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Exchange and correlation effects beyond the LDA on the dielectric function of silicon
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The macroscopic dielectric function of crystalline silicon is calculated within density-functional theory,
considering exchange and correlation effects beyond the local-density approximation. Reproposing an original
idea of Hohenberg and Kohn, we consider a functional based on the exchange and correlation kernel of the
homogeneous electron ga€=C. The same kernel is used in the evaluation of the dielectric matrix, keeping
local-field effects into account. The results, compared with those obtained in the local-density approximation,
show a limited reduction of the well-known overestimation of the macroscopic dielectric constant. Results
obtained for optical and energy loss spectra are also pres¢B@t63-182609)00344-9

. INTRODUCTION faced by Gonze, Ghosez, and GodiGGG).°>~** They ar-
gued that the Hohenberg-Kohn theorem in its original form
Density-functional theory7® provides a formally exact does not apply to the case of an infinite, periodic, nonmetal-
tool for the description of all the ground-state properties oflic system in the presence of a long-wavelength perturbation.
many-electron systems at zero temperature, starting fromihe ground-state energy is not, in this case, a unique func-
first principles. The only essential approximation introducedtional of the density. Rather, GGG demonstrated the appear-
in actual calculations is in the exchange-correlation term ofince of a dependence of the exchange-correlation functional
the energy functional, since its exact form is unknown. Theon themacroscopic polarizationf the sampleP,,... GGG,
most widely used expression for the exchange-correlatiohence, were lead to introduce a density-polarization func-
functional is obtained in the local-density approximationtional theory(DPFT), extending the scheme of the traditional
(LDA),® which, over the past 20 years, has been shown t®FT. This problem has been studied in detail also by
yield results for crystal structures, lattice constants, elasti®Restat**®and by Martin and Orti26-*8 The latter have re-
constants, and phonon frequencies within a few percent froroently shown that, even if for zero external field a symmetric
the experiment, for a wide class of materiafs. crystal is described by the usual density-only Kohn-Sham
A remarkable exception is the static macroscopic dielecequations, the dependence of the exchange-correlation en-
tric constante),, whose value is substantially overestimatedergy uponP,,,. can influence the dielectric properties of the
by density-functional theory(DFT) LDA.®~® The exact system® Aulbur, Jmsson and Wilkin® studied the impli-
amount of such an overestimate depends on the lattice corations of such a polarization dependence. Developing an
stant used in the calculatigand on other factors as pseudo- original idea of Gonze, Ghosez, and Godby, they have
potential types, basis sets, gtout it ranges always between shown how, in some cases, substituting the DFT eigenvalues
12% and 18%. with true quasiparticle energi€se., considering self-energy
This point deserves an accurate discussion. The macr@orrection$ turns out to be an approximate way to include
scopic dielectric constant of a system is related to the changie effects of the polarization. Hence, the use of a scissor
in the electronic ground state induced by an external perturbeperator, as formerly proposed by Levine and Allan, has
ing electrostatic potentiabV,,. Since, within DFT, the been justifiech posteriori and can be considered as a way to
ground-state density can be computetht least in principlg  account for the polarization dependerite.
exactly, for both the unperturbed and perturbed systems, the Unfortunately, no approximation for the polarization de-
difference dp=(pperr—po) Can also be obtained exactly. pendence of the exchange-correlation energy functional is
Hence, treating adequately the variation of the external poavailable at the moment. Hence, the problem of DPFT will
tential (either by a direct approach or by using perturbationnot be addressed in the present work; instead, our aim is to
theory), the dielectric constant should come out correctlyinvestigate,within DFT, how much of the error on the di-
within DFT. The large discrepancy with the experimentselectric constant is due to LDA, i.e., is not intrinsic to DFT.
seems hence to be uniquely due to the LDA. However, it ha®©ur main reference is the work of Dal Corso, Baroni, and
been recently argued that this is not necessarily¥rteOn  Resta!® where £,, was computed overcoming the LDA
the other hand, Levine and All¥nperformed calculations of through the scheme of the generalized gradient corrections
gy Within a quasiparticle scheme, i.e., in the framework ofapproximation(GGA).?** The main success of the GGA is
an excited-state theory. They obtained a valuesgffor  a definite improvement of cohesive energies in molecules
Silicon within 3% from experiment. However, as pointed outand solids. However, the improvement on other physical
by Dal Corso, Baroni, and Restithere is no immediate quantities is not so striking; in some cases, like for lattice
justification for the failure of DFT. constants and bulk moduli, the GGA even leads to a
The question why DFT-LDA is unable to reproduce theworsening®~2’ On the other hand, it can be said that the
experimental macroscopic dielectric constant was recent5GA is aimed at systems of slowly varying density, dad
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for the LDA) its application to systems with large density quantum Monte Carlo calculatiori$® According to Eq.(1),
gradients is not justified d priori.” Concerning the macro- the exchange-correlation potentid,Jp](r), defined as
scopic dielectric constant, the use of the GGA was found taSE,./ 5p, takes the form

yield very litle improvement with respect to LD,

Whether GGA definitely represents a systematic improve- ™ HEG HEG
ment over LDA is hence still unclear. Vic Lp(r)]=ex Tp(r)]+p(r) : )
In the approach considered here, we choose a different P(n)

scheme to overcome the LDA&.Reproposing an idea con-
tained in the original work of Kohn and Shahwe use an
energy functional appropriate for systems with small varia
tions of the density"“almost constant density” regimeThis
functional, in the following indicated as nonlocal density ap-
proximation (NLDA), considers nonlocal density contribu-
tions through the exchange-correlation kernel of the homo-

In LDA, hence, the xc potential at poimtdepends only
on the value of the electron density at the same pqitind
is not influenced by any change of the density at poirits
different from r. This is reflected in the fact that the
exchange-correlation kernel, defined as

0B OVydr)

geneous electronic gas, and in the limit for an homogeneous Kedpl(r,r']= = ' 3
system yields the exchange-correlation energy of the homo- Sp(r)dp(r')  6Sp(r")
geneous electron gas. In the NLDA approximation there is tional to as funct
no limitation on the gradient of the density. IS proportional to & tunction
As in Ref. 29, we use the NLDA functional both to con- LDA
struct the pseudopotential for the element under consider- KA p(r 1) = 8(r, 1" )—m _ %)

ation, and to calculate the geomefisittice parameterand

the electronic structure of the solid. In the present paper, we , ,
focus on the case of silicon. We include local-field effects in/IOWEVer, expressio4) depends on the assumed approxi-
the dielectric screening by considering the long-wavelengtination (1), and even for the homogeneous electron gas it is
limit of the G=G'=0 element of the inverse dielectric "°t e_xact, at variance with Eqsl) and (2). Actually, the
matrix3® the effect of the nonlocality of the Fourier transform of th&, p](r,r’] of the hom(_)geneous
pseudopotenti&f-32is also included. The NLDA dielectric €leCtron gas has been recently computed with quantum
constant is then compared with LDA as well as GGA valuesMonte Carlo for sevEErgl values of andp.™ Assuming the

As a result, within NLDA the dielectric constant undergoes a€xPression(4) for K, is equivalent to approximate the
reduction with respect to the LDA value, bringing the over- d-dependent Fourier transform of the kernel of the homo-
estimate of the experimental value from 13% to 9%. geneous electron gas with igs=0 value. _

We have also considered the effects induced on the linear A Possible way to go beyond the LDA is the generalized
optical response by using the NLDA scheme to treat thédradient approximatioiGGA), which includes the lowest-
exchange-correlation effects. To this purpose, we show th@rder density-gradient corrections. The GGA exchange-
computed NLDA absorption spectrum, and compare it withcorrelation energy functional is
the random phase approximatiRPA) and LDA ones. ()

Finally, since exchange-correlation effects beyond the GGA LDA p(r
LDA are likely to become more relevant at finitevectors, Exc 1p]=Exc [P]+J d*re(p(r)) o) (5)
we have also calculated NLDA electron energy-loss spectra
and dynamic structure factors gtvectors of the order of, wherec(p(r)) is a function of the density, which, in analogy
and larger than, the Fermi wave vector. The spectra are comwith /"¢, has been parametrized in suitable forms. The
pared with electron-energy-loss spectroscplLS) and in-  corresponding approximation for thé,(q) of the homoge-

elastic x-ray scattering spectroscophkSS) experimental neous electron gas includes terms up to second ordgy in
data as well as with RPA and LDA results. ie.,

p=p(r)

GGA __ wLDA 2
Il. NLDA APPROXIMATION FOR THE Kie (@)=Ky"+bg. (6)

EXCHANGE-CORRELATION FUNCTIONAL This approximation is clearly a good one for systems of

In the local-density approximation the exchange-Slowly varying density; however, in real systefiike atoms,

correlation term of the energy functional is written as molecules, and solidsit has been shown to improve only
partially with respect to LDA. In fact, GGA gives an im-

provement on the LDA cohesive energies, but sometime
EkEA[p]=J d3rp(r)elEgp(r)], (1)  worsens the LDA results for other quantities as the lattice
constants or the bulk moddfi#2’

As it was shown already by Kohn and Sham in their semi-
nal work on DFT® it is possible to consider a different limit
than that of a vanishing gradient: namely, by considering a
system characterized by

wheree=%(p) is the exchange-correlation energy per par-

ticle of the homogeneous electron gas at dengsity
Analytical parameterizations of the functiogl=(p),

which are of practical and common use in actual LDA cal-

culations, are available since 1971. They are based on accu- p(1)=po+Ap(r), 7

rate results for the homogeneous electron gas, obtained either

within the many-body theory? or by performing explicit ~ with
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f d3rAp(r)=0, (8)
and
|Ap(r)/pol<1 )

(“almost constant density” regimeHohenberg-Kohr{HK)
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In this case, the resulting,. at pointr includes nonlocal

contributions from the density at all the poimtsover which

p(r) differs fromp(r’), andK E(p;|r—r'|) differs from 0.

Still, there is an arbitrariness in the choice of the density
argumenyp to be put ink =€ in principle, bothp(r),p(r’),

or any combination of them can be used, if the exchange-
correlation potential is to be determined to first order in the

have shown that it is possible to partially resum the gradiengiensity variations. On the other hand, one hopes that a suit-

expansion to all orders, obtaining, to the lowest ordeh n
(Refs. 2 and B

1
Exdp]=Esc (po) 7 f drdr K3 poslr—r'])

X[p(r)=p(r")]% (10

where KHES(po:[r—r'|) is the exchange-correlation kernel
of the homogeneous electron gas with dengily

Recently, it has been shown by some of S that an
expression similar to Eq10) can be derived from a func-
tional expansion o¥,., avoiding to introduce gradient ex-
pansions and their resummation. The expressiorEfgrp]
derived in Refs. 28 and 29 reads

1 _
Exdp]=Ex"[p]-7 J d*rd3r 'K (pslr 1))

X[p(r)=p(r")]?, 11
where KHEC is taken at a density intermediate between
p(r) andp(r’). Expression(11) reduces to the LDA if the
differenceq p(r) —p(r')] can be neglected for every,(')
pair such thafr’ —r|<Ar, whereAr is the spatial range
over whichK,. extends.

To be applied to real inhomogeneous systems this scheme

requires a knowledge d€,.(p;|r—r’|). In the same spirit of

what has been done in the case of the LDA, one can exploiét
the results of the accurate quantum Monte Carlo calculation

of KHEC(p:q).% In fact, theK, of the homogeneous elec-
tron gas(HEG) is related to the so-called local-field factor
G(q) by the relation

4
KHES(q) = — q—ZGm)- (12)

There are various parametrization of {lséatio G(q) for the

able choice op could improve the performance of the func-
tional in strongly inhomogeneous systems. This fact has been
thoroughly discussed by Gunnarsson, Jonson, and Lundgvist
in 19793 in particular, they demonstrated that some choice,
as the one
p=pl3(r+r")] (14

can even lead to divergeht, in the case of strongly inho-
mogeneous systems as atoms and jellium surfaces. The dif-
ficulties in determining an unique choice for the density ar-
gument inKXEC hindered further efforts toward a practical
use of this NLDA functional.

The derivation given in Ref. 29 suggests to take

p=3[p(r)+p(r")]. (15

This choice was also considered by the authors of Ref. 39,
as one of the possible choices which cannot give divergent
results; in Ref. 29 it is suggested as the most natural one.
Moreover, in the case of silicon, whose electronic density is
not strongly inhomogeneous, it has been shown that the

choice ofp does not affect significantly the total energy and
the electronic structur®.

[ll. NLDA DIELECTRIC MATRIX

Starting from the structural properties and electronic
ates consistently obtained within NLDA for bulk silicon,
We obtain the dielectric response using the perturbative time-
dependent DFT approaéh Local-field effects are included
in the standard Adler-Wiser way.In the following, we il-
lustrate the way used to compute NLDA exchange-
correlation contributions in the calculation of the dielectric
function.

We consider thetest-particle inverse dielectric matrix
e~ 1, i.e., the dielectric response of the system to a classical
probe, so that exchange-correlation effects between the test

homogeneous electron gas, both theoretical and interpolatgghrticle and the system are excluded. The test-particle in-
from Monte Carlo data: from the early form of Hubbard to yerse dielectric matrix is related to the polarizabilify

the more refined Utsumi-Ichimaru expressiério recent
quantum Monte CarldQMC) calculations® In this paper,

we have used everywhere the form given in Ref. 38, which is

through

e 1=1+Vcx, (16)

a parametrization of the QMC data of Moroni, Ceperley, and

Senatoré® In this expression

2

G(q)=CQ*+ BQ2+aQ4e*BQ2, Q=a/ke, (13
g+Q

we recognize a Lorentzian Hubbard-like term, plus a Gauss-

where matrix notation has been adopted, so that products
must be intended as convolutions in real space, or matrix
products in reciprocal spac¥.- is the Coulomb potential.
The polarizability y is related to the independent particle
polarizability, yxs, through the relatiof*

x= (1= xksVe— XksKxe) ~*Xks - (17)

ian term that allows to reproduce quantitatively the numeri-

cal data of Ref. 36C,B,g,a, and B8 are functions of the
density®®

Substituting Eq(17) in Eq. (16), we get the expression of
the inverse dielectric matrix in term gfxs andK,,
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—-1 -1
e "=1+Ve(1—xksVe— xksKxe)  Xks- (18 ~ o .
N Ko (@) =2 KIEH(G-G",G'~G";|a+G")), (24
Hence, the key quantities entering the calculation of the in- G"
verse dielectric matrix arggs andK,.. NeglectingK,., the

\ ! - RHEG
dielectric matrix reduces to the usual RPA form xc

where with we indicate the Fourier transform of
KHEG(p;q) with respect to the space variablesandr’ on

e"PA=1— Vi xks. (199  which it depends through the density argument
Application of first-order perturbation theory to the effec- weal P(N +p(r')
tive one-particle Kohn-Sham equation yields the standard Kxe 2 q
Adler-Wiser® result for s (atomic units are used through-
ouy = > €C®1re C'KIESG,,G,iq). (29
G1.6;
2 :
S ’ - . . . .
Xoo (0, @)= a 2 (n'.kle @O n k+q)(n.k+q| Details of the derivation of Eq24) are reported in Appendix
n,n’ k
e A.
f(€nkrq) — (€ k) We use themTCLGDé(q) in the calculation of the macro-

Xei(q+G’)r,|n,,k>'

s scopic dielectric function, defined as
€nr k— En,k+q+ w1 n

(20) em(0,0) = 1legs (0, 0), (26)

wheren andn’ are summed over all the bands at the point inand, in particular, to obtain the macroscopic dielectric con-
the reciprocal spack, andk is summed over the first Bril- stant
louin zone.f is the Fermi-Dirac distribution function and ) .
In,k) ande, , are the Kohn-Sham set of one-electron wave ey=lim1/ey5(d,w=0). (27
functions and eigenvalue§) is the crystal volume. a0

In order to compute Eq(17), we need the exchange-

. L In general, the macr ic dielectri nstant is differen
correlation kernel. In the LDA approximation one has general, the macroscopic dielectric constant is different

from g¢o(g—0,0=0), due to the presence of nonzero off-
diagonal elements in the dielectric matrix, which are related
to the so-calledocal-field effects. In fact, the relation

Kiom () =B(G—G'). (21)
As we pointed out previously, the constant behavior with

respect tog is incorrect, even in the homogeneous electron N q+G,0) =D £t (0,0) Vel q+ G, 0) (29
gas. In our NLDA approach, we use tixe kernel of the b G’ e ext

homogeneous electron gbSe (p;|r—r'|,w), calculated at  ghows that if the dielectric matrix has nonzero off-diagonal
the densityp given by Eq.(15), consistently with what we do elements, in the total screened potensisl, there are Fou-
in the calculation of the DFT electronic structure rier components at wave vectogs- G that differ by recip-
, rocal lattice vectors from those of the external fiéM,,;. In
KNLDA (1 (7 ) — KHEG p(r)+p(r’) Jr=r'le|. 22 direct space, this corresponds_ to the presence of microscopic
xe v e 2 ' T fluctuations in the induced field, explaining the name of
] i i local-field effects. In semiconductors, local-field effects are
The NLDA K, is truly nonlocal, and its reciprocal space gpje o change also the macroscopic dielectric constant by as

expression is now dependent. However, th€,(q) consid-  mych as 10-20 9%,so that they cannot be neglected.
ered in Eqs(10) and(12) is static, i.e., it is only relevant for

=0, while the polarizabilityy in Eq. (19) is  dependent.
In principle, theK,.(q) appearing in Eqs(16) and (17) is
also anw-dependent quantity. The first step of our calculation is a fully self-consistent
The w dependence df,(q) could be included following ground-state calculation for bulk silicon, using the NLR&
the parametrization given by Gross and K&h(GK) in the  energy functional. In the LDA exchange—correlation term of
g—0 limit, as well as the more general expression bythe functional we use the interpolation formula of Perdew
Dabrowskf? that extends the GK result to finitg. As  and Zungel’ derived from Monte Carlo data of Ceperley
pointed out by GK!! however, neglecting the frequency de- and Alder3* The exchange-correlation kern€}. used in the
pendence ofK"'E® (i.e., working within the adiabatic ap- second term of Eq(10) is the analytic formula for the ho-
proximation does not introduce significant errors. In any mogeneous electron gasfitted to the data of Ref. 36.
case, it will not affect the static response, which is the main We generateab initio normconserving pseudopotentials
concern of this paper. Hence, we neglect éhelependence, using the Martins and Troullier scherfitBesides a standard

IV. SILICON CALCULATION

i.e., we take LDA pseudopotential, used for the LDA and RPA dielectric
function calculations, we generate also a NLDA pseudopo-
KHECpilr—r'|,0) =K ES(p;|r—r'],0). (23)  tential(i.e., including the NLDA corrections to the energy

functional throughout all the atomic calculationt be fully
Our NLDA exchange-correlation kernel can be expresseaonsistent within our scheme. The fully separable Kleinman-
in reciprocal space as Bylander representatiéhis used throughout. We employ a
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TABLE I. Convergence of the RPAy with respect to the num-

ber of special points in the IBZ.

TABLE I1ll. Convergence of the RPA:), with respect to the

number of bands used.

Number ofk points sRPA Number of bands eprh
10 13.06 15 12.148
28 12.24 30 12.207
60 12.20 50 12.227
70 12.235
plane-waves basis set, with a cutoff of 18 Ry on the kinetic ;gg gigg
energy(corresponding to about 300 plane waves at a general ’
point in the Brillouin zong
The computed NLDA lattice parameter is 10.18 a.u. Com-
V. RESULTS

pared with our LDA computed value of 10.16, we obtain a
slight improvement toward the experimental vali®.26.

The bulk modulus decreases from 0.98 to 0.95 Mbar. A more . : .
detailed discussion of the behavior of NLDA with respect to Our results for the dielectric constant both in RPA, LDA,

ground-state properties other than the dielectric constant fof?‘nd NLDA, with anq without Iocal-f!elds effgcts, are re-
a wide range of materials is given in Ref. 29. The self-Ported in Table IV. First of all we notice that, in agreement

consistent NLDA electronic structure is used as an input foqvcl)thzgr;wiustﬁalculatlc_)gs, Ié)lcal-f:jeldt_effe_ctz re(timtz,ﬁ by
the calculation of the dielectric matrix. With respect to LDA, ;| 0. Another consiaerable reduction IS dué to the proper

NLDA bands show a slight opening of the gaps, of the ordeIjnclusion of the contribution due to nonlocal terms in the
of 0.1 eV ' external potential, in the long-wavelength linigee Appen-

The independent-electron polarizabilifys is evaluated dix B). On the contrary, the inclusion of effects beyond

: LA
from Eq. (20), taking special care of the nonanalytic portion RPA through an LDA exchange-correlation kernél, ")
of the matrix in the case of the limit fay— 0. This limit is

A. The static dielectric constant

increases the dielectric constant, both with and without local-

performed using first-order perturbation theory for the wave€!d effects. Replacing the LDA kernel with the NLDA one
functions at poink+q, and carefully treating the nonlocal yields a reduction of the dielectric constant of about 3%

NLDA _
parts of the external potential contained in the (€m _12_-5__’)- o ]
pseudopotentials. To explicitly demonstrate that this improvement is not

The smallq vector used in the calculation is approxi- SIMply due to the fact that NLDA gives a slightly larger
mately equal to 1/20000 of the Brillouin zone, and is taken€quilibrium lattice constan10.18 a.u, we performed the

along a direction that avoids the symmetries of the Systemqalculation of the NLDA dielectric constant also at the LDA
Further details about the— 0 limit are given in Appendix lattice constan{10.16 a.u. The resulting valug12.50 in-

B. stead of 12.5)lis changed only by one part over0

The Brillouin zone integration involved in E|20) is In Table V, we compare our computed values of the di-
done using 10, 28, and 60 special points of the Monkhorsgl€ctric constant with those obtained by other authors. Our
and Pack typ® in the irreducible Brillouin zongIBZ). The ~ RPA and LDA values coincide with those reported by Hy-

28 k points set yields results converged within 1%, as showrP€rtsen and LOUiéWh_O used the same scheme. To compare
in Table I, where we give the values of the RPA dielectricWith the values obtained in other calculations, we need to

constant obtained with the different setskopoints. critically consider the parameters that mainly affect the re-
We have carefully verified the convergence with respechU'tSv particularly the lattice constant, and the pseudopoten-

to the number of plane waves, and to the number of empt§‘_a|s use_d. We choos_e to always use the theoretical equilib-
(conduction bands includedTables Il and Il). For the en- Tium lattice constant, in the same spirit of the authors of Ref.

ergy cutoff we find, consistently with the existing literature, 13- This choice is dictated by the concern of a compleadly
that 169 plane waves are enough; we include 66 conductioffitio picture and by the consideration that using a nonequi-
bands, even if our calculations suggest that the static dieledlPrium (e.g., experimentallattice constant would corre-
tric constant is already converged using 26 empty bands. SPONd to introduce an external constraine., pressurein

TABLE Il. Convergence of the RPA), with respect to the
dimension of the dielectric matrix.

TABLE IV. Calculated values of the static dielectric constant
ey in the three approximations considered in the present work; first
column: neglecting local-field effects; second column: neglecting

Number of plane waves in and S“R/'PA contributions due to nonlocal terms in the external potential; third
27 12.67 column: considering local-field effects and contributions due to
59 12 44 non-local terms in the external potential.
89 12.33 NLF NNL LF+NL
169 12.24
181 12.22 RPA 13.6 14.2 12.2
259 12.18 LDA 15.4 15.0 12.9

307 12.17 NLDA 14.9 145 125
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TABLE V. Electronic dielectric constant of Si as calculated by 50 . . . . . . . . .
different authors; GGA refers to the gradient corrected results of ° 18
Ref. 13. o o I )

o 18 = |
ap (@u) ey % e~ T g
3 20 -

RPA, present work 10.16 12.2 f e
LDA, present work 10.16 12.9 x 10
NLDA, present work 10.18 12.5 0
Hybertsen-LouigRef. 7), RPA 12.2 L
Hybertsen-LouigRef. 7), LDA 12.9 -10 W
Baroni-RestgRef. 6, RPA 10.20? 12.0 _20 . . . L e . . . ,
Baroni-RestaRef. 6, LDA 10.20 12.7 6 1 2 3 4 5 6 7 & 9 10
Dal Corso—Baroni-RestéRef. 13, GGA 10.38 12.6 Energy [eV]
Gavrilenko-Bechsted{Ref. 8, RPA 10.23 11.8 FIG. 1. Real part of the macroscopic dielectric function. Open
Gavrilenko-BechstedtRef. §, LDA 10.23 12.7 diamonds: experimental values of Aspnes and Stu@kef. 50;
Levine-Allan (Ref. 12, LDA 10.26 13.5 dotted, short-dashed, and solid lines represent RPA, LDA, and
Levine-Allan (Ref. 12, GW 10.26 11.2 NLDA results, respectively, always including the local field effects.
Experimental(Ref. 49 10.26 11.4 The dashed-dotted line represents the RPA curve neglecting local-

field effects. The theoretical curves are calculated using d€ints

in the IBZ, 169 plane waves, and 70 bands; a broadening of 0.25 eV
our theoretical description. This is perhaps influent in silicon has been superimposed. In the inset, that refers to the low-frequency
when only the electronic properties are considered, but isimit, we used 28 points and a negligible broadeniitg.001 eV.
known to lead to large errors when the ionic degrees of freeThe effects of the neglection of local-field effects are also shown
dom are of intereste.g., phonon, elastic constants, gtRe-  for the LDA curve(medium-dashed lijeand for the NLDA(long-

sults fore)y, are reported in Table V. We notice that Baroni dashed lingin the inset.

and Restaobtained a slightly different LDA dielectric con-

stant(12.7) and a lattice constant closer to the experimentig] K, . appears only in products withks, whoseG=0 or
(1020 au. than ours. The GGA of Dal G’'=0 elements go to zero far—0. Hence, no corrections
Corso—Baroni-Rest& on the other hand, represents only atg ey can come directly through the “head”Q=G’=0
slight improvement with respect to their LDA value, ob- elemen} or through the “wings” (G=0 or G’ =0 elements
tained using the same scheme. In fact, the GGA vyielgs  of the K,. matrix, unless they diverge fa;—0. In fact, a
=12.6, compared to the LDA value of 12.7. Actually, a 1/g? divergence of the second derivative of the exchange-
larger reduction arising directly from the GGA correction is correlation energy is predicted in the case of a density-
almost completely canceled by the use of tbeerestimated  polarization functional theor$: This divergence is related to
GGA lattice constant. In this way, the NLDA improvement the presence of a finite gap, and should be present in any
can be considered larger than that of the GGA, even thougBeriodic, infinite, nonmetallic system. However, it is com-
in the actual calculations they both reach about the Sam6|ete|y absent in thd(xc expressions usua”y emp|oyed

absolute value. within DFT, and derived from the homogeneous electron
The present results, as those of Ref. 13, suggest that, eveRs.

beyond the LDA, DFT cannot account completely for the
experimental macroscopic dielectric constant. The NLDA
has been shown to reduce slightly the mismatch between
experimental and theoretical values, but the error remains Using time-dependent density-functional theory according
large, compared to the performances obtained by DFT in thto the formulation given by Runge and GrdSsnd applying
prediction of other ground-state observables. the Gross and Kohn adiabatic approximatfénye calculate
Errors due to the core electrons contribution, in the casé¢he w-dependent macroscopic dielectric function in the three
of silicon, are likely to be very small. Hence, it seems thatconsidered approximation®kPA, LDA, and NLDA), at g
the large overestimation afy, encountered in LDA as well =0 and at finiteg. It should be specified that the dynamic
as in nonlocal corrected schemes —the GGA or the preseirehavior of the dielectric function, yielding optical absorp-
NLDA— should be explained by the inadequacy of DFT intion and energy-loss spectra, cannot be directly extracted
describing a real infinite, nonmetallic, periodic system undefrom the time-dependent local-density approximati{@iD-
the influence of an electric field. As stated in Ref. 9, a po-LDA), where quasiparticle and excitonic effects are ne-
larization dependence in the xc functional should be introglected. However, our interest in this case is to compare
duced, in order to extend the validity of the Kohn-ShamNLDA spectra with the LDA ones, in order to analyze if
theorem to such a system. The fact that nonlocal correctiondifferences in the shape of the spectra appear. They can be
as GGA or NLDA are not sufficient to correct the failure of expecteda priori, to be of the same size as the slight im-
LDA can be understood also in connection with the behavioprovement registered for the value of the dielectric constant.
of the exchange-correlation kerri€l; in theg—0 limit. In In Fig. 1, we plot the real part of the dielectric function in
fact, this limit remains finite, and coincident with the LDA the g—0 limit for the three cases of RPA, adiabatic LDA
constant value, both in the GGA and NLDA schemes. On the&nd NLDA, both considering and neglecting the local-field
other hand, in the expression for the dielectric maffx).  effects. In the inset, the low-frequendgtatio limits are

B. Optical and energy-loss spectra
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FIG. 2. Imaginary part of the macroscopic dielectric function. explzﬁrﬁ:ﬁtgly ri'r?g;:st?guftg; fsg;(fe(ﬂh‘;) S)Zittr?))gc (I)Dplsms%neist;a of

Diamonds: experimental values of Aspnes and Stud®ef. 50; " - . e )

dotted line: RPA; dashed line: LDA; solid line: NLDA; dashed- ?tuTrTDighlk(Ie_da?d _Scl\rl][nD'z(Rgf't:-/)’ dOt.tEd I'tn?' Rgpt‘h dasktw_edl

dotted line: RPA neglecting local-field effects. A broadening of (;nf' t’ IiOI Ti‘ o5 " ?h fﬁ’e‘;'.me?. a .an egrga;ca

0.25 eV has been superimposed on the theoretical curves. ata are taken g=12sau.in .e{ ] direc lon, we used =
points in the IBZ, and a broadening of 0.5 eV in the calculation of
the theoretical spectra.

shown. Clearly, local-field effects appear to influence in a

relevant way the resulting spectra. Howevet,effects are
minor, as no appreciable differences appear between the S(q+G,w)=—
shapes of RPA, LDA, and NLDA spectra.

A similar conclusion can be drawn for the absorption

la+G|  _
2 Meca(d.e). (29
T

. : X . . " S(k,w) is measured in inelastic x-ray scattering spectros-
spectra, i.e., for the imaginary part of the dielectric functlonCopy (IXSS) experimenté? Again, no appreciable differ-

(Fig. 2). At fin?te q (i.e., away from theg—0 limit), more  gnces between LDA and NLDA appear, evergatke (Fig.
remarkable differences between RPA, LDA, and NLDA 4). This can be explained considering the form Kf,(q)
spectra appear. A comparison of the computed imaginarysed in our calculation: as shown in Fig. 2 of Ref. 38, for
part of the inverse dielectric function with the EELS spectrag~k. our K, recovers a value very similar to tiye=0 one.
measured by Stlebllﬁa shows that the inclusion of xc ef- On|y at very |argeq, i.e., athng, |arger differences
fects (i.e., using LDA or NLDA considerably improves begin to appeatFig. 5. The situation is now reversed, i.e.,
RPA spectrgFig. 3). However, the differences between the the LDA spectrum strictly resembles the RPA one, while the
LDA and the NLDA cases are still very small. This is due to NLDA spectrum shows slight differences in the shape. How-
the fact that the NLDA exchange-correlation kernel for smallever, no experimental data is available at these high-
g tends to the constant value of the LD#& kernel. At larger  transferred momenta.
g values, i.e., forq=kg, we have considered the dynamic
structure factorS(k,w), which is directly related to the in- VI. CONCLUSIONS
verse dielectric matrix,
We calculated the dielectric function of silicon within and
6.0 . . beyond the local-density approximation scheme. All the in-

gredients of the calculation, i.e., the pseudopotential, band
50 - /«“\\ structure, lattice constant, etc. were determined consistently
— 4.0 0.007
)
= 0.006
£ 30
£ 0.005
L 20 3
o 0.004
ke
1.0 T 0.003
] T
0.0 = 0.002
10 15 20 25
Energy [eV] 0.001
FIG. 3. Imaginary part ofe~!. Circles: experimental energy 0.000 -

loss spectra of StieblingRef. 46; dotted line: RPA; dashed line:
LDA,; solid line: NLDA,; dashed-dotted line: RPA neglecting local-
field effects. Theoretical spectra are calculated at FIG. 5. Imaginary part ot ~!. Dotted line: RPA; dashed line:
=(0,0.047,0.047)z/a, corresponding to the experimental value; a LDA; solid line: NLDA. qis 3.40 a.u. along thgl11] direction; we
broadening of 0.75 eV has been used in all the theoretical spectraised 28k points in the IBZ, and a broadening of 0.1 eV.

Energy [eV]
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with the choice of the xc kernel. We found very small Substituting Eq(A3) and performing the integration imand
changes of the spectral properties determined by non-LDA’ we obtain
effects. For the static macroscopic dielectric constant, which

is the main concern here, we found a value of 12.5, to be NLDA = HEG "o "

. ! ’ ’ = - ’ - ’ + .
compared with the LDA value of 12.9. Hence, effects be- Kxooe (@) GE Kie (6=G",G' =G la+6")
yond the LDA reduce the discrepancy of the LDA calcula- (A5)

tion of &), with respect to the experimental val(kl.4), but ) )
a 9% discrepancy still remains. In view of the well con- _The sum converges quickly, since for largevectors

. . . HEG, :
verged and mutually consistent ingredients of our calculaKxc (d) becomes small, and for large Gs the Fourier coef-

tion, and of the fact that the choice pfhas proved not to be ficients of the charge density go to zero exponentiaiig
crucial in silicon?® we believe the resulting value for its verified that in the case of Silicon 89 reciprocal space vectors
dielectric constant, 12.5, to be close to the best estimate th&{€ enough . ,
can be obtained using an xc kernel derived from the homo- !N Practical calculations, for every needgdwe first com-
geneous electron gas. We attribute the residual discrepan®t€Kxc ((p(r)+p(r))/2;|q+G"|) for everyG”, and on a
to the neglected long-range tail &, present in all non- diven g,r’) mesh. Then, we Fourier transform in order to
metallic, periodic systems, and related to the polarizatiorobtain KHEC . Finally, we perform the sum ove”, obtain-
dependence of the xc kernel. ing K?C"GDGA,(q). The latter is the quantity directly entering the
dielectric matrix calculation.
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APPENDIX B: CALCULATION OF THE

INDEPENDENT-PARTICLE POLARIZABILITY  xks
IN THE LONG-WAVELENGTH LIMIT
FOR THE CASE OF FULLY NONLOCAL
KLEINMAN-BYLANDER PSEUDOPOTENTIALS

Useful discussions with Lucia Reining and Rex Godby
are gratefully acknowledged. This work has been supported
in part by the Italian Ministry of University and Scientific
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culations involved in this work have been done at the Inter-
university Consortium of the Northeastern Italy for Auto-  In this appendix we discuss the calculationygfs(q) in
matic Computing (CINECA), under the INFM parallel the limit for g—0 when nonlocal Kleinman-Bylander
computing initiative. We thank S. Goedecker for providing pseudopotentials are used in the electronic structure calcula-

us an efficient code for fast Fourier transforffis. tion.
In Eq. (20) for yxs, wheng—0 the matrix elements for
APPENDIX A: NLDA EXCHANGE-CORRELATION G=0 or G'=0 (or both (the “wings” and “head” of the
KERNEL matrix) must be treated with special care. Using perturbation

) ) ) o theory, the wave functions atk¢q) can be obtained in
In this appendix, we derive E424). The notation is re-  tarms of those ak to first order ing:

stricted to a one-dimensional periodic crystal, since the ex-
tension to three dimensions is straightforward. Starting from

¢n,k+q<r>=e““¢n,k<r)+n§n eI b (1)

p(r)+p(r’)
KNPA(p ry=KHEG -l —r7||, (Al . .
o (=T - (sl IOV Vo0 )
we can expres&-PA(r,r’) in terms of theK E(p;q) Enk ™ €mk
where the nonlocal part of the ionic pseudopotentig],,
KNPA(r = S gl@ +6M 0 —r") appears explicitly since it does not commute with local func-
XC ' oy tions ofr.
’ Substituting Eq(B1) into Eq. (20), we obtain
ry+p(r’
x KHEG p(r)+p( ); a+G" |, a2
2 KS 2 1 ’ ;
Xo0(d—0)=5 > ——(n’ k[-iqV
whereq’ runs inside the first Brillouin zone whil&” is the nn'k (€nr Kk €nk)
set of the reciprocal space vectors. Using &%) we obtain +[Voigr]ink)-(n’ k| —igV
K)l:lCLDA(r’r/): 2 2 el (@' +6")(r=r")giGirg=iGyr’ +[Vniiar]|n,k). (B2)
q',G" 61.G2 Hence, the “head” goes to zero a8 for q—0. Similarly,
XKEAG1,Gaila' +G"]). (A3)
NLDA XKS (q—>0):_E > ;m, k|—iqV
The Fourier transform oK, ~"(r,r") with respect ta and 0G Q Tk (en—en)?

r' is defined as L
+[Vpr,igr]n,k)-(n’,k|€'® " |n,k),

Kz'cfé,(q)=f drdr’e I(a*Grei(@+GOr K NLDA(p 1y (B3)
(A4) i.e., the “wings” goes to zero ag.
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The evaluation of the matrix elements ofiqV is  whereK, are the Kleinman-Bylander structure factdrs
straightforward, yielding

1 . KsI(K):f drr®AVg(DjKNRMr).  (B10)
(n'.k[-iaVnk)=a_ X ai an(k+G), (B4

The final expression is hence
where theaﬁk are the Fourier coefficients of the Bloch func-

tions (n' k[[Vy.igr]|n,k)
d’n,k(r):% aﬁke—i(k+G)r' (B5) _qE a*eraSkz e—i(K—K’)Ts
The evaluation of the matrix elements of the commutator 1 KK '
[V,i,igr] leads instead to XEI P',(KKI)W Kl 1- e

(n' K|[Vq igr]in,k)= qZ ar Sl (Vi+ Vi)

!

+K’ K2 Fai(K)Fg(K")+Py(KK")
XV(K+K"), (B6)
whereK=k+G andK’'=k+G’ andV,(K,K") is the Fou- IFs(K) . (K’)E
rier transform ofV,,(r,r") oK |k K
1 . _
N 3pA3p 7 a—iKr ALY IF (K’ K’
V(KK Qj d3rd3r e 'KV, (r,r)eR . (B7) FEL(K) si(KD| - KY ’ (B11)

dK' | K

In a Kleinman-Bylander schenfd,the nonlocal part of _ o .
the pseudopotentia| can be written as WhereP|’ are the first derivative of the Legendre pOlyn0m|aIS

with respect to their argument. From the definition of the

ik —K' o Kleinman-Bylander structure factor, the first derivative of
KB 1 — i(K=K") ’ ’ . '
Var (K,K7) 2;4 € TSZ PI(KK)Fai(K)Fg(KT), the Fg, can be expressed analytically

(B8)
[4 —~
whererg are the atomic positions inside the elementary cell, F/(K)= EW(ZI +1)J drr3AVS|(r)j,’(Kr)R,PS(r),

P, are the Legendre polynomials, and

(B12)
Am where thej| are the first derivative of the spherical Bessel
Fo(K)=\/—= (21 + 1)K (K), B € ey, ! P
si(K) a JKsi(K) B9 finctions with respect to their argument.
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