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Exchange and correlation effects beyond the LDA on the dielectric function of silicon
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Istituto Nazionale per la Fisica della Materia - Dipartimento di Fisica dell’ Universita´ di Roma ‘‘Tor Vergata,’’

Via della Ricerca Scientifica 1, I–00133 Roma, Italy
~Received 25 March 1999!

The macroscopic dielectric function of crystalline silicon is calculated within density-functional theory,
considering exchange and correlation effects beyond the local-density approximation. Reproposing an original
idea of Hohenberg and Kohn, we consider a functional based on the exchange and correlation kernel of the
homogeneous electron gas,Kxc

HEG. The same kernel is used in the evaluation of the dielectric matrix, keeping
local-field effects into account. The results, compared with those obtained in the local-density approximation,
show a limited reduction of the well-known overestimation of the macroscopic dielectric constant. Results
obtained for optical and energy loss spectra are also presented.@S0163-1829~99!00344-6#
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I. INTRODUCTION

Density-functional theory1–3 provides a formally exac
tool for the description of all the ground-state properties
many-electron systems at zero temperature, starting f
first principles. The only essential approximation introduc
in actual calculations is in the exchange-correlation term
the energy functional, since its exact form is unknown. T
most widely used expression for the exchange-correla
functional is obtained in the local-density approximati
~LDA !,3 which, over the past 20 years, has been shown
yield results for crystal structures, lattice constants, ela
constants, and phonon frequencies within a few percent f
the experiment, for a wide class of materials.4,5

A remarkable exception is the static macroscopic diel
tric constant«M , whose value is substantially overestimat
by density-functional theory~DFT! LDA.6–8 The exact
amount of such an overestimate depends on the lattice
stant used in the calculation~and on other factors as pseud
potential types, basis sets, etc.! but it ranges always betwee
12% and 18%.

This point deserves an accurate discussion. The ma
scopic dielectric constant of a system is related to the cha
in the electronic ground state induced by an external pert
ing electrostatic potentialdVext. Since, within DFT, the
ground-state densityr can be computed~at least in principle!
exactly, for both the unperturbed and perturbed systems
difference dr5(rpert2r0) can also be obtained exactly
Hence, treating adequately the variation of the external
tential ~either by a direct approach or by using perturbat
theory!, the dielectric constant should come out correc
within DFT. The large discrepancy with the experimen
seems hence to be uniquely due to the LDA. However, it
been recently argued that this is not necessarily true.9–11 On
the other hand, Levine and Allan12 performed calculations o
«M within a quasiparticle scheme, i.e., in the framework
an excited-state theory. They obtained a value of«M for
Silicon within 3% from experiment. However, as pointed o
by Dal Corso, Baroni, and Resta,13 there is no immediate
justification for the failure of DFT.

The question why DFT-LDA is unable to reproduce t
experimental macroscopic dielectric constant was rece
PRB 600163-1829/99/60~20!/14224~10!/$15.00
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faced by Gonze, Ghosez, and Godby~GGG!.9–11 They ar-
gued that the Hohenberg-Kohn theorem in its original fo
does not apply to the case of an infinite, periodic, nonme
lic system in the presence of a long-wavelength perturbat
The ground-state energy is not, in this case, a unique fu
tional of the density. Rather, GGG demonstrated the app
ance of a dependence of the exchange-correlation functi
on themacroscopic polarizationof the sample,Pmac. GGG,
hence, were lead to introduce a density-polarization fu
tional theory~DPFT!, extending the scheme of the tradition
DFT. This problem has been studied in detail also
Resta,14,15 and by Martin and Ortiz.16–18 The latter have re-
cently shown that, even if for zero external field a symmet
crystal is described by the usual density-only Kohn-Sha
equations, the dependence of the exchange-correlation
ergy uponPmac can influence the dielectric properties of th
system.18 Aulbur, Jönsson and Wilkins19 studied the impli-
cations of such a polarization dependence. Developing
original idea of Gonze, Ghosez, and Godby, they ha
shown how, in some cases, substituting the DFT eigenva
with true quasiparticle energies~i.e., considering self-energy
corrections! turns out to be an approximate way to includ
the effects of the polarization. Hence, the use of a scis
operator, as formerly proposed by Levine and Allan, h
been justifieda posteriori, and can be considered as a way
account for the polarization dependence.20

Unfortunately, no approximation for the polarization d
pendence of the exchange-correlation energy functiona
available at the moment. Hence, the problem of DPFT w
not be addressed in the present work; instead, our aim i
investigate,within DFT, how much of the error on the di
electric constant is due to LDA, i.e., is not intrinsic to DF
Our main reference is the work of Dal Corso, Baroni, a
Resta,13 where «M was computed overcoming the LDA
through the scheme of the generalized gradient correct
approximation~GGA!.21,22 The main success of the GGA i
a definite improvement of cohesive energies in molecu
and solids. However, the improvement on other physi
quantities is not so striking; in some cases, like for latt
constants and bulk moduli, the GGA even leads to
worsening.23–27 On the other hand, it can be said that t
GGA is aimed at systems of slowly varying density, and~as
14 224 ©1999 The American Physical Society
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PRB 60 14 225EXCHANGE AND CORRELATION EFFECTS BEYOND THE . . .
for the LDA! its application to systems with large densi
gradients is not justified ‘‘a priori.’’ Concerning the macro-
scopic dielectric constant, the use of the GGA was found
yield very little improvement with respect to LDA.13

Whether GGA definitely represents a systematic impro
ment over LDA is hence still unclear.

In the approach considered here, we choose a diffe
scheme to overcome the LDA.28 Reproposing an idea con
tained in the original work of Kohn and Sham,3 we use an
energy functional appropriate for systems with small var
tions of the density~‘‘almost constant density’’ regime!. This
functional, in the following indicated as nonlocal density a
proximation ~NLDA !, considers nonlocal density contribu
tions through the exchange-correlation kernel of the hom
geneous electronic gas, and in the limit for an homogene
system yields the exchange-correlation energy of the ho
geneous electron gas. In the NLDA approximation there
no limitation on the gradient of the density.

As in Ref. 29, we use the NLDA functional both to co
struct the pseudopotential for the element under consi
ation, and to calculate the geometry~lattice parameter! and
the electronic structure of the solid. In the present paper,
focus on the case of silicon. We include local-field effects
the dielectric screening by considering the long-wavelen
limit of the G5G850 element of the inverse dielectri
matrix;30 the effect of the nonlocality of the
pseudopotential6,31,32 is also included. The NLDA dielectric
constant is then compared with LDA as well as GGA valu
As a result, within NLDA the dielectric constant undergoe
reduction with respect to the LDA value, bringing the ove
estimate of the experimental value from 13% to 9%.

We have also considered the effects induced on the lin
optical response by using the NLDA scheme to treat
exchange-correlation effects. To this purpose, we show
computed NLDA absorption spectrum, and compare it w
the random phase approximation~RPA! and LDA ones.

Finally, since exchange-correlation effects beyond
LDA are likely to become more relevant at finiteq vectors,
we have also calculated NLDA electron energy-loss spe
and dynamic structure factors atq vectors of the order of,
and larger than, the Fermi wave vector. The spectra are c
pared with electron-energy-loss spectroscopy~EELS! and in-
elastic x-ray scattering spectroscopy~IXSS! experimental
data as well as with RPA and LDA results.

II. NLDA APPROXIMATION FOR THE
EXCHANGE-CORRELATION FUNCTIONAL

In the local-density approximation the exchang
correlation term of the energy functional is written as

Exc
LDA@r#5E d3rr~r !exc

HEG@r~r !#, ~1!

whereexc
HEG(r) is the exchange-correlation energy per p

ticle of the homogeneous electron gas at densityr.
Analytical parameterizations of the functionexc

HEG(r),
which are of practical and common use in actual LDA c
culations, are available since 1971. They are based on a
rate results for the homogeneous electron gas, obtained e
within the many-body theory,33 or by performing explicit
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quantum Monte Carlo calculations.34,35According to Eq.~1!,
the exchange-correlation potentialVxc@r#(r ), defined as
dExc /dr, takes the form

Vxc
LDA@r~r !#5exc

HEG@r~r !#1r~r !
dexc

HEG

dr
U

r(r )

. ~2!

In LDA, hence, the xc potential at pointr depends only
on the value of the electron density at the same pointr , and
is not influenced by any change of the density at pointsr 8
different from r . This is reflected in the fact that th
exchange-correlation kernel, defined as

Kxc@r#~r ,r 8#5
dExc

dr~r !dr~r 8!
5

dVxc~r !

dr~r 8!
, ~3!

is proportional to ad function

Kxc
LDA@r#~r ,r 8!5d~r ,r 8!

dVxc
LDA

dr
U

r5r(r )

. ~4!

However, expression~4! depends on the assumed appro
mation ~1!, and even for the homogeneous electron gas i
not exact, at variance with Eqs.~1! and ~2!. Actually, the
Fourier transform of theKxc@r#(r ,r 8# of the homogeneous
electron gas has been recently computed with quan
Monte Carlo for several values ofq andr.36 Assuming the
expression~4! for Kxc

HEG is equivalent to approximate th
q-dependent Fourier transform of thexc kernel of the homo-
geneous electron gas with itsq50 value.

A possible way to go beyond the LDA is the generaliz
gradient approximation~GGA!, which includes the lowest-
order density-gradient corrections. The GGA exchan
correlation energy functional is

Exc
GGA@r#5Exc

LDA@r#1E d3rc„r~r !…
u¹r~r !u2

r4/3~r !
, ~5!

wherec„r(r )… is a function of the density, which, in analog
with exc

HEG, has been parametrized in suitable forms. T
corresponding approximation for theKxc(q) of the homoge-
neous electron gas includes terms up to second order iq,
i.e.,

Kxc
GGA~q!5Kxc

LDA1bq2. ~6!

This approximation is clearly a good one for systems
slowly varying density; however, in real systems~like atoms,
molecules, and solids!, it has been shown to improve onl
partially with respect to LDA. In fact, GGA gives an im
provement on the LDA cohesive energies, but someti
worsens the LDA results for other quantities as the latt
constants or the bulk moduli.23–27

As it was shown already by Kohn and Sham in their sem
nal work on DFT,3 it is possible to consider a different limi
than that of a vanishing gradient: namely, by considerin
system characterized by

r~r !5r01Dr~r !, ~7!

with
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14 226 PRB 60OLEVANO, PALUMMO, ONIDA, AND DEL SOLE
E d3rDr~r !50, ~8!

and

uDr~r !/r0u!1 ~9!

~‘‘almost constant density’’ regime!, Hohenberg-Kohn~HK!
have shown that it is possible to partially resum the grad
expansion to all orders, obtaining, to the lowest order inDr
~Refs. 2 and 3!

Exc@r#.Exc
HEG~r0!2

1

4E d3rd3r 8Kxc
HEG~r0 ;ur2r 8u!

3@r~r !2r~r 8!#2, ~10!

whereKxc
HEG(r0 ;ur2r 8u) is the exchange-correlation kern

of the homogeneous electron gas with densityr0.
Recently, it has been shown by some of us28,29 that an

expression similar to Eq.~10! can be derived from a func
tional expansion ofVxc , avoiding to introduce gradient ex
pansions and their resummation. The expression forExc@r#
derived in Refs. 28 and 29 reads

Exc@r#.Exc
LDA@r#2

1

4E d3rd3r 8Kxc
HEG~ r̄;ur2r 8u!

3@r~r !2r~r 8!#2, ~11!

where Kxc
HEG is taken at a densityr̄ intermediate between

r(r ) and r(r 8). Expression~11! reduces to the LDA if the
differences@r(r )2r(r 8)# can be neglected for every (r ,r 8)
pair such thatur 82r u,Dr , where Dr is the spatial range
over whichKxc extends.

To be applied to real inhomogeneous systems this sch
requires a knowledge ofKxc( r̄;ur2r 8u). In the same spirit of
what has been done in the case of the LDA, one can exp
the results of the accurate quantum Monte Carlo calculat
of Kxc

HEG(r;q).36 In fact, theKxc of the homogeneous elec
tron gas~HEG! is related to the so-called local-field facto
G(q) by the relation

Kxc
HEG~q!52

4p

q2
G~q!. ~12!

There are various parametrization of the~static! G(q) for the
homogeneous electron gas, both theoretical and interpol
from Monte Carlo data: from the early form of Hubbard
the more refined Utsumi-Ichimaru expression,37 to recent
quantum Monte Carlo~QMC! calculations.36 In this paper,
we have used everywhere the form given in Ref. 38, whic
a parametrization of the QMC data of Moroni, Ceperley, a
Senatore.36 In this expression

G~q!5CQ21
BQ2

g1Q2
1aQ4e2bQ2

, Q5q/kF , ~13!

we recognize a Lorentzian Hubbard-like term, plus a Gau
ian term that allows to reproduce quantitatively the nume
cal data of Ref. 36.C,B,g,a, and b are functions of the
density.38
t
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In this case, the resultingVxc at pointr includes nonlocal
contributions from the density at all the pointsr 8 over which
r(r ) differs fromr(r 8), andKxc

HEG( r̄;ur2r 8u) differs from 0.
Still, there is an arbitrariness in the choice of the dens
argumentr̄ to be put inKxc

HEG: in principle, bothr(r ),r(r 8),
or any combination of them can be used, if the exchan
correlation potential is to be determined to first order in t
density variations. On the other hand, one hopes that a
able choice ofr̄ could improve the performance of the fun
tional in strongly inhomogeneous systems. This fact has b
thoroughly discussed by Gunnarsson, Jonson, and Lundq
in 1979;39 in particular, they demonstrated that some choi
as the one

r̄5r@ 1
2 ~r1r 8!# ~14!

can even lead to divergentExc , in the case of strongly inho
mogeneous systems as atoms and jellium surfaces. The
ficulties in determining an unique choice for the density
gument inKxc

HEG hindered further efforts toward a practic
use of this NLDA functional.

The derivation given in Ref. 29 suggests to take

r̄5 1
2 @r~r !1r~r 8!#. ~15!

This choice was also considered by the authors of Ref.
as one of the possible choices which cannot give diverg
results; in Ref. 29 it is suggested as the most natural o
Moreover, in the case of silicon, whose electronic density
not strongly inhomogeneous, it has been shown that
choice ofr̄ does not affect significantly the total energy a
the electronic structure.29

III. NLDA DIELECTRIC MATRIX

Starting from the structural properties and electro
states consistently obtained within NLDA for bulk silicon
we obtain the dielectric response using the perturbative ti
dependent DFT approach.40 Local-field effects are included
in the standard Adler-Wiser way.30 In the following, we il-
lustrate the way used to compute NLDA exchang
correlation contributions in the calculation of the dielect
function.

We consider thetest-particle inverse dielectric matrix
«21, i.e., the dielectric response of the system to a class
probe, so that exchange-correlation effects between the
particle and the system are excluded. The test-particle
verse dielectric matrix is related to the polarizabilityx
through7,41

«21511VCx, ~16!

where matrix notation has been adopted, so that prod
must be intended as convolutions in real space, or ma
products in reciprocal space.VC is the Coulomb potential.
The polarizabilityx is related to the independent partic
polarizability,xKS, through the relation7,41

x5~12xKSVC2xKSKxc!
21xKS. ~17!

Substituting Eq.~17! in Eq. ~16!, we get the expression o
the inverse dielectric matrix in term ofxKS andKxc
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«21511VC~12xKSVC2xKSKxc!
21xKS. ~18!

Hence, the key quantities entering the calculation of the
verse dielectric matrix arexKS andKxc . NeglectingKxc , the
dielectric matrix reduces to the usual RPA form

«RPA512VCxKS. ~19!

Application of first-order perturbation theory to the effe
tive one-particle Kohn-Sham equation yields the stand
Adler-Wiser30 result forxKS ~atomic units are used through
out!

xGG8
KS

~q,v!5
2

V (
n,n8,k

^n8,kue2 i (q1G)run,k1q&^n,k1qu

3ei (q1G8)r8un8,k&•
f ~en,k1q!2 f ~en8,k!

en8,k2en,k1q1v1 ih
,

~20!

wheren andn8 are summed over all the bands at the point
the reciprocal spacek, andk is summed over the first Bril-
louin zone. f is the Fermi-Dirac distribution function an
un,k& anden,k are the Kohn-Sham set of one-electron wa
functions and eigenvalues.V is the crystal volume.

In order to compute Eq.~17!, we need the exchange
correlation kernel. In the LDA approximation one has

KxcGG8
LDA

~q!5B~G2G8!. ~21!

As we pointed out previously, the constant behavior w
respect toq is incorrect, even in the homogeneous electr
gas. In our NLDA approach, we use thexc kernel of the
homogeneous electron gasKxc

HEG( r̄;ur2r 8u,v), calculated at

the densityr̄ given by Eq.~15!, consistently with what we do
in the calculation of the DFT electronic structure

Kxc
NLDA~r ,r 8,v!5Kxc

HEGFr~r !1r~r 8!

2
;ur2r 8u,vG . ~22!

The NLDA Kxc is truly nonlocal, and its reciprocal spac
expression is nowq dependent. However, theKxc(q) consid-
ered in Eqs.~10! and~12! is static, i.e., it is only relevant fo
v50, while the polarizabilityx in Eq. ~19! is v dependent.
In principle, theKxc(q) appearing in Eqs.~16! and ~17! is
also anv-dependent quantity.

Thev dependence ofKxc(q) could be included following
the parametrization given by Gross and Kohn41 ~GK! in the
q→0 limit, as well as the more general expression
Dabrowski42 that extends the GK result to finiteq. As
pointed out by GK,41 however, neglecting the frequency d
pendence ofKxc

HEG ~i.e., working within the adiabatic ap
proximation! does not introduce significant errors. In an
case, it will not affect the static response, which is the m
concern of this paper. Hence, we neglect thev dependence
i.e., we take

Kxc
HEG~r;ur2r 8u,v!.Kxc

HEG~r;ur2r 8u,0!. ~23!

Our NLDA exchange-correlation kernel can be expres
in reciprocal space as
-

d

n

y

n

d

KxcGG8
NLDA

~q!5(
G9

K̃xc
HEG~G2G9,G82G9;uq1G9u!, ~24!

where with K̃xc
HEG we indicate the Fourier transform o

Kxc
HEG( r̄;q) with respect to the space variablesr and r 8 on

which it depends through the density argumentr̄:

Kxc
HEGFr~r !1r~r 8!

2
;qG

5 (
G1 ,G2

eiG1re2 iG2r8K̃xc
HEG~G1 ,G2 ;q!. ~25!

Details of the derivation of Eq.~24! are reported in Appendix
A.

We use thenKxcGG8
NLDA (q) in the calculation of the macro

scopic dielectric function, defined as

«M~q,v!51/«00
21~q,v!, ~26!

and, in particular, to obtain the macroscopic dielectric co
stant

«M5 lim
q→0

1/«00
21~q,v50!. ~27!

In general, the macroscopic dielectric constant is differ
from «00(q→0,v50), due to the presence of nonzero o
diagonal elements in the dielectric matrix, which are rela
to the so-calledlocal-field effects. In fact, the relation

dVtot~q1G,v!5(
G8

«GG8
21

~q,v!dVext~q1G8,v! ~28!

shows that if the dielectric matrix has nonzero off-diagon
elements, in the total screened potentialdVtot there are Fou-
rier components at wave vectorsq1G that differ by recip-
rocal lattice vectors from those of the external fielddVext. In
direct space, this corresponds to the presence of microsc
fluctuations in the induced field, explaining the name
local-field effects. In semiconductors, local-field effects a
able to change also the macroscopic dielectric constant b
much as 10-20 %,8 so that they cannot be neglected.

IV. SILICON CALCULATION

The first step of our calculation is a fully self-consiste
ground-state calculation for bulk silicon, using the NLDAxc
energy functional. In the LDA exchange–correlation term
the functional we use the interpolation formula of Perd
and Zunger35 derived from Monte Carlo data of Ceperle
and Alder.34 The exchange-correlation kernelKxc used in the
second term of Eq.~10! is the analytic formula for the ho
mogeneous electron gas,38 fitted to the data of Ref. 36.

We generateab initio normconserving pseudopotentia
using the Martins and Troullier scheme.43 Besides a standard
LDA pseudopotential, used for the LDA and RPA dielectr
function calculations, we generate also a NLDA pseudo
tential ~i.e., including the NLDA corrections to thexc energy
functional throughout all the atomic calculations!, to be fully
consistent within our scheme. The fully separable Kleinm
Bylander representation44 is used throughout. We employ
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14 228 PRB 60OLEVANO, PALUMMO, ONIDA, AND DEL SOLE
plane-waves basis set, with a cutoff of 18 Ry on the kine
energy~corresponding to about 300 plane waves at a gen
point in the Brillouin zone!.

The computed NLDA lattice parameter is 10.18 a.u. Co
pared with our LDA computed value of 10.16, we obtain
slight improvement toward the experimental value~10.26!.
The bulk modulus decreases from 0.98 to 0.95 Mbar. A m
detailed discussion of the behavior of NLDA with respect
ground-state properties other than the dielectric constan
a wide range of materials is given in Ref. 29. The se
consistent NLDA electronic structure is used as an input
the calculation of the dielectric matrix. With respect to LD
NLDA bands show a slight opening of the gaps, of the or
of 0.1 eV.

The independent-electron polarizabilityxKS is evaluated
from Eq. ~20!, taking special care of the nonanalytic portio
of the matrix in the case of the limit forq→0. This limit is
performed using first-order perturbation theory for the wa
functions at pointk1q, and carefully treating the nonloca
parts of the external potential contained in t
pseudopotentials.7

The small q vector used in the calculation is approx
mately equal to 1/10000 of the Brillouin zone, and is tak
along a direction that avoids the symmetries of the syst
Further details about theq→0 limit are given in Appendix
B.

The Brillouin zone integration involved in Eq.~20! is
done using 10, 28, and 60 special points of the Monkho
and Pack type45 in the irreducible Brillouin zone~IBZ!. The
28 k points set yields results converged within 1%, as sho
in Table I, where we give the values of the RPA dielect
constant obtained with the different sets ofk points.

We have carefully verified the convergence with resp
to the number of plane waves, and to the number of em
~conduction! bands included~Tables II and III!. For the en-
ergy cutoff we find, consistently with the existing literatur
that 169 plane waves are enough; we include 66 conduc
bands, even if our calculations suggest that the static die
tric constant is already converged using 26 empty bands

TABLE I. Convergence of the RPA«M with respect to the num-
ber of special points in the IBZ.

Number ofk points «M
RPA

10 13.06
28 12.24
60 12.20

TABLE II. Convergence of the RPA«M with respect to the
dimension of the dielectric matrix.

Number of plane waves in« andx «M
RPA

27 12.67
59 12.44
89 12.33

169 12.24
181 12.22
259 12.18
307 12.17
c
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V. RESULTS

A. The static dielectric constant

Our results for the dielectric constant both in RPA, LD
and NLDA, with and without local-fields effects, are re
ported in Table IV. First of all we notice that, in agreeme
with previous calculations, local-field effects reduce«M by
10-20 %. Another considerable reduction is due to the pro
inclusion of the contribution due to nonlocal terms in t
external potential, in the long-wavelength limit~see Appen-
dix B!. On the contrary, the inclusion ofxc effects beyond
RPA through an LDA exchange-correlation kernel (Kxc

LDA)
increases the dielectric constant, both with and without loc
field effects. Replacing the LDA kernel with the NLDA on
yields a reduction of the dielectric constant of about 3
(«M

NLDA512.5).
To explicitly demonstrate that this improvement is n

simply due to the fact that NLDA gives a slightly large
equilibrium lattice constant~10.18 a.u.!, we performed the
calculation of the NLDA dielectric constant also at the LD
lattice constant~10.16 a.u.!. The resulting value~12.50 in-
stead of 12.51! is changed only by one part over 103.

In Table V, we compare our computed values of the
electric constant with those obtained by other authors. O
RPA and LDA values coincide with those reported by H
bertsen and Louie,7 who used the same scheme. To comp
with the values obtained in other calculations, we need
critically consider the parameters that mainly affect the
sults, particularly the lattice constant, and the pseudopo
tials used. We choose to always use the theoretical equ
rium lattice constant, in the same spirit of the authors of R
13. This choice is dictated by the concern of a completelyab
initio picture and by the consideration that using a noneq
librium ~e.g., experimental! lattice constant would corre
spond to introduce an external constraint~i.e., pressure! in

TABLE III. Convergence of the RPA«M with respect to the
number of bands used.

Number of bands «M
RPA

15 12.148
30 12.207
50 12.227
70 12.235

168 12.239
200 12.239

TABLE IV. Calculated values of the static dielectric consta
«M in the three approximations considered in the present work;
column: neglecting local-field effects; second column: neglect
contributions due to nonlocal terms in the external potential; th
column: considering local-field effects and contributions due
non-local terms in the external potential.

NLF NNL LF1NL

RPA 13.6 14.2 12.2
LDA 15.4 15.0 12.9
NLDA 14.9 14.5 12.5
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our theoretical description. This is perhaps influent in silic
when only the electronic properties are considered, bu
known to lead to large errors when the ionic degrees of fr
dom are of interest~e.g., phonon, elastic constants, etc.!. Re-
sults for«M are reported in Table V. We notice that Baro
and Resta6 obtained a slightly different LDA dielectric con
stant ~12.7! and a lattice constant closer to the experim
~10.20 a.u.! than ours. The GGA of Da
Corso–Baroni-Resta,13 on the other hand, represents only
slight improvement with respect to their LDA value, o
tained using the same scheme. In fact, the GGA yields«M
512.6, compared to the LDA value of 12.7. Actually,
larger reduction arising directly from the GGA correction
almost completely canceled by the use of the~overestimated!
GGA lattice constant. In this way, the NLDA improveme
can be considered larger than that of the GGA, even tho
in the actual calculations they both reach about the sa
absolute value.

The present results, as those of Ref. 13, suggest that,
beyond the LDA, DFT cannot account completely for t
experimental macroscopic dielectric constant. The NLD
has been shown to reduce slightly the mismatch betw
experimental and theoretical values, but the error rema
large, compared to the performances obtained by DFT in
prediction of other ground-state observables.

Errors due to the core electrons contribution, in the c
of silicon, are likely to be very small. Hence, it seems th
the large overestimation of«M encountered in LDA as wel
as in nonlocal corrected schemes —the GGA or the pre
NLDA— should be explained by the inadequacy of DFT
describing a real infinite, nonmetallic, periodic system un
the influence of an electric field. As stated in Ref. 9, a p
larization dependence in the xc functional should be int
duced, in order to extend the validity of the Kohn-Sha
theorem to such a system. The fact that nonlocal correct
as GGA or NLDA are not sufficient to correct the failure
LDA can be understood also in connection with the behav
of the exchange-correlation kernelKxc in the q→0 limit. In
fact, this limit remains finite, and coincident with the LD
constant value, both in the GGA and NLDA schemes. On
other hand, in the expression for the dielectric matrix@Eq.

TABLE V. Electronic dielectric constant of Si as calculated
different authors; GGA refers to the gradient corrected results
Ref. 13.

a0 ~a.u.! «M

RPA, present work 10.16 12.2
LDA, present work 10.16 12.9
NLDA, present work 10.18 12.5
Hybertsen-Louie~Ref. 7!, RPA 12.2
Hybertsen-Louie~Ref. 7!, LDA 12.9
Baroni-Resta~Ref. 6!, RPA 10.20? 12.0
Baroni-Resta~Ref. 6!, LDA 10.20 12.7
Dal Corso–Baroni-Resta~Ref. 13!, GGA 10.38 12.6
Gavrilenko-Bechstedt~Ref. 8!, RPA 10.23 11.8
Gavrilenko-Bechstedt~Ref. 8!, LDA 10.23 12.7
Levine-Allan ~Ref. 12!, LDA 10.26 13.5
Levine-Allan ~Ref. 12!, GW 10.26 11.2
Experimental~Ref. 49! 10.26 11.4
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18# Kxc appears only in products withxKS, whoseG50 or
G850 elements go to zero forq→0. Hence, no corrections
to «M can come directly through the ‘‘head’’ (G5G850
element! or through the ‘‘wings’’ (G50 or G850 elements!
of the Kxc matrix, unless they diverge forq→0. In fact, a
1/q2 divergence of the second derivative of the exchan
correlation energy is predicted in the case of a dens
polarization functional theory.11 This divergence is related to
the presence of a finite gap, and should be present in
periodic, infinite, nonmetallic system. However, it is com
pletely absent in theKxc expressions usually employe
within DFT, and derived from the homogeneous electr
gas.

B. Optical and energy-loss spectra

Using time-dependent density-functional theory accord
to the formulation given by Runge and Gross,40 and applying
the Gross and Kohn adiabatic approximation,41 we calculate
thev-dependent macroscopic dielectric function in the th
considered approximations~RPA, LDA, and NLDA!, at q
50 and at finiteq. It should be specified that the dynam
behavior of the dielectric function, yielding optical absor
tion and energy-loss spectra, cannot be directly extrac
from the time-dependent local-density approximation~TD-
LDA !, where quasiparticle and excitonic effects are n
glected. However, our interest in this case is to comp
NLDA spectra with the LDA ones, in order to analyze
differences in the shape of the spectra appear. They ca
expected,a priori, to be of the same size as the slight im
provement registered for the value of the dielectric consta

In Fig. 1, we plot the real part of the dielectric function
the q→0 limit for the three cases of RPA, adiabatic LD
and NLDA, both considering and neglecting the local-fie
effects. In the inset, the low-frequency~static! limits are

f

FIG. 1. Real part of the macroscopic dielectric function. Op
diamonds: experimental values of Aspnes and Studna~Ref. 50!;
dotted, short-dashed, and solid lines represent RPA, LDA,
NLDA results, respectively, always including the local field effec
The dashed-dotted line represents the RPA curve neglecting lo
field effects. The theoretical curves are calculated using 10k points
in the IBZ, 169 plane waves, and 70 bands; a broadening of 0.25
has been superimposed. In the inset, that refers to the low-frequ
limit, we used 28k points and a negligible broadening~0.001 eV!.
The effects of the neglection of local-field effects are also sho
for the LDA curve~medium-dashed line! and for the NLDA~long-
dashed line! in the inset.
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shown. Clearly, local-field effects appear to influence in
relevant way the resulting spectra. However,xc effects are
minor, as no appreciable differences appear between
shapes of RPA, LDA, and NLDA spectra.

A similar conclusion can be drawn for the absorpti
spectra, i.e., for the imaginary part of the dielectric functi
~Fig. 2!. At finite q ~i.e., away from theq→0 limit!, more
remarkable differences between RPA, LDA, and NLD
spectra appear. A comparison of the computed imagin
part of the inverse dielectric function with the EELS spec
measured by Stiebling46 shows that the inclusion of xc ef
fects ~i.e., using LDA or NLDA! considerably improves
RPA spectra~Fig. 3!. However, the differences between th
LDA and the NLDA cases are still very small. This is due
the fact that the NLDA exchange-correlation kernel for sm
q tends to the constant value of the LDAxc kernel. At larger
q values, i.e., forq.kF , we have considered the dynam
structure factor,S(k,v), which is directly related to the in
verse dielectric matrix,

FIG. 2. Imaginary part of the macroscopic dielectric functio
Diamonds: experimental values of Aspnes and Studna~Ref. 50!;
dotted line: RPA; dashed line: LDA; solid line: NLDA; dashe
dotted line: RPA neglecting local-field effects. A broadening
0.25 eV has been superimposed on the theoretical curves.

FIG. 3. Imaginary part of«21. Circles: experimental energ
loss spectra of Stiebling~Ref. 46!; dotted line: RPA; dashed line
LDA; solid line: NLDA; dashed-dotted line: RPA neglecting loca
field effects. Theoretical spectra are calculated atq
5(0,0.047,0.047)2p/a, corresponding to the experimental value
broadening of 0.75 eV has been used in all the theoretical spe
a

he

ry

ll

S~q1G,v!52
uq1Gu

4p2
Im «GG

21~q,v!. ~29!

S(k,v) is measured in inelastic x-ray scattering spectr
copy ~IXSS! experiments.47 Again, no appreciable differ-
ences between LDA and NLDA appear, even atq.kF ~Fig.
4!. This can be explained considering the form ofKxc(q)
used in our calculation: as shown in Fig. 2 of Ref. 38, f
q.kF our Kxc recovers a value very similar to theq50 one.

Only at very largeq, i.e., atq.3kF , larger differences
begin to appear~Fig. 5!. The situation is now reversed, i.e
the LDA spectrum strictly resembles the RPA one, while t
NLDA spectrum shows slight differences in the shape. Ho
ever, no experimental data is available at these hi
transferred momenta.

VI. CONCLUSIONS

We calculated the dielectric function of silicon within an
beyond the local-density approximation scheme. All the
gredients of the calculation, i.e., the pseudopotential, b
structure, lattice constant, etc. were determined consiste

.

f

ra.

FIG. 4. Dynamic structure factorS(q,v) ~see text!. Diamonds:
experimental inelastic x-ray scattering spectroscopy spectra
Sturm, Schu¨lke and Schmitz~Ref. 47!; dotted line: RPA; dashed
line: LDA; solid line: NLDA. Both experimental and theoretica
data are taken atq51.25 a.u. in the@111# direction; we used 28k
points in the IBZ, and a broadening of 0.5 eV in the calculation
the theoretical spectra.

FIG. 5. Imaginary part of«21. Dotted line: RPA; dashed line
LDA; solid line: NLDA. q is 3.40 a.u. along the@111# direction; we
used 28k points in the IBZ, and a broadening of 0.1 eV.
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with the choice of the xc kernel. We found very sma
changes of the spectral properties determined by non-L
effects. For the static macroscopic dielectric constant, wh
is the main concern here, we found a value of 12.5, to
compared with the LDA value of 12.9. Hence, effects b
yond the LDA reduce the discrepancy of the LDA calcu
tion of «M with respect to the experimental value~11.4!, but
a 9% discrepancy still remains. In view of the well co
verged and mutually consistent ingredients of our calcu
tion, and of the fact that the choice ofr̄ has proved not to be
crucial in silicon,29 we believe the resulting value for it
dielectric constant, 12.5, to be close to the best estimate
can be obtained using an xc kernel derived from the hom
geneous electron gas. We attribute the residual discrep
to the neglected long-range tail ofKxc , present in all non-
metallic, periodic systems, and related to the polarizat
dependence of the xc kernel.
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APPENDIX A: NLDA EXCHANGE-CORRELATION
KERNEL

In this appendix, we derive Eq.~24!. The notation is re-
stricted to a one-dimensional periodic crystal, since the
tension to three dimensions is straightforward. Starting fr

Kxc
NLDA~r ,r 8!5Kxc

HEGFr~r !1r~r 8!

2
;Ur 2r 8UG , ~A1!

we can expressKxc
NLDA(r ,r 8) in terms of theKxc

HEG(r;q)

Kxc
NLDA~r ,r 8!5 (

q8,G9
ei (q81G9)(r 2r 8)

3Kxc
HEGFr~r !1r~r 8!

2
;Uq81G9UG , ~A2!

whereq8 runs inside the first Brillouin zone whileG9 is the
set of the reciprocal space vectors. Using Eq.~25! we obtain

Kxc
NLDA~r ,r 8!5 (

q8,G9
(

G1 ,G2

ei (q81G9)(r 2r 8)eiG1re2 iG2r 8

3K̃xc
HEG~G1 ,G2 ;uq81G9u!. ~A3!

The Fourier transform ofKxc
NLDA(r ,r 8) with respect tor and

r 8 is defined as

KxcGG8
NLDA

~q!5E drdr8e2 i (q1G)rei (q1G8)r 8Kxc
NLDA~r ,r 8!.

~A4!
A
h
e
-
-

-

at
-
cy

n

d

-

x-

Substituting Eq.~A3! and performing the integration inr and
r 8 we obtain

KxcGG8
NLDA

~q!5(
G9

K̃xc
HEG~G2G9,G82G9;uq1G9u!.

~A5!

The sum converges quickly, since for largeq vectors
Kxc

HEG(q) becomes small, and for large Gs the Fourier co
ficients of the charge density go to zero exponentially~we
verified that in the case of Silicon 89 reciprocal space vec
are enough!.

In practical calculations, for every neededq, we first com-
puteKxc

HEG((r(r )1r(r 8))/2;uq1G9u) for everyG9, and on a
given (r ,r 8) mesh. Then, we Fourier transform in order
obtain K̃xc

HEG. Finally, we perform the sum overG9, obtain-
ing KxcGG8

NLDA (q). The latter is the quantity directly entering th
dielectric matrix calculation.

APPENDIX B: CALCULATION OF THE
INDEPENDENT-PARTICLE POLARIZABILITY xKS

IN THE LONG-WAVELENGTH LIMIT
FOR THE CASE OF FULLY NONLOCAL

KLEINMAN-BYLANDER PSEUDOPOTENTIALS

In this appendix we discuss the calculation ofxKS(q) in
the limit for q→0 when nonlocal Kleinman-Bylande
pseudopotentials are used in the electronic structure calc
tion.

In Eq. ~20! for xKS, whenq→0 the matrix elements for
G50 or G850 ~or both! ~the ‘‘wings’’ and ‘‘head’’ of the
matrix! must be treated with special care. Using perturbat
theory, the wave functions at (k1q) can be obtained in
terms of those atk to first order inq:

fn,k1q~r !5eiqrfn,k~r !1 (
mÞn

eiqrfm,k~r !

3
^fm,ku2 iq¹1@Vnl ,iqr #ufn,k&

en,k2em,k
, ~B1!

where the nonlocal part of the ionic pseudopotential,Vnl ,
appears explicitly since it does not commute with local fun
tions of r .

Substituting Eq.~B1! into Eq. ~20!, we obtain

x00
KS~q→0!5

2

V (
n,n8,k

1

~en8,k2en,k!3
^n8,ku2 iq“

1@Vnl ,iqr #un,k&•^n8,ku2 iq“

1@Vnl ,iqr #un,k&. ~B2!

Hence, the ‘‘head’’ goes to zero asq2 for q→0. Similarly,

x0G8
KS

~q→0!52
2

V (
n,n8,k

1

~en8,k2en,k!2
^n8,ku2 iq“

1@Vnl ,iqr #un,k&•^n8,kueiG8r8un,k&,

~B3!

i.e., the ‘‘wings’’ goes to zero asq.
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The evaluation of the matrix elements of2 iq“ is
straightforward, yielding

^n8,ku2 iq“un,k&5q
1

p (
G

an8,k
* G an,k

G ~k1G!, ~B4!

where thean,k
G are the Fourier coefficients of the Bloch fun

tions

fn,k~r !5(
G

an,k
G e2 i (k1G)r. ~B5!

The evaluation of the matrix elements of the commuta
@Vnl ,iqr # leads instead to

^n8,ku@Vnl ,iqr #un,k&5q(
GG8

an8,k
* G an,k

G8 ~“K1“K8!

3Vnl~K1K 8!, ~B6!

whereK5k1G andK 85k1G8 andVnl(K ,K 8) is the Fou-
rier transform ofVnl(r ,r 8)

Vnl~K ,K 8!5
1

VE d3rd3r 8e2 iKr Vnl~r ,r 8!eiK8r8. ~B7!

In a Kleinman-Bylander scheme,44 the nonlocal part of
the pseudopotential can be written as

Vnl
KB~K ,K 8!5(

s
e2 i (K2K8)ts(

l
Pl~K̂K̂8!Fsl~K !Fsl~K8!,

~B8!

wherets are the atomic positions inside the elementary c
Pl are the Legendre polynomials, and

Fsl~K !5A4p

V
~2l 11!Ksl~K !, ~B9!
s
,

r

l,

whereKsl are the Kleinman-Bylander structure factors44

Ksl~K !5E drr 2DṼsl~r ! j l~Kr !Rl
PS~r !. ~B10!

The final expression is hence

^n8,ku@Vnl ,iqr #un,k&

5q(
GG8

an8,k
* G an,k

G8 (
s

e2 i (K2K8)ts

3(
l H Pl8~K̂K 8̂!

1

KK8
FK S 12

KK 8

K2 D
1K 8S 12

KK 8

K82
D GFsl~K !Fsl~K8!1Pl~K̂K̂8!

3F ]Fsl~K !

]K UKFsl~K8!
K

K

1Fsl~K !
]Fsl~K8!

]K8
U

K8

K 8

K8G J , ~B11!

wherePl8 are the first derivative of the Legendre polynomia
with respect to their argument. From the definition of t
Kleinman-Bylander structure factor, the first derivative
the Fsl can be expressed analytically

Fsl8 ~K !5A4p

V
~2l 11!E drr 3DṼsl~r ! j l8~Kr !Rl

PS~r !,

~B12!

where thej l8 are the first derivative of the spherical Bess
functions with respect to their argument.
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