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Polarization dependence of the resonant Raman scattering from electrons
in a spin-split subband of a III-V semiconductor quantum well
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We have shown that the resonance Raman spectrum of electron spin-flip excitations in a lowest spin-split
conduction subband in a semiconductor quantum well depends on the directions of circular polarization of the
incident and the scattered lights. In the case of resonance with a heavy-hole subband, this dependence can be
detected only if this heavy-hole subband hybridizes with light-hole subbands. However, for resonance with a
light-hole subband, the result is not so sensitive to the mixing of heavy- and light-hole subbands. We also
found that under extreme resonant conditions, the amplitude of scattered light from charge-density excitations
mixes with that from spin-density excitations because of the spin-orbit coupling associated to the spin splitting
of conduction subbands.@S0163-1829~99!02140-2#
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I. INTRODUCTION

In recent years there have been many studies on trans
and optical phenomena associated to the spin-orbit split
of the conduction band in III-V semiconductor quantu
wells and nanostructures. The spin-orbit interaction wh
splits the conduction band consists of two terms. T
Dresselhaus1 term is due to the lack of inversion symmet
in the zinc-blende crystal Brillouin zone, and in addition t
Rashba2 term appears if the self-consistent potential within
quantum well is asymmetric along the growth direction. T
spin-orbit interaction Hamiltonian derived from thek•p per-
turbation expansion has the form that the electronic spins is
coupled to amagneticfield h~k! which depends on the elec
tron wave vectork. The spin precession around the directi
of h~k! leads to the splittinguh(k)u of the electron energy
which manifests itself in a split Raman band. Jusser
et al.3 were the first to observe the spin-orbit splitting in t
low-frequency spin-flip electronic Raman spectrum of
n-type modulation-doped GaAs/AlxGa12xAs quantum well,
and deduced from it the spin-orbit splitting of about 0
meV. By analyzing the angular dependence of the spectr
the contribution of the Dresselhaus term was separated f
that of the Rashba term.4

The spin precession aroundh~k! also leads to various
quantum interference phenomena which can be observe
transport and optical properties of two-dimensional~2D! de-
generate electrons in quantum wells. For example, the s
orbit interaction can induce an interference between li
waves inelastically scattered from different vector comp
nents of spin-density fluctuations. As a consequence, a
cific polarization dependence of the Raman spectrum
predicted,5 which can be observed when the incident and
scattered light waves are circularly polarized. For the cas
nonresonant Raman scattering where the difference betw
PRB 600163-1829/99/60~20!/14255~5!/$15.00
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the energy of an incident photon and the fundamental ga
much larger than the energy separation between adja
hole subbands in a quantum well, calculation5 has shown that
when the circular polarization reverses its direction, there
change of the relative intensities of Raman peaks co
sponding to transitions between spin-split subbands. T
theoretical prediction has been confirmed by a very rec
experiment.6 However, most experiments of electronic R
man scattering in quantum wells are performed at reson
conditions. In this case, components of the Raman scatte
tensor depend strongly on which of the hole subbands i
resonance with the incident light. Consequently, we expe
different polarization behavior associated to the spin-o
effects as compared to the nonresonant case.

In this paper we will study how the resonant conditio
will modify the electronic Raman spectrum, which is asym
metric with respect to the direction of circular polarizatio
We consider a single quantum well in which a degenerate
electron gas occupies the lowest subband. Based on the
metry of hole eigenstates, we have reached general con
sions regardless of the shape of the quantum well. In part
lar, the mixing of light- and heavy-hole subbands plays
important role when the resonance with the heavy-hole s
band takes place. At extreme resonance conditions,
theory predicts in Raman spectra an unusual mixing
charge- and spin-density excitations due to the spin-orbit
teraction.

II. RAMAN SCATTERING BY ELECTRONS
IN A SPIN-SPLIT SUBBAND

In the presence of the spin-orbit interactionh(k)•s, where
k5(kx ,ky) is the electron wave vector parallel to interface
the Hamiltonian of an electron in the lowest conduction su
band E(k)5k2/2m* has the formH5E(k)1h(k)•s. Al-
14 255 ©1999 The American Physical Society
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though in general the spin-orbit interactionh(k) contains the
Dresselhaus term1 and the Rashba term,2 its explicit expres-
sion depends on the crystallographic orientation of the w
If the growth directionz is along the@001# axis, then the
Dresselhaus term can be written as7

hx~k!5akx~ky
22k2!, hy~k!5aky~k22kx

2!, ~1!

wherea is a constant andk2 is the average of the operato
2(]/]z)2 over the electronic state of the lowest subba
The value ofk is of the order of the inverse width of th
well. The Rashba term2 can be expressed as

hx~k!5gky , hy~k!52gkx , ~2!

where g is determined by the shape of the self-consist
potential in the quantum well along the growth direction. F
a symmetric well,g50.

It is straightforward to solve the Schro¨dinger equation to
obtain the two spin-split subbands for conduction electro

E6~k!5E~k!6uh~k!u/2, ~3!

and the corresponding spin-dependent parts of the eigenf
tions

g6,↑~k!5
1

A2
e2 ifk/2, g6,↓~k!56

1

A2
eifk/2, ~4!

wherefk is the angle between the vectorh~k! and thex axis.
We are interested in the low-frequency Raman scatte

for which electronic transitions occur within a single spi
split subband or between the two subbands. We will label
frequency, the polarization vector, and the wave vector of
incident and scattered electromagnetic waves as, res
tively, vL , eL , qL , and vS , eS , qS . We also definev
5vL2vS for the Stokes shift, and the 2D vectorq for the
projection of the vectorqL2qS onto thexy plane. In terms
of these notations, the scattering cross section, weighte
the Fermi occupation functionF(E) of the initial and the
final state, has the standard form

W~v,q!}(
k

(
m,n51,2

Mm,n~k,q!$12F@Em~k1q!#%

3F@En~k!#d@Em~k1q!2En~k!2v#. ~5!

For a degenerate electron gas with high enough 2D den
which is the situation considered in this paper, we hav
!kF and uh(k)u!EF . Then, the major contribution to Eq
~5! comes from the terms withk in the very near vicinity of
the Fermi wave vectorkF . Under this condition, the transi
tion probability from the statek in thenth spin-split subband
to the statek1q in the mth subband is given by

Mm,n~k,q!5U (
a,b5↑,↓

gm,a* ~kF!gab~k,q!gn,b~kF!U2

, ~6!

wheregab(k,q) is the Raman scattering tensor. In the abo
expression, the eigenfunctions satisfy the relationgm,a(kF
1q).gm,a(kF).

For bulk semiconductors, the Raman scattering ten
gab was derived by Hamilton and McWhorter.8 It contains a
part of light scattering from the charge-density fluctuatio
ll.
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and a part from the spin-density fluctuations. This express
of gab is valid for quantum-well systems9 if the incident
light is far from resonances with intermediate transitio
from hole subbands to the final electron state above
Fermi level. The corresponding detuning of the resonan
must be much larger than the energy separationDk between
hole subbands. Under this condition, Eqs.~6! and ~5! have
been calculated in Ref. 5.

In this paper we will consider the opposite case of stro
resonance with one of the hole subbands, say thenth sub-
band«n(k…, when the detuning is much less thanDk . Here
the main contribution to the scattering tensor comes from
intermediate states which lie very close to«n(kF). We define
uSa& as the zone-center Bloch states for electrons with s
a, and uuj& as the zone-center Bloch states for holes.
terms of these states, the resonance Raman scattering t
was derived as10

gab~k,q!5(
j

^SaupeS* uuj&^uj upeLuSb&(
n

An j
6 , ~7!

with

An j
6 5

1

Dn
6

u^g~z!u f n, j~z!&u2. ~8!

HereDn
65E6(k1q)2«n(k2qS)2vL is the resonance de

nominator andg(z) is the z-dependent part of the electro
envelope function. Thez-component part of the hole enve
lope function is conventionally expressed in vector fo
fn(z), which is the eigenvector of the Luttinge
Hamiltonian.12 For heavy-hole band and light-hole band
which correspond to the total angular momentumJ5 3

2 , we
have j 56 3

2 ~heavy hole! and6 1
2 ~light hole!. Hencefn(z)

5„f n,3/2(z), f n,1/2(z), f n,21/2(z), f n,23/2(z)…. However, for the
split-off hole band with total angular momentumJ5 1

2 , we
have j 56 1

2 and fn(z)5„f n,1/2(z), f n,21/2(z)….

III. POLARIZATION DEPENDENCE

Positions of Raman peaks are determined by the extre
points ink space which satisfy thed functions in Eq.~5!. It
has been shown5 that the electron excitations within the1 or
2 spin-split subband generate a peak~with inverse square-
root singularity! in the Raman spectrum atv5vFq. At the
same time, transitions between the1 and2 spin-split sub-
bands produce two more peaks. The precise positions
these peaks are determined by the angular dependenc
uh(kF)u. For the simplest case that the cubic terms ofk in
Eq. ~1! are ignored,uh(kF)u becomes isotropic and the pea
positions are given byv5vFq6uh(kF)u. The anisotropy of
uh(kF)u, caused by the cubic terms, is the origin of the co
plicated angular dependence of the peak positions, which
been discussed in detail in Ref. 4. In this paper we w
analyze the dependence of the Raman peak intensities o
polarization vectorseL andeS .

We need to calculateMi , j (k,q… at the extremal pointk
5kF

ex on the Fermi line, which is determined from thed
function in Eq.~5! ~the mathematical procedure to locate t
extremal point was explained in detail in Refs. 4 and 5!. For
this purpose, the eigenfunctions of the Luttinger Hamilton
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have to be solved in order to evaluate the expectation v
^g(z)u f n, j (z)& in the coefficientAn j

6 given by Eq.~8!. Solv-
ing the eigenvalue problem becomes increasingly difficul
the region of wave vectors where the light-heavy subb
mixing is important. To tackle this problem, we will use th
unitary transformation proposed by Broido and Sham.13 If
we choose the transformation to be independent ofkz andz,
it will allow us to treat kz as an operatork̂z52 i (]/]z).
Then, the 434 matrix representation of the original Lu
tinger HamiltonianH is block diagonalized into two 232
matrices for the corresponding HamiltoniansH1 and H2.
After deriving the eigenvectors„f n1h(z), f n1l(z)… and
„f n2l(z), f n2h(z)… for H1 andH2, respectively, the eigenvec
tors of the full Luttinger HamiltonianH are obtained with
the inverse transformation

fn1~z!5~eiw f n1h ,eih f n1l ,e2 ih f n1l ,2e2 iw f n1h!,
~9!

fn2~z!5~eiw f n2h ,2eih f n2l ,e2 ih f n2l ,e2 iw f n2h!.

Here the phase factorsew2h5B/uBu andew1h52 i I /uI u are
defined in terms of

B522A3g3~kx2 iky!,

I 52A3g2~kx
22ky

2!1 i2A3g3kxky ,

with the Luttinger parameters12 g1 , g2, andg3. In order to
demonstrate the essential physics with a compact prese
tion, we will use the spherical approximationg25g35ḡ.

If the potential for holes is symmetric with respect to
reflection with respect to thexy plane, the eigenvector
given by Eq.~9! are then doubly degenerate with energ
«n1(k)5«n2(k). Such degeneracy atkÞ0 will be removed
in asymmetric wells. However, these nondegenerate st
can still be very close in energy, and hence must be inclu
in the summation in Eq.~7! over the states with energie
close to resonance.

Substituting the results of Eq.~9! into Eq. ~8!, the coeffi-
cients An j can now be expressed in terms of the hole a
electron envelope functions as

Ahn
6 5An, 3/2

6 5An,2 3/2
6 5

1

Dn1
6

z^gu f n1h& z21
1

Dn2
6

z^gu f n2h& z2,

Aln
65An,1/2

6 5An,21/2
6 5

1

Dn1
6

z^gu f n1l& z21
1

Dn2
6

z^gu f n2l& z2,

~10!

whereDn i
65E6(k1q)2«n i(k2qS)2vL . By defining a 2D

unit vectorn[h(k)/uh(k)u with componentsnx5cosfk and
ny5sinfk , from Eqs.~4!, ~6!, ~7!, and ~8!, we obtain the
transition probabilitiesM 6,7 for electrons between the tw
spin-split subbands

M 6,75
Pcv

4

9 S ~Aln
623Ahn

6 !2

4
uPzu21Aln

62uPuu3nu2

7 i
Aln

6~Aln
623Ahn

6 !

2
P3P* •nD , ~11!
e

n
d

ta-

s

es
d

d

whereP5eS* 3eL , andPcv is the Kane matrix element.11

The termP3P* •n in Eq. ~11! is due to the interference
between the longitudinal and the transverse componen
the spin-density fluctuations, and has different signs for
two transition probabilities. Whenuh(k)u→0, the spin-split
bands merge and the two interference terms cancel e
other in the Raman spectrum. Although the same form
interference also appears in nonresonant Raman scatter5

an important feature here is thatP3P* •n shows up together
with the coefficientsAln andAhn which characterize the mix
ing of hole subbands. In a Raman scattering experiment w
both the incident and the scattered light circularly polariz
it is easy to reverse simultaneously the polarization dir
tions of both the incident and the scattered light. Such rev
sion will changeeL into eL* andeS* into eS . As a result, in Eq.
~11!, P becomesP* and P3P* changes its sign, while the
other terms remain intact. Hence, the interference term
be derived by taking the difference of two Raman spec
with opposite circular polarizations in both the incident a
the scattered light. The so-obtaineddifference spectrumcan
be calculated from the corresponding difference of transit
probabilities

DM 6,757 i
Pcv

4

9
P3P*•n~Aln

623Ahn
6 !Aln

6 . ~12!

When evaluatingDM 6,7 at Raman peak positions which a
located at extremal pointsk5kF

ex, it will produce two peaks
in thedifference spectrum. SinceDM 1,2 andDM 2,1 are of
opposite signs, these two peaks are also of opposite signs
can be observed experimentally.6

Ivchenko and Pikus10 have calculated the Raman scatte
ing tensorgab(k,q… assuming no mixing of the heavy- an
light-hole subbands. Under this assumption, it is easy
show thatAln50 and AhnÞ0 for scattering resonant with
heavy-hole subbands, butAhn50 andAlnÞ0 for scattering
resonant with light-hole subbands. It then follows from E
~12! thatDM 6,750 if the resonant scattering is mediated
a heavy-hole subband, whileDM 6,7Þ0 if the resonant scat
tering is mediated by a light-hole subband. Therefore,
mixing of the heavy- and light-hole subbands must be ta
into account in order to formulate a complete theory. For t
purpose, we need to find the explicit expressions ofAhn and
Aln .

In terms of the Pauli matricessx , sy , andsz , the block
diagonalized HamiltoniansH1 andH1 can be expressed in
suitable form

H15g1~k21kz
2!1ḡ~k222kz

2!sz1kzuBusx2uI usy1u~z!,
~13!

H25g1~k21kz
2!2ḡ~k222kz

2!sz2kzuBusx1uI usy1u~z!,

wherekz52 i (]/]z) and u(z) is the potential energy of a
hole in the quantum well. The terms proportional touBu and
uI u are responsible for the heavy- and light-hole subba
mixing. The eigensolutions ofH1 andH2 can be derived for
any value ofk, from which Ahn andAln can be readily cal-
culated. However, sinceuBu;k anduI u;k2, in the region of
small k, we can treat theuBu and theuI u term in H1,2 as
perturbation. This will allow us to illustrate some characte
istic features of subband mixing.
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For the unperturbed HamiltoniansHi
(0) with i 51 and 2,

the zeroth-order eigenfunctions (f n ih
(0) ,0) and (0,f m i l

(0)), as well
as their corresponding eigenenergies«n ih

(0) and «m i l
(0) , can be

easily obtained. They satisfy the relationsf n1h
(0) 5 f n2h

(0) , f m1l
(0)

5 f m2l
(0) , «n1h

(0) 5«n2h
(0) , and «m1l

(0) 5«m2l
(0) . Since the transition

probabilitiesDM 6,7 are already finite at the level of unpe
turbed Hamiltonian if the scattering is resonant with a lig
hole subband, here we will calculate the perturbation corr
tions to thenth heavy-hole subband. In the lowest order
its mixing with the light-hole subbands, the wave functi
correction is

f n i l
(1)5 iA3ḡ(

m

k2^ f n ih
(0) u f m i l

(0)&72kK f n ih
(0)U ]

]z
f m i l

(0)L
«n ih

(0)2«m i l
(0)

f m i l
(0) ,

~14!

where the2 sign is for i 51 and the1 sign is for i 52.
From Eq.~10! the coefficientAln is readily derived as

Aln5
z^gu f n1l

(1)& z2

Dn1
6

1
z^gu f n2l

(1)& z2

Dn2
6

. ~15!

We should mention that in asymmetric quantum wells th
will be different perturbation corrections to the degener
energies«n1h

(0) and «n2h
(0) . In this case the two resonance d

nominatorsDn1
6 and Dn2

6 in Eq. ~15! can be considerably
different.

From Eqs.~15! and~14! we see that due to the mixing o
heavy- and light-hole subbands, the coefficientAln for reso-
nant scattering from a heavy-hole subband is finite and
creases withk. For an asymmetric quantum well, the righ
hand side of Eq.~14! is dominated by the term linear ink
becausek is small. If dn is the range of hole confinement i
a quantum well, then the expectation value of the opera
kz52 i (]/]z) is proportional todn

21 , and the energy de
nominator in Eq.~14! is proportional todn

22 . Since the dy-
namics of the system is controlled by electrons withk
.kF , the coefficientAln given by Eq.~15! is proportional to
(kfdn

21/dn
22)25kf

2dn
2 . On the other hand, the eigenfunctio

in a symmetric quantum well are either even or odd w
respect to reflection from thexy plane. For the lowest elec
tron subbandg(z) is even. Hence,f n i l

(1) in Eq. ~15! is also
even. Then, ifn in Eq. ~14! corresponds to an even ho
state, say the topmost heavy-hole subband, at the right-h
side of Eq.~14! the term linear ink vanishes. Consequently
Aln is proportional tokf

4dn
4 . These expressions are valid

the perturbation expansion parameterkfdn is much less than
1. Beyond the perturbation region,Aln has to be derived
numerically.

So far we have investigated the Raman spectra du
intersubband electron excitations between the spin-split s
bands. By evaluating the coefficientAln , we conclude that,
based on the characteristic properties ofDM 6,7 given by
Eq. ~12!, our theory predicts an observable polarization
fect in the resonance Raman spectrum. When resonant w
heavy-hole subband, this effect can be detected only if
heavy-hole subband hybridizes with light-hole subban
-
c-
f

e
e

-

or

nd

to
b-

-
a

is
s.

However, for resonance with a light-hole subband, the eff
is not so sensitive to the mixing of heavy- and light-ho
subbands.

One additional prediction can be made for the third R
man peak atv5qvF , which corresponds to intrasubban
excitations within each spin-split subband. In an earlier wo
for nonresonant Raman scattering,5 it has been shown tha
this peak does not depend on the direction of circular po
ization. However, the situation will be different under res
nant scattering. In this case, in Eq.~10! the energy denomi-
nator Dn i

1 differs from the energy denominatorDn i
2 because

of the energy gap between the1 subband and the2 sub-
band. As a result, this Raman peak is sensitive to the po
ization of the light waves, as will be demonstrated below

If the insignificant difference between the Fermi veloc
ties in spin-split subbands is ignored, in Eq.~5! the transition
probabilitiesM 1,1 andM 2,2 have equal contribution to the
scattering cross section. Let us define

C0
65

Pcv
2

6
@~Aln

613Ahn
6 !eS* •eL13~Aln

62Ahn
6 !eSz* eLz#

and C652 i (Pcv
2 /3)Aln

6P. The contribution ofM 1,1 and
M 2,2 to the scattering cross section is then proportional

M 1,11M 2,25uC1
•nu21uC0

1u21uC2
•nu21uC0

2u2

1C0
1* C1

•n1C0
1C1* •n2C0

2* C2
•n

2C0
2C2* •n. ~16!

Only when the incident and/or the scattered light is circula
polarized is the sum of the last four terms in the above
~16! nonzero. It changes sign when circular polarizations
verse their directions. The so-produced effect can be s
when we take the difference of the two Raman spectra c
responding to opposite polarizations. This effect will ma
fest itself with increasing difference betweenDn i

1 and Dn i
2 ,

on which the values ofAln
6 andAhn

6 depend, as shown in Eq
~10!.

An unusual feature of these last four terms in Eq.~16! is
that the amplitudesC0

6 andC6 appear in the forms of cros
products. This means that amplitudes of inelastic light sc
tering from charge- and spin-density excitations interfe
and these four terms are just the corresponding interfere
terms. To clarify the physical picture, we notice that the c
efficients C0 and the components of the vectorC
[(Cx ,Cy ,Cz) are expressed in terms of the scattering m
trix g as C0}Tr@g(k,q)# and Ci}Tr@g(k,q)s i #, wheres i
are Pauli matrices. Hence,C0 is associated to light scatterin
by spin-independent charge-density excitations, while the
efficients Ci are connected to the scattered amplitudes
light by spin-density excitations. In the absence of the sp
orbit interaction,C0

15C0
2 andC15C2. Consequently, the

interference terms in Eq.~16! vanish, and the remaining
terms represent the independent contributions of spin-
charge-density excitations to the Raman cross section. H
ever, for the problem investigated here, due to the spin-o
coupling, these scattered amplitudes by spin-density exc
tions and charge-density excitations mix and the appropr
resonance conditions make it an observable effect.
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It is well known that in a Coulomb gas the low-frequen
charge-density excitations are screened, while Eqs.~5! and
~16! are derived for a noninteracting electron gas. Furth
more, Coulomb interaction can create collective spin-den
waves in the spin-split energy gap.14 Because of all these
complications, this topic requires a thorough study in
future.

IV. CONCLUSION

In summary, we have shown that the mixing of light- a
heavy-hole subbands plays a very important role in the e
tron spin-flip resonance Raman spectrum with circularly
larized incident and scattered lights. An observable eff
appears in the difference of two such Raman spectra ta
with opposite circular polarizations. When the Raman sc
tering is resonant with a heavy-hole subband, this differe
spectrum is enhanced with higher electron density, as we
Re

n

B

r-
ty

e

c-
-

ct
en
t-
e

as

with a weaker confinement of holes in the well. However,
the Raman scattering is resonant with a light-hole subba
there is no such strong dependence. We also have shown
interference of light scattering amplitudes from charg
density and spin-density excitations can be observed in
difference spectrum of spin conserving electron transitio
For that the resonance with incident photons must be str
enough to distinguish between contributions to the Ram
tensor from the two spin-split electron states.
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