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Effect of the spin-orbit interaction on the band structure and conductance
of quasi-one-dimensional systems

A. V. Moroz and C. H. W. Barnes
Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE, United Kingdom

~Received 17 June 1999!

We discuss the effect of the spin-orbit interaction on the band structure, wave functions, and low tempera-
ture conductance of long quasi-one-dimensional electron systems patterned in two-dimensional electron gases
~2DEG!. Our model for these systems consists of a linear~Rashba! potential confinement in the direction
perpendicular to the 2DEG and a parabolic confinement transverse to the 2DEG. We find that these two terms
can significantly affect the band structure introducing a wave vector dependence to subband energies, produc-
ing additional subband minima, and inducing anticrossings between subbands. We discuss the origin of these
effects in the symmetries of the subband wave functions.@S0163-1829~99!07143-X#
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I. INTRODUCTION
In 1986, the first experimental realization of a quasi-on

dimensional electron system~Q1DES! in a dynamically con-
fined two-dimensional electron gas~2DEG! was achieved.1

Since then, there has been an extensive theoretical and
perimental effort into understanding their basic propert
~see, e.g., Refs. 2 and 3 and references therein!. The interest
in these systems stems from two facts. First, the effec
transverse size of a Q1DES can be easily controlled
made remarkably small, down to the de Broglie wavelen
of an electron. This makes it possible to realize experime
systems which have an arbitrary number of occupied tra
verse modes. Second, the high purity of 2DEG’s grown
molecular beam epitaxy enables the almost collisionless
tion of an electron through an experimental Q1DES. T
coexistence of these two factors has made Q1DES un
objects for the investigation of transport phenomena yie
ing, in particular, the observation of the ballistic quantizati
of conductance4,5 and the so-called 0.7 conductan
structure.6–8

The process of electron transmission through a Q1D
involves the redistribution of incoming electron flux amo
its discrete eigenstates followed by adiabatic transp
through them. Therefore, the determination of the elect
eigenstates of a Q1DES is an integral and very impor
part of the more general quantum transport problem. T
statement is especially relevant to the ballistic transport
gime where thetotal conductance of a system iscompletely
definedby the number of propagating electron modes wh
in turn can be uniquely calculated from the energy spectr
and the Fermi energy.2,3,9

Clearly, the energy spectrum of electrons crucially d
pends on the effective geometry of a Q1DES as well as
external and internal fields acting on them. Among the p
sible internal forces, one of the least understood example
the interaction between orbital and spin degrees of freed
of an electron: thespin-orbit interaction, also referred to as
the spin-orbit coupling. Although this interaction has an
sentially relativistic nature~see, e.g., Refs. 10–12!, it never-
theless can give rise to an observable modification of se
conductor band structure.13–21

A quite general theoretical approach to the description
PRB 600163-1829/99/60~20!/14272~14!/$15.00
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the spin-orbit ~SO! interaction is to use the following
Hamiltonian,10,11 which stems directly from the quadratic i
v/c expansion of the Dirac equation:

ĤSO5
\

~2M0c!2
¹V~r !~ŝ3p̂!. ~1!

Here,M0 is the free electron mass,p̂ is the momentum op-
erator, e is the elementary charge,ŝ5$sx ,sy ,sz% is the
vector of the Pauli matrices,V(r ) is the potential energy o
the particle, and¹ stands for the spatial gradient. The co
venience~or universality! of the Hamiltonian~1! is that it
does not restrict one to any particular form~model! of the
potentialV(r ), but allows freedom of choice depending o
the nature and the symmetry of forces present in a gi
medium. Its form is such that it can remove the spin deg
eracy in electron band structure while not actually produc
an overall spin polarization.

In a bulk ~3D! crystalline environment, the energyV(r )
arises exclusively from the periodic~microscopic! crystal po-
tential. Most multicomponent semiconductors have eit
zinc-blende~GaAs and most III-V compounds! or wurtzite
~II-VI compounds! lattice structure, both of which lack in
version symmetry. Dresselhaus22 has shown that this prop
erty eventually leads to a SO-induced splitting of the co
duction band into two subbands. The magnitude of
splitting is proportional to the cube of the electron wa
numberk.

In metal-oxide-semiconductor field effect transisto
~MOSFET’s! and heterostructures, the host crystals can
be treated as ideal 3D systems, because the crystal symm
is broken at the device interface where 2D electron or h
gases are dynamically confined in a quantum well. The
duction of the effective dimensionality lowers the symme
of the underlying crystals and results in an additional~linear
in k) term in the Dresselhaus splitting. Moreover, if th
quantum well is sufficiently narrow, then the linear contrib
tion is dominant18,23–25and, e.g., may reach;0.3–0.4 meV
in 180-Å-thick modulation-doped GaAs wells.18 Theoretical
arguments26 suggest that this can also be true in strain
III-V crystals and hexagonal II-VI compounds.
14 272 ©1999 The American Physical Society
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Along with the microscopiccrystal forces, there is an
other source of the potential energyV(r ) in 2D systems. It is
caused by the interface electric field that accompanies
quantum-well asymmetry3,27and is directed along the norma
to the device plane. Since the typical well width
;1 –10 nm, the interface potential turns out to be slow
varying on the scale of the lattice parameter and can be
sideredmacroscopic, as opposed to the rapidly oscillatin
atomic field. The mechanism of the SO interaction origin
ing from the interface field was first introduced by Rashba
Ref. 28. It also manifests itself as a linear ink splitting29 of
the 2D band structure. In a variety of systems includ
Si-MOSFET’s,30 InAs/GaSb,23 and AlSb/InAs/AlSb ~Ref.
20! quantum wells, InxGa12xAs/InxAl12xAs hetero-
structures,16,21 and GaAs electron gases,31 it can be made to
dominate the Dresselhaus terms, indicating the significa
of macroscopic potentials in producing observable SO
fects in low-dimensional systems.

In modern nanotechnology, there exists a number
methods for creating Q1DES from 2DEG’s: the split-ga
technique; wet and dry etching; and cleaved ed
overgrowth.32 In essence, they all exploit the confinement
the lateral~in-plane! motion of electrons~holes! by some
transverse potential. Any such potential must be essent
nonuniform in space in order to force the charged particle
remain within a confined area. The spatial variation scale
the confining potential crucially depends on the particu
fabrication method and varies over a wide rang
;10–1000 nm. Thus, in Q1DES one finds another exam
of macroscopic potentials, viz. the lateral confining potent
which is absent in higher-dimensional structures. The spa
nonuniformity of the confining potential gives rise to an a
ditional ~in-plane! electric field in the system. If the confine
ment is sufficiently strong~narrow and deep!, then this field
may not be negligible in comparison with the interfac
induced ~Rashba! field. Moreover, in nearly square~i.e.,
symmetric! quantum wells where the Rashba field is ess
tially suppressed,20,31 the in-plane ~‘‘confining’’ ! electric
field is likely to be dominant. This suggests the possi
importance of the lateral confining potential to the S
Hamiltonian~1! in Q1DES. We are not aware of any expe
mental evidence or measurement of the strength of the
coupling resulting from such a confining potential and ca
not therefore quote a grounded estimate for the corresp
ing energy modification. Nevertheless, the above argum
seem sufficiently strong to indicate a possible new mec
nism for the SO interaction in Q1DES and point towar
possible new transport effects. The existence of an additio
~and easily controllable! source of the SO coupling coul
catalyze experiments on quantum-wire based devices tha
ploit both the charge and spin of an electron, e.g., s
transistors33,34 and active spin polarizers.35

Our belief in the importance of the SO interaction
semiconductor Q1DES is strongly supported by the fact
observable manifestations of a SO-induced energy split
have already been found experimentally36 in another type of
Q1DES, viz. in electron gases trapped by dislocational
fects in silicon crystals. The source of the SO coupling
these systems is an electric field perpendicular to dislo
tions and the SO-related energy splitting is linear in the w
numberk, which makes a physical analogy between the el
e
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tron gas on dislocations and semiconductor Q1DES q
close. The SO interaction manifests itself in spin-depend
electron conductivity along dislocations which can be
cribed to combined spin resonance28,37 of electrons corre-
sponding to transitions between SO-split energy levels.

In this paper we analyze theoretically the effect of t
spin-orbit interaction on the energy spectrum and cond
tance of a long Q1DES. As a model for the Q1DES, we u
a strictly 2D electron gas subject to a transverse electros
confining potential. To decide on a reasonable shape of
confining potential, we assume a sufficiently small effect
width (&300 nm) for the Q1DES and a low electron co
centration (&1011 cm22). Combined together, these tw
factors prevent the confining electric field from being sign
cantly screened by the electron gas. Under these conditi
the confining potential can be accurately approximated b
parabolic potential.38–40This conclusion is very favorable to
our problem because exact analytical expressions for the
ergy spectrum and wave functions of a 2D electron gas
parabolic potential are well known and provide us with
good zero approximation in dealing with the SO coupling

We include the SO interaction via the Hamiltonian~1!.
We assume that the potentialV(r ) which is responsible for
the SO coupling consists of two contributions:~i! a parabolic
confining potential with a gradient~or the accompanying
electric field! which lies in the plane of the 2DEG;~ii ! a
potential which arises from the asymmetry of the quant
well with the corresponding electric field~Rashba field! be-
ing uniform and directed perpendicular to the device pla
We neglect the crystal-field~Dresselhaus! contribution to
V(r ).

The goal of this paper is to reveal the qualitative ha
marks of the SO interaction in Q1DES rather than to co
struct a complete and realistic spectral and transport the
Therefore we use two major simplifications. First, we negl
the Coulomb interaction between electrons. At first sight o
may not expect this approximation to work in low
concentration 2D electron systems where the Coulomb
ergy may exceed the kinetic energy by an order of mag
tude. However, it has recently been shown theoretical41

that the effect of electron-electron interactions on SO c
pling in such systems can be plausibly taken into account
a renormalization of the SO coupling constant. More spec
cally, this renormalization leads to an enhancement~by 10–
50%! of the strength of the SO interaction, which emph
sizes the significance of the SO-related effects in lo
dimensional electron systems. Our second simplification
the exploitation of one-band effective mass approximatio42

for the Schro¨dinger equation. Within this approximation, th
influence of the crystal forces on electron dynamics in
conduction band is reduced to the renormalization of
electron mass and all interband transitions are left out.
spite the obvious simplicity, this approach works well3,43 for
a wide range of semiconductor materials.

Section II is the central part of the paper. It is devoted
the solution of the problem that we have outlined above a
to the analysis of the results obtained. In Sec. II A we int
duce the Hamiltonian of a 2DEG that includes the parabo
confining potential and the SO-interaction term~1!. We take
into account only those contributions to the SO Hamilton
that arise from macroscopic~i.e., relatively smooth! poten-
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tials, viz. from the quantum-well~Rashba! and the parabolic
confining potentials. Since the operator~1! contains the Paul
matrices, we seek electron wave functions in the form
two-component spinors. Within such a representation,
Schrödinger equation turns out to be a system of twocoupled
differential equations with respect to the spinor compone
In the next two subsections we solve this system for t
physically different situations. Section II B deals with th
case of zero Rashba SO coupling, where the entire SO in
action comes from the parabolic confining potential. Here
Schrödinger equations decouple and the electron wave fu
tions and energy spectrum are found in an explicitly anal
cal form. In Sec. II C we consider a more general situat
where both mechanisms of the SO-coupling are presen
this case we calculate the electron wave functions and en
spectrum numerically using the results of Sec. II B as a c
venient basis. Afterwards, we analyze the energy spect
obtained in order to reveal the basic features of both S
coupling mechanisms. In Sec. II D we discuss possible m
festations of the SO interaction in the dependence of
ballistic conductance of a Q1DES on the Fermi energy. S
tion III summarizes the results of our research.

II. THEORY AND ANALYSIS

A. Problem statement. Spinor equation

Within one-band effective mass approximation42 the
Hamiltonian of a Q1DES can be written as

Ĥ5
p̂2

2M
1VLC~r !1ĤSO, ~2!

wherer5$x,y% is a 2D position vector andM is the effective
electron mass. In line with Refs. 38–40, thelateral confining
potential VLC(r ) is approximated by a parabola

VLC~r !5
Mv2

2
x2. ~3!

The quantityv controls the strength~curvature! of the con-
fining potential. The in-plane electric fieldELC(r ) associated
with VLC(r ) is given byELC(r )52¹VLC(r )52Mv2x.

We assume that the SO interaction HamiltonianĤSO ~1!

in Eq. ~2! is formed by two contributions:ĤSO5ĤSO
a

1ĤSO
b . The first one,ĤSO

a , arises from the asymmetry o
the quantum well, i.e., from the Rashba mechanism28,29 of
the SO coupling. Since the interface-induced~Rashba! elec-
tric field can reasonably be assumed uniform and direc
along thez axis, the termĤSO

a can be described by the fo
lowing expression:

ĤSO
a 5

a

\
~ŝ3p̂!z5 iaS sy

]

]x
2sx

]

]yD . ~4!

The SO-coupling constanta takes values within a rang
(1 –10)310210 eV cm for different systems.16,21,23,29,31For
brevity, in what follows we will refer to the Rashba mech
nism of the SO coupling asa coupling.

The second contributionĤSO
b to ĤSO comes from the

parabolic confining potential~3!:
f
e

s.
o

r-
e
c-
i-
n
In
gy
-
m
-
i-
e
c-

d

ĤSO
b 5

b

\

x

l v
~ŝ3p̂!x5 ib

x

l v
sz

]

]y
. ~5!

Here, l v5(\/Mv)1/2 is the typical spatial scale associate
with the potentialVLC ~3!. In Eq. ~5! we have introduced the
SO-coupling constantb. Comparison of typical electric
fields originating from the quantum-well and lateral confi
ing potentials allows one to conclude that a plausible e
mate forb should be roughly 10% ofa. Moreover, in square
quantum wells where the value ofa is considerably
diminished20,31 ~by an order of magnitude! the constantb
may well compete witha. Henceforth we adopt the termb
coupling for the mechanism of the SO interaction arisi
from the lateral confining potential~3!.

Our objective is to find eigenvalues and eigenfunctions
the Schro¨dinger equationĤC5EC with the HamiltonianĤ
given by Eqs. ~2!–~5!. The wave function C5C(r )
5$C↑(r )C↓(r )% is a two-component spinor and the ener
E is measured from the conduction band edge. It is eas
see that the Hamiltonian~2!–~5! is translationally invariant
in the y direction. We therefore seek solutions to Schro¨d-
inger’s equation in the form of plane waves propagat
along the y axis, i.e., C↑↓(r )5exp(ikyy)F↑↓(t). Here, t
5x/ l v is the dimensionless transverse coordinate,F↑↓(t) is
the transverse wave function, andky is the longitudinal wave
number. After substituting this representation into the Sch¨-
dinger equation, we obtain a system of two differential eq
tions with respect to the spinor componentsF↑↓(t):

F↑91~«x2t21tbt !F↑~ t !5~ l v / l a!@~kyl v!F↓~ t !1F↓8#,
~6!

F↓91~«x2t22tbt !F↓~ t !5~ l v / l a!@~kyl v!F↑~ t !2F↑8#,
~7!

tb5
l v

l b
~kyl v!, ~8!

where «x[(kxl v)2 is the dimensionless transverse energ
kx

25(2M /\2)E2ky
2 , and the prime denotes a derivativ

with respect tot. The lengthsl a and l b defined by

l a5\2/2Ma, l b5\2/2Mb ~9!

are characteristic spatial scales associated with thea and
b couplings, respectively. We note that the functionsF↑↓(t)
depend on three dimensionless external parameters:l v / l a ,
l v / l b , andkyl v .

Equations~6! and ~7! are arranged in such a way that a
the terms which couple them together are collected on
right-hand side~rhs!. It is interesting that this arrangemen
separates explicitly thea and b mechanisms of the SO in
teraction. Indeed, thea terms enter only the rhs, while all th
b terms are contained on the lhs. This suggests that thb
coupling is responsible for forming independent~‘‘unper-
turbed’’ or ‘‘noninteracting’’! wave functionsF↑↓(t), while
the a coupling mixes them together to form the solution
the whole system~6! and ~7!.
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B. Zero a coupling „square quantum well…

We start the analysis of Eqs.~6! and~7! with the situation
in which the quantum well is square so that the interfa
induced electric field vanishes. In terms of the SO inter
tion, this means that the Rashba mechanism~i.e., the a
mechanism! of the SO coupling can be omitted. In oth
words, the characteristic lengthl a of the a interaction tends
to infinity: l a→`, or l v / l a→0. The study of this relatively
simple case will provide us with a convenient basis for tre
ing the general problem with finitel a .

Oncel v / l a has been put equal to zero, the rhs in Eqs.~6!
and~7! vanish and they transform into two independent H
mite equations44 whose exact solutions are

f↑↓
n ~ t ![F↑↓

n ~ t !u l v / l a50

5
exp@2~ t7tb/2!2/2#

A2nn!p1/2
Hn~ t7tb! n50,1,2, . . . .

~10!

Here,Hn(t) is the Hermite polynomial ofnth order. The real
wave functionsf↑

n(t) and f↓
n(t) form complete sets with

respect to the discrete quantum numbern and are normalized
by the following conditions:

^f↑↓
m uf↑↓

n &[E
2`

`

dt f↑↓
m ~ t !f↑↓

n ~ t !5dmn , ~11!

where bothf↑↓
m andf↑↓

n are taken at a same value ofky .
From Eq.~10! one can see that the both ‘‘up’’ (f↑

n) and
‘‘down’’ ( f↓

n) spinor components have exactly the sa
shape as functions oft but are spatially displaced with re
spect to each other by an amount oftb ~see Fig. 1!. Accord-
ing to the definition~8!, this displacement is a direct cons
quence of theb coupling because it does not vanish as lo
as l v / l bÞ0 ~except wherekyl v50). At finite values oftb ,
the complete sets of functionsf↑

n(t) andf↓
n(t) turn outnot

to be mutually orthogonal, i.e.,̂f↑↓
m uf↓↑

n &Þdmn . Instead,
the scalar cross product^f↑↓

m uf↓↑
n & in the case of sufficiently

weak b coupling (tb!1) is governed by the following as
ymptotics:

^f↑↓
n uf↓↑

n &512O~ tb
2 !, ~12!

FIG. 1. The spinor componentsf↑(t) and f↓(t) for n50,
l v / l b50.1, l v / l a50.0, kyl v510.0.
-
-

t-

-

e

^f↑↓
n uf↓↑

n11&.6An11

2
tb56An11

2

l v

l b
~kyl v!,

~13!

^f↑↓
n uf↓↑

n21&.7An

2
tb57An

2

l v

l b
~kyl v!, ~14!

^f↑↓
n uf↓↑

n6p&5O~ tb
p ! for p>2. ~15!

The ‘‘displacing effect’’ of theb coupling on spinor wave
functions @see Eq. 10 and Fig. 1# is superficially similar to
the effect of a perpendicular magnetic field on a Q1DE
However, the essential difference is that a magnetic fi
shifts both spinor componentsf↑

n(t) and f↓
n(t) as a whole

by an amount proportional to the strength of the magne
field ~see, e.g., Ref. 11!, but it doesnot affect theirmutual
spatial distribution. In contrast to this, as can be seen in F
1, the b coupling causes a spatial separation of the sp
polarized electron statesf↑

n(t) andf↓
n(t).

Although the b coupling shifts the spinor componen
f↑↓

n (t) apart, it nevertheless is not capable of lifting the
energy degeneracy. The dimensionless transverse energy«x

(0)

corresponding to the both eigenfunctionsf↑↓
n (t) ~10! is

given by ~see Fig. 2!

«x
(0)[«x

(0)~n,ky!52n112~ tb/2!2

52n112
1

4 S l v

l b
D 2

~kyl v!2. ~16!

The total electron energyE then forms parabolic subband
for eachnth transverse mode:

E[En~ky!5
\v

2
«x

(0)~n,ky!1
\2ky

2

2M
. ~17!

For zerob coupling (l v / l b50) formulas~16! and ~17! de-
scribe the well-known electric subbands.9,10

C. Finite a coupling „triangular quantum well …

We now examine the situation where the effective geo
etry of the quantum well is such that the interface-induc

FIG. 2. The transverse energy«x
(0) vs kyl v for l v / l b50.1.
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electric field is nonzero. An example is the triangular w
which forms at a heterojunction interface.3,27 This interface-
induced field gives rise to a finitea coupling and therefore to
finite values of the coupling constantl v / l a . For arbitrary
nonzero values ofl v / l a , eigenvalues of Eqs.~6! and ~7!
cannot be obtained as simply as they were in the cas
l v / l a50. To analyze the energy spectrum in the presenc
a coupling, we will follow the scheme proposed in Ref. 4
Namely, we first expand the unknown functionsF↑↓(t) in
terms of the unperturbed solutionsf↑↓(t) ~10! of Eqs. ~6!
and ~7!:

F↑↓~ t !5 (
m50

`

f ↑↓
m f↑

m~ t !, ~18!

F↑↓~ t !5 (
m50

`

g↑↓
m f↓

m~ t !. ~19!

We then substitute the expansions~18! and~19! into Eqs.~6!
and ~7!, respectively, and make use of the property44

d

dt
f↑↓

n ~ t !5An

2
f↑↓

n21~ t !2An11

2
f↑↓

n11~ t ! ~20!

to remove the derivative with respect tot on the rhs of Eqs.
~6! and ~7!. We next multiply the equations obtained b
f↑

n(t) and f↓
n(t), respectively, and integrate them overt

from 2` to `. Owing to the orthogonality condition~11!,
the summation overm is removed by thed symboldmn and
we find the simple vector relations:

f↑5Û↑f↓ , ~21!

g↓5Û↓g↑ . ~22!

Here, f↑↓[$ f ↑↓
0 , f ↑↓

1 , . . . ,f ↑↓
n , . . . % and g↑↓

[$g↑↓
0 ,g↑↓

1 , . . . ,g↑↓
n , . . . % are vectorized coefficients of th

expansions~18! and~19!, respectively, andÛ↑↓ are tridiago-
nal matrices defined by their elements:

U↑↓
nn5

l v

l a

kyl v

«x2«x
(0)~n!

, ~23!

U↑↓
n,n1156

l v

l a
S n11

2 D 1/2 1

«x2«x
(0)~n!

, ~24!

U↑↓
n11,n57

l v

l a
S n11

2 D 1/2 1

«x2«x
(0)~n11!

. ~25!

Note that the matricesÛ↑↓ are neither symmetric nor ant
symmetric.

Equations~21!–~25! illustrate the effectiveness of the rep
resentations~18! and ~19!. Indeed, by using the function
f↑↓

m (t) as expansion bases, we have reduced differential
erators on the lhs of Eqs.~6! and ~7! to the scalar factor«x

2«x
(0)(n). In other words, matrices which were supposed

act onf↑ andg↓ in Eqs.~21! and~22! turn out to be diagona
within the representations~18! and ~19!.
l

of
of
.

p-

o

Our next step is to find the relationship between the v
tors f↑↓ andg↑↓ . To do this, we equate the rhs of Eq.~18! to
that of Eq.~19! and take the scalar product of the resulti
equation withf↑

n(t). After making use of the orthogonaliza
tion condition~11!, we find that

f↑↓5Ŵ↑g↑↓ , ~26!

where the matrixŴ↑ is defined by

W↑↓
mn5^f↑↓

m uf↓↑
n &. ~27!

According to Eq.~10! @see also Eqs.~12!–~15!# the matrices
Ŵ↑↓ arenot diagonal as long as theb coupling isfinite.

Analogously, by taking a scalar product of the rhs of E
~18! and ~19! by f↓

n(t), it can be shown that

g↑↓5Ŵ↓f↑↓ . ~28!

Finally, we combine relations~21!, ~22!, ~26!, and ~28!
into a closed homogeneous equation with respect tof↑ : f↑
5Û↑Ŵ↑Û↓Ŵ↓f↑ . In order for this equation to have a non
trivial solution, the Jacobian matrix must satisfy the follow
ing condition:

det~12Û↑Ŵ↑Û↓Ŵ↓!50. ~29!

The roots«x of this equation determine the dispersion law
electrons~see, e.g., Ref. 45!. Here,«x→«x

(0) as l v / l a→0.
Alternatively, the relations~21!, ~22!, ~26!, and~28! could

have been resolved with respect tog↓ , which would have led
to the permuted Jacobian matrixÛ↓Ŵ↓Û↑Ŵ↑ . However,
such a permutation leaves the determinant unchanged
therefore the dispersion equation~29! would have been still
applicable.

To obtain the solution of Eq.~29! for given values of the
external parametersl v / l a , l v / l b , and kyl v , we truncated
the infinite matrix 12Û↑Ŵ↑Û↓Ŵ↓ down to the firstN rows
and columns and used a numerical root finder to obtain
zeros of its determinant. Owing to the conveniently chos
bases~18! and ~19!, the roots of Eq.~29! converge very
quickly to their exact values asN is increased. For instance
for l v / l a , l v / l b&1, it suffices to takeN'30 to find the ten
lowest energy levels with a net error,1028.

The energy spectrum«x5«x(kyl v) calculated by this pro-
cedure is shown in Fig. 3. Let us first consider the case
negligibly weak b coupling, when l v / l b→0 @Fig. 3~a!#.
Here we see twofold spin degeneracy of all quantum level
ky50. As soon as we move away from the pointky50, the
SO interaction lifts the degeneracy and produces an en
splitting DR5«x

↑2«x
↓ proportional toky , where«x

↑↓ are en-
ergies associated with the ‘‘up’’ and ‘‘down’’ spin polariza
tions, respectively. This linear behavior agrees w
both theoretical predictions41,28,29,45 and experimental
observations16,20,21,23of the Rashba splitting in 2D systems

The linear dependence ofDR on ky can be easily deduce
analytically from Eqs.~6! and~7! within first-order perturba-
tion theory with respect to the parameterl v / l a . Indeed, if
we treat the rhs of Eqs.~6! and~7! as perturbations, then th
first-order correctionD«x

↑↓5«x
↑↓2«x

(0) to the unperturbed en
ergy ~16! will be given by
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D«x
↑↓.6AP̂↑

nnP̂↓
nn, ~30!

or

DR5«x
↑2«x

↓.2AP↑
nnP↓

nn. ~31!

Here, P↑↓
nn are diagonal matrix elements of perturbation o

eratorsP̂↑↓ :

P↑↓
mn[^f↑↓

m uP̂↑↓uf↓↑
n &, ~32!

P̂↑↓5
l v

l a
S 6

d

dt
1kyl vD . ~33!

To calculate the matrix elementsP↑↓
nn we use the property

~20! and take into account that

^f↑↓
m uf↓↑

n &5dmn for l v / l b50 ~34!

@see Eqs.~12!–~15!#. As a result, we obtain

P↑↓
nn.~ l v / l a!~kyl v!

and hence the Rashba splittingDR ~31! is governed by

DR.2
l v

l a
~kyl v! for l v / l b50, ~35!

FIG. 3. The transverse energy«x vs kyl v for finite a coupling
( l v / l a50.3): ~a! l v / l b50; ~b! l v / l b50.1.
-

i.e., it is indeed proportional to the longitudinal wave numb
ky .

The perturbative result~35! applies as long asDR

!«x
(0)(n11)2«x

(0)(n), i.e., if (l v / l a)(kyl v)!1. For l v / l a

50.3 this condition restrictskyl v to values much less tha
about 3. In Fig. 3~a! we see that the linear behavior of th
energy splitting for all the curves holds true untilkyl v'2
~dotted line!. Within the regionkyl v&2, the asymptotic~35!
gives a very good fit to all the energy branches. However
soon askyl v becomes larger than'2.5, the dispersion
curves start to bend. Eventually, this leads to ananticrossing
of branches corresponding to quantum levels with neighb
ing discrete numbersn. This fact drastically contrasts th
simpler situation with no confining potential~3!, where the
linearly split spectrum~35! represents the exact solution.29

Usually11 anticrossing is associated with similar symm
try ~‘‘hybridization’’ ! of underlying states~wave functions!.
To reveal possible symmetries in our case, we return to
perturbation theory with respect tol v / l a and consider first-
order correctionsdF↑↓

n (t) to the wave functions~10!:

dF↑↓
n ~ t !5 (

mÞn

P↑↓
mn

«x
(0)~n!2«x

(0)~m!
f↑↓

m ~ t !. ~36!

Owing to the orthogonality condition~34! the second
~constant! term in Eq.~33! doesnot contribute todF↑↓

n (t)
~36! for anymÞn. At the same time, according to Eqs.~20!
and~34!, the first~differential! term in Eq.~33! gives rise to
nonzeromatrix elementsPmn for m5n11 and m5n21.
As a result,dF↑↓

n (t) ~36! takes the form:

dF↑↓
n ~ t !.6

1

2A2

l v

l a
$Anf↑↓

n21~ t !

1An11f↑↓
n11~ t !% for l v / l b→0. ~37!

The total ~perturbed! wave function is given byF↑↓
n 5f↑↓

n

1dF↑↓
n . Figure 4 shows graphs ofF↑↓

n (t) for n50 andn
51.

Equation~37! demonstrates that thenth quantum state is
no longer independent of its ‘‘neighbors,’’ i.e., of the (n
61)-ststates. In turn, the (n11)-st state now depends on i
own nearest neighbors, i.e., on both thenth and the (n
12)-nd states. Owing to this interstate coupling, all spino
Fn partially acquire the symmetry properties of spino
Fn61. Moreover, since the result~37! is perturbative, it is
plausible that the interstate coupling becomes more p
nounced when the perturbative approach breaks down,
whenkyl v*2.5. This ‘‘hybridization’’ of electron states ac
counts for the anticrossing of neighboring energy branche
Fig. 3~a!.

After passing the relatively narrow anticrossing regi
2.5&kyl v&4.5, all the curves in Fig. 3~a! straighten out and
adopt a very accurate linear behavior forkyl v*5. There are
two main features that attract attention in the infinite inter
kyl v*5: ~i! there are no further anticrossings of approach
energy branches. Even those with closest quantum num
n, which anticrossed at smaller values ofkyl v , now cross;
~ii ! all the straight lines«x

↑↓(n) go down~up! with the same
slope'7 l v / l a which is independent of a level numbern.
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Although statement~i! means asymptotical smallness~rather
than absolute absence! of anticrossings in the region of larg
kyl v*5 in Fig. 3~a!, these anticrossings are much weak
than any other anticrossings in the system and therefore
be left out.

To explain these properties we should return to Eqs.~6!,
~7!, and ~10!. According to Eq.~10!, the spatial variation
scale of functionsf↑↓

n (t) is of the order unity. This mean
that the derivativesF↓↑8 on the rhs of Eqs.~6! and ~7!, re-
spectively, can be roughly estimated asF↓↑ , at least forutu
&1 and sufficiently small values ofl v / l a . Hence, it seems
plausible that within the region, wherekyl v@1, the terms
F↓↑8 can be neglected in comparison with (kyl v)F↓↑ . Tak-
ing this into account together with the conditionl v / l b50,
we reduce Eqs.~6! and ~7! to

F↑91~«x2t2!F↑~ t !5~ l v / l a!~kyl v!F↓~ t !, ~38!

F↓91~«x2t2!F↓~ t !5~ l v / l a!~kyl v!F↑~ t !. ~39!

Unlike the general problem~6! and ~7!, Eqs. ~38! and ~39!
can be simply decoupled by a unitary transformation in
spin space. The corresponding matrix has the form

S 1/A2 21/A2

1/A2 1/A2
D . ~40!

It is straightforward to verify that eigenvalues~energies! of
the decoupled equations are

FIG. 4. Unperturbed wave functions (l v / l a50, solid curve!
and wave functions modified by thea coupling (l v / l a50.3, the
dashed curve describes the ‘‘up’’ and the dotted curve the ‘‘dow
spin orientations!: ~a! n50; ~b! n51. Zero b coupling (l v / l b

50) is assumed. For definiteness, we takekyl v50.
r
an

e

«x
↑↓52n117~ l v / l a!~kyl v!, ~41!

and eigenfunctions are identical to those given by Eq.~10! at
l v / l b50. The formula~41! yields the expected linear depen
dence of both«x

↑ and «x
↓ on kyl v with slopes7( l v / l a) in-

dependent of a level numbern. The asymptotics~41! give a
very accurate fit to the spectral pattern in the regionkyl v

*5 in Fig. 3~a!. Since Eqs.~38! and ~39! can be decoupled
by a simple rotation, statesF↑

n andF↓
n turn out to be intrin-

sically independent of each other as well as of all the ot
states. This fact alone explains why the anticrossing of
ergy branches is not observed for sufficiently large values
kyl v .

Let us now consider how the energy spectrum is modifi
by switching on theb coupling@Fig. 3~b!#. From visual com-
parison of Figs. 3~a! and ~b! we see that the main effect o
theb coupling is toenhanceconsiderably the anticrossing o
‘‘neighboring’’ spectrum branches. Moreover, the streng
of the anticrossing now depends on the quantum numbn
and grows asn is increased. An interesting consequence
this behavior is anessential reductionof the linear Rashba
energy splittingDR}ky , contrasting the expectation that th
additional mechanism of the SO interaction should intens
the splitting rather than suppress it.

To understand the peculiarities of Fig. 3~b! we note that in
Sec. II B it was shown that a finiteb coupling leads to spa
tial separation between ‘‘up’’ and ‘‘down’’ spinor compo
nents~see Fig. 1!. As a result, the orthogonality conditio
~34! no longer applies. Instead, the asymptotics~12!–~15!
should be used. If we now calculate the Rashba splittingDR

~31!, then we will see that scalar products^f↑↓
n uf↓↑

n61& give
nonzero~viz. linear in l v / l b) contributions to the diagona
matrix elementsP↑↓

nn , so thatDR is now described by@cf. Eq.
~35!#

DR.2F12S n1
1

2D l v

l b
G l v

l a
~kyl v!. ~42!

From this formula it immediately follows that the energ
splitting DR diminishesin comparison with Fig. 3~a! by an
amount (n11/2)(l v / l b) that isproportional to the quantum
level numbern. This conclusion agrees well with data pr
sented in Fig. 3~b!.

The result~42! can be interpreted in the language of i
terstate coupling. Actually, it is easy to verify that the a
ymptotics~12!–~15! give rise to an additional~proportional
to l v / l b) term dFb

n(t) in the wave function correction
dF↑↓

n (t) ~37!:

dFb
n~ t !.

1

2

l v

l a

l v

l b
~kyl v!F6An11

2
~kyl v!f↑↓

n11~ t !

7An

2
~kyl v!f↑↓

n21~ t !

1
1

4
A~n11!~n12!f↑↓

n12~ t !

2
1

4
An~n21!f↑↓

n22~ t !G . ~43!

’’
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This term, as well asdF↑↓
n ~37!, involves ‘‘nearest’’ unper-

turbed wave functionsf↑↓
n61 . Since parametersl v / l a and

l v / l b are independent of each other, we conclude that thb
coupling enhances the hybridization between annth and (n
61)-st electron states and thereby the anticrossing of co
sponding energy branches. The strength of the hybridiza
grows with the growth ofn.

Because of the enhanced interstate coupling, the a
crossing of neighboring energy branches in Fig. 3~b! is not
restricted to a narrow region of relatively small values
kyl v&5 as it was in Fig. 3~a!. Instead, we can see that for a
n.0 there exists a second anticrossing in the regionkyl v

'7210. Moreover, for larger quantum numbersn>4 a
third anticrossing emerges atkyl v'13214.

D. Ballistic conductance

To apply the results of the previous subsections to
study of the effect of the SO interaction on the ballistic co
ductance of a long Q1DES at low temperature, we must
late its conductance to its energy spectrum. Here we do
using the two-probe Landauer formula46

G[G~«F!5
e2

h
M ~«F!, ~44!

whereG is the ballistic conductance,«F is the Fermi energy,
and M («F) is the number of occupied electron subban
which propagate in the same direction:

M ~«F!5(
n

(
i

(
s5↑,↓

u@«F2«min
s ~n,i !#. ~45!

Here«min
s (n,i ) is the energy of thei th minimum in thenth

electron subband with the spin orientations. u(x) is the
Heaviside unit step function. As will be seen later, the S
interaction can produce multiple minima in each 1D subba
owing to the anticrossings between different subbands. S
«min

s (n,i ) can be found directly from the dispersion law
electrons, the conductanceG ~44! turns out to becompletely
definedby the energy spectrum alone. Therefore, as long
the expression~44! applies, the knowledge of the electro
energy levels in a Q1DES will be sufficient to predict t
behavior of the ballistic conductance as a function of
Fermi energy.

The applicability of Eq.~44!, as well as of the genera
scattering approach46 to quantum transport, is essential
based on the condition that a current must travel in any
electron subband without scattering into any other. In Ref.
it was shown that thiscurrent conservationcondition holds
true in quite general circumstances including placing
Q1DES in both a finite external magnetic field and an ar
trary external electrostatic potential. However, the proof
Ref. 47 ignored spin degrees of freedom and therefore
not take into account potentials acting in the spin space. S
neglect is not valid for our problem where the SO interact
Hamiltonian~1! leads to a highly nontrivial role for the spi
in forming the energy spectrum of electrons~see Sec. II A–
II C!. For that reason we cannot rely on the conclusion
Ref. 47 but should check explicitly if the current is still co
served in the presence of a finite SO coupling.
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The first step is to define the matrix elements of the c
rent densityjmn(r ) for the case where the wave function
Cm(n)(r ) are spinors,10 Cm(n)5$C↑

m(n) ,C↓
m(n)%:

jmn~r !5
1

2M
$Cm

† ŝ~ŝ•p̂!Cn1@~ŝ•p̂!Cm#†ŝCn%.

~46!

Here, the dagger denotes the Hermitian conjugate anp̂
52 i\¹. It is straightforward to verify that the divergenc
of the vectorjmn(r ) is given by

¹• jmn~r !5
i\

2M
$~¹2Cm

† !Cn2Cm
† ~¹2Cn!%. ~47!

We now suppose that the Hamiltonian of the system has
general formĤ5p̂2/2M1Q̂, whereQ̂ is a Hermitian opera-
tor (Q̂†5Q̂) that acts in both coordinate and spin spaces.
applied to our problem,Q̂5VLC1ĤSO @see Eq.~2!#. Using
this Hamiltonian and the Schro¨dinger equationĤC5EC,
we express¹2Cm

† and ¹2Cn in terms ofCm
† and Cn , re-

spectively, and substitute the expressions obtained into
~47!. As a result, we have

¹• jmn~r !5
i

\
~Em2En!Cm

† ~r !Cn~r !, ~48!

where Em and En are energies corresponding to the sta
Cm and Cn , respectively. In the absence of any inelas
collisions, any scattering occurs between states of the s
energy. So, without loss of generality, we can restrict o
selves to considering only equal energiesEm5En in Eq.
~48!, in which case we find that

¹• jmn~r !50 for Em5En . ~49!

This fundamental identity ensureslocal current conservation
in the system. Once it has been established, if the syste
translationally invariant in the longitudinal direction, furthe
steps in proving theglobal conservation of current do no
depend on specifics of the Hamiltonian and can be car
out in line with Ref. 47. Therefore, we arrive at the concl
sion that the total current~i.e., current integrated over th
cross section of the channel! between statesm and n at Em
5En is equal to zero unlessm5n. In other words, eigen-
states of the HamiltonianĤ are perfect current-carrying
states that are free from scattering even in the presenc
arbitrary SO coupling.

For our problem, this result implies that the spectrum
the Hamiltonian~2! is directly relevant to and completel
defines the ballistic conductance in the presence of the
coupling. This allows us to use the simple Landauer form
~44!, ~45!, in which the minima«min

s (n,i ) of the energy sub-
bands can be found from the analysis of the spectrum
sented in Secs. II A–II C.

Now we are in a position to discuss the features of
ballistic conductance in a Q1DES subject to the SO inter
tion. For illustrative purposes, we start with the ‘‘ideal’’ cas
of zero SO coupling. The corresponding subband ener
«(n)52n111(kyl v)2 are plotted in Fig. 5~a! ~solid curves!
as functions ofkyl v . The dependenceG(«F) can simply be
deduced from this figure by moving a horizontal line«
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FIG. 5. The subband energy« in units of\v/2 vskyl v : ~a! zero SO coupling~solid curves!, finite b coupling~dotted curves!; ~b! weak
a coupling (l v / l a,A2); ~c! stronga coupling (l v / l a.A2) and zerob coupling;~d! a magnified bump on ann50 energy branch in the
anticrossing region;~e! stronga coupling (l v / l a.A2) and finiteb coupling.
a
t

e
h

een
5«F from zero upwards and counting the number of points
which this line crosses the spectral parabolas. Since all
subbands in an ideal system are twofold spin degenerate
any ky , this number coincides with the numberM of propa-
gating modes in the Q1DES. As a result, we restore the w
known picture2–5,9of ballistic conductance quantization wit
t
he
for

ll-

equidistant jumps, each of height 2e2/h @solid curve in Fig.
6~a!#.

Dotted curves in Fig. 5~a! show subband energies«(n)
5«x

(0)(n)1(kyl v)2 in the presence of theb coupling @see
Eq. ~16!#. Each subband is twofold spin degenerate. It is s
that for any given value of«F the numberM of forward
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propagating modes remains the same as it was in the i
limit. Thus, we conclude that theb coupling alone doesnot
affect the ballistic conductance. To detect the presence o
b coupling in a system, one should exploit a unique feat
that can only be due to theb coupling. As a reasonabl
example of such a feature, we mention the spatial separa
between spinor components that was established in Sec.
and illustrated in Fig. 1. Owing to this effect, the regions
the most probable distribution of electrons with opposite s
orientations will be shifted apart in the transverse directi

FIG. 6. The conductanceG in units ofe2/h vs the Fermi energy
«F in units of \v/2: ~a! zero SO coupling and finiteb coupling
~solid line!, weaka coupling ~dashed line!; ~b! stronga coupling
and zerob coupling; ~c! stronga coupling and finiteb coupling.
al

he
e

on
B

f
n
.

By analogy with ferromagnetic materials, this effect c
manifest itself in the appearance of the magnetization of
electron system and its dependence on the transverse co
nate.

Now we move on to the more complex case of finitea
coupling. To start with, let us imagine the fictitious situatio
where the linear Rashba energy splitting

DR52~ l v / l a!~kyl v!

@see Eq.~35! and Fig. 3~a!# holds true not only for small
values ofkyl v but for all kyl v . Here, the subband energie
would be given by «̃↑↓(n)52n111(kyl v)26( l v /
l a)(kyl v). This formula describes parabolas of the sa
form as the solid curves in Fig. 5~a! but shifted by an amoun
6(1/2)(l v / l a) along the abscissa and lowered vertically
(1/4)(l v / l a)2. The parabolas«̃↑↓(n) were used in Ref. 35 to
predict spontaneous spin polarization of ballistic electrons
quantum wires due to spin splitting. Whereas thereal energy
branches«↑(n) and «↓(n11) anticross@see Fig. 3~a!#, the
fictitious dispersion curves«̃↑(n) and «̃↓(n11) cross at
the pointkyl v5( l v / l a)21. This point remains the same fo
all numbersn and goes to infinity as the SO coupling va
ishes. It is easy to verify that forl v / l a,A2, the crossing
point kyl v5( l v / l a)21 lies to the right of the pointkyl v

5(1/2)(l v / l a) at which the parabola«̃↓(n11) has the mini-
mum. At the same time, ifl v / l a.A2, then the crossing
point turns out to be to the left of the minimum point. Belo
we will see that these simple conclusions following from t
fictitious energy spectrum play an important role in dete
mining the behavior of the conductanceG(«F).

Figure 5~b! presents the energy subbands«↑↓(n) ~solid
and dashed curves! of a Q1DES in the case ofweaka cou-
pling whenl v / l a,A2 ~more specifically,l v / l a50.5). Dot-
ted lines indicate thefictitious energy levels«̃↑(n50) and
«̃↓(n51). In full accordance with the above conclusion
these levels cross to theright of the bottom of the parabola
«̃↓(n51). As a result, the crossing angle turns out to
quite small. From Fig. 5~b! it is seen that this angle dete
mines essentially the shape of thereal energy curves«↑(n
50) and «↓(n51) within the anticrossing region 1.5
&kyl v&3. As long as the angle is small, the anticrossi
remains very smooth and the curves«↑(n50) and «↓(n
51) behave very much like the ideal parabolas in Fig. 5~a!.
The same observation is also true for higher quantum n
bers n. Such similarity suggests that weaka coupling
( l v / l a,A2) does not have a strong effect on the cond
tance. Indeed, it is easy to see by scanning Fig. 5~b! with the
horizontal line«5«F , that the only effect of weaka cou-
pling onG(«F) is to shift the conductance quantization ste
down to lower energies by an amount (1/4)(l v / l a)2 @see
dashed lines in Fig. 6~a!#.

As soon as the coupling constantl v / l a gets over the
threshold ofA2, the spectral picture becomes much mo
interesting. Figure 5~c! shows a case whenl v / l a51.8. Here
the parabolas«̃↑(n50) and «̃↓(n51) ~dotted curves! cross
to theleft of the bottom of«̃↓(n11), which makes the cross
ing angle relatively large. The direct consequence of this
that the energy branches«↑(n50) and«↓(n51) cannot now
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anticross as smoothly as they did forl v / l a,A2. Instead, in
order to keep continuity, the lower curve@i.e., «↑(n50)] is
forced to exhibit a nonmonotonic portion~‘‘bump’’ ! within
the anticrossing region. Although the height of the bump
rather small (;0.05 in the dimensionless units o
;0.25 meV as determined from typical subband spacings48!,
its geometry is a unique feature of the SO coupling mec
nism @see a magnified plot of the bump in Fig. 5~d!#. The
remarkable fact about it is that the bump contains a reg
where the electron energy decreases as the wave nu
grows. In other words, there exists an energy interval wit
which electrons are allowed to have a negative longitud
group velocityvy5\21(]«/]ky),0 for positiveky . Since
this interval has a finite width and is surrounded by ene
domains with positive group velocities, the curvature of t
line «5«(ky) reverses sign within the negative-velocity i
terval and therefore there exists an inflection point wh
]2«/]ky

250 @see Fig. 5~d!#. At this point the effective elec-
tron massM5\2(]2«/]ky

2)21 diverges. Since the curren
passing through a 1D subband is proportional to the prod
of the group velocity and the density of states,3,9 the singular
effective mass has no effect on the conductance in the
sence of electron scattering. However, it could significan
change the dependenceG(«F) in the presence of a scatterin
mechanism~e.g., disorder or electron-electron interaction!.

As far as transport through 1D electron subbands is c
cerned, it is clear from Fig. 5~d! that the negative propaga
ing mode coexists with a forward propagating mode with
same spatial wave function. In this physical situation it
likely that weak elastic scattering between these states w
result in directed localization49 so that they would not be
observed in conductance.

However, if both forward and backward electron mod
contribute equally to the conductance, then this immedia
brings us to the conclusion that the bump on the cu
«↑(n50) gives rise to a peak in the dependenceG(«F) @see
Fig. 6~b!#. The height of the peak is 2e2/h and its width is
defined by the height of the bump. Analogous bumps can
observed for all quantum levelsn50,1,2, . . . . As aconse-
quence, the sharp peak is seen in Fig. 6~b! not only on the
first conductance plateauG52e2/h but also on the secon
oneG54e2/h and would still be seen on all further plateau

Of course, the stronga coupling (l v / l a.A2), as well as
the weak coupling (l v / l a,A2), shifts the conductanc
quantization steps to lower values of the Fermi energy
comparison with the ideal situation wherel v / l a50. How-
ever, in contrast to the weak-coupling limit, strong coupli
makes this shift much larger for the first step than for
others. This effect is clearly seen in Fig. 6~b! as opposed to
the ideal conductance quantization shown by dotted lin
The larger shift of the first step is explained by the fact t
the n50 quantum state does not have a neighbor with
next lowest quantum numbern. The energy level«↓(n50)
is therefore not forced to anticross with any other~lower
lying! energy branch and therefore nothing affects its lin
~Rashba! dependence onky @see Fig. 3~a!#.

The final step of our analysis is to consider the case wh
both stronga coupling (l v / l a51.8) and relatively weakb
coupling (l v / l b50.2) are present in the system. The cor
sponding energy bands are shown in Fig. 5~e!. As we dem-
s

-

n
ber
n
l

y
e

e

ct

b-
y

n-

e

ld

s
ly
e

e

.

n

e

s.
t
e

r

re

-

onstrated in Sec. II C, finiteb coupling tends to suppress th
energy splitting caused by thea coupling@cf. Figs. 3~a! and
3~b! and see Eq.~42!#. Effectively, this suppression can b
interpreted as the enhancement of the anticrossing betw
neighboring energy branches«↑(n) and «↓(n11). In Fig.
5~e! this effect is seen as a decrease in the gap betw
energy branches«↑(n) and «↓(n) (n51,2,3, . . . ) in com-
parison with Fig. 5~c!. Moreover, in accordance with Eq
~42!, the gap becomes monotonically smaller asn grows.
The enhanced anticrossing has a drastic effect on the en
bumps created by the stronga coupling: all the bumps ex-
cept for the lowest one are now smoothed away and do
give rise to the two additional~forward and backward!
propagating modes. As a result, the conductance exh
only one sharp peak that occurs on the plateauG52e2/h
@see Fig. 6~c!#. A second effect of the enhanced anticrossi
on the conductance is that the conductance quantization s
~starting from the second one! are now located closer to th
ideal steps than they were for zerob coupling. As each next
step appears, its distance from the corresponding ideal
diminishes until eventually they fuse.

There is another effect of the enhanced energy anticr
ing on the conductance that is not seen in Figs. 6 but co
possibly be detected in the presence of impurities. It is fou
experimentally50,51 that the ballistic conductance quantiz
tion breaks down as the constriction becomes too long~at
least*2 mm). This effect can be attributed to potential flu
tuations caused by the random distributions of remote im
rities. Zagoskinet al.52 showed analytically that the degrad
tion of quantized conductance decreases exponentially
the ratio of the 1D subband spacings to the standard de
tion of impurity potential fluctuations. Obviously, the su
band spacings depend on the presence of the SO intera
~see Figs. 5!. By comparing Figs. 5~c! and 5~e! we see that a
finite b coupling pushes neighboring energy branches a
and thus increases the subband spacings~possibly by tens of
percent!. This means that the presence of theb mechanism
of the SO interaction could allow the experimental obser
tion of the conductance quantization structure in long
samples.

III. CONCLUSION

We have studied theoretically the influence of the sp
orbit ~SO! interaction on the energy spectrum and the bal
tic conductance of a quasi-1D electron system~Q1DES!
formed by lateral electric confinement of a 2D electron g
The presence of the confining potential proves to be cru
in two ways. First, it alters significantly the effect of th
quantum well asymmetry on the energy spectrum in co
parison with a purely 2D system. As it was shown by Rash
et al.,28,29 in 2D electron gases this asymmetry gives rise
SO coupling~which we refer to as thea coupling! that mani-
fests itself in a lifting of the spin degeneracy of electron
states. The accompanying energy splittingDR was found to
be proportional to the in-plane electron wave numberk. We
have demonstrated that in a Q1DES the functionDR(k) is
nonmonotonic @Fig. 3~a!# with the standard linear
dependence28,29 DR}k being observed for relatively sma
and large values ofk only. Such a drastic change in behavi
is explained by the essentially different effect of SO coupli
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operatorP̂↑↓ ~33! on unperturbed wave functions dependi
on whether or not the lateral confining potential is taken i
account. Indeed, in the zero-potential case the unpertu
wave functions are plane waves characterized by the con
ous in-plane wave vectork and the spin. The action of th

operatorP̂↑↓ on any such wave function reduces to a sim
renormalization of its amplitude with the renormalizing fa
tor being independent of coordinates. As a consequenc
this simple effect, wave functions belonging to different v
ues ofk remain independent of each other and the SO c
pling manifests itself in linear~monotonic! energy splitting
DR}k which is the same for all quantum states.

In contrast to this, the wave functions in the presence o
finite confining potential have a more complicated struct
~10! and are characterized by the discrete quantum numbn
instead of the continuous transverse wave number. Acc
ing to Eq. ~20!, the action of the operatorP̂↑↓ on the nth
wave function includes projecting it onto states with the n
~preceding! closest quantum numbersn61. In turn, the (n
61)-st states are projected onto their ‘‘neighbors’’ wi
numbersn andn62, respectively. As a result, the operat
P̂↑↓ coupleseffectively anynth and (n61)-st wave func-
tions. In other words, once the SO coupling has been ta
into account, thenth and (n61)-st wave functions cease t
be independent and possess symmetry elements of
other. This partial symmetry between states leads to ananti-
crossingof the closest~neighboring! energy branches in Fig
3~a! and hence to the nonmonotonic dependenceDR(k).

Apart from the interplay with the familiar~quantum-well-
asymmetry or Rashba! mechanism of the SO interaction, th
lateral confining potential by itself appears to be a source
additional dynamical coupling between the orbital and s
degrees of freedom of an electron. This coupling~which we
refer to asb coupling! originates from the natural spatia
nonuniformness of the confining potential. A typical vari
tion scale of this potential lies within the wide rang
;10–1000 nm, which makes the accompanying elec
field sufficiently strong to compete with the quantum-we
asymmetry field. This competition may become especia
noticeable in square quantum wells with a relatively we
Rashba contribution. Whereas the quantum-well field is n
mal to the device plane, the confinement-induced elec
field is parallel to the plane. It is also spatially nonuniform
long as the coordinate dependence of the confining pote
is more complex than linear. These features make theb cou-
pling an essentially different mechanism of the SO inter
tion in a Q1DES whichcannot be taken into account by
simply adjusting the Rashba interaction constant. This cl
is confirmed by Fig. 3~b! which demonstrates the combine
effect of both the Rashba and the confinement-induced c
plings on the energy spectrum. From comparison of Fig. 3~b!
with Fig. 3~a! we see that the major role ofb coupling is to
reduce the Rashba energy splittingDR ~see regionkyl v

&2) rather than to give a positive correction to it. It is cr
cial that the reduction depends on the quantum numbern and
monotonically grows asn increases. This fact is a clea
manifestation of the position dependence of the electric fi
created by the confining potential and indicates the indep
dent nature ofb coupling. The suppression of the Rash
energy splitting is a part of the overall effect of theb cou-
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pling on the underlying electron system which consists o
considerable enhancement of the hybridization between
ferent quantum states and eventually leads to a more
nounced anticrossing of neighboring energy branches.

In addition to the investigation of the SO effects in th
energy spectrum of electrons, we have discussed the pos
manifestations of the SO interaction in the ballistic condu
tance of a Q1DES. The key point of our approach to
conductance is the fundamentalcurrent-conservation identity
that was proven in Sec. II D. According to this identity, th
electron eigenstates that were found as the solution to
spectral problem areperfectcurrent-carrying states. A cur
rent can travel in any of these states without scattering
any other. This property therefore allows the ballistic co
ductance to be calculated directly from the energy spect
with the help of simple Landauer formula~44!.

An analysis of the ballistic conductanceG reveals that the
b coupling alone doesnot affect the dependence ofG on the
Fermi energy«F . This fact is illustrated by Fig. 5~a! where
we see that theb coupling reduces the curvature of the par
bolic energy bands~cf. dotted and solid curves!, while the
band edges~bottoms of the parabolas! remain anchored.
Thus,b coupling cannot be detected by measuring the b
listic conductance in systems where the SO interaction
pearsonly in a form of theb coupling~e.g., in square wells!.
Instead, one should use experimental methods that allow
rect observation of the electron energy spectrum in
Q1DES, e.g., magnetotunneling measurements.40

In the presence ofa coupling, the behavior ofG(«F) is
essentially determined by the strength of the SO interact
If the a coupling is not too strong (l v / l a,A2), then its only
effect on the conductance will be shifts of the conductan
quantization steps to lower Fermi energies in compari
with an ideal~i.e., with zero SO interaction! situation. We
note that such shifts are not related to the lateral confin
potential and should also be present in purely 2D syste
This effect should be detectable in transconductance m
surements~see, e.g., Ref. 53! which determine both the con
ductance and the subband spacings simultaneously.

In the limit of stronga coupling (l v / l a.A2) the electron
energy bands take on a very interesting form@Fig. 5~c!#. The
most remarkable feature is the appearance of narrow en
intervals where two additional~forward and backward propa
gating! electron modes exist@Fig. 5~d!#. Such intervals can
be found in each 1D subband, starting from the lowest o
The additional electron modes have similar magnitude gr
velocities but propagate in opposite directions. They ha
almost identical subband wave functions and therefore wo
be susceptible to strong intermode scattering in the prese
of disorder. However, in a sufficiently pure Q1DES, the a
ditional electron modes give rise to the unusual perio
sharp steps inG(«F) shown in Fig. 6~b!. This picture is
changed by switching on relatively weak (l v / l b! l v / l a) b
coupling. As we mentioned above in the discussion of
energy spectrum, theb coupling enhances the anticrossing
energy levels initiated by thea coupling. As applied to the
conductance, this effect leads toquenchingthe sharp conduc-
tance peaks by theb coupling. The existence of the singl
peak~or just a few of peaks! in the dependence ofG on «F
could be a clear experimental indication of the presence
the b coupling in the system.
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The most crucial point for the experimental observation
the conductance peaks in Fig. 6 is to make the ratiol v / l a

sufficiently large (l v / l a.A2). In typical systems, where en
hancing the SO interaction is not paid special attention,
value of l v / l a hardly exceeds 0.5. An additional, at lea
threefold, increase inl v / l a could be achieved by using:~i!
materials with light carrier masses;~ii ! strong ~narrow! lat-
eral potential confinement&100 nm; ~iii ! heterojunctions
~triangular well! rather than quantum-well heterostructur
~square well!; ~iv! a back gate voltage to maximize the inte
face ~Rashba! electric field.
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We hope that the results presented in this paper
stimulate further experimental and theoretical work with t
aim of understanding the role of the spin-orbit interaction
determining the transport properties of quasi-1D systems
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