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Full-potential band-structure calculation of iron pyrite
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Transition metal disulfides of pyrite structure have recently attracted much interest again due to their large
variety of electronic, magnetic, and optical properties. The semiconductor iron pyrite (FeS2) shows, for
instance, an unusual blueshift of the optical gap under pressure. We present a full-potential total energy
calculation of iron pyrite using density functional theory with a nonorthogonal local orbital minimum basis
scheme. A sophisticated decomposition of the crystal potential and density into a lattice sum of local overlap-
ping nonspherical contributions gives our approach a high numerical efficiency and makes it well suited for
open structures like pyrite. For the decomposition of the exchange and correlation potential we introduced a
technique of partitioning of unity based on Voronoi polyhedra. We obtain a sufficiently good agreement
between our calculations and experimental values for the lattice constant, the positions of the sulfur atoms in
the lattice, the bulk modulus, and the frequency of the Ag phonon mode to make a reliable study of the effect
of isotropic external pressure on the electronic structure of pyrite and to obtain insight into the optical prop-
erties of pyrite.@S0163-1829~99!06843-5#
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I. INTRODUCTION

Transition metal disulfides of pyrite structure have been
the interest of scientific research for a long time due to th
large variety of electronic, magnetic, and optical properti
In this paper we will focus on the properties of the semico
ductor iron pyrite FeS2 with its promising capabilities for
photovoltaic applications.1,2

Experimental data on the electronic structure of iron p
rite have been reported from numerous works, includ
photoelectron spectroscopy3 and optical measurements of th
band gap. The values for the optical band gap vary in a br
range from 0.7 eV to 2.62 eV. An overview is given in Re
4 and 5. Most reliable values are reported from photocond
tivity measurements yielding values of approximately 0.9
0.95 eV. Data on the lattice structure and dynamics are av
able from x-ray diffraction,6 ultrasonic measurements7

shock wave compression,8 and Raman and infrare
spectroscopy.9–12

Self-consistent band-structure calculations13–18 of pyrite
show quite a remarkable agreement. However, due to
open structure, pyrite is still a challenge for theoretical c
culations of the electronic structure and the ground state
ergy. It was shown by Folkertset al.17 that when using a
muffin-tin approximation, it is necessary to include so-cal
empty spheres in the calculation, and in the most recent
culation of Eyertet al.16 the number of empty spheres in th
unit cell was even increased to 32 before the results bec
stable. The pyrite structure has two structural degrees of f
dom, namely the lattice constanta0 and the Wyckoff param-
eter xS determining the positions of the sulfur atoms in t
unit cell. Theoretical values of these parameters were p
PRB 600163-1829/99/60~20!/14035~7!/$15.00
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lished by Zeng and Holzwarth,13 who used a pseudopotentia
formalism within the frozen core approximation for their ca
culations. In their paper, they mainly focused on the vale
electron distribution and cohesive energy comparing res
of the local density approximation~LDA ! and generalized
gradient approximation~GGA! for the exchange and corre
lation potential. In a recent publication of Nguyen-Man
et al.18 the equation of state and the reflectivity spectrum
iron pyrite under pressure were calculated using a tig
binding linear muffin-tin orbitals method.

Further theoretical studies of the influence of exter
pressure on the electronic structure have, to our knowled
not been published yet and the understanding of this in
ence is still quite incomplete. Experimentally, it was fou
that the implantation of small amounts of Zn into FeS2
(,531020 cm23) increases the optical gap by an amount
0.07 eV.16 In theoretical calculations, even a small change
the sulfur position in the lattice results in a drastic change
the band gap. On this basis, it was speculated that un
application of external pressure, the compression of
bonds is larger than that of Fe-S bonds in order to explain
experimentally observed blueshift of the band gap.9 This,
however, is in contradiction to the experimental findings
Will et al.,6 where a reduction of the sulfur parameter und
application of external pressure is reported. In order to so
this contradiction, we determined the theoretical sulfur po
tion for several lattice constants with our self-consistent f
potential band-structure calculation scheme which will
discussed briefly in the next section. In Sec. III we pres
the results of our theoretical calculations for mechani
properties like lattice parameters, bulk modulus, and theg
phonon mode. A discussion of the band structure and
14 035 ©1999 The American Physical Society
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14 036 PRB 60I. OPAHLE, K. KOEPERNIK, AND H. ESCHRIG
corresponding density of states for different external con
tions gives a natural explanation for the experimental fi
ings discussed above.

II. CALCULATIONAL SCHEME

A. General aspects

The full-potential nonorthogonal local-orbital minimum
basis band-structure method used in this paper is describ
detail elsewhere.19 Here we focus on the main aspects of t
scheme. The extended states are expressed as a linear
bination of local orbitals. These orbitals are solutions to
atomlike Schro¨dinger equation in the spherically averag
crystal potential. The orbitals may be classified by virtue
their overlap. States from different sites, which do not ov
lap, are treated as core states. All other~mutually overlap-
ping! states are valence states. The calculation of the vale
states is modified by introducing an additional confining p
tential of the form (r /r 0)4. It serves to compress the fa
ranging tails of the orbitals. This compression enhances
suitability of the valence basis orbitals for the band-struct
calculation and raises the orbital energies, necessary fo
description of scattering states. The compression radii h
been shown in Ref. 20 to scale basically with the 3/2 pow
of the nearest-neighbor distance:r 05(x0r NN/2)3/2. The pa-
rametersx0 are chosen to depend on the angular momen
l of the orbitals.

Consequently, the valence orbitals are no longer ortho
nal even at the same site. The main advantage of the c
pression procedure is a high basis flexibility although
basis dimension is kept at its minimum value. A proper a
justment of the compression radii with respect to the m
mization of the total energy gives an optimized basis set

The density and the potential are represented by a la
sum of local overlapping nonspherical contributions. T
nonsphericity is taken into account by a spherical harmon
expansion of the local contributions up to a cut-off angu
momentumLmax. Due to the overlap of the local potential
there is no shape restriction of the potential. We need
atomic spheres and therefore, we need no~time consuming!
Fourier expansion for the interstitial potential.

The calculation of the density from the wave functio
contains two types of expressions. The net density is form
of orbitals at the same site only and itslm decomposition is
easily achieved. The overlap density is formed of orbitals
two different sites. To decompose this contribution into lo
parts centered at the corresponding sites, we employ a
dimensional partitioning of unity along the axis joining th
two sites.

From the density, the Hartree potential is easily calcula
by means of the Poisson equation. The only potential con
bution which does not properly fit to our local decompositi
is the exchange and correlation~xc! potential. This nonlinear
function of the density has to be decomposed into parts c
tered at the lattice sites and falling off rapidly while a
proaching the neighboring sites. In Ref. 19 we introduce
technique of partitioning of unity resulting in local shap
functions. However, we realized that this definition, thou
generally valid, was not well suited for the present calcu
tions, since the compact support of the resulting shape fu
i-
-

in

om-
n

f
-

ce
-

e
e
he
ve
r

m

o-
m-
e
-
-

ce
e
s
r

o

d

t
l
e-

d
i-

n-

a

-
c-

tions was rather elongated in certain directions. Thus, ke
ing the basic idea, we chose a new definition given in
next subsection.

B. The Voronoi shape functions

Our aim is to find a set of functionsf s(r ) with the prop-
erty

(
R1s

f s~r2R2s![1 ~1!

with R1s being a lattice site with atom types. Additionally,
we demand that each functionf s has compact supportVs
~the domain outside of whichf s50) which excludes all lat-
tice sites from its interior except the center. This impli
f s(0)51. For the sake of applicability in band-structure ca
culations we further want the shape functions to have
symmetry properties of the underlying lattice. Especially
cases when there are large portions of empty space in
lattice, it is desirable to have the most ‘‘isotropic’’ suppo
since then the product of any functionv(r ) with the shape
function gives the most spherical result, reducing the num
of lm components to be taken into account in a spher
harmonics expansion.

The last requirement is fulfilled by the Voronoi cell
They are defined in analogy to the Wigner-Seitz cell but
an arbitrary point set. The cell is the intersection of all clos
half-spaces bounded by planest r /utu251/2, wheret5R
1s82s is a vector pointing from the center of the cell to an
other site. In fact, only sites of some vicinity of the cent
site do contribute to the definition of the boundary. T
Voronoi cells do not overlap, but for our purpose we ne
the compact supports from different sites to overlap. Th
we enlarge the cells by using an eight times larger cell w
t r /utu251.

Then we define a function

f̃ s~r !5)
$t%

hS t r

utu2
D

with r being the offset vector from the sites and with an
auxiliary function having the property:h(x)51 for x<0 and
h(x)50 for x>1. f̃ s indeed fulfills all demands describe
above except for the unity condition Eq.~1!. This, finally, is
achieved by normalizing the shape function each time
value is needed

f s~r !5
f̃ s~r !

(
t

f̃ s8~r2t!

where the sum runs effectively over all sites withVsùVs8
ÞB ~including s5s8). This normalized function is no
stored since it turned out that its numerical computation
fast enough.

The shape functions defined in this way are smooth fu
tions which approach zero at the neighboring sites with a
wanted power law due to the choice ofh(r ). For a similar
technique see, e.g., Becke.21 However, the Becke functions
do not have a compact support, which enlarges the dom
from which the shaped potential is sampled.
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PRB 60 14 037FULL-POTENTIAL BAND-STRUCTURE CALCULATION . . .
The set of sites defining the supportVs may be enlarged
without changingVs by adding shells of sites further awa
Sometimes, when atomic positions in the unit cell shall
varied, the topology of the Voronoi cells depends on so
position parameter. Then, one can construct cells which
ply to all parameter values by just forming the union of t
sets of vectorst for all parameter values.

C. Details of the present calculation

Our calculations are based on nonrelativistic density fu
tional theory~DFT! in local density approximation~LDA !
using the Perdew-Zunger parametrization22 of the exchange
and correlation potential of the homogeneous electron
As minimum orbital basis set we used Fe 4s, 4p, 3d orbit-
als and S 3s, 3p, 3d orbitals. In order to optimize our mini
mum basis, we varied the parameterx0 of the confining po-
tential introduced in the last section. The optimal choice
parameters minimizing the total energy are shown in Fig
Since Fe 4s and 4p orbitals contribute only a little to the
occupied band states, the total energy remains rather in
sitive to the choice ofx0 for these orbitals. A change of th
unit cell volume basically does not change the optimum
of x0 parameters. However, a variation of the sulfur posit
in the unit cell leads to differentx0 parameters, and due t
the relatively strong dependence of the total energy on th
parameters, we had to adjust the set of parameters for t
calculations.

In order to check the convergence of our results, we p
formed various calculations with increasing cut-off mome
tum Lmax. The result is given in Fig. 2. The total energ
varies less than 2 m Hartree per atom betweenLmax58 and
12. ~Note thatLmax is not a variational parameter, hence t
most accurate total energy result is not the lowest one.! For
all that follows, a cut-off momentum ofLmax512 was used.
Convergence with respect to the fineness of thek space grid
was ensured by a sequence of calculations with an increa
number of 11, 24, 45, and 119k points in the irreducible
wedge of the Brillouin zone.

III. RESULTS AND DISCUSSION

A. Electronic structure
using the experimental lattice parameters

Most of the calculations of the electronic structure pu
lished so far were done using the experimental lattice par

FIG. 1. Variation of the total energy with respect to the co
pression parametersx0.
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eters. Except for Refs. 13 and 18, an optimization of the t
free parameters of the pyrite structure with respect to
total energy has, to the authors’ knowledge, not been p
lished yet. In order to compare our own results to publish
calculations, we first calculated the electronic structure
FeS2 using the experimental data for the lattice constant a
sulfur positions.6

In Figs. 3 and 4 we show our calculated band structure
FeS2 along selected high symmetry lines and the correspo
ing density of states. The agreement with the results o
recent calculation by Eyertet al.16 is quite good. The band
gap between occupied and unoccupied states is app
mately 0.85 eV and coincides well with the experimen
values of approximately 0.9–0.95 eV. However, we sho
mention that DFT in LDA usually does not give accura
values for the band gap of semiconductors.

The band structure is split into five groups of bands in
range between218 eV and 5 eV relative to the valence-ban
maximum~VBM !. The character of the bands can be eva
ated using the partial density of states shown in Fig. 4. T
two groups between210 and218 eV have almost entirely
the character of S 3s states, which form bonding and ant
bonding subsets. The asymmetric shape of the correspon

-
FIG. 2. Variation of the total energy with respect to the cut-o

momentumLmax.

FIG. 3. Band structure of iron pyrite calculated with the expe
mental lattice parameters.
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14 038 PRB 60I. OPAHLE, K. KOEPERNIK, AND H. ESCHRIG
density of states was also found in previous calculations
is consistent with x-ray photoelectron spectroscopy~XPS!
core level spectra of van der Heideet al.3 who locate the
sg(3s) peak at216.4 eV and thesu* (3s) peak at213.3 eV.
In comparison to Ref. 16, the S 3s bonding bands are shifte
downwards by an amount of approximately 0.5 eV in o
calculation, which is probably due to the different calculati
schemes used, since bonding bands are more sensitive t
interstitial potential than antibonding bands. The next gro
of bands in the range between 7.5 and 1.5 eV below
VBM is formed of hybridized S 3p and Fe 3d states with the
main contribution from S 3p. The upper valence bands a
formed of Fe 3d and S 3p states and some small admixtu
of S 3d with the main contribution from Fe 3d. Finally, the

FIG. 4. Partial Fe 3d, S 3p, and S 3d densities of states of FeS2

~solid lines! and total density of states~dashed lines! calculated with
the experimental lattice parameters.
d

r

the
p
e

conduction band is formed mainly of hybridized Fe 3d and S
3p and 3d states. Fe 4s and Fe 4p states contribute mainly
to the higher unoccupied bands not shown in Fig. 3. T
band structure is discussed in more detail in Ref. 16.

B. Mechanical properties and influence of external pressure

Next, we want to study the influence of isotropic extern
pressure on the structure and properties of FeS2. In Fig. 5 we
show the variation of the total energy with respect to t
lattice constanta. The theoretical value of the lattice consta
atheo510.02 a.u. obtained by our calculations deviates fr
the experimental valueaexp510.22 a.u.6 by about 2% and is
in good agreement with the calculated value of Nguye
Manh et al.18 The theoretical lattice constant obtained
Zeng and Holzwarth13 was about 1% larger than the expe
mental value. Varying the position of the sulfur atoms in t
lattice ~see Fig. 6!, we find a theoretical value of the Wyck
off parameterxS50.377, which is about 2% lower than th
experimental value 0.386,6 which means that in our calcula
tion the bond length between neighboring sulfur atoms
enlarged. Similar results were also found in Refs. 13 and
From the total energy curve in Fig. 5 we obtained a value
185 GPa for the bulk modulusB5V(]2E/]V2), which is

FIG. 5. Total energy vs. lattice constanta, calculated with the
theoretical sulfur positions.

FIG. 6. Total energy vs. sulfur parameterxS , calculated for the
the theoretical lattice constant.
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PRB 60 14 039FULL-POTENTIAL BAND-STRUCTURE CALCULATION . . .
about 30% higher than the literature valueB5145 GPa ob-
served ultrasonically7 and is in very good agreement with th
calculated valueB5187 GPa of Ref. 18. From other exper
mental methods bulk moduli between 118 GPa6 and 162
GPa8 are reported. The results are summarized in Tab
together with the experimental values. Another interest
point is the effect of isotropic external pressure on the e
tronic structure of pyrite. A change of the sulfur Wycko
parameterxS has a considerably strong influence on the ba
structure of FeS2. When varyingxS with a fixed lattice con-
stant we find that the band gap becomes larger with incr
ing xS , which was also found in Ref. 16. For the theoretic
lattice parameters minimizing the total energy in our cal
lations, the band gap even vanishes~Fig. 7!. A similar result
was also found by Zeng and Holzwarth with their theoreti
lattice and sulfur parameters. A change of the lattice cons
results in a broadening of bands and rather does not influe
the band gap. Assuming that the sulfur-sulfur bond comp
sion is larger than that of Fe-S bonds when pyrite is expo
to external isotropic pressure, it was concluded in Ref.
that an increase ofxS can explain the experimental bluesh
of the optical band gap observed by Batlogg as reporte
Ref. 9. In Fig. 8 we show the total energy curves in dep
dence of the sulfur parameterxS for different lattice con-
stants. Although the exact determination of the minima
the curves is close to the limits of our numerical accura
due to the shallow potential and the slight variation of thexS
parameter, the tendency of a decreasingxS under external
pressure is quite clear and was the same for all values o
lattice constant. Furthermore, this is in agreement with
experimental data of Willet al.6 Thus, the scenario outline
in the paper of Eyertet al. cannot be the right explanatio

TABLE I. Comparision between experimental and calcula
results.

a ~a.u.! xs B ~GPa! \vAg
~eV!

theoretical 10.02 0.386 185 0.48
experimental 10.22 0.377 145 0.54
deviation~%! 2 2 28 13

FIG. 7. Band structure of FeS2 calculated for the theoretica
lattice parameters minimizing the total energy.
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and the question why there is a blueshift of the optical ba
gap when pyrite is exposed to pressure remains to be
swered. The picture becomes clearer if one takes a loo
the overall behavior of the density of states for different pr
sures~Fig. 9!. The steep band near theG point that causes the
reduction of the band gap only contributes to a very shall
tail in the density of states, while the steep absorption e
for transitions into the antibonding Fe 3d and S 3p states is
slightly shifted towards higher energies. Simultaneously,
bonding S 3p and Fe 3d band complex below22 eV is
shifted towards lower energies, clearly indicating that bo
shifts are caused by an increase in Fe-S covalency u
pressure due to the reduction of the Fe-S bond length.
optical absorption measurements, we would finally exp
that the increase of the absorption edge is measured. F
our calculations we would expect a different behavior of t
band gap in photoconductivity and optical absorption m
surements, which would be an interesting experimen
check of our results.

FIG. 8. Total energy in dependence of the sulfur parameter
different lattice constants. Energies are relative to the minimum
each lattice constant.

FIG. 9. Comparison between the total density of states for
lattice constantsa510.0 a.u. anda59.8 a.u. with optimized sulfur
parameters.
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C. Calculation of the Ag-phonon mode

As a final check for the reliability of our results, we ca
culated the frequency of theAg-phonon mode at the center o
the Brillouin zone corresponding to the displacement of
sulfur atoms with variation ofxS . In the harmonic approxi-
mation, the Hamiltonian for the lattice vibrations is

H5(
msi

pmsi
2

2
1

1

2 (
msi

(
nt j

umsiCnt j
msiunt j , ~2!

whereumsi is the i th coordinate of the displacement of th
atoms in the unit cell associated with the lattice vectorRm

and Cnt j
msi5d2V(0)/dxmsidxnt j are the atomic force con

stants.
For ther th normal mode with wave vectorq, the atomic

displacements are given by

umsi5
1

ANMs

eiqRmesi
(r )Qr~q!. ~3!

For theG point of the Brillouin zone, there are obvious sim
plifications for the classification of normal modes with r
spect to space group representations. For pyrite, the fa
group is isomorphic to the the point groupTh and the normal
modes have the following irreducible representations:9

Ag1Eg13Tg12Au12Eu16Tu . ~4!

Since the vibration associated with a variation ofxS is in-
variant under all symmetry operations, it corresponds to
trivial Ag representation. For this mode, the normal coor
nate is given by

Q5A24NMSadS , ~5!

wherea is the lattice constant anddS is the variation of the
Wyckoff parameterxS . From the relation

V~dS!5
1

2
v2Q†Q512v2a2dS

2NMS5NadS
2, ~6!

wherea is obtained by a least squares fit to the data of F
6, we get a value of\v50.048 eV for the energy of theAg
s

,

s,

K
y

he

iet
e

tor

e
-

.

phonon mode. Experimentally, the Raman spectrum of py
shows one peak at the energy 0.054 eV which is believe
correspond to theAg phonon mode.12 Thus, also here we
obtain good agreement between our calculations and exp
ment.

IV. CONCLUSION

In the present work we investigated the properties of ir
pyrite by means of total energy calculations. Our fu
potential method with a strictly local representation of
functions allowed us for accurate and numerically efficie
calculations without use of empty spheres. The calcula
lattice constant and sulfur parameter, bulk modulus, as w
as the frequency of the Ag phonon mode are in a typica
LDA agreement with experimental values. The calcula
band structure is consistent with recent calculations
shows a nice agreement with experimental XPS spectra.

As in previous calculations, the band gap shows a str
correlation to the sulfur Wyckoff parameterxS and is re-
duced with decreasingxS . The drastic effect of the sulfu
position on the band gap can at least partially explain
strong influence of impurities on the optical properties. O
total energy calculations show that the blueshift of the op
cal gap of pyrite under pressure cannot be attributed t
larger compression of S-S bonds in comparison to tha
Fe-S bonds. We find the opposite effect, i.e., thexS is de-
creased under pressure in agreement with experiment. H
ever, the steep band near theG point that is responsible fo
this reduction contributes only to a very shallow tail in th
density of states, while the absorption edge between oc
pied nonbonding Fe 3d states and unoccupied hybridized F
3d–S 3p states is slightly shifted towards higher energ
due to an increase in Fe-S covalent bonding strength. T
we conclude that the blueshift in absorption measureme
under pressure can be attributed to this pseudogap beha
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