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Self-inductance of chiral conducting nanotubes
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Chiral conductivity in nanotubes has recently been predicted theoretically. The realization and application of
chiral conducting nanotubes can be of great interest from both fundamental and technological viewpoints.
These chiral currents, if they are realized, can be detected by measuring the self-inductance. We have treated
Maxwell’s equations for chiral conducting nanotubes~nanocoils! and find that the self-inductance and the
resistivity of nanocoils should depend on the frequency of the alternating current even when the capacitance of
the nanocoils is not taken into account. This is in contrast to elementary treatment of ordinary coils. This fact
is useful to distinguish nanocoils by electrical measurements.@S0163-1829~99!00843-7#
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I. INTRODUCTION

Carbon nanotubes can be viewed as cylindrical forms
rolled graphene sheets1 and most of them have chiral atom
arrangements.2 Theoretical studies3–5 predict that these car
bon nanotubes are either metallic or semiconducting dep
ing on their diameters and geometrical chiralities. These
oretical predictions triggered extensive research in
conducting properties of nanotubes. Experiment has sh
that conductances of individual nanotubes can vary6,7 sug-
gesting that tubule conductivities depend on their geo
etries.

New classes of nanotubes consisting of the graphitic
compounds, BN, BC3, and BC2N have been investigate
theoretically,8–10 and synthesis of BN~Refs. 11–13! and
BxCyNz ~Refs. 14 and 15! nanotubes has been realized. T
geometrical structures of some of these compound nanot
are not settled as yet. In the case of BC2N, nanotubes doped
with carriers should have unique conducting properties,
is chiral conductance.16 This is because the anisotropic co
ductivity of the BC2N sheets results in chiral trajectories f
the current density in the nanotubes. On the other hand,
carbon nanotubes are not expected to be significant c
conductors even when they have structural chirality. The g
phitic walls of pure carbon nanotubes have nearly isotro
in-plane conductivities, which inhibits chiral currents.16 Me-
chanical stretching has been proposed as a method for in
ing chiral conductivity in these carbon nanotubes wh
doped.17 The essence of chiral conduction is symme
breaking on tubule walls upon mechanical stretching. T
induced current chirality is most likely for geometrically ch
ral nanotube having helical pitches close to those of a
chair tubules. The arm-chair nanotubes appear to be on
the main constituents in the single-walled carbon ropes
served in Ref. 18. Recently, atomically resolved scann
tunneling microscope measurements revealed the exist
PRB 600163-1829/99/60~19!/13885~5!/$15.00
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of chiral nanotubes, some of which differ slightly from th
arm-chair shape.19 These nanotubes can be used to check
predicted chirality under stretching. Hereafter, nanotu
with chiral conductivities are called nanocoils.

A question can be raised as to how chiral currents
nanocoils would be measured experimentally. One poss
approach is to observe the selfinductance of nanocoils. W
alternating current~AC! flows in nanocoils, the circular com
ponent of the current generates an alternating magnetic
that induces an electric field along the tubule circumferen

Since the nanocoils have very small diameters, one
imagine that quantum behavior in electron transport~coher-
ent electronic transport! occurs. However, the lengths o
nanocoils would be in the order of microns, same as na
tubes. This order of the lengths is far beyond the typi
coherent lengths of electrons at room temperature becau
considerable electron-phonon scatterings and of impu
scatterings. The coherent transport should be realized in
fect nanotubes only under extremely low temperatures.
though the regime of the quantum transport is an interes
subject, hereafter, we rather focus our attention on ordin
conditions of semiclassical transport which will be mos
realized in typical experimental situations.

Here, we present a classical treatment of Maxwell’s eq
tions for nanocoils. In this simple treatment, we assume
classical electron transport instead of quantum-mechan
treatment of electron hoppings.20 This assumption enables u
to evaluate the current-induced magnetic field easily. T
selfinductance of the nanocoil is found to be frequency
pendent even when there is no capacitance in the nano
itself. This result is contrary to the case of ordinary coils.
the limit of low frequencies (v→0), the effective induc-
tance of a nanocoil is found to be a function ofv2. The basic
physics behind this phenomenon is that in a nanocoil
chiral angle of the current isv dependent whereas in a cla
sical coil this is fixed by the pitch of the winding of the wire
13 885 ©1999 The American Physical Society
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in forming the coil. In the latter part of this paper, we sho
the derivation of this conclusion. In Sec. II, we formulate t
classical Maxwell’s equation for alternative currents in nan
coils. In Sec. III, we derive thev2 dependency of the self
inductance of the nanocoils and we summarize the pre
results in Sec. IV.

II. ELECTRODYNAMICAL TREATMENT OF NANOCOILS

We model the nanocoil as a continuous conducting cy
der with diameterr, lengthl, and an effective thicknessd for
current flow. For convenience, we use the two principal a
z and c in the directions of tubule axis and circumferenc
respectively. The chiral current densityJ, which has the di-
mensions of~charge3velocity!/~volume!, can be decom-
posed intoz andc components,Jz andJc . An electric fieldE
can also be decomposed intoz and c components,Ez and
Ec , and we can relateJ to E as following:

S Jz

JcD 5S szz szc

scz sccD S Ez

EcD . ~1!

Here, the tensorsmn is the conductivity tensor for a nano
tube, which can be obtained within the framework of Bol
mann’s transport equation solved by using the relaxa
time approximation16,17 or, in general, obtainable within th
Kubo-Greenwood formalism depending on frequency. T
local approximation is derived assuming that, at any tim
the same force acts on each electron. This is not the ca
the field varies in space. However, this approximation
valid whenever the wavelength of the field is long compa
to the electronic mean-free path. When this is not the c
we need to resort to nonlocal theories of greater complex
However, here we takeEz as the applied external electr
field and assume that it is constant over the nanotube le
and that the local approximation for the current is valid. T
left panel in Fig. 1 shows the geometrical situation for t
present assumptions.

Based on similar assumptions as before, we can exp
the electric displacementD of the nanocoil by using the
frequency-dependent dielectric function of the nanocoilemn

within a local approximation

FIG. 1. Schematic diagram of a nanotube with chiral conduc
ity. The currents densitiesJz andJc are decomposed components
the chiral current density along the tubule axisz and circumference
c, respectively. The electric fieldsEz and Ec are also shown. The
classical equivalent circuit of the entire system with nanocoil is a
drawn for comparison.
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S Dz

DcD 5S ezz ezc

ecz eccD S Ez

EcD . ~2!

We here distinguishemn from smn : emn comes from re-
sponses of localized electrons and ionic cores whilesmn
comes from responses of delocalized electrons near
Fermi level.

The right panel of Fig. 1 depicts an equivalent circuit f
our nanocoil system. We assume here a good Ohmic con
between the nanocoil and the electrodes.L andR in the right
panel of Fig. 1 are inductance and resistance of a coil,
spectively, in the classical sense. As far as we know,
assumed good Ohmic contact has not been achieved ex
mentally, instead there are effective capacitance due to
contacts which give rise to single-electron transport throu
nanotubes.21 A discussion of current-induced magnetic fie
in quantum transport would require the framework of qua
tum electrodynamics, which is beyond the scope of
present paper. Recent experimental works have achieved
remarkable reduction of the contact resistance between n
tube and electrodes.22 Very recently, the achieved contac
has been within a resistance of 23 Kilo-Ohm between
outer shell of the multiwall natube and metal electrodes23

Indeed, there is a lot of work nowadays to reduce even
ther the contact resistance. In fact, Tersoff24 have proposed
that the momentum conservation in the electron transp
from the metal electrode to nanotube may play a key role
reducing the resistivity. Even if the interactions between
nanotube and electrode are only the Van der Waals ty
there should be significant orbital interactions as an anal
of the graphite interlayer case.25 So the difference betwee
the original density of states at the Fermi levels in nantu
and electrodes will be compensated reducing the contac
sistance. We thus expect that in near future a lower resis
ity will be achieved in which the capacitance arising fro
the electrical contact can be ignored.26

In this paper, we shall restrict ourselves to normal clas
cal conductivity of nanocoils and show that inductance
nanocoils differ from ordinary classical coils even in th
regime. Note that a nanocoil itself has no capacitance in
present model since we assume continuous surface cu
density. From a practical viewpoint, we can consider an
fective capacitanceC coming from the electric wires con
nected to the nanocoil for the current measurement. H
ever, there is a standard scheme in measuringL, eliminating
the effect ofC from the wires,27 by constructing an entire
circuit including a reference, to which a relative inductan
L̃ is measured. For the general purpose of nanocoil’s ind
tance, it is, then, not necessary to include capacitance e
in our present discussion.

From now on we take each component ofE, D, andJ in
Eqs.~1! and~2! to be homogeneous on the tubule wall. If th
tubule lengthl is extremely long compared to its radiusr and
thicknessd for the current flow, we can assume that t
magnetic fieldB, generated by a chiral current, is consta
inside the nanocoil. All quantum effects related to the qu
tization of the magnetic flux (f5ch/2e52.07
31027 Gauss cm2) are neglected in the present descriptio

Now let us solve Maxwell’s equations for the nanoco
~unless otherwise stated, we use CGS units!,

¹•D~r !54pr~r !, ~3!

¹•B~r !50, ~4!

-
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¹3H~r !5
4p

c
J~r !1

1

c

]D~r !

]t
, ~5!

¹3E~r !52
1

c

]B~r !

]t
. ~6!

Since we consider no charge accumulation on the na
coils, the right-hand side of Eq.~3! is zero. Using Stoke’s
theorem considering a cross sectionld parallel to tubule axis,
Eqs.~5! and ~6! can be rewritten as

l S Bz

m
2

Bz
ext

mextD 5S 4p

c
Jc1

1

c

]Dc

]t D ld, ~7!

l ~Ez2Ez
ext!52

1

c

]Bc

]t
ld. ~8!

The magnetic fieldB is also decomposed intoz andc com-
ponents.Ez , Bz , m, and Ez

ext , Bz
ext , mext are the electric

field, magnetic field, and magnetic permeability inside a
outside the nanocoil, respectively. Here the lengthl is ex-
tremely long compared tod, so we can ignore the magnet
field outside the nanocoil (Bz

ext), the contribution, which is
restricted only at the edge of the nanocoil. Furthermore,
left-hand side of Eq.~8! is zero if we consider the continuit
of the tangential electric field going from inside to outsi
the nanocoil. For the case of extremely thin tubules (d→0)
the continuity of the time derivatives in Eqs.~7! and ~8!
makes their contribution zero when multiplied byd. In this
limit, we have non zero contribution for Eqs.~7! and~8! only
when we have the surface density current and the magn
field, which is proportional to this surface density current~as
is known for classical coils!.
o-

d

e

tic

By considering Stoke’s theorem with respect to anot
cross sectionpr 2, perpendicular to the tubule axis, Eq.~6!
can be rewritten as,

2prEc1
pr 2

c

]Bz

]t
50. ~9!

Using Eqs.~7! to ~9! and adopting the definitions of Eqs.~1!
and~2!, we finally obtain an equation of motion for the ele
tric field componentsEz andEc as,

2Ec1
mrd

c S 4p

c
scz

]Ez

]t
1

4p

c
scc

]Ec

]t
1

ecz

c

]2Ez

]t2

1
ecc

c

]2Ec

]t2 D 50. ~10!

Here, we assumeEz is the applied external fieldEzcos(vt),
and then solve for the induced fieldEc by assuming that
Ec5Ec8cos(vt)1Ec9sin(vt). By taking the cos(vt) and
sin(vt) terms separately, and defining a material depend
constantT5mrd/c2, we obtain

S 22Tv2ecc~v! 4pTvscc~v!

24pTvscc~v! 22Tv2ecc~v!D S Ec8

Ec9D
5S Tv2ecz~v!Ez

4pTvscz~v!EzD , ~11!

which can be solved taking into account thev dependence of
emn andsmn . The final result for the induced circular electr
field is
Ec85Tv
$22Tv2ecc~v!%vecz~v!2~4p!2Tvscc~v!scz~v!

$22Tv2ecc~v!%21$4pTvscc~v!%2
Ez , ~12!

Ec954pTv
Tv2scc~v!ecz~v!1$22Tv2ecc~v!%scz~v!

$22Tv2ecc~v!%21$4pTvscc~v!%2
Ez . ~13!

For the experimental determination of the selfinductance, we must measureJz since the other component of the currentJc ,
along tubule circumference, is not extractable. Then expressingJz asJz8cos(vt)1Jz9sin(vt), we finally obtain

Jz85szz~v!Ez1szc~v!Ec85Fszz~v!1szc~v!Tv2 $22Tv2ecc~v!%ecz~v!2~4p!2Tscc~v!scz~v!

$22Tv2ecc~v!%21$4pTvscc~v!%2 GEz , ~14!

Jz95szc~v!Ec954pTvszc~v!
Tv2scc~v!ecz~v!1$22Tv2ecc~v!%scz~v!

$22Tv2ecc~v!%21$4pTvscc~v!%2
Ez . ~15!
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For an applied voltageV0 and nanocoil lengthl, Ez in the
previous equations corresponds toV0 / l . We stress that this
is an approximation that stems from our model description
the nanocoil current. Considering a practical experimen
situation, the possible range ofv is limited to a low-
frequency regime in which bothsmn and emn are well ap-
proximated as their values atv50. On the other hand, in th
classical case of a resistanceR and a inductanceL in series-
~see the right panel in Fig. 1! the total currentI is given as

I 85
R

R21S Lv

c2 D 2 V0 , ~16!

I 95
Lv/c2

R21S Lv

c2 D 2 V0 , ~17!

hereI 8 andI 9 are the cos(vt) and sin(vt) components ofI,
respectively. Then, we can relateR andL with I 8 and I 9 as,

R5
I 8V0

I 821I 92
, ~18!

L5S c2

v D I 9V0

I 821I 92
. ~19!

Similarly, we can derive an effective inductance of the na
coil (L̃) and a resistance (R̃) as follows,

R̃5
Jz8V0

~Jz8
21Jz9

2!~2prd !
, ~20!

L̃5S c2

v D Jz9V0

~Jz8
21Jz9

2!~2prd !
. ~21!

Here, the factor of 2prd(5* r 2d/2
r 1d/22pr 8dr8) corresponds to

the cross section for current densityJz according to the
present geometrical assumption, see left panel of Fig. 1.
plugging Eqs.~14! and ~15! into Eqs.~20! and ~21!, both R̃

andL̃ are found to bev dependent even though all elemen
of smn andemn are set to be constant. This fact is in a sha
contrast to the cases of classical coils. Furthermore, botR̃

and L̃ are found to be functions ofv2 from the functional
form of Eqs.~14! and ~15! and those of Eqs.~20! and ~21!.

III. v DEPENDENCE OF THE SELF-INDUCTANCE
OF NANOCOILS

With use of above equations, we now focus on howL̃
behaves at low-v regime. First, let us defineQ[v2 and
introduce the following definitions

a~Q![~22TQecc!
21~4pTscc!

2Q, ~22!

b~Q![~22TQecc!ecz2~4p!2Tsccscz , ~23!
f
al

-

y

p

g~Q![TscceczQ1~22TQecc!scz , ~24!

f ~Q![$szza~Q!1szcTQb~Q!%21$4pTszcg~Q!%2Q,
~25!

g~Q![a~Q!g~Q!. ~26!

Combining Eqs.~14!, ~15!, and ~21! with above Eqs.~22!–
~26!, one can obtain

L̃5
g~Q!

f ~Q! S 4pTszclc
2

2prd D . ~27!

In the low-frequency limit, the autoinductanceL̃ has a finite
value of 2pc2Tlszcscz /(2prdszz

2 ) becauseJz9(v)/v is
nonzero whenv→0. However, what matters for the imped
ance of the system isvL̃ and this is zero, in agreement wit
the fact that in static fields there are no contribution of
ductive effects. By performing a Taylor expansion ofL̃
aroundQ50 (v50), we get thev2 dependence at low
frequency limit. Our current interest is in the sign of the fir
derivative ofL̃ with respect toQ, which determins whethe
L̃ increases or decreases with increasing frequency. The
of the first derivative corresponds to that of the sign of t
function S with

S5ġ~0! f ~0!2 ḟ ~0!g~0!

52~szz!
2a~0!2ȧ~0!g~0!1~szz!

2a~0!3ġ~0!

22szzszcTa~0!2b~0!g~0!2~4pTszc!
2a~0!g~0!3,

~28!

where dots mean the first derivative with respect toQ. From
the definitions~22! to ~24!, we know

a~0!54, ~29!

ȧ~0!5~4pTscc!
224Tecc , ~30!

b~0!52ecz2~4p!2Tsccscz , ~31!

g~0!52scz , ~32!

ġ~0!5T~sccecz2sczecc!, ~33!

and they can be used to rewrite Eq.~28! as

S52p22~4!4T2scz$szzscc2~scz!
2%2

143Tszz@szzsczecc1$szzscc22~scz!
2%ecz#.

~34!

For simplicity, we now consider a thin nanocoil having on
one energy band crossing its Fermi level. Applying the Bo
zmann’s transport equation within constant relaxation ti
approximation, the conductivity tensorsmn is proportional to
vmvn ,16,17 wherevm andvn are the averaged Fermi veloc
ties of electrons. Thus we can equatesccszz5(scz)

2, and
Eq. ~34! can be rewritten as
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S543Tszzscz~szzecc2sczecz!. ~35!

Then the sign ofS is found to be dependent on the para
etersscz , szz, ecc , andecz . So the sign of the first deriva
tive of the inductance with respect tov2 is a material depen
dent quantity. If a nanocoil has very high conductivity alo
tubule circumference compared to those along tubule
~resulting in a high chiral pitch of the AC current!, sczecz

can be bigger thanszzecc and then Eq.~35! is negative in-

dicating a decay ofL̃ with increasingv. In this case, the
decay can be simply understood as that the current beco
less chiral with higher frequency in order to reduce the
ergy loss in the direction of the tubule circumference. On
other hand, if the contributions from localized electrons a
ionic cores~expressed asemn) are negligible compared to
those from delocalized electrons near the Fermi level,
~35! has a very small value. In this case, the self-inducta
of a nanocoil is nearly frequency independent in the lo
frequency regime. This whole phenomenon arises from
fact that for nanocoils the chiral angle of the current@as
given by Eq.~1!# is frequency dependent sinceEc is fre-
quency dependent.
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IV. SUMMARY

We have obtained an expression for the autoinductancL
in terms of the microscopic quantities of the nanocoil~con-
ductivity and ionic dielectric tensors! and derived the I-V
relation for nanocoils. We conclude that the selfinductan
and resistance of nanocoils should depend on the squa
the frequency, which can be tested experimentally and
be used as fingerprints of nanocoils.
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