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We discuss the effect of the spin-orbit interaction on the band structure, wave functions, and low tempera-
ture conductance of long quasi-one-dimensional electron systems patterned in two-dimensional electron gases
(2DEG). Our model for these systems consists of a lindgdashba potential confinement in the direction
perpendicular to the 2DEG and a parabolic confinement transverse to the 2DEG. We find that these two terms
can significantly affect the band structure introducing a wave vector dependence to subband energies, produc-
ing additional subband minima, and inducing anticrossings between subbands. We discuss the origin of these
effects in the symmetries of the subband wave functip88163-182@09)07143-X]

[. INTRODUCTION the spin-orbit (SO interaction is to use the following

In 1986, the first experimental realization of a quasi-one-Hamiltonian'®'* which stems directly from the quadratic in
dimensional electron syste(@1DES in a dynamically con- v/c expansion of the Dirac equation:
fined two-dimensional electron gd8DEG) was achieved.

Since then, there has been an extensive theoretical and ex- R
perimental effort into understanding their basic properties Hso
(see, e.g., Refs. 2 and 3 and references theréhe interest

in these systems stems from two facts. First, the effective ) .
transverse size of a Q1DES can be easily controlled anbtere,Mo is the free electron masp, is the momentum op-
made remarkably small, down to the de Broglie wavelengtterator, e is the elementary charger={o,,oy,0,} is the

of an electron. This makes it possible to realize experimentatector of the Pauli matrice$/(r) is the potential energy of
systems which have an arbitrary number of occupied tranghe particle, andV stands for the spatial gradient. The con-
verse modes. Second, the high purity of 2DEG’s grown byvenience(or universality of the Hamiltonian(1) is that it
molecular beam epitaxy enables the almost collisionless madoes not restrict one to any particular fomode) of the

tion of an electron through an experimental Q1DES. ThepotentialV(r), but allows freedom of choice depending on
coexistence of these two factors has made Q1DES uniguéie nature and the symmetry of forces present in a given
objects for the investigation of transport phenomena yieldmedium. Its form is such that it can remove the spin degen-
ing, in particular, the observation of the ballistic quantizationeracy in electron band structure while not actually producing
of conductanct® and the so-called 0.7 conductance an overall spin polarization.

structure®® In a bulk (3D) crystalline environment, the enerd(r)

The process of electron transmission through a Q1DESrises exclusively from the periodimicroscopig¢ crystal po-
involves the redistribution of incoming electron flux among tential. Most multicomponent semiconductors have either
its discrete eigenstates followed by adiabatic transporzinc-blende(GaAs and most -V compoundsr wurtzite
through them. Therefore, the determination of the electrorfll-VI compounds lattice structure, both of which lack in-
eigenstates of a Q1DES is an integral and very importanversion symmetry. Dresselh&isas shown that this prop-
part of the more general quantum transport problem. Thierty eventually leads to a SO-induced splitting of the con-
statement is especially relevant to the ballistic transport reduction band into two subbands. The magnitude of the
gime where theotal conductance of a system ¢@mpletely  splitting is proportional to the cube of the electron wave
definedby the number of propagating electron modes whichnumberk.
in turn can be uniquely calculated from the energy spectrum In metal-oxide-semiconductor field effect transistors
and the Fermi energy>® (MOSFET’'S and heterostructures, the host crystals cannot

Clearly, the energy spectrum of electrons crucially de-be treated as ideal 3D systems, because the crystal symmetry
pends on the effective geometry of a Q1DES as well as oiis broken at the device interface where 2D electron or hole
external and internal fields acting on them. Among the posgases are dynamically confined in a quantum well. The re-
sible internal forces, one of the least understood examples @uction of the effective dimensionality lowers the symmetry
the interaction between orbital and spin degrees of freedoraf the underlying crystals and results in an additiofiakear
of an electron: thespin-orbit interaction also referred to as in k) term in the Dresselhaus splitting. Moreover, if the
the spin-orbit coupling. Although this interaction has an es-quantum well is sufficiently narrow, then the linear contribu-
sentially relativistic naturésee, e.g., Refs. 10—t never- tion is dominant®?*-?°and, e.g., may reack 0.3—-0.4 meV
theless can give rise to an observable modification of semiin 180-A-thick modulation-doped GaAs weli§ Theoretical
conductor band structuré:-? argument® suggest that this can also be true in strained

A quite general theoretical approach to the description ofll-V crystals and hexagonal II-VI compounds.
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Along with the microscopiccrystal forces, there is an- tron gas on dislocations and semiconductor Q1DES quite
other source of the potential energyr) in 2D systems. Itis close. The SO interaction manifests itself in spin-dependent
caused by the interface electric field that accompanies thelectron conductivity along dislocations which can be as-
quantum-well asymmetfy’ and is directed along the normal cribed to combined spin resonart?’ of electrons corre-
to the device plane. Since the typical well width is sponding to transitions between SO-split energy levels.
~1-10 nm, the interface potential turns out to be slowly In this paper we analyze theoretically the effect of the
varying on the scale of the lattice parameter and can be corspin-orbit interaction on the energy spectrum and conduc-
sideredmacroscopic as opposed to the rapidly oscillating tance of a long Q1DES. As a model for the Q1DES, we use
atomic field. The mechanism of the SO interaction originat-a strictly 2D electron gas subject to a transverse electrostatic
ing from the interface field was first introduced by Rashba inconfining potential. To decide on a reasonable shape of the
Ref. 28. It also manifests itself as a linearkirsplitting?® of ~ confining potential, we assume a sufficiently small effective
the 2D band structure. In a variety of systems includingwidth (=300 nm) for the Q1DES and a low electron con-
Si-MOSFET's®*® InAs/GaSk?® and AISb/InAs/AISb (Ref.  centration €10 cm™?). Combined together, these two
20) quantum wells, IpGa_,As/InAl; As hetero- factors prevent the confining electric field from being signifi-
structures®?* and GaAs electron gasgsit can be made to cantly screened by the electron gas. Under these conditions,
dominate the Dresselhaus terms, indicating the significanctne confining potential can be accurately approximated by a
of macroscopic potentials in producing observable SO efparabolic potentiat®=*°This conclusion is very favorable to
fects in low-dimensional systems. our problem because exact analytical expressions for the en-

In modern nanotechnology, there exists a number ofrgy spectrum and wave functions of a 2D electron gas in a
methods for creating Q1DES from 2DEG's: the split-gateparabolic potential are well known and provide us with a
technique; wet and dry etching; and cleaved edgeyood zero approximation in dealing with the SO coupling.
overgrowth® In essence, they all exploit the confinement of We include the SO interaction via the Hamiltoniéh.
the lateral(in-plane motion of electrongholes by some We assume that the potentid(r) which is responsible for
transverse potential. Any such potential must be essentiallthe SO coupling consists of two contributioitg:a parabolic
nonuniform in space in order to force the charged particles te@onfining potential with a gradientor the accompanying
remain within a confined area. The spatial variation scale oélectric field which lies in the plane of the 2DEGji) a
the confining potential crucially depends on the particulampotential which arises from the asymmetry of the quantum
fabrication method and varies over a wide range:well with the corresponding electric fieldRashba fieldl be-
~10-1000 nm. Thus, in Q1DES one finds another exampléng uniform and directed perpendicular to the device plane.
of macroscopic potentials, viz. the lateral confining potential We neglect the crystal-fieldDresselhauys contribution to
which is absent in higher-dimensional structures. The spatiaV(r).
nonuniformity of the confining potential gives rise to an ad- The goal of this paper is to reveal the qualitative hall-
ditional (in-plane electric field in the system. If the confine- marks of the SO interaction in Q1DES rather than to con-
ment is sufficiently strongnarrow and deép then this field struct a complete and realistic spectral and transport theory.
may not be negligible in comparison with the interface- Therefore we use two major simplifications. First, we neglect
induced (Rashba field. Moreover, in nearly squaré.e., the Coulomb interaction between electrons. At first sight one
symmetrig quantum wells where the Rashba field is essenmay not expect this approximation to work in low-
tially suppressed’®! the in-plane (“confining”) electric  concentration 2D electron systems where the Coulomb en-
field is likely to be dominant. This suggests the possibleergy may exceed the kinetic energy by an order of magni-
importance of the lateral confining potential to the SOtude. However, it has recently been shown theoretitally
Hamiltonian(1) in Q1DES. We are not aware of any experi- that the effect of electron-electron interactions on SO cou-
mental evidence or measurement of the strength of the S@ling in such systems can be plausibly taken into account via
coupling resulting from such a confining potential and can-a renormalization of the SO coupling constant. More specifi-
not therefore quote a grounded estimate for the correspondally, this renormalization leads to an enhancentbpt10—
ing energy modification. Nevertheless, the above arguments0%) of the strength of the SO interaction, which empha-
seem sufficiently strong to indicate a possible new mechasizes the significance of the SO-related effects in low-
nism for the SO interaction in Q1DES and point towardsdimensional electron systems. Our second simplification is
possible new transport effects. The existence of an additionahe exploitation of one-band effective mass approximétion
(and easily controllablesource of the SO coupling could for the Schrdinger equation. Within this approximation, the
catalyze experiments on quantum-wire based devices that eiafluence of the crystal forces on electron dynamics in the
ploit both the charge and spin of an electron, e.g., spirconduction band is reduced to the renormalization of the
transistord>** and active spin polarizefs. electron mass and all interband transitions are left out. De-

Our belief in the importance of the SO interaction in spite the obvious simplicity, this approach works W&fifor
semiconductor Q1DES is strongly supported by the fact thad wide range of semiconductor materials.
observable manifestations of a SO-induced energy splitting Section Il is the central part of the paper. It is devoted to
have already been found experimentillin another type of the solution of the problem that we have outlined above and
Q1DES, viz. in electron gases trapped by dislocational deto the analysis of the results obtained. In Sec. Il A we intro-
fects in silicon crystals. The source of the SO coupling induce the Hamiltonian of a 2DEG that includes the parabolic
these systems is an electric field perpendicular to dislocaconfining potential and the SO-interaction teft). We take
tions and the SO-related energy splitting is linear in the waveénto account only those contributions to the SO Hamiltonian
numberk, which makes a physical analogy between the electhat arise from macroscopig.e., relatively smoothpoten-
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tials, viz. from the quantum-we(Rashbaand the parabolic R B x
confining potentials. Since the operatdy contains the Pauli H§o=% i
matrices, we seek electron wave functions in the form of

two-component spinors. Within such a representation, th?—|ere | = (h/Mw) 2 is the typical spatial scale associated

Schralinger equation turns out to be a system of tanipled with the potentiaV, ¢ (3). In Eq. (5) we have introduced the

differential equations with respect to the spinor components

In the next two subsections we solve this system for tWOSO—coupImg constanjs. Comparison of typical electric

physically different situations. Section Il B deals with the flelds orlgl_natlng from the quantum-well and Iaterall confm-'

case of zero Rashba SO coupling, where the entire SO intel?9 potentials allows one to conclude that a plausible esti-
L 0 -

action comes from the parabolic confining potential. Here thénatetfor,b’ shc|>|uld bﬁ rougtrrzly 10/|° oi.ol}cor.eover, n dsquglre

Schralinger equations decouple and the electron wave funcguantum wels where the value IS considerably

L 0,31 :
tions and energy spectrum are found in an explicitly analyti—d'm'n'Shea (by an order of magnitudethe constanis

cal form. In Sec. Il C we consider a more general situatiorf"2Y Well compete withr. Henceforth we adopt the terfh
where both mechanisms of the SO-coupling are present. | oupling for the mechanism of the SO interaction arising
this case we calculate the electron wave functions and enerdP™ the lateral confining potentis). _ .
spectrum numerically using the results of Sec. Il B as a con- OUr objective is to find eigenvalues and eigenfunctions of
venient basis. Afterwards, we analyze the energy spectrurifie Schrainger equatiotH¥ =EW with the HamiltoniarH
obtained in order to reveal the basic features of both SOgiven by Egs. (2)—(5). The wave function ¥ =V (r)
coupling mechanisms. In Sec. Il D we discuss possible mani={¥(r)¥ (r)} is a two-component spinor and the energy
festations of the SO interaction in the dependence of th& is measured from the conduction band edge. It is easy to
ballistic conductance of a Q1DES on the Fermi energy. Secsee that the Hamiltoniat2)—(5) is translationally invariant

®)

tion Il summarizes the results of our research. in the y direction. We therefore seek solutions to Schro
inger's equation in the form of plane waves propagating
Il THEORY AND ANALYSIS along they axis, i.e., ¥ (r)=exptky)®; (t). Here, t
=x/l, is the dimensionless transverse coordindte,(t) is
A. Problem statement. Spinor equation the transverse wave function, akgis the longitudinal wave
Within one-band effective mass approximafiorthe n_umber. Afte_r substituting this representation into th.e Schro
Hamiltonian of a Q1DES can be written as dinger equation, we obtain a system of two differential equa-
tions with respect to the spinor componefits, (t):
. p? .
H=5y T Vic(n+Hso, ) T+ (ex— P+t @ (D) =1, /1) (K )P (D) + D],

(6)
wherer ={x,y} is a 2D position vector anill is the effective
electron mass. In line with Refs. 38—40, ta&ral confining

" _ 42 — _ !
potential \{ c(r) is approximated by a parabola P+ (ex— =t @y (U= (1o /1)Lyl o) 1 (D) =7 ],

(7)

M w? )
Vie(r)= 5 X% (3)

tﬁ=:—‘"(kylw), (8)
The quantityw controls the strengtlicurvature of the con- P
fintirr:%/poz(?;t.isalé?”; ig-pl)_zlan(e})electgi/fiel(fr{)c(r) ;‘ASS‘;C‘ated wheree,=(k,l,)? is the dimensionless transverse energy,
Wi Le(r) is giv VE c(r)=—VV c(r)=—MowX. 2_ PN ; e
We assume that the SO interaction Hamiltonﬁihg)o (1) \I;\;(ith (r2eI\S/Ip/ZCt) ItEd. l;h’e ?;:gtthhgea grrllgi ggfri]r?(tazsbj derivative
in Eq. (2) is formed by two contributionsHgo=Hgq
+I:|§o. The first one,ﬂgo, arises from the asymmetry of | ,=h%2Ma, |z=#22MB (9)
the quantum well, i.e., from the Rashba mechafAfsthof “ g

the SO coupling. Since the interface-indud&ashbaelec- 4o characteristic spatial scales associated withathend
tric field can reasonanyAbe assumed uniform and dlrecte% couplings, respectively. We note that the functidns (t)
along thez axis, the termHgg can be described by the fol- depend on three dimensionless external paramelters;,,
lowing expression: l,/15, andkyl,,.

Equations(6) and(7) are arranged in such a way that all
the terms which couple them together are collected on the
right-hand side(rhs). It is interesting that this arrangement
. o separates explicitly thee and 8 mechanisms of the SO in-
The SO-coupling constant takes values within a range teraction. Indeed, the terms enter only the rhs, while all the
(1-10)x 10" *° eVem for different system&:?2*2%*iFor 3 tarms are contained on the Ihs. This suggests thathe
b.reVity, in what f0||OWS we will ref'er to the Rashba mecha- Coup“ng is responsib'e for forming independdﬁ“nper-
nism of the SO coupling as coupling. turbed” or “noninteracting’) wave functionsb, (t), while

The second contributiom-lgo to Hgo comes from the the a coupling mixes them together to form the solution of
parabolic confining potentigB): the whole systeni6) and (7).

~ (625N - i

(4)

d d
O'y&_a'x@ .
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FIG. 1. The spinor component$,(t) and ¢ (t) for n=0, 0 5 10 15 k l 20
l,/1=0.1,1,/1,=0.0,k,[,=10.0. yro

) =
B. Zero & coupling (square quantum wel) FIG. 2. The transverse energ&” vskyl, forl,/1,=0.1.

We start the analysis of Eq&) and(7) with the situation n+1 n+1il

in which the quantum well is square so that the interface- (] |p]H)== \/Ttﬂzt \/Tl—w(kyl W)

induced electric field vanishes. In terms of the SO interac- B

tion, this means that the Rashba mechanism®., the o

mechanism of the SO coupling can be omitted. In other = 0l

words, the characteristic length of the « interaction tends <¢?l|¢rﬁl>z = \/:IB: 5 \ﬁ—w(kﬁ W), (14)

to infinity: | ,—o, orl,/l ,—0. The study of this relatively 2 21g

simple case will provide us with a convenient basis for treat- .

ing the general problem with finite, . (#7191 P)=0(th) for p=2. (15
Oncel , /1, has been put equal to zero, the rhs in EG. The

and(7) vanish and they transform into two independent Her—functi

mite equation¥ whose exact solutions are

(13

displacing effect” of theB coupling on spinor wave
ons[see Eq. 10 and Fig.]lis superficially similar to
the effect of a perpendicular magnetic field on a Q1DES.

" (=" (V)] ;1 - However, the essential difference is that a magnetic field
1 T, 1, =0 shifts both spinor components(t) and ¢{(t) as a whole
extl — (tTt./2)2/2 py an amount proportional to the strength of the magnetic
= Xd - (t+ ﬁlz) ]Hn(titﬁ) n=0,1,2 ... . field (see, e.g., Ref. 21 but it doesnot affect theirmutual
v2'n!ar spatial distribution. In contrast to this, as can be seen in Fig.

(10) 1, the B coupling causes a spatial separation of the spin-
. _ . polarized electron states!(t) and ¢7(t).
Here,H,(t) is the Hermite polynomial ofith order. The real  Ajthough the 8 coupling shifts the spinor components
wave functions¢'(t) and $(t) form complete sets with g0 (t) apart, it nevertheless is not capable of lifting their
respect to the discrete quantum numband are normalized  energy degeneracy. The dimensionless transverse eaf®gy
by the following conditions: corresponding to the both eigenfunctioss (t) (10) is
w given by (see Fig. 2
m n\_— m n —
(#T197) fﬁmdt%l(t)(ﬁu(t) Omn» (11 sﬁo)zsﬁo)(n,ky)=2n+1—(t3/2)2
where both¢|| and ¢, are taken at a same value k. L)\2
From Eq.(10) one can see that the both “up”¢() and =2n+1- Z(I_) (kyl )2 (16)
“down” (¢T) spinor components have exactly the same P
shape as functions dfbut are spatially displaced with re- The total electron energ then forms parabolic subbands
spect to each other by an amounttgf(see Fig. 1 Accord-  for eachnth transverse mode:
ing to the definition(8), this displacement is a direct conse- " -
uence of the3 coupling because it does not vanish as long . Q) y

gslwllﬁio (exceptpwherekyl,fO). At finite values oft, E=E”(ky):78§0)(n'ky)+m' (17)
the complete sets of functiong](t) and ¢'(t) turn outnot
to be mutually orthogonal, i.e(#!||#];)# Smn. Instead,
the scalar cross produ¢?||#|;) in the case of sufficiently

weak 8 coupling tz<1) is governed by the following as- o ) _
ymptotics: C. Finite a coupling (triangular quantum well )

For zerog coupling (/1 ;=0) formulas(16) and(17) de-
scribe the well-known electric subbanti¥.

- ) We now examine the situation where the effective geom-
(#714]1)=1-0(tp), (12 etry of the quantum well is such that the interface-induced



14 276 A. V. MOROZ AND C. H. W. BARNES PRB 60

electric field is nonzero. An example is the triangular well  Our next step is to find the relationship between the vec-
which forms at a heterojunction interfaté’ This interface- torsf;| andg,, . To do this, we equate the rhs of H48) to
induced field gives rise to a finite coupling and therefore to that of Eq.(19) and take the scalar product of the resulting
finite values of the coupling constaht/l,. For arbitrary  equation with¢?(t). After making use of the orthogonaliza-
nonzero values of,/l,, eigenvalues of Eqs6) and (7)  tion condition(11), we find that

cannot be obtained as simply as they were in the case of

l,/1,=0. To analyze the energy spectrum in the presence of f”:\fngTl , (26)

a coupling, we will follow the scheme proposed in Ref. 45. .

Namely, we first expand the unknown functioths (t) in ~ where the matrixV, is defined by

terms of the unperturbed solutions | (t) (10) of Egs. (6)

and (7): Wﬁnzwrﬂww- (27)
o According to Eq.(10) [see also Eqg12)—(15)] the matrices
q)”(t):mE:o f?“lqg?‘(t), (18 Ww arenot diagonal as long as thg coupling isfinite.

Analogously, by taking a scalar product of the rhs of Egs.
(18 and (19 by ¢](t), it can be shown that

— m ,m ~
‘bn(t)—mzo 971 ¢ (D. (19 g =Wf, . (28)
We then substitute the expansidi$) and(19) into Eqgs.(6) Finally, we combine relation§21), (22), (26), and (28)
and(7), respectively, and make use of the prop&rty into a closed homogeneous equation with respedt tof;

=U,W,0 ,W,f, . In order for this equation to have a non-

d n /n+1 trivial solution, the Jacobian matrix must satisfy the follow-
n _ n—1 n+1 1
at®n= \[§¢Tl (1= > b1 (0 (20 ing condition:

to remove the derivative W@th respecttton the rhs o_f Egs. de(1— UTWTONVQZO- (29)

(6) and (7). We next multiply the equations obtained by

¢?(t) and ¢T(t), respectively, and integrate them ovier The rootse, of this equation determine the dispersion law of
from —o to . Owing to the orthogonality conditioft1),  electrons(see, e.g., Ref. 45Here,s,— " asl,, /1 ,—0.

the summation ovem is removed by theS symbol §,,, and Alternatively, the relation$21), (22), (26), and(28) could
we find the simple vector relations: have been resolved with respecigig which would have led
X to the permuted Jacobian matrlt )W, U W, . However,
fi=U,f, (21)  such a permutation leaves the determinant unchanged and
therefore the dispersion equati¢29) would have been still
g9,= OLgT ) (22) applicable.. _ .
To obtain the solution of Eq29) for given values of the
Here, fo={f f1, ..., and 9,  external parameters,/I,, |,/15, andkyl,, we truncated
={g?,.91,,... 9], ...} are vectorized coefficients of the the infinite matrix U, W, U W, down to the firstN rows
expansiong18) and(19), respectively, andJ, | are tridiago- and columns and used a numerical root finder to obtain the
nal matrices defined by their elements: zeros of its determinant. Owing to the conveniently chosen
bases(18) and (19), the roots of EQq.(29) converge very
o l, Kyl quickly to their exac.t valugs ds is increased. F_or instance,
”:Em’ 23 forl,/l,,1,/15<1, it suffices to také\~30 to find the ten
X

lowest energy levels with a net errer10 8.
The energy spectrum, = &,(k,l ) calculated by this pro-

unnel_ Lot 1)1’2 1 (24 cedure is shown in Fig. 3. Let us first consider the case of
T 1,02 8X_8)((0)(n)’ negligibly weak g coupling, whenl /1 ;—0 [Fig. 3@].

Here we see twofold spin degeneracy of all quantum levels at
| Ine1) 12 1 ky=0. As soon as we move away from the pdigt=0, the

untins I—‘”( _ (25) SO interaction lifts the degeneracy and produces an energy
M lo\ 2 ey—eP(n+1) splitting Ag= &) — e proportional tok,, wheree )" are en-

R ergies associated with the “up” and “down’ spin polariza-

Note that the matrice);| are neither symmetric nor anti- tions, respectively. This linear behavior agrees with
symmetric. both theoretical predictioi5?2%4° and experimental

Equations21)—(25) illustrate the effectiveness of the rep- observation®2%2%2%f the Rashba splitting in 2D systems.
resentationg18) and (19). Indeed, by using the functions  The linear dependence df; onk, can be easily deduced
¢?‘l(t) as expansion bases, we have reduced differential o@nalytically from Eqs(6) and(7) within first-order perturba-
erators on the lhs of Eq$6) and(7) to the scalar factog,  tion theory with respect to the parametey/l,,. Indeed, if
—&9(n). In other words, matrices which were supposed towe treat the rhs of Eq$6) and(7) as perturbations, then the
act onf, andg, in Egs.(21) and(22) turn out to be diagonal first-order correctiole ' =¢ ' —{? to the unperturbed en-
within the representationd.8) and(19). ergy (16) will be given by
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linear (Rashba) splitti
Sx / inear (Ras, splitting (a)

0 5 10 1'5k12'o
y tw

FIG. 3. The transverse energy vs k|, for finite a coupling
(1,1,=0.3): @ 1,/13=0; (b) I,/15=0.1.

Ag)l=+PI"P", (30

or

Ag=el—ex=2P"P". (3D

i.e., itis indeed proportional to the longitudinal wave number
Ky .
’ The perturbative result35) applies as long asAg
<eQ(n+1)—e(n), ie., if (1,/1,)(k1,)<1. Forl,/l,
=0.3 this condition restrict&,l,, to values much less than
about 3. In Fig. 8) we see that the linear behavior of the
energy splitting for all the curves holds true urkil ,~2
(dotted ling. Within the regiorkl ,<2, the asymptoti¢35)
gives a very good fit to all the energy branches. However, as
soon ask,l, becomes larger thar=2.5, the dispersion
curves start to bend. Eventually, this leads taaticrossing
of branches corresponding to quantum levels with neighbor-
ing discrete numbers. This fact drastically contrasts the
simpler situation with no confining potenti&), where the
linearly split spectrun{35) represents the exact solutiéh.
Usually! anticrossing is associated with similar symme-
try (“hybridization”) of underlying stategwave functiong
To reveal possible symmetries in our case, we return to the
perturbation theory with respect tq /I, and consider first-
order correctionsf®? | (t) to the wave functiong10):

mn

P
=, - o 1O @

Owing to the orthogonality conditiori34) the second
(constank term in Eq.(33) doesnot contribute to&(b?l(t)
(36) for anym#n. At the same time, according to EqR0)
and(34), the first(differential) term in Eq.(33) gives rise to
nonzeromatrix elementsP,,, for m=n+1 andm=n—1.
As a result,6®7 (t) (36) takes the form:

R P
s (=27 P el

+yn+1¢7 N0} for 1,/1,—0. (37

The total (perturbed wave function is given byb?izﬂ{l
+6d7, . Figure 4 shows graphs @b (t) for n=0 andn
=1

Here, P! are diagonal matrix elements of perturbation op- Equation(37) demonstrates that theh quantum state is

eratorsP, | :

PT'=(#T)[P1 7)), (32
« |y d
PTl:C im"‘kylw . (33)

To calculate the matrix element3]! we use the property
(20) and take into account that

<¢'ﬂ|¢}>=6mn for 1,/1,=0 (39
[see Eqs(12)—(15)]. As a result, we obtain

PIT=(1, /1) (k)

and hence the Rashba splitting, (31) is governed by

lo
Ar=27"(K1,) for 1,/15=0, (35)

no longer independent of its “neighbors,” i.e., of tha (
+1)-ststates. In turn, then+ 1)-st state now depends on its
own nearest neighbors, i.e., on both thth and the 0
+2)-nd states. Owing to this interstate coupling, all spinors
®" partially acquire the symmetry properties of spinors
®"*1, Moreover, since the resulB7) is perturbative, it is
plausible that the interstate coupling becomes more pro-
nounced when the perturbative approach breaks down, i.e.,
whenk,l ,=2.5. This “hybridization” of electron states ac-
counts for the anticrossing of neighboring energy branches in
Fig. 3@.

After passing the relatively narrow anticrossing region
2.5<kl ,=4.5, all the curves in Fig.(d) straighten out and
adopt a very accurate linear behavior kgt ,=5. There are
two main features that attract attention in the infinite interval
kyl ,=5: (i) there are no further anticrossings of approaching
energy branches. Even those with closest quantum numbers
n, which anticrossed at smaller valuesliqgf,,, now cross;

(ii) all the straight lines:}*(n) go down(up) with the same
slope~=*1,/l, which is independent of a level numbier
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FIG. 4. Unperturbed wave functiond (/1,=0, solid curve
and wave functions modified by the coupling (,/1,=0.3, the
dashed curve describes the “up” and the dotted curve the “down”
spin orientations (a) n=0; (b) n=1. Zero 8 coupling (,/l4
=0) is assumed. For definiteness, we takk,=0.

Although statementi) means asymptotical smallnegather
than absolute absencef anticrossings in the region of large

kyl,=5 in Fig. 3a), these anticrossings are much weaker
than any other anticrossings in the system and therefore can

be left out.

To explain these properties we should return to Ef.
(7), and (10). According to Eq.(10), the spatial variation
scale of function&ﬁ?l(t) is of the order unity. This means
that the derivativesbh on the rhs of Egs(6) and (7), re-
spectively, can be roughly estimatedds; , at least fort|
=<1 and sufficiently small values d¢f,/l ,. Hence, it seems
plausible that within the region, wheigl ,>1, the terms
(IJjT can be neglected in comparison witk,(,)® ;. Tak-
ing this into account together with the conditibp/l ;=0,
we reduce Eqs6) and(7) to

DY+ (ex— )P ()= (1, /1) (k)P (1), (38

<I>1’+(sx—t2)(DL(t)=(Im/Ia)(kylu,)CDT(t). (39
Unlike the general problent6) and (7), Egs.(38) and (39)

can be simply decoupled by a unitary transformation in the

spin space. The corresponding matrix has the form

(1/\5 —1/\5)
N2 N2 )

It is straightforward to verify that eigenvaluésnergie$ of
the decoupled equations are

(40)
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el =2n+17(1,/1,)(k/,), (41)
and eigenfunctions are identical to those given by (EQ) at
l,/15=0. The formula4l) yields the expected linear depen-
dence of botre] ande; on k,l,, with slopes¥(l,,/I,) in-
dependent of a level numbar The asymptotic$41) give a
very accurate fit to the spectral pattern in the regigh,

=5 in Fig. 3a). Since Eqs(38) and(39) can be decoupled
by a simple rotation, stateb! and® turn out to be intrin-
sically independent of each other as well as of all the other
states. This fact alone explains why the anticrossing of en-
ergy branches is not observed for sufficiently large values of
kyl -

’ Let us now consider how the energy spectrum is modified
by switching on theB coupling[Fig. 3(b)]. From visual com-
parison of Figs. &) and (b) we see that the main effect of
the B coupling is toenhanceconsiderably the anticrossing of
“neighboring” spectrum branches. Moreover, the strength
of the anticrossing now depends on the quantum number
and grows as is increased. An interesting consequence of
this behavior is aressential reductiorof the linear Rashba
energy splittingAgxk, , contrasting the expectation that the
additional mechanism of the SO interaction should intensify
the splitting rather than suppress it.

To understand the peculiarities of FighBwe note that in
Sec. Il B it was shown that a finit8 coupling leads to spa-
tial separation between “up” and “down” spinor compo-
nents(see Fig. 1L As a result, the orthogonality condition
(34) no longer applies. Instead, the asymptoti&®)—(15)
should be used. If we now calculate the Rashba splithrg
(31), then we will see that scalar produ¢t¢?i|¢ffl> give
nonzero(viz. linear inl,/lz) contributions to the diagonal
matrix element$!, so thatAr is now described bicf. Eq.

(35]

( 1 w Iw

1 n+2 P Ia(kyl‘”)'
From this formula it immediately follows that the energy
splitting A diminishesin comparison with Fig. @) by an
amount (+1/2)(l,,/1 g) that isproportionalto the quantum
level numbem. This conclusion agrees well with data pre-
sented in Fig. &).

The result(42) can be interpreted in the language of in-
terstate coupling. Actually, it is easy to verify that the as-
ymptotics (12)—(15) give rise to an additionalproportional
to 1,/1) term 5@2(0 in the wave function correction

507 (t) (37):
n 1 lw Iw [n+1 n+1
5(I),B(t ZEEE(kylw) * T(kylw)qSTl (t)
_ \ﬁ 01
+ E(kylw)d’m (t)
1
+Z\/(n+1)(n+2)¢?f2(t)

(43

1
- Z\/n(n—l)d)?fz(t)}
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This term, as well a§<I>?l (37), involves “nearest” unper- The first step is to define the matrix elements of the cur-

turbed wave functionsp? . Since parameterk, /I, and  rent densityjy,(r) for the case where the wave functions

|,/1 5 are independent of each other, we conclude thajthe W mn)(r) are spinors? W = {wi whmy.

coupling enhances the hybridization betweemémand 1

+1)-stelectron states and thereby the anticrossing of corre- ; T gwt o S to

sponding energy branches. The strength of the hybridization Ime(1)= 23 {¥mo(o-pWat (o)Wl oW}

grows with the growth oh. (46)
Because of the enhanced interstate coupling, the ant

crossing of neighboring energy branches in Figh)3s not

restricted to a narrow region of relatively small values of

k,l,=5 as itwas in Fig. @). Instead, we can see that for all

n>0 there exists a second anticrossing in the redign, i%

~7-10. Moreover, for larger quantum numbens=4 a V-jmn(r)zm{(VZ\IfL)‘Pn—\IfIn(VZ‘Pn)}. (47

third anticrossing emerges kjl ,~13—14.

here, the dagger denotes the Hermitian conjugate @nd
=—i#AV. It is straightforward to verify that the divergence
of the vectorj,,(r) is given by

We now suppose that the Hamiltonian of the system has the
D. Ballistic conductance general formH =p%/2M + Q, whereQ is a Hermitian opera-

. . AT _ A~ . . .

To apply the results of the previous subsections to thdor (Q'=Q) that acts in both coordinate and spin spaces. As
study of the effect of the SO interaction on the ballistic con-applied to our problemQ=V c+Hgo [see Eq(2)]. Using
ductance of a long Q1DES at low temperature, we must rethis Hamiltonian and the Schdinger equatiorHV =EW,
late its conductance to its energy spectrum. Here we do thige expressV?¥! and V2%, in terms of ! and ¥, re-

using the two-probe Landauer formtfia spectively, and substitute the expressions obtained into Eg.

5 (47). As a result, we have
e

G=G(sr)= - M(er), (44) , i .

Velmd(N) = 7 (Em= En) (D) Wa(r), (48)
whereG is the ballistic conductanceg is the Fermi energy, ) )
and M(eg) is the number of occupied electron subbandgvhere Ep, and E,, are energies corresponding to the states

which propagate in the same direction: V., and ¥, , respectively. In the absence of any inelastic
collisions, any scattering occurs between states of the same

energy. So, without loss of generality, we can restrict our-
M(ep)=>, 2 > Oler—emin(n,i)]. (45  selves to considering only equal energies=E, in Eq.
nobos=hl (48), in which case we find that

Hereep,,(n,i) is the energy of théth minimum in thenth V-imn(r)=0 for E,=E,. (49)
electron subband with the spin orientatisn 6(x) is the . : . }
Heaviside unit step function. As will be seen later, the SOThis fundamental identity ensuréscal current conservation
interaction can produce multiple minima in each 1D subbandn the system. Once it has been established, if the system is
owing to the anticrossings between different subbands. Sindéanslationally invariant in the longitudinal direction, further

s (n,i) can be found directly from the dispersion law of steps in proving thelobal conservation of current do not

€min oe . . .
electrons, the conductan@(44) turns out to becompletely depend on specifics of the Hamiltonian and can be carried

definedby the energy spectrum alone. Therefore, as long alutin line with Ref. 47. Therefore, we arrive at the conclu-
the expressior(44) applies, the knowledge of the electron SION that t_he total currenti.e., current integrated over the
energy levels in a Q1DES will be sufficient to predict the Cr0SS section of the channéietween states andn at Er,
behavior of the ballistic conductance as a function of the™ En iS €qual to zero unlessi=n. In other words, eigen-
Fermi energy. states of the HamiltoniarH are perfect current-carrying
The applicability of Eq.(44), as well as of the general states that are free from scattering even in the presence of
scattering approaéh to quantum transport, is essentially arbitrary SO coupling.
based on the condition that a current must travel in any 1D For our problem, this result implies that the spectrum of
electron subband without scattering into any other. In Ref. 4the Hamiltonian(2) is directly relevant to and completely
it was shown that thigurrent conservatiorcondition holds ~ defines the ballistic conductance in the presence of the SO
true in quite general circumstances including placing acoupling. This allows us to use the simple Landauer formula
Q1DES in both a finite external magnetic field and an arbi{44), (45), in which the minimae},;,(n,i) of the energy sub-
trary external electrostatic potential. However, the proof inbands can be found from the analysis of the spectrum pre-
Ref. 47 ignored spin degrees of freedom and therefore didented in Secs. Il A—Il C.
not take into account potentials acting in the spin space. Such Now we are in a position to discuss the features of the
neglect is not valid for our problem where the SO interactionballistic conductance in a Q1DES subject to the SO interac-
Hamiltonian(1) leads to a highly nontrivial role for the spin tion. For illustrative purposes, we start with the “ideal” case
in forming the energy spectrum of electrofsee Sec. Il A— of zero SO coupling. The corresponding subband energies
I1C). For that reason we cannot rely on the conclusion ofe(n)=2n+ 1+ (k,l )2 are plotted in Fig. &) (solid curve$
Ref. 47 but should check explicitly if the current is still con- as functions ok,l . The dependenc&(sg) can simply be
served in the presence of a finite SO coupling. deduced from this figure by moving a horizontal lise
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3 2 1 0 1 2 3

FIG. 5. The subband energyin units off w/2 vsk,l,,: (a) zero SO couplingsolid curves, finite 8 coupling(dotted curves (b) weak
a coupling (/1 ,,<+/2); (c) stronge coupling (/I ,>+2) and zerod coupling;(d) a magnified bump on an=0 energy branch in the
anticrossing region(e) stronga coupling (,,/1,>/2) and finite@ coupling.

=¢p from zero upwards and counting the number of points atequidistant jumps, each of heigheZh [solid curve in Fig.
which this line crosses the spectral parabolas. Since all thé(a)].

subbands in an ideal system are twofold spin degenerate for Dotted curves in Fig. & show subband energiegn)
anyk,, this number coincides with the numhiérof propa- :sf(o)(n)Jr(kyla,)2 in the presence of thg coupling [see
gating modes in the Q1DES. As a result, we restore the wellEq. (16)]. Each subband is twofold spin degenerate. It is seen
known picturé>°of ballistic conductance quantization with that for any given value oty the numberM of forward
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G (a) By analogy with ferromagnetic materials, this effect can
manifest itself in the appearance of the magnetization of the
6 ! electron system and its dependence on the transverse coordi-
I nate.
57 : Now we move on to the more complex case of finite
4 ! coupling. To start with, let us imagine the fictitious situation
' where the linear Rashba energy splitting
]
’ i Ar=2(1,/1,)(k,)
2 ' [see Eq.(35) and Fig. 3a)] holds true not only for small
14 ! values ofk,l, but for allk,l,. Here, the subband energies
' 8F would be _given by Em(r.])=2n+ 1+ (kyl BN/
0 L T T l,)(kyl,). This formula describes parabolas of the same
0 1 2 3 4 5 form as the solid curves in Fig(#& but shifted by an amount
(b) +(1/2)(,/1,) along the abscissa and lowered vertically by
G (14 ,/1,)? The paraboIaETl(n) were used in Ref. 35 to
61 predict spontaneous spin polarization of ballistic electrons in
quantum wires due to spin splitting. Whereas ithal energy
5 branchese,(n) ande (n+1) anticrosgsee Fig. 8], the
4 fictitious dispersion curve.%T(n) and El(n+ 1) cross at
the pointkylwz(lwlla)*l. This point remains the same for
3] all numbersn and goes to infinity as the SO coupling van-
ishes. It is easy to verify that fdr, /I ,<2, the crossing
2 point kwa:(Ia,/Ia)‘1 lies to the r~ight of the poink,l,
=(1/2)(1,/1,) at which the parabola, (n+1) has the mini-
19 mum. At the same time, if,/lI ,>+2, then the crossing
8F point turns out to be to the left of the minimum point. Below
0 0 ] 5 3 . 5 we will see that these simple conclusions following from the
fictitious energy spectrum play an important role in deter-
(C) mining the behavior of the conductanGgeg).
G Figure 3b) presents the energy subbands (n) (solid
64 and dashed curvesf a Q1DES in the case afeaka cou-
5. pling whenl , /I ,<+/2 (more specifically] ,/l ,=0.5). Dot-
ted lines indicate thdictitious energy IeveIsET(n=O) and
4 El(n=1). In full accordance with the above conclusions,
these levels cross to thight of the bottom of the parabola
37 e/ (n=1). As a result, the crossing angle turns out to be
quite small. From Fig. ®) it is seen that this angle deter-
27 mines essentially the shape of theal energy curves: (n
1. =0) and g;(n=1) within the anticrossing region 1.5
€ =k,l,=3. As long as the angle is small, the anticrossing
0 . : : . F remains very smooth and the curves(n=0) and e (n
0 1 2 3 4 5 =1) behave very much like the ideal parabolas in Fig).5

The same observation is also true for higher quantum num-
FIG. 6. The conductand® in units ofe?/h vs the Fermi energy bers n. Such similarity suggests that weak coupling
eg In units of Zw/2: (a) zero SO coupling and finit@ coupling (I, <\/§) does not have a strong effect on the conduc-
(solid line), weak @ coupling (dashed ling (b) stronga coupling tacrulcea Indeed, it is easy to see by scanning Fig) With the
and zerof coupling; (¢) stronge coupling and finite coupling. horizo.ntal Iinéa=a,: that the only effect of weak: cou-
|ing onG(eg) is to shift the conductance quantization steps

propagating modes remains the same as it was in the |de§OWn to lower energies by an amount (1M)l.)? [see

limit. Thus, we conclude that thg coupling alone doesot . S
affect the ballistic conductance. To detect the presence of th%asm:“d lines in Fig. (8)). .

B coupling in a system, one should exploit a unique feature As soon as the coupling cgnstah;/la gets over the
that can only be due to thg coupling. As a reasonable f[hresho_ld Of\./i' the spectral picture becomes much more
example of such a feature, we mention the spatial separatidHtereSt'ng' Figure ®) show~s a case whelp,/1,=1.8. Here
between spinor components that was established in Sec. Il € parabolag;(n=0) ande (n=1) (dotted curvepcross
and illustrated in Fig. 1. Owing to this effect, the regions ofto theleft of the bottom of | (n+ 1), which makes the cross-
the most probable distribution of electrons with opposite spiring angle relatively large. The direct consequence of this is
orientations will be shifted apart in the transverse directionthat the energy branches(n=0) ande (n=1) cannot now
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anticross as smoothly as they did fqy/I ,< /2. Instead, in  onstrated in Sec. Il C, finitg coupling tends to suppress the
order to keep continuity, the lower curyee., ,(n=0)] is energy splitting caused by the coupling[cf. Figs. 3a) and
forced to exhibit a nonmonotonic portigbump™ ) within ~ 3(b) and see Eq(42)]. Effectively, this suppression can be
the anticrossing region. Although the height of the bump ighterpreted as the enhancement of the anticrossing between
rather small (0.05 in the dimensionless units or neighboring energy branches(n) ande (n+1). In Fig.
~0.25 meV as determined from typical subband spaéfhgs 5(e) this effect is seen as a decrease in the gap between
its geometry is a unique feature of the SO coupling mecha€nergy branches;(n) ande (n) (n=1,2,3...) in com-

nism [see a magnified plot of the bump in Fig(d5]. The parison with Fig. &). Moreover, in accordance with Eq.
remarkable fact about it is that the bump contains a regiorf'z)’ the gap becpmes _monotonlcally _smaller ragrows.
where the electron energy decreases as the wave numbbpe enhanced anticrossing has a d.ras.tlc effect on the energy
grows. In other words, there exists an energy interval within umps created by the strongcoupling: all the bumps ex-

which electrons are allowed to have a negative Iongitudineﬁ:.ept for the lowest one are now smoothed away and do not

. > - i iti d and back
group velocnyvyzﬁ*l(as/aky)<0 for positivek, . Since give rise to the two additionalforward and backwand

ropagating modes. As a result, the conductance exhibits
this interval has a finite width and is surrounded by energ)gnlﬁ ogne s%arp peak that occurs on the plat&au2e?/h

domains with positive group velocities, the curvature of the[see Fig. 6c)]. A second effect of the enhanced anticrossing
line e=e(k,) reverses sign within the negative-velocity in- op the conductance is that the conductance guantization steps
terval and therefore there exists an inflection point Wherf{starting from the second opare now located closer to the
9%l k;=0 [see Fig. &d)]. At this point the effective elec- ideal steps than they were for zeocoupling. As each next
tron massthZ((?Zs/&kf,)*l diverges. Since the current step appears, its distance from the corresponding ideal step
passing through a 1D subband is proportional to the produdaiminishes until eventually they fuse.

of the group velocity and the density of statéshe singular There is another effect of the enhanced energy anticross-
effective mass has no effect on the conductance in the aling on the conductance that is not seen in Figs. 6 but could
sence of electron scattering. However, it could significantlypossibly be detected in the presence of impurities. It is found
change the dependen€d ;) in the presence of a scattering experimentally®®! that the ballistic conductance quantiza-
mechanism(e.g., disorder or electron-electron interacjion tion breaks down as the constriction becomes too Itg

As far as transport through 1D electron subbands is conleast=2 um). This effect can be attributed to potential fluc-
cerned, it is clear from Fig.(8) that the negative propagat- tuations caused by the random distributions of remote impu-
ing mode coexists with a forward propagating mode with therities. Zagoskiret al>? showed analytically that the degrada-
same spatial wave function. In this physical situation it istion of quantized conductance decreases exponentially with
likely that weak elastic scattering between these states woulihe ratio of the 1D subband spacings to the standard devia-
result in directed localizatidf so that they would not be tion of impurity potential fluctuations. Obviously, the sub-
observed in conductance. band spacings depend on the presence of the SO interaction

However, if both forward and backward electron modes(see Figs. b By comparing Figs. &) and 5e) we see that a
contribute equally to the conductance, then this immediatelyinite 8 coupling pushes neighboring energy branches apart
brings us to the conclusion that the bump on the curveand thus increases the subband spacipgssibly by tens of
g1(n=0) gives rise to a peak in the depende@er) [see percent. This means that the presence of fenechanism
Fig. 6(b)]. The height of the peak is€?/h and its width is  of the SO interaction could allow the experimental observa-
defined by the height of the bump. Analogous bumps can bdon of the conductance quantization structure in longer
observed for all quantum levets=0,1,2 ... . As aconse- samples.
guence, the sharp peak is seen in Figp) ot only on the
first conductance platea@=2e?/h but also on the second
oneG=4e?/h and would still be seen on all further plateaus.

Of course, the strong coupling (,,/I,>2), as well as We have studied theoretically the influence of the spin-
the weak coupling I(,/1,,<+2), shifts the conductance orbit (SO) interaction on the energy spectrum and the ballis-
quantization steps to lower values of the Fermi energy irtic conductance of a quasi-1D electron systé@1DES
comparison with the ideal situation whelrg/l ,=0. How-  formed by lateral electric confinement of a 2D electron gas.
ever, in contrast to the weak-coupling limit, strong couplingThe presence of the confining potential proves to be crucial
makes this shift much larger for the first step than for thein two ways. First, it alters significantly the effect of the
others. This effect is clearly seen in Fighfas opposed to quantum well asymmetry on the energy spectrum in com-
the ideal conductance quantization shown by dotted linesparison with a purely 2D system. As it was shown by Rashba
The larger shift of the first step is explained by the fact thatet al,?®2°in 2D electron gases this asymmetry gives rise to
the n=0 quantum state does not have a neighbor with theSO coupling(which we refer to as the coupling that mani-
next lowest quantum numbex The energy levet (n=0) fests itself in a lifting of the spin degeneracy of electronic
is therefore not forced to anticross with any otlilawer  states. The accompanying energy splitting was found to
lying) energy branch and therefore nothing affects its lineabe proportional to the in-plane electron wave numkewe
(Rashba dependence ok, [see Fig. 83)]. have demonstrated that in a Q1DES the functigg(k) is

The final step of our analysis is to consider the case wheraonmonotonic [Fig. 3@] with the standard linear
both stronge coupling (,/I,=1.8) and relatively weal3  dependencd@?® Az=k being observed for relatively small
coupling (/1 ;=0.2) are present in the system. The corre-and large values df only. Such a drastic change in behavior
sponding energy bands are shown in Fige)5As we dem- s explained by the essentially different effect of SO coupling

IlI. CONCLUSION
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operatorP; | (33) on unperturbed wave functions dependingPling on the underlying electron system which consists of a
on whether or not the lateral confining potential is taken intoconsiderable enhancement of the hybridization between dif-
account. Indeed, in the zero-potential case the unperturbdfgrent quantum states and eventually leads to a more pro-
wave functions are plane waves characterized by the continiilounced anticrossing of neighboring energy branches.
ous in-plane wave vectde and the spin. The action of the N addition to the investigation of the SO effects in the
operatorP; | on any such wave function reduces to a simpleener-gy spectrum of electrqns, We_hav_e dlscussgd_the possible
i : : ) | manifestations of the SO interaction in the ballistic conduc-
renormahz_atlon of its amplitude with the renormalizing fac- tance of a Q1DES. The key point of our approach to the
tor being independent of coordinates. As a consequence Qhnqyctance is the fundamentairrent-conservation identity
this simple eff_ec_t, wave functions belonging to different val- 5t was proven in Sec. Il D. According to this identity, the
ues ofk remain independent of each other and the SO coug|ectron eigenstates that were found as the solution to the
pling manifests itself in lineatmonotonig energy splitting  gpectral problem arperfectcurrent-carrying states. A cur-
Agek which is the same for all quantum states. rent can travel in any of these states without scattering into
In contrast to this, the wave functions in the presence of gy other. This property therefore allows the ballistic con-

finite confining potenti_al have a more complicated structurey,ctance to be calculated directly from the energy spectrum
(10) and are characterized by the discrete quantum number ith the help of simple Landauer formu(d4).

instead of the continuous transverse wave number. Accord- aAp analysis of the ballistic conductanGereveals that the

ing to Eq.(20), the action of the operatd?;; on thenth g coupling alone doesot affect the dependence & on the
wave function includes projecting it onto states with the nextFermi energye . This fact is illustrated by Fig.(®) where
(preceding closest quantum numberst 1. In turn, the 6 we see that th@ coupling reduces the curvature of the para-
+1)-st states are projected onto their “neighbors” with bolic energy bandscf. dotted and solid curvéswhile the
numbersn andn=*2, respectively. As a result, the operator band edgegbottoms of the parabolasemain anchored.
P,, coupleseffectively anynth and fi+1)-st wave func- Thus, 8 coupling cannot be detected by measuring the bal-
tions. In other words, once the SO coupling has been takelistic conductance in systems where the SO interaction ap-
into account, theith and i+ 1)-st wave functions cease to pearsonlyin a form of the coupling(e.g., in square wells
be independent and possess symmetry elements of eabitstead, one should use experimental methods that allow di-
other. This partial symmetry between states leads tarsin ~ rect observation of the electron energy spectrum in a
crossingof the closestneighboring energy branches in Fig. Q1DES, e.g., magnetotunneling measureméhts.
3(a) and hence to the nonmonotonic dependehgék). In the presence of coupling, the behavior 06(e) is
Apart from the interplay with the familialguantum-well- ~ essentially determined by the strength of the SO interaction.
asymmetry or Rashbanechanism of the SO interaction, the If the @ coupling is not too strongl (, /1 ,< J2), then its only
lateral confining potential by itself appears to be a source oéffect on the conductance will be shifts of the conductance
additional dynamical coupling between the orbital and spinquantization steps to lower Fermi energies in comparison
degrees of freedom of an electron. This couplindgpich we  with an ideal(i.e., with zero SO interactignsituation. We
refer to aspB coupling originates from the natural spatial note that such shifts are not related to the lateral confining
nonuniformness of the confining potential. A typical varia- potential and should also be present in purely 2D systems.
tion scale of this potential lies within the wide range This effect should be detectable in transconductance mea-
~10-1000 nm, which makes the accompanying electrisurementgsee, e.g., Ref. 53vhich determine both the con-
field sufficiently strong to compete with the quantum-well- ductance and the subband spacings simultaneously.
asymmetry field. This competition may become especially In the limit of stronga coupling (/1 ,> \/2) the electron
noticeable in square quantum wells with a relatively weakenergy bands take on a very interesting f¢ffig. 5c)]. The
Rashba contribution. Whereas the quantum-well field is normost remarkable feature is the appearance of narrow energy
mal to the device plane, the confinement-induced electriintervals where two additionéforward and backward propa-
field is parallel to the plane. It is also spatially nonuniform asgating electron modes exigfFig. 5(d)]. Such intervals can
long as the coordinate dependence of the confining potentidde found in each 1D subband, starting from the lowest one.
is more complex than linear. These features makesteeu-  The additional electron modes have similar magnitude group
pling an essentially different mechanism of the SO interacvelocities but propagate in opposite directions. They have
tion in a Q1DES whichcannotbe taken into account by almostidentical subband wave functions and therefore would
simply adjusting the Rashba interaction constant. This clainfbe susceptible to strong intermode scattering in the presence
is confirmed by Fig. &) which demonstrates the combined of disorder. However, in a sufficiently pure Q1DES, the ad-
effect of both the Rashba and the confinement-induced couditional electron modes give rise to the unusual periodic
plings on the energy spectrum. From comparison of Filgh 3 sharp steps iG(eg) shown in Fig. b). This picture is
with Fig. 3(a) we see that the major role ¢f coupling isto  changed by switching on relatively weak,(l z<l,/1,) B8
reduce the Rashba energy splittingg (see regionk,l,, coupling. As we mentioned above in the discussion of the
=<?2) rather than to give a positive correction to it. It is cru- energy spectrum, the coupling enhances the anticrossing of
cial that the reduction depends on the quantum numizerd  energy levels initiated by the coupling. As applied to the
monotonically grows as increases. This fact is a clear conductance, this effect leadsgoenchinghe sharp conduc-
manifestation of the position dependence of the electric fieldance peaks by th@ coupling. The existence of the single
created by the confining potential and indicates the indeperpeak(or just a few of peaKsin the dependence @ on ¢
dent nature ofB coupling. The suppression of the Rashbacould be a clear experimental indication of the presence of
energy splitting is a part of the overall effect of tgecou-  the 8 coupling in the system.
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The most crucial point for the experimental observation of We hope that the results presented in this paper will
the conductance peaks in Fig. 6 is to make the rgjil,  stimulate further experimental and theoretical work with the
sufficiently large (,, /I ,>/2). In typical systems, where en- aim of understanding the role of the spin-orbit interaction in
hancing the SO interaction is not paid special attention, theéletermining the transport properties of quasi-1D systems.
value ofl /I, hardly exceeds 0.5. An additional, at least
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