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Graded transmission in a bent orifice

Er’el Granot
School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University,

69978 Ramat-Aviv, Israel
~Received 5 March 1999!

We calculate the transmission of a bent orifice. The bending anglew is assumed to be small@w!1 and also
u[A(v2vc)/vc!1, wherev is the incoming particle energy, andvc[(\p/L)2/2m is the threshold one,L
is the orifice width#. We find graded transmission: There is a critical anglewc'u. For w,wc utu2>1, and for
w.wc the transmission is dropped abruptly toutu2'u2. We suggest an explanation for this phenomenon.
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A diffusive current is hardly affected by the lead topo
ogy. Hence, Ohm’s law, which according to Einstein ha
diffusive origin,1 is the corner stone in any electronic dev
ing. The engineers can layout very complicated circuits w
out being worried about the local curvature of a spec
wire.

When quantum mechanics, and in more general any w
dynamics, is concerned the geometry of the wires bounda
cannot be ignored. The modifications of the boundaries
ometry may cause wave scattering, diffraction and re
nances and thus have an immense influence on the con
tivity.

In the last two decades, when nanostructures fabrica
became possible, the investigation of boundary effects tur
out to be of practical importance. Many experimental~e.g.,
Refs. 2–7! and theoretical works~e.g., Refs. 8–13! were
done on this field. In these references, one can see a
diversity: abrupt changes in an orifice dimensions and qu
tum dots ~e.g., Refs. 8–10!, mesoscopical junctions~e.g.,
Refs. 3, 4, and 11!, two-dimensional resonant tunnelin
structures~e.g., Ref. 6!, rings of varying width~Ref. 13! etc.

In this paper, we investigate a very simple system: W
calculate the transmission of a bent orifice~its width L and a
bending anglew!. Although we choose a very small bendin
angle, the point of the twist is highly singular~see Fig. 1!.
We show that despite its simplicity, this system exhibits
peculiar and an unexpected behavior:

Let us define the parameteru[A(v2vc)/vc ~wherev is
the incoming energy andvc[(\p/L)2/2m is the threshold
one!, then if u.w the scattered particle is hardly affected
the bend and the transmission is excellent, i.e.,utu2>1, how-
ever whenu,w the transmission dropped abruptly toutu2
'u2 and remains at that value at least untilw'2u. We give
an explanation for this radical transmission change and
the emergence of the plateau. We also discuss the cas
multiple-boundaries defects.

Let us consider the transmission of a thin but tilted orifi
~Fig. 1!. For simplicity, its width will be normalized to 1
~i.e., it is measured with the units ofL!. The stationary-state
Schrödinger equation reads

¹2c~r !1@v2V~r !#c~r !50.

~Hereinafter we use the units\52m51!. V is the poten-
tial of the orifice walls~V50 inside the orifice andV5` on
PRB 600163-1829/99/60~20!/14172~5!/$15.00
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the outside! andv is the energy of asingle incident particle.
The incoming wave from the left (x52`) is

c inc5(
n

sinkny~aneik̃nx1r ne2 i k̃nx!

while the transmitted one is

c tran5(
n

sinkny8~ tneik̃nx8!.

Wherean , r n , and tn are the incident, reflected, and tran
mitted coefficients, respectively,

kn[np and k̃n[Av2~np!2.

The strategy is the following:c inc is a solution in the entire
‘‘left region.’’ We do not sayyet that this is the right one, bu
this is definitely a solution, because it solves the Schro¨dinger
equation in all the ‘‘left region,’’ and it agrees with th
boundary conditions of this region~except, for the moment
the one atx50!. The same thing goes forc trans; it solves the
Schrödinger equation and maintains the boundary conditio
in the entire ‘‘right region.’’ Therefore, it is a solution in thi
entire region.

Now, we need to find the right coefficients~an , r n , and
tn!, which will take care of the boundary condition atx50,
i.e., the continuity of the wave function and its derivative
x50. In order to do so, we match the wave function and
derivative atN different points on the boundaryx50, then
we takeN→` and show that the solution~and the coeffi-
cients! converges to a specific function.

Let us define a new set of coordinates:

FIG. 1. An illustration of the bent orifice.
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S j
h D5S cosw sinw

2sinw cosw
D S x

yD
or equivalently

S j
h D5S cosw 2sinw

sinw cosw
D S x8

y8 D . ~1!

Then the wave function in the left side of the bend is

(
n

sinkn~j sinw1h cosw!@aneik̃n~j cosw2h sin w!

1r ne2 i k̃n~j cosw2h sin w!#, ~2!

and in the right one

(
n

sinkn~2j sinw1h cosw!@ tneik̃n~j cosw1h sin w!#.

With these notations, the matching of the wave funct
should take place atj50. Limiting the calculations toN
modes, the gluing of the wave function and its derivative
j50 leads to 2 equations with 2N variables. In order to
solve them, we quantizeh

hm[
m

N cosw
, 1<m<N

~these are theN points were the matching takes place!. The
prescribed substitution solves this problem~2N equations!.
The solution is straightforward

t5t•a, ~3!

wherea is the incident vector with the componentsan and t
is the transmitted vector with the componentstn . t is the
transmission matrix

t[ 1
2 ~T21T* 2T̃21T̃* !, ~4!

where the components of the differentT’s are

Tm
n [sin~knhm cosw!exp~ i k̃nhm sinw!

T̃m
n [@2kn sinw cos~knhm cosw!

1 i k̃n cosw sin~knhm cosw!#exp~ i k̃nhm sinw!.

We restrict the discussion to very small bending angles
to very small incoming momentums, that is

w!1, v2p2!1.

It is obvious, that in this case, only the first mode is prop
gating, and thus it is the only mode that carries energy
infinity.

Before going on, let us define an incident angle

u[tan21~Av2p2/p!'Av2p2/p.

This angle has a simple meaning. Ifky andkx are the incom-
ing wave numbers, then

u5tan21~kx /ky!.
n

t

d

-
o

The plot in Fig. 2 was calculated forv2p251024, i.e., u
'331023, and N5100. From the graph we learn the fo
lowing things:~a! For small angles, the transmission remai
unity, i.e.,utu251, in this regime it is actually a constant.~b!
Whenw exceeds a certain valuefc'0.025 the transmission
abruptly falls exponentially.~c! When w exceeds the value
'0.04 the transmission approaches a new plateau. This
teau lasts at least untilw'0.07. ~d! The value of the trans-
mission in the second plateau is'1025.

In order to see if these are true findings and not an a
fact, we check them for differentN’s. Figure 3 presents the
dependence offc on N. As can be seen by the solid line
has an excellent fit with

fc5
p11p2N

p31N
, ~5!

where p25(2.760.6)31023. This p2 is the extrapolated
value of fc for N→`. Hence,p2 seems to be the ‘‘real’’
critical value wc . We can also see, that this value is ve
close tou, i.e., wc'u. This is not by chance, it happens fo
every smallu. We will try to explain it later.

Next, we find that the plateaus values are independen
N. That is, for any number of modes the first plateau has
value 1, while the second one has the valueutu2'u2.

We thus can summarize the results in the following e
pression:

FIG. 2. The transmission (T5utu2) of the orifice as a function of
the bending anglew for v2p251024 andN5100.

FIG. 3. The dependence of the transition anglefc on the matrix
size ~N!. The solid line presents the fitfc5(p11p2N)/(p31N)
with p25(2.760.6)31023.
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14 174 PRB 60ER’EL GRANOT
ut~w!u2'H 1 w,wc

u2 w.wc
, ~6!

while wc'u.
Classically, there is a good explanation forwc'u, and for

the plateau wherew,wc . One can easily be convinced, th
classically forw,u/3 all the particles are transmitted, whi
for w.u/3 some of them are reflected, and the transmiss
decreaseslinearly. However, this description neither ex
plains the critical nature of the change, nor does it give a
reason for the second plateau~not to speak about its height!.

A quantum mechanical explanation should be able to e
cidate three points:~1.! Why for large bending angles~w!
does the transmission get the valueutu2→u2? ~2.! Why does
the transition take place atw'u? ~3.! And finally, why is
there a plateau?

In order to face the first problem we consider the bent
a two-dimensional~2D! point defect. Thus, by doing so, w
reduce the system to a scattering problem over a 2D impu
~see Fig. 4!. Let us choose the 2D impurity potential functio
to be an impurity D function~IDF, see Ref. 14!

D~r !'Wd~x!exp@2~y2«!2/r2#, ~7!

wherer is a characteristic width of the impurity and is a
sumed to be the smallest parameter of the problem,e is the
distance between the impurity and the lower boundary,W is
a weight function, andd(x) is the 1D Dirac’s delta function
Then, the scattered function takes the form16

cscat~r !5c inc~r !2
G~r ,r0!c inc~r0!

11*dr 8G~r 8,r0!D~r 82r0!

3E dr 8D~r 82r0!, ~8!

where r0[ ŷ« is the place of the impurity,c inc(r ) is the
wave function when the impurity is absent, and

FIG. 4. 2D waves are scattered from a 2D point impurity with
a thin orifice.

FIG. 5. The same as Fig. 4 but with a surface defect.
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G~r ,r 8![E dk

2p (
n

sin~npy!sin~npy8!

E2~np!22k2 eik~x2x8!, ~9!

is the 2D scattering Green function of our geometry. A mo
convenient way to write the Green function is

G~r ,r 8![(
n

sin~npy!sin~np«!

2iAE2~np!2
eiAE2~nx!2ux2x8u.

~10!

Then,

E dr 8G~r 8,r0!D~r 82r0!

5W
rAp

2i (
n

sin2~np«!

AE2~np!2
e2~nxr/2!2

. ~11!

Since we are interested in the regime of low energies,
E'p2, Eq. ~11! can be approximated, except for the fir
term, to an integral

'W
rAp

2i Fsin2~p«!

AE2p2
1E

pr

` dy

ipy
e2y/2 sin2~«y/r!G .

~12!

Now we can investigate the casee/r@1. This is the case
where the impurity doesn’t touch the boundary. In this ca
the integral in Eq.~12! can be approximated to~in the limit
r→0!

i

4p
$ ln@2~pr/2!2#1g%. ~13!

A suitable choice forW in that case would be

W215
r

4Ap
lnS rb

r D , ~14!

where rb is some constant which is related to the D
Broglie’s wavelength of the bound state of the impurity.

Then, we find that the transmitted wave function, i.
c(x.0), reads

c~x.0!>sin~py!etAE2x2x

3H 12F12
i

4p
ln~Eb!

AE2p2

sin2~p«!
G21J , ~15!

when Eb[24e2g(prb)22 and thus can be identified~ex-
cept for a constant! with the bound state energy of the im
purity. We took in Eq.~15! only the first mode, because th
is the only one that is propagating.

From Eq. ~15! it is clear, that when the energy is hig
@E2p2@ ln22(Eb)# the impurity has a negligible influenc
on the transmission, which remains to be'1. However,
whenE2p2→0, the transmission~T! goes to

T→ ln2~Eb!

16p2

~E2p2!

sin4~p«!
. ~16!

Thus, T'u2. When we consider a surface defect~Fig. 5!,
i.e., «→0,
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T→ ln2~Eb!

16p6

~E2p2!

«4 . ~17!

The cause for this behavior becomes clearer when we do
following transformations:

y→~x12x2!/2
~18!

x→~x11x2!/2.

Now, instead of considering a single particle that propaga
in a two-dimensional orifice, we can visualize two particl
with coordinatesx1 and x2 that propagate in a 1D system
That is,y stands for the distance between the particles~with
a factor of 2!, which cannot exceed 1, andx stands for their
center of mass coordinate.

WhenE2p2→0, they are in their ground state, and th
move like a single entity, i.e., their mutual interaction
negligible. Therefore, the exact pattern of the scattering
tential is not important, and we can replace it by a 1D de
function. Thus, the problem turns to a 1D scattering probl
of a single particle. This is a very simple problem, whi
leads to a transmission~but now an exact solution!

T512@11~krb!2#21, ~19!

wherek is the 1D wave number, i.e.,k[AE2p2, andrb is
the de Broglie wavelength of the impurity bound state.

WhenE2p2→0,

T→rb
2~E2p2!. ~20!

Again, T'u2.
Next, in order to explain why the change occursabruptly

at w'u, we can use Fig. 6. In this figure, we see two re
angles which are relatively rotated by an anglew. Each one
of them has a lengthl and a normalized width~51!. We are
interested in the tunneling probability of the eigenfuncti
sin(py)sin(2px/l) through the bent, which is related to th
eigenvaluev5p21(2p/l)25p2(11u2).

This probability~to tunnel through the bend! is equal to
the square of the overlapping integral

ptunnel'U E
A
dacL* cRU2

, ~21!

where theA stands for the overlapping area, and the s
scriptsL and R stand for the eigenfunctions of the left an
right rectangles, respectively. This integral can be appro
mated to

FIG. 6. The transmission through the bend can be approxim
to the overlap of the localized solutions within the two rectangl
he

s

o-
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-
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pturnnel'U E
2c

c

dx sin@p~x2c!/l#sin@p~x1c!/l#U2

5Ucl Fcos~2pc/l!2
sin~2pc/l!

~2pc/l! GU2

, ~22!

wherec>1/sinw is the overlappinglength.
The integral~12! has a physical meaning only forc.l,

i.e., w.w̄min[sin21(1/l)>l21. For w5w̄min , ptunnel(w
5w̄min)51, and it is decreasing down to zero very quick
Actually, ptunnel(w51.4w̄min)'0. Since, 1.4w̄min>u we have
a qualitative explanation for the abrupt decline of the tra
mission atw>u.

But why is there a plateau? In order to answer this qu
tion we should understand the effect of the singularity of
bend. By looking at Fig. 7 we can ask why there should b
difference between a particle that penetrates into tunneA
and another one that enters tunnelB?

Let us assume, for convenience, that in both cases
radiuses are very large (R→`). Then we can assume tha
the radial movement in the bending zone, i.e., the only ra
dependence there, is exp(6iAv2p2rw) ~wherew is the ra-
dial angle,r'R is the radial distance andv is the energy!.
It is then easy to show that the wave function in the bend
zone is a superposition

sin@p~r 2R!#S 12
r 2R

2R D ~aeiAv2p2Rw1be2 iAv2p2Rw!,

~23!

@it was calculated to the first approximation in (r 2R)/R#.
Therefore, the probability to continue from the straig

orifice to the bending part is approximately

U2E
R

R11

dr sin@p~r 2R!#2S 12
r 2R

2R DU2

>12
2

R
. ~24!

Of course, this is only an approximated result for large ra
uses, however, we can learn the tendency: the penetra
probability decreases with the curvature. Even from here
see, that we should expect some problems whenR→0.

Yet, we can learn another thing: as the curvature rad
shrinks the particle gets closer to the origin. This behav
becomes evident from the fact that the radial wave funct
is not a simple sin@p(r2R)# but rather sin@p(r2R)#@12(r
2R)/2R#. We should expect asR→0 a singularity in the
wave function itself~an evidence for this behavior we find i

ed
.

FIG. 7. Two particles enter different bent tunnels. When th
penetrate the bending region particleB will suffer a stronger dis-
placement toward the lower boundary.
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14 176 PRB 60ER’EL GRANOT
the logarithmic divergence of the Bessel Y function!. Obvi-
ously, we don’t find a real divergence but instead the wa
function gets a sharp peak shape. It happens since the s
larity scatters all the transversal modes. As the first m
decreases all the rest increase with the same amount unt
wave function has a delta function shape. Now the platea
clear: The bending is totally transparent to a delta like
coming function, that is, once a peak shape is formed~after
an anglew'u! the bending can be increased~w is increased!
with no reduction in the transparency. This can explain
emergence of a plateau beyond the transition angle.

Before summarizing, we reckon that this picture can
implemented to transmission calculations of a rough surf
orifice ~for a more energetic process see Ref. 15! in the case
wherev→p2(u→0). This system is illustrated in Fig. 8.

Let us, for example, assume that the spatial dimension
the surface defects have the following distribution:

p~«5«1!5«0
21 exp~2«1 /«0!, ~25!

FIG. 8. Orifice with rough boundaries~the transmission is domi
nated by many boundaries defects!.
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wherep stands for the probability and«0 is the characteristic
defect transversal location. Thus, we can apply Eq.~17! to
calculate the transmission through an office withN succes-
sive surface defects

T5utu2>
~u/4!2N

~«1«2 ...«N!4 . ~26!

If we further assume, that the mean distance between suc
sive defects is a certainD, Eq. ~26! can be approximated to

T>exp~2L/j!, ~27!

whereL is the distance andj is the localization length

j[D/ ln~uv0!, v0[4e22g/«0
2, ~28!

g is the Euler’s constant.
Equations~27! and~28! suggest a strong localization pro

cess due to the one-dimensional characteristic behavio
the system~in the case wherev→p2!.

To summarize, we have shown that when the incom
particle energy is close to the orifice threshold energy
transmission can be highly sensitive to the bending an
We show that for every small bending angle, no matter h
small is it, there is a corresponding incoming energy, bel
which the transmission is dropped abruptly. We also sh
that beyond the transition point~i.e., larger bending angles!,
the transmission reaches a plateau at the value>u2, whereu
is the transition angle.

I am grateful to Professor Mark Azbel’ for enlightenin
discussions.
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