Coulomb blockade. In an actual system we expect a positive |CB N—eo | €1 el Jt<1
deviation from this decrease to occur when the spatial size of Cg = ) 7t
the array exceeds some range over which the Coulomb re- I'N max 0 el It>1.

pulsion cannot exclude the occupation of a second dot in the
array. Away from resonance, i.e.; = O(e)>t, the conduc-
tion of the device decays exponentially with the size of theFor the case where the energies are configured as a “Stark

array N due to the localization ofhe electron in one of the
individual dots:l ¥/ exT'g(e/t) "2N~Y). To illustrate this we

vary only the last leve|Fig. 2@)], i.e., we consider the so-
lution of Eq.(7) for e;=e\din:

8N2

N+ N—l)(—) Ir N—l).
( 4t2(

ladder” of total widthe, we have plotted the current in Fig.
3(b). The localization of electrons clearly dominates the cur-
rent since the tails of the current peak decrease rapidly with
increasingN as in Fig. 2a).

IV. CURRENT IN THE “FREE”-ELECTRON CASE

When interdot Coulomb repulsion is altogether disre-
garded, all 2 many-electron stategn,}) of the array of

As we increase the number of dots, the curve keeps it§lots must be taken into account. Modifying the Liouville
Lorentzian shape with respect #q and always depends on equation withH=H, according to the general prescription
botht andT'k since the electron is localized only just before (3), we obtain the following set of 2' equations for the

tunneling out of the array:

density matrix:
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(?to-nl...nN'ni...n,’\l: _i[f_\'O;U]nl...nN‘ni...n,’\‘ (123
1 ’ 1 ’

_EFL[(l_an(l_nl)]Unl‘-~nN-n1-~n,'q_ EFR(n,\ﬁ- nN)onl,,_nN Nl (12b

+F|_n1n10'0n2,_.nN‘Oné,,_n”\"f'FR(l_ nN)(l_n',\l)o-nl"'anll’ni"'n[,\jfll' (12C)

Here Eq.(12a describes transitions between the nonorthogoHeisenberg equation of motion fp; =(a]7ai) is readily ex-

nal states of the device with a fixed number of electrons du@ressed in other one-electron operators and the matrix ele-
to the tunneling between neighboring dots. In contrast to thénents off,:

Coulomb blockade case, both tunneling infq ] andout of

the array {'g) give negative contribution$12b). Further-

more, there are tunnel processes which induce a transition 'atPii:<[ajTai Hol)

between two pairs of many-electron states and give a posi- N N

tive contribution(12¢) to the coherences. Only a subset of :E H0'|<a~Ta|>— 2 (aTa->H0k-

Eq. (12 forms a closed system of equations for the diagonal = &y TR0

and some nondiagonal elements @f(the remaining equa-

tions only couple a closed set of nondiagonal elements which =[Ho.plij, (13
are irrelevant From this subset we can derive an even sim- o ) ) )

pler dynamical equation for the average occupation matrix Wherei,j=1,... N . This equation can also be derived by

Let us first derive the coherent part of this equation by coni@King the averaggdefined in Eq.(2)] of the coherent part
sidering “free” electrons in the array of dots without the (128 The contributions which describe the coupling to the
leads. Because the Hamiltonian consists of only one-electrof§2ds are found by adding the average of the incoherent con-
operators HOZEElleOkIalaI)’ the commutator in the tr|but|on§(12b) and(l.2c) to the right-hand side of Ec(lB).

We obtain the following closed system of ol equations,
e\t which describes the dynamics of the average occupation

0 1 2 3 4 number matrix:
1.0 . T . : . ;

0.0 . } : ; ; T .
0 1 2 3 4 024
81/t
. 0T T T T
FIG. 2. Normalized resonant current for the Coulomb blockade 0 1 2 3 4 5 6 7 8

case withN=2,3,4,5,6(full curves downwardsand N=cc (thick et

full curve). (a) Variation of the last level, i.eg;=¢e\ &y - Increas-

ing N does not alter the Lorentzian form of the cur(i. Variation FIG. 3. Normalized current through an array Nt=2,3,4,5,6

of the first level, i.e.g;=¢,6;1. Electrons are localized in the first dots with energies configured as a Stark ladderi/(N—1)e of
dot after tunneling through the left barrier resulting in the exponen-~varying width . (a) “Free”-electron case: the curves fii=2,3
tial decay of the current tails withl. For N=2, the curves ina) (indicated by the arrocoincide for an isotropic arraf=t with
and (b) coincide. I' =TR. (b) Coulomb blockade case.
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Fpii =1t _1pii— 1+ tipii 1~ tipis i —ti—1pi—1i) fee}sible nor instructive anq we consider o_nly a few represen-
tative cases here. Assuming equal couplihgst, one finds
+I (1= p11) 61— Tronndin, (143 that the resonant current pead(=0) is independent oi:
drpij=i(ej—&i)pij +i(tj—1pij—1 Iy 1
N,max: (15)

e 1 1 I, Ty

1
Hpij 1 timapi-a i) ~ 5101 b T 1o +P +P
c IR

_ EF s (14b) This result was previously obtained by Frishman and Gurvitz
2" RPINOIN for tunneling through multiple-well heterostructutassing
. . essentially the same approach as for the derivation of the
where j>i=1,... N and t,=ty=0. These equations 4 bB

modified Liouville equatiotf which we have usefEq. (3)].
closely resemble those for the Coulomb blockade case: thgy solving Egs (14)qf0r N=2 we reproduce thgzrgs(ulz]ob-
coherent contributions are exactly the same, but in contraghi o g by Gurvi.ti3'1°from Egs.(12)

to Eq.(7b) the average occupatiops,,pny in Eq. (149 are

not coupled by incoherent transitions to some vacuum state. Ik 1

Furthermore, in Eq(14b) there is a negative contribution 22 , (16)
due to the tunneling of an electramto dot 1 with ratel’, , € 1 1 1fep\® Iy Tg

which is absent in E¢(7c) due to the Coulomb blockade. r_L+r_R+F t, 4_@+4_ti

Despite the close resemblance to Ef. the (calculation
of) stationary solution of Eqg14) for the general case is far whereI'=T", +I'g. For N=3, solving Eqs.(14) gives the
more complicated. An analytical expression seems neithecurrent through a triple dot:

15 1 L
E_ 0 1 €12 1 tl €923 1 t]_ tz 813-2. ( 7)
1 1 1(ep\? 1 [exn? 1(t; )2 T Tgr [Tty Trtpt, Tlt, t) t,
_+_+_(_12) +_<£) _(_1__2) +_L2+_R;__ L *1 R t2 t2 2 1 2 ]
' T'r 'Ll ty Irl\ty Pl\ty ti)  at?  at3 1 1 (t\% 1(en\2 T
=ttt
Iy Tritz) Tt 4t5
|
If one would first calculater, then the subset of 20 relevant A. Weak coupling to the leads

equations of Eqs(12) (containing in total 64 equations e first consider the array of dots without the leads. Let

needs to be solved. For the case where the energies are cQfk denote they localized(delocalized eigenstates of single

figured as a “Stark ladder” of total width, we have plotted  electron in the array of uncouplettoupled dots by |i)

the current in Fig. @). Comparison with Fig. @) shows  (]i’})), wherei=1, ... N and the single-electron vacuum by

that the current for the “free”-electron case is less sensitivel0). By transforming to the basis of delocalized states that

to localization effects than in the Coulomb blockade case. diagonalizesH, [Eq. (18], we obtain new fermionic opera-
tors

V. APPROXIMATION OF INDEPENDENT CONDUCTION N N
CHANNELS éi’TzkEl (kli"ya], é{zkzl ("ik)ay.

It is instructive to consider an approximate approach of
independent conduction channels to our problem. In Secsince in a delocalized state there is a nonzero probability for
V A this approximation is introduced assuming that both res{inding an electron in both dot 1 and duf such a state can
ervoirs areweaklycoupled to dots in the array. In this case pe regarded as @nduction channekhich carries a current.
the timel" "! needed for tunneling to or from a reservoir is The new operators add an electron to chaniiél and re-
much longer than typical time™! of the evolution of a co- move an electron from channdll’), respectively. By ex-

herent state in the array. Therefore, an electron Complete&anding the density operator of the arr&yin the “many-
many coherent oscillations in the array before tunneling. ~ iy

Somewhat surprisingly, this approach can also be used in th@anne|. basis state{a.no ) 'nN_>: an}.’):HE: 18 HO?’
opposite limit of verystrongcoupling to the reservoirs as is W€ obtain a new density matret’. As in Sec. I, we define
shown in Sec. VB. In Sec. V C we compare the results ofan average occupation matrix for the channg‘}?(aj”ai’)

the independent channel approximation and discuss some pehich can be expressed in the density mawix. The ad-
culiar features of the more general results obtained in Secyantage of the new basis is that the dynamical equations for
[l and IV. the average occupations, are decoupled from the nondi-
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iy [NY £y N N
e ) : i i
I I FY Ty &tp(,)O: 2 I‘IIRpi,i - ( E FIL) p(l)O’
[ n F (a) i=1 i=1
o apii =T Lpoo— 'R -
Using the implied conservation of probabilif)EiN:Opi’i(t)
0 Ny oy =1], the stationary solutiofilim,_,..d;p{;(t)=0] is easily
FR‘Q 1 QFR found. Summation of the contributions of the independent
D D O (p) channels gives the stationary current:
{102} "
i Fl
15 & <t 1
i i =2 Lipfi(=)= = . (19
FIG. 4. Tunneling througiN independent channelga) Cou- e =~ LPii N i 1 1
lomb blockade case: an electron tunneling through one of the chan- 1+ 2 L T +F—FN
nels blocks the remaining— 1 channels. The state must first decay =1 F'R L R

to the vacuum before another electron can enter one of the channels, . . . .
(b) “Free”-electron case:N parallel channels for tunneling are This is just the expression for the current through one double

available. barrier: the tunneling time is just the sum of the tunneling
times of the individual barriers where the time for tunneling

A through the right barrier is increased by a factor
agonal elements when we only takk into account:atpi’j

N
=—i(e{ —&{)pj;, wheree{ ; are the energies of the delocal- " 1Gi'|1)2
ized stated,j. In the Coulomb blockade case the effect of Ii'|1))? =
P . . . ) Fa=2, — > =1. (20)
H, is easily translated since the basis transformation pre- =1 |(i'|NY|? _ )
serves the trace @b the total occupancy of the channels is 21 |(i"[N)]
restricted to valuess1 whereas in the “free”-electron case
all N channels can be occupiégig. 4). In the “free”-electron casgFig. 4(b)] the occupations of

Now we include the coupling to the reservoirs by athe channels are not coupled and their sum is restricted only
Golden Rule approach. Each chanfi€l) is connected to by SN 5! <N . The device is equivalent th independent
leadL with modified matrix elemerty =(i’|1)t, and to lead  double barriers in parallel where the occupancy of channel
R with tg=(i’'|N)tg: an electron in leadL can tunnel obeys
throughany channel to lead?. The rate for tunneling into L ) .
channel|i’) is proportional to the probability to find the apii =I'L(1=pii) — Trpji -
eIecFron_ in dot 1 yvhereas the rate fqr tunngling out of changygm the stationary solutidfim, ..dp/ (t)=0] the current
nel[i’) is proportional to the probability to find the electron js readily found:
in N:

[ 1

1 1
g
I‘IL 1_‘R

CDlZ'n

NG N
:;1 FLPi’i(oo):izl (21)

T =T [i'[1)?, Tk=TRrKi'IN)>. (18)

These probabilities depend on the energiesf the localized | "€ tunneling time thfouqq eac_hldouble barrier is the sum of
states and the matrix elementswhich couple them. When (e tunneling timesI(; g)~“>I", i whereas the tunnel rate
we assume that the uncertainty in the energy during the tur! the device is the sum of the tunnel rates of thelouble

neling of an electron between leads and dots is much small rlglerrs.f W representativ we have explicitly worked
than the level splitting, we can disregard correlations due to or a lew represe € cases we € explictily worke

the simultaneous tunneling of one electron through muItipIe?OUtbtohtE ?ggégll(lma;i aptprolezlgr: :Eethceagem'éﬁf_\’;ezlgtgo\ljvgmg
LR<Ejj i =

channels. Thu_s for weak cgupllng we can include the IeaOIIs'lave first calculated the two exact eigenstates of one electron
by only modifying the equations for trlagonalelements of in, the array of coupled dots without the reservoirs. From

p', i.e., the channel occupations. The channels can be treat@fhse \we obtained the tunnel rates to and from each of the
asindependenand their contributions to the current can sim- ya|ocalized states. Finally we summed the contributions of
ply be added. the independent channels to the total current: @§) pre-

In the Coulomb blockade ca$Eig. 4a)] the interdot re- cisely gives the result9) without the term [g/2t;)2
pulsion couples the occupations of the channels and restric{ghereas Eq(21) gives the result16) without the term [,
their sum={ p{;<1 . The tunneling of an electron into the +T.)/(2t,)? (the latter result was previously found in Ref.
empty device with ratd"| fills a channeli’). This electron 4 for the case of a double quantum wefor the case oN
must tunnel out with ratd’; before another electron can dots with equal interdot couplings=t and aligned levels
tunnel into the device and occupy one channel. The equa;=¢;, a simple result is also possible because in each de-

tions for the occupations are localized state]i’) the electronic densities in the dots are
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spatially symmetric. Then the modification factors of the |F

rates are equal for each chann§li’(1)[>=|(i’|N)[?) and a2 1 , (26)
they cancel in Eqs.19) and(21). Thus for weak coupling to € i i i E
both reservoirs we obtain 'L T T a¢2
|ﬁ?max 1 which is in agreement with our resultsl) and(15), respec-
e 1 1 (22) tively. For strong coupling to the right lead, the currelet
F_+F_N creasesasl“,;l, which is somewhat surprising because tun-
L R neling is enhanced. The origin of this effect is the formation
F of linear combinations of the discrete state in dbtwith
IN,max: 1 (23) reservoir states with energies roughly betwegr-T'g. Be-
e 1 1° cause the tunnel processes from reservoir states back into the
F_L +1~_R discrete state destructively interféfethe discrete state irre-

versibly decays into the continuum. The resulting spectral
which is just Egs(11) and (15) without the terms \—1)  density decreases with the energy uncertality The even-
X(Tr/2t)? and T' ['r/(2t)?, respectively. Coulomb block- tual decrease of the current with the tunnel ftecan also
ade increases theffectivetime for tunneling out of the de- Dbe interpreted as a manifestation of the quantum Zeno effect
vice by a factoN with respect to the “free”-electron case. as discussed in Ref. 10. More generally we have the follow-
The current increaselinearly with each ratel' ,I'k<t as ing relation: forl', <e;; ,t;<Tg,
expected from the enhanced tunneling.
INP(e1- - enty - tyo ;T TR)
B. Strong coupling to the leads a2
The terms which were found missing above become im- =|(N:Bl(81~ crEN-1,l10 ~tN2;FL,%),
portant when one of the tunnel rates to the reservoirs is com- R
parable to the coherent interdot coupling. The correlations
between the conduction channels can no longer be disre-
garded in this case: Eq§7) and (14) do not decouple into 42
separate sets of equations for diagonal and nondiagonal ele- =| E_l(sl. RPINEPI SRS (VPR AT &)
ments on the basis of delocalized states. However, we will I'r
now show that_m the limit o‘strongco_upllng to one or both  This is clearly satisfied by Eq¢10) and (17), respectively,
of the reservoirs, we can use the independent channel agyng the general forr8) has this property.
proximation again(Note that the energy uncertainties are  Now consider the case where the array is coupled strongly
assumed to be smaller than the blasg<u —ug.) to both leads, i.es;j ,t;<T'_g. In the “free”-electron case
First we consider the case where only the 1ast NG e reservoirl. coupled to dot 1 gives a new continuum of

strongly coupled to the right lead”, <e;; ,ti<I'r. The  giates with a spectral density which is approximately con-
electronic state of the dd¥ and reservoirR form a con-  ¢ia4nt over an energy range<rl", :

tinuum of states with a Lorentzian spectral density which is
approximately constant over the energy rahge;<I'g:

IN(e1- - entr - tyo1;T L, TR)

Disi(e)=5— . —
1 Ty 1 4 27 (g—g)2+ (/2% 27 I,
Prerle) =52 (e—eyn)?+(Tr/2)2 T2n TR The tunnel rate from this continuum to dot 2 is
The array of the remaininl—1 dots isweaklycoupled to 412
this continuum of states with matrix elemegt ;. Therefore TL: 277th 1+.(e)= 1

we can apply the independent channel approach: the tunnel Ty

rate from dotN—1 to the continuum on the right is found The remaining\— 2 dots are weakly coupled to a continuum
with the Golden Rule, on the left with matrix elemertt, and to the right witfty_,
) and we can apply the independent channel approach to the
= 2mt2  Dy.n(e)= AtN_y (24) N—2 conduction channels. For the case of aligned levels
R N-1ZN+R g * e;=¢; and equal coupling$;=t, substitution of bothl',
—T| andl'y—TR in Eq.(23) gives the maximum current in

For the case of aligned leveis;=0 and equal coupling the limit of strong coupling to both leads,

=t, substitution off r—~T'r andN—N—-1 in Egs.(22) and

(23), respectively, gives the maximum current in the limit of F
. . [ 1 1
strong coupling to the right lead: = = ,
e 1. 1 Ti+re
lﬁ?max 1 1 FL fR 4t
e 1 N-1 D
—+ i+E(N_1) in agreement with resultl5). More generally, we have the

P Tr TL a2 relation fore; ,t;<I'| g:
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1.0 | = 1
] e e, T'g=2t. (27b)
e 1 I, 1
I'yoge2  t
Increasing the transparency further wilducethe current as
Lo/ TL explained above. The maximum occurs when there is an op-
timal balance of the coherent tunneling into déand inco-
herent tunneling from this dot to reservd® At this point
the effectivetime for tunneling out of the device is the same
for weak[Egs.(22) and(23), respectively, and strong cou-
pling to the right leadEgs.(25) and(26), respectively, i.e.,
- at these values dfz we have
2 4 6 8 10
1—‘R/FL
1 1
FIG. 5. Maximum resonant current as a function of the trans- F_RN: »f—(N—l) (CB),
parency of the right barrier: Coulomb blockade case for R
=1,2,3,4,5,6(solid lines downwards and “free”-electron case
(dot-dashed line for ani>1). The dotted lines show the position 1 1
of the maxima. F_R = 1:_ (F),
R
F .
In(er---ensta - ty-ailLTe) whereT ' is given by Eq.(24). For the case of “free” elec-
. 4@ 4@_1 trons the effective time for tunneling out and therefore the
ol I E-PYRRF-IVEPN PER -tN_z;F—L, Ts ) position of the maximum is independent of the number of

dots N. (For this case thd'r dependence of the resonant
which is satisfied by E¢(17). In the Coulomb blockade case, current peak has been discussed for a double dot system in
interdot repulsion prevents the discrete state in dot 1 fronRef. 11) In the Coulomb blockade case the nonmonotonic
mixing with the reservoir: even if the energy uncertainty variation of the current with' g persists for alN. The maxi-
allows tunneling into dot 1 to occur on a small time scalemum occurs at a slightly higher value &% than for the
'[!, the next electron will have to wait for the previous one “ree"-electron case: al'g=2t=T'y the effective tunneling

to tunnel out, which occurs on the much larger time scal&jme for weak coupling is still larger than for strong coupling

maxe; * t LIz"}. In the limit of strong coupling to both pecause the fraction of channels excluded by Coulomb repul-

leads, the current in this case iildependentof I' and is  sjon is larger foN dots than foN— 1 dots. The tunnel rate

correctly given by Eq(25) in agreement with resultL1). must be increased by a factgN/(N—1) to exactly balance
Finally, we consider the case where only dot 1 is stronglythe effective tunneling times. For lardeéthis difference be-

coupled to the left lead, i.e'g<e;; ,t;<I'_. In the Cou-  comes negligible and the maximum occurs at the same posi-

lomb blockade case, the weak-coupling result still applies agion as for the “free”-electron case but with a much smaller

explained above. In the “free”-electron case the discussioramplitude(Fig. 5).

is completely analogous to the case of strong coupling of dot Next we consider the resonant current pedkis and (15)

N to the right lead and the result is obtained by simply inter-as a function of the transparenEy of the left tunnel barrier.

changingL <R and 1—N. In the “free”-electron case the maximum curreit5) re-
. . . mains unchanged when we interchardgeandI'y. There-
C. Intermediate coupling to the leads: Maximum current fore, the resonant current peéls) also displays a maximum

The competition between enhanced tunneling for weal@s a function of’, atI', =2t. As a function of both rates the
coupling to the leads and destructive interference in the opMaximum current is
posite limit implies that the current reachemaximunmvalue
when the rate for tunneling into a dot is comparable to the B
coherent coupling to the neighboring dot. We can find the e 2
precise location and value of this maximum with the results
obtained in Secs. Ill and 1V, which also hold in this interme- As discussed in Sec. V B, there is no such effect in the Cou-
diate case. lomb blockade case: due to interdot repulsion, the resonant
First we consider the resonant current pé¢ak and(15) current peak(27g will increase withI', and saturate at a
as a function of the transparenty, of the right tunnel bar- maximal value wher" >t,
rier as plotted in Fig. 5. Starting from zero, the current ini-

FL:FRZZL

tially increases linearly as expected from the enhanced tun- 152 t N
neling to the right lead. Then a maximum is reached: e NN-TD)' ' >Tr=\g—72
CB
lmaX: 1 . Tr=1 /th, (279 For N=2, the maximal current as a function of the rates is
e i+ NIN=T) 1 N-1 larger in the Coulomb blockade case whereasNor2 it is

r t larger in the “free”-electron case.
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VI. CONCLUSIONS the coupling to the electron reservoirs. This makes our re-

. . sults also valid for relatively strong tunnel coupling to the
We have extended the dens[ty—matnx approach to reSOeservoirs where the independent channel approximation
with strong, long-range electron-electron interaction. Weaoes not work. These correlations manifest themselves in the
have found’ exact analytical expressions for the stationarevemu.aI decrease of the_re_so_nant current when the rate for
. . L Yunnellng into the reservoir is increased.

current in the array for an arbitrary set of parameterishin

the applicability of our modeglcharacterizing the array. Cou-
lomb repulsion was found to reduce the resonant current by a
factor of the order of the number of dots. The formation of a The authors acknowledge valuable discussions with T. H.
localized state in one of the dots when the energy level iStoof, G. E. W. Bauer, and especially S. A. Gurvitz. This

displaced results in an exponential decay of the current withvork was supported by the Dutch Foundation for Fundamen-
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