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Graded transmission in a bent orifice
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We calculate the transmission of a bent orifice. The bending angleassumed to be smalp<1 and also
0=(w— 0.)/ w.<1, wherew is the incoming particle energy, ane,= (% 7/L)?/2m is the threshold ond,
is the orifice widtf}. We find graded transmission: There is a critical angle- 6. For o<, |t|?=1, and for
©> ¢, the transmission is dropped abruptly [t)?~ 62. We suggest an explanation for this phenomenon.
[S0163-182609)01443-5

A diffusive current is hardly affected by the lead topol- the outsid¢ and w is the energy of &ingleincident particle.
ogy. Hence, Ohm’s law, which according to Einstein has a The incoming wave from the leftxE —«) is
diffusive origin? is the corner stone in any electronic devis-
ing. The engineers can layout very complicated circuits with-
out being worried about the local curvature of a specific
wire.

When quantum mechanics, and in more general any wav¥/nile the transmitted one is
dynamics, is concerned the geometry of the wires boundaries ~
cannot be ignored. The modifications of the boundaries ge- 'ﬂtranZE sinkny’(tne‘knx').
ometry may cause wave scattering, diffraction and reso- n
nances and thus have an immense influence on the CondL\ﬁlherean,

Yinc= 2 sin kny(aneiknx+ re iknx)
n

r,, andt, are the incident, reflected, and trans-

tivity. ; L ;
.. mitted coefficients, respectively,
In the last two decades, when nanostructures fabrication P y
became possible, the investigation of boundary effects turned k,=nm andk,=\o—(nm)>

out to be of practical importance. Many experimen&h.,
Refs. 2—7 and theoretical workge.g., Refs. 8—13were  The strategy is the followingy;, is a solution in the entire
done on this field. In these references, one can see a hugkeft region.” We do not sayyetthat this is the right one, but
diversity: abrupt changes in an orifice dimensions and quarthis is definitely a solution, because it solves the Sdimger
tum dots (e.g., Refs. 8—1) mesoscopical junctionge.g., equation in all the “left region,” and it agrees with the
Refs. 3,4, and 1)1 two-dimensional resonant tunneling boundary conditions of this regioxcept, for the moment,
structuregle.g., Ref. 6, rings of varying width(Ref. 13 etc.  the one ak=0). The same thing goes f@f,.s, it solves the

In this paper, we investigate a very simple system: WeSchralinger equation and maintains the boundary conditions
calculate the transmission of a bent orifitts widthL and a  in the entire “right region.” Therefore, it is a solution in this
bending anglep). Although we choose a very small bending entire region.

angle, the point of the twist is highly singulésee Fig. L Now, we need to find the right coefficienta,, r,, and
We show that despite its simplicity, this system exhibits at,,), which will take care of the boundary conditionat0,
peculiar and an unexpected behavior: i.e., the continuity of the wave function and its derivative at

Let us define the parametée (v — w.)/ v, (Wherewis  x=0. In order to do so, we match the wave function and its
the incoming energy ané.= (% =/L)%/2m is the threshold derivative atN different points on the boundary=0, then
one, then if 6> ¢ the scattered particle is hardly affected by we takeN—co and show that the solutiotand the coeffi-
the bend and the transmission is excellent, ji¢2=1, how-  cient9 converges to a specific function.

ever when#< e the transmission dropped abruptly [ig? Let us define a new set of coordinates:

~ ¢ and remains at that value at least ugtit26. We give

an explanation for this radical transmission change and for \\‘/2‘9\“/

the emergence of the plateau. We also discuss the case of incoming and Y / transmitted
multiple-boundaries defects. reflected waves ! / waves

Let us consider the transmission of a thin but tilted orifice
(Fig. 1). For simplicity, its width will be normalized to 1
(i.e., it is measured with the units @j. The stationary-state
Schralinger equation reads

V2(r)+[w—V(r)]¥(r)=0.

(Hereinafter we use the units=2m=1). V is the poten-
tial of the orifice walls(V=0 inside the orifice an¥ =« on FIG. 1. An illustration of the bent orifice.

left region right region
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(g) CoSep  Sing x)
7] |\ —sing cose/ly
or equivalently
g) Cose —sSineg\[x’
7/ \sing cose |\Y' @

Then the wave function in the left side of the bend is
> sink,(£sing+ 5 cose)[a,e'kn(écose=nsing)
n

+rnefiin(§cos<pfr;simp)], (2)

and in the right one

> sinky(— £sing+ 5 cose)[t,eknlécoset nsine)]
n

With these notations, the matching of the wave function

should take place af=0. Limiting the calculations td\

£=0 leads to 2 equations withN\2 variables. In order to
solve them, we quantize

m
N cosep’

m

n=

1=sm=N

(these are thé\ points were the matching takes plac&he
prescribed substitution solves this problé2N equations
The solution is straightforward

t=7-a, 3
wherea is the incident vector with the componerats andt
is the transmitted vector with the componeits 7 is the
transmission matrix

=TT =T717), 4
where the components of the differefis are
T" =sin(k, 7™ cose)exp(ik, 7™ sin @)
Th=[ -k, sine cogk, 7™ cose)

+ik, cose sin(k, 7™ cose) Jexp(ik, 7™ sing).

We restrict the discussion to very small bending angles and

to very small incoming momentums, that is

<1, w— <],

It is obvious, that in this case, only the first mode is propa-
gating, and thus it is the only mode that carries energy to

infinity.
Before going on, let us define an incident angle

o=tan *(Vo— 7l m)~\Jo— 7.

This angle has a simple meaningk|fandk, are the incom-
ing wave numbers, then

o=tan *(ke/ky).
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FIG. 2. The transmissionT(=|t|?) of the orifice as a function of
the bending angle for w— w?=10"* andN=100.

The plot in Fig. 2 was calculated fas— 72=10"4, i.e., 6
~3%x10 3, andN=100. From the graph we learn the fol-
lowing things:(a) For small angles, the transmission remains
unity, i.e.,|t|2=1, in this regime it is actually a constarh)

modes, the gluing of the wave function and its derivative at//N€n exceeds a certain valug.~0.025 the transmission

abruptly falls exponentially(c) When ¢ exceeds the value
~0.04 the transmission approaches a new plateau. This pla-
teau lasts at least untip~0.07.(d) The value of the trans-
mission in the second plateau-s10 °.

In order to see if these are true findings and not an arti-
fact, we check them for differerit’s. Figure 3 presents the
dependence of. on N. As can be seen by the solid line it
has an excellent fit with

_p1tp2N

where p,=(2.7+0.6)x 10 3. This p, is the extrapolated
value of ¢, for N—. Hence,p, seems to be the “real”
critical value ¢.. We can also see, that this value is very
close toé, i.e., .~ 6. This is not by chance, it happens for
every smallg. We will try to explain it later.

Next, we find that the plateaus values are independent of
N. That is, for any number of modes the first plateau has the
value 1, while the second one has the valjé~ 6°.

We thus can summarize the results in the following ex-
pression:
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FIG. 3. The dependence of the transition angleon the matrix

size (N). The solid line presents the fip.=(p,+ p2N)/(p3+N)
with p,=(2.7+0.6)x 103
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incoming and transmitted dk sin(nwy)sin(nwy’)
reflected waves wa\\/es G(r,r")= E; - (n7T)2 12 'k ), (9)
v
== . \ is the 2D scattering Green function of our geometry. A more
<= / == convenient way to write the Green function is
Grin=S sin(nwry)sin(ne) wrmxﬂ\xfxw_
An impurity 7 n 2iVE— (I’I7T)2
10
FIG. 4. 2D waves are scattered from a 2D point impurity within (10
a thin orifice. Then,
1 ¢<ec f dr'G(r',rg)D(r' —rg)
|t(¢)|2%[ 2 1 (6)
0° e>¢c = -
sinf(nme
while o~ 0. Wp2| E ) e,(nxp/2)2. (11)
Classically, there is a good explanation g~ 6, and for " VE—(nm)®

the plateau where@ <¢.. One can easily be convinced, that Since we are interested in the regime of low energies, i.e.,

classically fore< 6/3 all the particles are transmitted, while E~ 72, Eq. (11) can be approximated, except for the first
for ¢>6/3 some of them are reflected, and the transmissioferm, to an integral
decreasedinearly. However, this description neither ex-

plains the critical nature of the change, nor does it give any p\/— s|n2(778) dy o
reason for the second plate@mot to speak about its height \/ﬁ e “Y2sir?(eylp) |.

A quantum mechanical explanation should be able to elu- (12)
cidate three pointsf1l.) Why for large bending angle&p)
does the transmission get the va|tig— 6?? (2.) Why does Now we can investigate the cagép>1. This is the case
the transition take place at~ #? (3.) And finally, why is  where the impurity doesn’t touch the boundary. In this case,
there a plateau? the integral in Eq(12) can be approximated t@n the limit

In order to face the first problem we consider the bent ap—0)
a two-dimensiona(2D) point defect. Thus, by doing so, we
reduce the system to a scattering problem over a 2D impurity
(see Fig. 4. Let us choose the 2D impurity potential function
to be an impurity D functiodIDF, see Ref. 1%

2N (mpl2)?]+ 7). (13

A suitable choice foW in that case would be

D(r)=Wa(x)exd — (y—)*/p?], ()
wi=—_pn
wherep is a characteristic width of the impurity and is as- 4\
sumed to be the smallest parameter of the probleis,the . o
distance between the impurity and the lower bounddtys ~ Where pp is some constant which is related to the De-

a weight function, and(x) is the 1D Dirac’s delta function. Broglie’s wavelength of the bound state of the impurity.
Then, the scattered function takes the f&tm Then, we find that the transmitted wave function, i.e.,

Y(x>0), reads

) (14)

_ G(I’,I’O)lﬁmc(ro)
lr/fsca{r)_ ¢inc(r)_ 1+fdr’G(r’,r0)D(r’—r0)

P(x> O)zsin(wy)etvﬁx
i N
xfdr'D(r’_ro), (8) xil—{l_Em(Eb)m

o ) ) ) when E,=—4e "(wp,) 2 and thus can be identifiex-
wherero=ye is the place of the impurityyin(r) is the  cept for a constantwith the bound state energy of the im-

-1
}, (15

wave function when the impurity is absent, and purity. We took in Eq(15) only the first mode, because this
is the only one that is propagating.
incoming and transmitted From Eq.(15) it is clear, that when the energy is high
reﬂ“teilwaves Wa‘\'es [E— 7?>In"?(E,)] the impurity has a negligible influence
T T \4 on the transmission, which remains to bel. However,
== \ —— whenE — 72— 0, the transmissiokiT) goes to
=
In*(Ep) (E— )

\ T 16m2 sinf(me) (16)

A surface defect

Thus, T~ 6?. When we consider a surface defdEig. 5),
FIG. 5. The same as Fig. 4 but with a surface defect. i.e., e—0,
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FIG. 6. The transmission through the bend can be approximated
to the overlap of the localized solutions within the two rectangles.
FIG. 7. Two particles enter different bent tunnels. When they
In?(Ep) (E—7?) penetrate the bending region parti@ewill suffer a stronger dis-

~16a° &% (17)  placement toward the lower boundary.
The cause for this behavior becomes clearer when we do the ¢ . . 2
following transformations: Prurnnef™ f_ dxsin{am(x=c)/N]sinf(x+C)/A]
y— (X1 —X2)/2 c sin(2ac/N)]|?
17 X2 18) = X cog2mwC/N) — W , (22

X— (X1 +X5)/2. o .
wherec=1/sing is the overlappindength

Now, instead of considering a single particle that propagates The integral(12) has a physical meaning only fa>\,
in a two-dimensional orifice, we can visualize two particlesi.e., ¢>¢mi,=sin" {(1A\)=\"1. For ¢=0mn, Punme(®
with coordinatesx; andx, that propagate in a 1D system. =¢,,)=1, and it is decreasing down to zero very quickly.
That is,y stands for the distance between the partibeish  Actually, pynne(©=1.40min)~0. Since, 1.&,,,=60 we have
a factor of 3, which cannot exceed 1, andstands for their a qualitative explanation for the abrupt decline of the trans-
center of mass coordinate. mission ate= 6.

WhenE— 720, they are in their ground state, and they ~ But why is there a plateau? In order to answer this ques-
move like a single entity, i.e., their mutual interaction is tion we should understand the effect of the singularity of the
negligible. Therefore, the exact pattern of the scattering pobend. By looking at Fig. 7 we can ask why there should be a
tential is not important, and we can replace it by a 1D deltedifference between a particle that penetrates into tudnel
function. Thus, the problem turns to a 1D scattering problenand another one that enters tunBél
of a single particle. This is a very simple problem, which Let us assume, for convenience, that in both cases the

leads to a transmissiaffout now an exact solution radiuses are very largeR(—x). Then we can assume that
the radial movement in the bending zone, i.e., the only radial
T=1-[1+(kpp)?]™ ", (19 dependence there, is expi(Jo — 72r ¢) (Whereg is the ra-

dial angle,r =R is the radial distance and is the energy.
It is then easy to show that the wave function in the bending
zone is a superposition

wherek is the 1D wave number, i.ek=+E— 72, andpy, is
the de Broglie wavelength of the impurity bound state.
WhenE— 7?—0,

(aei \Jw*ﬂ'zRgp_F be*i \/w,7§R¢),

r-R

Tﬂpg(E_ﬂ'z)- (20 Sir{ﬂ'(r_R)](l—ﬁ

Again, T~ 62, (23)
Next, in order to explain why the change occatsuptly  [it was calculated to the first approximation in<{R)/R].

at ¢~ 6, we can use Fig. 6. In this figure, we see two rect- Therefore, the probability to continue from the straight
angles which are relatively rotated by an angleEach one  orifice to the bending part is approximately

of them has a length and a normalized width=1). We are

interested in the tunneling probability of the eigenfunction R+1 5
sin(mry)sin(27x/\) through the bent, which is related to the ZL drsifa(r—R)]
eigenvaluew = 72+ (2/\)?= w?(1+ 6%).

This probability (to tunnel through the bends equal to  Of course, this is only an approximated result for large radi-
the square of the overlapping integral uses, however, we can learn the tendency: the penetration
probability decreases with the curvature. Even from here we
see, that we should expect some problems wRe#0.

Yet, we can learn another thing: as the curvature radius
shrinks the particle gets closer to the origin. This behavior
where theA stands for the overlapping area, and the subbecomes evident from the fact that the radial wave function
scriptsL and R stand for the eigenfunctions of the left and is not a simple sinr(r—R)] but rather sifr(r—R)J[1—(r
right rectangles, respectively. This integral can be approxi—R)/2R]. We should expect aR—0 a singularity in the
mated to wave function itselfan evidence for this behavior we find in

r—R\|?
1__

2
5R =1—§. (24)

2
: (21)

Ptunnef™ ‘ jAd a‘/’t IR
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A wherep stands for the probability ang, is the characteristic
T defect transversal location. Thus, we can apply @&q) to
incoming wave M b ! calculate the transmission through an office whtrsucces-
— sive surface defects
'y PSR | [ ) [ ) (0/4)2N
L T=tfP=— (26)

= 7.
(8182...8N)

If we further assume, that the mean distance between succes-
sive defects is a certaify, Eq. (26) can be approximated to

T=exp —L/¢), (27

avherel is the distance and is the localization length

FIG. 8. Orifice with rough boundarigthe transmission is domi-
nated by many boundaries defects

the logarithmic divergence of the Bessel Y funclio®bvi-
ously, we don'’t find a real divergence but instead the wavi
function gets a sharp peak shape. It happens since the singu- E=A/N(bwg), wo=4e 2Y&2, (28)
larity scatters all the transversal modes. As the first mode

decreases all the rest increase with the same amount until te'S the Euler's constant. o
wave function has a delta function shape. Now the plateau is Equations(27) a”d(23> suggest a strong Iopa!lzatlon pro-
clear: The bending is totally transparent to a delta like in-cess due to the one-dimensional characteristic behavior of

H 2
coming function, that is, once a peak shape is forrfadter the systentin the case where)— 7).

an angles~ 6) the bending can be increasegis increasej To summarize, we have shown that when the incoming

with no reduction in the transparency. This can exolain th({>article energy is close to the orifice threshold energy the
P y. 1his P ransmission can be highly sensitive to the bending angle.
emergence of a plateau beyond the transition angle.

Bef o K hat this i b We show that for every small bending angle, no matter how
__Before summarizing, we reckon that this picture can be ) j it, there is a corresponding incoming energy, below
implemented to transmission calculations of a rough surfacg i1 the transmission is dropped abruptly. We also show
orifice (for a more energetic process see Ref. ib%the case i

that beyond the transition poifite., larger bending anglgs
wherew— 7%(6#—0). This system is illustrated in Fig. 8. y point v g angle

L . the transmission reaches a plateau at the valdé, whered
Let us, for example, assume that the spatial dimensions Q& o transition angle

the surface defects have the following distribution:

4 | am grateful to Professor Mark Azbel' for enlightening
Pe=e1)=eq " exp(—&1/eo), (29 discussions.
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