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We investigate the properties of subharmonic gap stru¢®®S in superconducting quantum contacts with
normal-electron resonances. We find two distinct features of the SGS in resonant junctions which distinguish
them from nonresonant point contacts: The odd-order structures on the current-voltage characteristics of
resonant junctions are strongly enhanced and have pronounced peaks, while the even-order structures are
suppressed, in the case of a normal electron resonance being close to the Ferrtii)évafie current peaks
develop ae V= *+ 2E, whereE, indicates the distance of the resonance to the Fermi level. These properties are
determined by the effect of narrowing of the resonance during multiple Andreev reflections and by overlap of
electron and hole resonancgS0163-18209)14725-§

[. INTRODUCTION liminary result§® have shown that SGS drastically differs
between resonant and nonresonant junctions; similar results
Superconducting quantum point contacts are very interestvere obtained by different methods in Ref. 21. A great ad-
ing structures in which the microscopic mechanisms of thevantage of experiments with quantum junctions is the possi-
current flow through superconducting junctions can be carebility to control the positions of resonant levels by means of
fully investigated. Quantum point contacts are particularlyelectrostatic gates. Thus it is reasonable and desirable to de-
useful for investigation of such complex transport processeselop a theory where the current is calculated as a function
as multiparticle tunneling and coherent multiple Andreev re-of both the driving voltage and the resonance energy. Such a
flections(MAR). The experimental results recently obtaineddetailed theory is not necessary for macroscopic junctions
on atomic-size point contactéare in good agreement with where the current must be averaged over randomly distrib-
the theoretical calculations of the subgap current both in theted resonant levef&:?3however it could be a powerful tool
tunnel and contact regimés’ Moreover, detailed compari- for investigation of intrinsic properties of molecular junc-
son of the calculated subharmonic gap structure with théions.
measured current-voltage characteristics provides deeper in- In this paper, we calculate the current in resonant quan-
sight into the intrinsic properties of atomic-size junctionstum junctions as a function of applied voltage and position of
(number of transport modes, transmissivity of individualthe resonance. We present a detailed study of coherent MAR
modes, etg. in the presence of Breit-Wigner resonances in the normal
More complex transport processes may occur in quanturelectron tunneling and analyze the resonaarticle cur-
junctions containing atomic clusters or single moleculesyents. In order to simplify the description of the interplay
e.g., carbon nanotub&2® In such junctions, highly resistive between MAR and normal electron resonances, we neglect
interfaces between the molecule and the electrodes providbe effects of electron-electron interaction, which however
confinement of normal electrons and cause coherent resonaarte often important in practic&.Our results therefore pro-
current transport. Resonant quantum transport has also beeitle a limiting case for resonant MAR.
demonstrated in “artificial molecule” junctions—small me-  The structure of the paper is the following. In Sec. Il we
tallic dots! and gated two-dimensiondRD) electron gas derive equations for the inelastic scattering amplitudes in
(2DEG) islands'? The theory of dc Josephson transport inresonant junctions. In Sec. Ill we discuss properties of the
resonant junction$>~*®and the properties of Andreev quan- normal electron resonance in the proximity region between
tization in quantum resonant junctiohs°have been given the superconducting electrodes. Results of numerical calcu-
considerable attention. However, the properties of MAR inlations of the current-voltage characteristic for different po-
voltage-biased resonant junctions, and the modification o$itions and widths of the resonance are presented in Sec. IV.
the subharmonic gap structuf®GS9 due to normal electron Finally, Sec. V is devoted to perturbative analysis of reso-
resonances, is much less investigated. Nevertheless, our prant SGS.
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whereu,, are (non-normalizejl two-component elementary
solutions of the Bogoliubov—de Gennes equations
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Index j=1-4 in Egs.(1) labels scattering states of the
—_— e electron- and holelike quasiparticles incoming from the left

L R (j=1,2) or right (=3,4). The form of wave functions in
Egs. (1) and (2) assumes that superconducting electrodes

FIG. 1. Schematic picture of the double-barrier junction. Upperserve as equilibrium quasiparticle reservoirs, and that the po-
part: dark regions are the tunnel barriers; shadowed region is thgsntial difference between the reservoirs is absorbed into the
normal conductor. Lower part: energy diagram showing one ”Ormaiime-dependent factoe ?® in Eqg. (1b) due to appropriate
resoneint Ieyel itr:side the supercgnducting gap. Inlabddit.ion, Sholréhoice of the gauge.

B e et ey . T0 i th v funcions in K we vl pply 2
the junction ransfe'r-matrlx technique. In the .present case of an melasuc
scattering problem, the connection betwegn and ¢ is
Il. SCATTERING AMPLITUDES nqnlocal in _time, and the corresponding transfer maTlﬁ’}q1
mixes the sidebands,

We will consider a junction consisting of a ballistic nor-
mally conducting region separated from the superconducting
electrodes by tunnel barriers, as shown in Fig. 1. The length
of the junctionL is assumed to be smaller than the coherence
length, and therefore the distance between normal resonanc&8e matrixTy,, is a 4x 4 matrix defined on a space of wave
will exceed the superconducting energy gap/L>A (v function coefficientsA=(A",A7), B=(B*,B"),
is the normal electron Fermi velocity,=1). We will also

A A
B)Ln:% Tﬁm( B) . (€)

Rm

. oo+ _ ot
assume that the resonances are well separdted;y/L, yn=e En[ATure*n*+ A ure
where I' is the resonance half-width, and that Coulomb ke ey
charging effects do not dominate in the subgap voltage re- +Bu, e +Bu, e "] (4)

gion, Ec<2A, whereEc is a Coulomb gap. The transfer matrix in Eq3) can be expressed, similarly to

. PR . —27
twed Vé'”t apply Land(?uti_r—Btn!kert%cr?tterlnlg tlhf'OF}?th the case of unbiased junctiohsthrough a transfer matrix
exten te | 0 Slljtperc%n ucdlng Juncti dsr t_ca cula Ir:g € th T(E) associated with elastic electron scattering by the nor-
current. In voitage-biased superconguctive -junctions, ‘??al junction. Let us introduce auxiliary normal regions be-

quasiparticle scatt_ering is inela_stic due to time depen(_ienc_e fveen the superconductors and the tunnel barriers of the
the superconducting phase difference across the junction), | ion (see Fig. 1 the length of these normal regions is

¢(t):2eVL and the scattering stgte.wave func'_uons CONSISEmall compared to the coherence length, and will be set
OT linear combmatlo_nS of harmomc(mdeband)swﬂh ener- equal to zero at the end of the calculations. The wave func-
g|¢sEn= E-+neVshifted by an mteger ”“T“bef of quaretsl tions in the normal regions have the form

with respect to the energl of the incoming wave. Below
we will consider one single transport mode in the junction
and choose the scattering state wave functions in thellgft ,/,r'\llz
and right(R) electrodes have the form

(5

N o N+
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where k§i=\/2m(EFi E,) is the normal electron wave

—e BT s Ut ek X+ 5 us e 1Ko X
y=e "ldjiuee Sl @ ] vector. The wave functions E) in the left and right nor-

* . o . mal regions(at points L and R in Fig. Jlare related as
+ > e Enau, e *+couie ™ x],  (1a)
n=—w AN AN T(En) O
N =Th en] o Th= - . (6)
B n\ B n 0 T(-Ey
Ln Rn

wR:ei(rzzﬁ(t) e—iEt[ 513u8—e—ikgx+ 5j4u5eik5x]
We note that the transfer matri{ E) describes scattering of
o the normal electrons by the actual potential of the junctions
+ 2 e—iEnt[bnu;e—ik;x+fnu:eik;x] . (1b) at a_given voItage,_i.e., it includes effects of potential defor-
mation due to applied voltagd(E;V).

n=—o
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Continuous matching at the perfect superconucting-Analytical solutions of the recurrences in Eq$l) can be
normal-metal(SN) interface at point yields in the quasi- presented in chain-fraction forrtgee Appendix Asimilar to

classical approximatiok,~k\~kg,?8 the case of nonresonant junctiotfs.
N e'yn/2 e Ynl2
AY A NS Ill. MODEL FOR RESONANCES
BN —Tn B y Tn = (Tn67 Ynl2 Une'}’nlz . . ' '
Ln Ln Now we will specify the normal electron transfer matrix

(1) T(E) in the particular case of the double barrier resonant

A matching condition at the right NS interfa¢point R) is junct_ion s_howrj in Fig. 1. Wf will restrict ourselves to fym—
derived in a similar way but an additional time-dependent™etriC junctions,  Tj,=T5,= Vd(E) and  Ty=Ti,
factor €=Vt in Eq. (1b) must be taken into account. The =r(E)/d(E). Since the resonances were supposed to be well

latter gives different equations for upp@lectron and lower ~ SeParated’,A<vg/L, we will consider only one resonance
(hole) components of the coefficient vectors: level in the vicinity of the superconducting gap. Assuming a
Breit-Wigner resonance form for transmission and reflection

A amplitudesd andr gives

A
AP TS (g] L eerTs

R(n+1) )R(n—l).(8) ir E—E
- e S
. _— _ d®=gg+rm "B g WP
In this equation,P~ are projectors on upper/lower vector
components.
Combination of Eqs(6)—(8) gives the following equation

for the transfer matrix in Eq(3):

The position of the resonance levg] as well as the reso-

nance half-widthl" are generally dependent on the applied

voltage. However, while the subharmonic gap structure is

affected in an essential way by the position of the resonance,

Tﬁm:E (Tr’:'S)—lTr’:'ptTm%m(nﬂ)_ (9) the depent_jence on the resonance width is I_ess important.
x Thus we will assumé&’= const. We will not specify the volt-

age dependence of the resonance level position, but rather

The normal electron transfer matrix enters this equation meresent the current as a function of two variables: driving
different arguments:E,,. This energy differ_ence intro@ce_s voltage and resonance positiafy,E,). The current voltage
effects c.’f eIectron-hoIe. dephasmg during quas"p"j‘rt'(:k?:haracteristics can then be reconstructed from such a depen-
prqugatlon through the Junqtlon. In nonresonant sho_rt CONgence by specifying th&, (V) dependence determined by
strictions, the energy dlsp_ersmn of the transfer_ matrix IS Neggq self-consistent distribution of the electric potential across
ligible, and Eq.(9) is equivalent to the matching equation the junction

derived in Ref_. 4. _In resonant _Junctlomand alsp in long The normal electron resonance, being confined between
SNS and SIS.JunCt'Oﬁ%). dephasing effects are !mpofta“t- superconducting electrodes, possesses specific properties
The matching equation) and (9) can be written in an which will be important for further analysis of the resonant
equivalent form, MAR. Since the transfer matriX(E) enters the recurrences
for the scattering amplitudes in E@ll) at two different
) =T(iEn)P+Tg§+1(A> . (100 energies*tE, the resonance consists of two, electron and
B/in “HB R(n=1) hole, resonances situated symmetrically with respect to the
. . ) ) ) Fermi level,E= * E, (proximity splitting of the resonange
Applied to the scattering state wave functions in B33 it \yithin the adopted approach, the current is calculated by
yields the following recurrences for the scattering ampl"using the scattering amplitudes defined in superconduct-
tudes: ing electrodegsee further Eq(15)] and the recurrences in
Eq. (12) are formulated for these amplitudes. Although
eozy/25no( 51'1) e Uzyn/Z( a) equivalent, such an approach is different from the discussion
dj2 Cln of MAR amplitudes in the normal region of the junctisee,
e.g., Ref. 30 Within our approach, the nonsuperconducting
region of the junction is considered as a black box and is
represented by the transfer matiikE). Due to the different
(113 choices of gauge in the left and right electrodes, the reso-
nance is seen from the left and right electrodes at different
energies[cf. Egs. (7) and (8)]. Indeed, the resonances are

A
P=TNS

i3

= T(En) e027/25(n+ 1)0( 5]4

f
~0z¥n+1/2
verrone |

n+1

evzv/25no( i +e'fz~/n/2(a) seen from the left electrode &= *E,, i.e., quasiparticles
Sj2 C/n incoming from the left undergo resonant transitionEif=
s *+E,, while the resonances are seen from the right electrode
=T(—E,)on0n_1 6027/25(n1)0( 513) at E=_t(E_r+eV), as shown in Fig. 2. In thQ scattering dia!-
i4 gram in Fig. Zc), the resonance therefore is presented with

f two segments:E,=E,«—E, . ;=E,+eV for the electron
+eozvn1/2(b) } (11b resonance, an&,=—-E,—~E,_;=—E,—eV for the hole
n-1 resonance.
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The current in Eq(15) is calculated using transmitted states
(in the right and left electrodes for scattering stajesl,2
l,'_Ef"eV and j=3,4 respectively and it consists of contributions
uL'E,'4 --------- « ------- from all odd sidebands. By virtue of the symmetry equations

(EpteV =z ( f
------ b

b
(%T)=(f> (=% T%),
n,2 n,1

4], 7m-
c nyz( Y!T) -

directly following from Eqgs.(11) (analogous relations hold

for the scattering statgs= 3,4) and the symmetry equations
(13), the current in Eq(15) can be expressed through the
sideband contributions

al (7T, (16

=[|bn|?=[f,l*JcoshRey,) 17
- of one single scattering stat¢= 1, indexj is omitted,
c) _ E
FIG. 2. Energy diagram of resonant junctions under applied J f n=od [Kn_Kn_l_(EO—}_EO)]tanhZ_T’
voltage.(a) Resonance in thaormal junction; the distance to the (18

chemical potentials of the left and right electrodesEjsand E, _

+eV, respectively(b) Electron and hole resonances in theper-  WhereK,=K,(=¢,,—TI).

conducting junction; the resonance with respect to the global EQquation(18) together with the recurrences in Ed4l)
chemical potential is different in the left and right electrodes afterprovide a basis for numerical calculation of the current. The
equalizing the chemical potentials of the electrodes by means of thealculation of scattering amplitudes should obey the bound-

gauge transformatioric) Resonant transition in the scattering dia- ary condition at+o where the amplitudes approach zero.
gram. The simplest way to obtain such solutions is to iterate the
There is a symmetry between the scattering states origwill then grow exponentially and numerically “kill” the so-
nating from the left and right electrodes: lution growing at infinity. By this procedure one gets the
every energy.

The results of numerical calculation of current-voltage
with an analogous relation for the second pair of scatteringgalues of resonance level positide,=E, +eV/2=const.
amplitudes. In Eq(13), E,=E, +eV/2 is the distance of the This particular case corresponds to a perfectly symmetric
the chemical potentials in the left and right electrodes. Equak, indicating the departure of the resonance level from the
tion (13) leads to a symmetry property of the current which Fermi level in equilibrium ¥=0). The IVC with the reso-
=1(V,—E,). Below we will indicate the resonance position onset of the single-particle current@V=2A accompanied
by means of the enerdy, and abbreviate the Breit-Wigner by a current peak caused by large density of states near the

f
(y.r,Eo>=aoon(b (-7-T,~Ep), (13)

n,3 n,1

recurrences from largkE,| towardsE. The correct solution
correct scattering states for each incoming quasiparticle at
a
.
characteristicqIVC) are presented in Fig. 3 for different
normal resonance level with respect to the midpoint betweedistribution of the electric potential across the junction with
is an even function of the resonance positlegt 1(V,Eg) nance level situated at the Fermi lev&ly=0, shows an

amplitudes(12), superconducting gafsee below Eqs(24) and (25)]. Such
behavior of the single-particle current has been observed in
ir E. the experiments on metallic détsand carbon-nanotube
dy=——, r,=———, E,=E,*(Ey—eV/2). junctions®* A striking feature of this IVC is the absence of
En+il En+il current structure ateV=A, while the structure ateV

(14 =2A/3 is pronounced, consisting of a peak similar to the

structure of the single-particle current. Calculation of the

IV. DC CURRENT IVC at lower voltage, presented in Fig. 4, shows the same
feature—only odd subharmonic gap structures are present.
In the quasiclassical approximation, the equation for the If the resonant leveE, departs from the Fermi level and
current read’’ Eo=E,+eV/2#0, the single-particle current onset shifts to-
wards larger voltageeV>2A, and the current peak broad-

{ E (|b, J|2 f, J,|2) ens. A striking feature in this case is the development of a

’ huge current peak at voltages lower than the position of the

structure of single-particle current. This peak, associated

cosr(Reyn)tanh;. (15) with resonant pair cgrre!"(lsee below Sec. V appears as
T soon asEy>A/2 and is situated at voltageV=2E; which

=dE
277 f n=odd

_j:ESA (|Cn,j|2_|an,j|2)
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2w 0 05
@ eVl “eV/A

FIG. 4. Subharmonic gap structure on the IVC of a symmetric
resonant junction withEy=0, I'/A=0.2. The structures appear
only ateV=2A/n with oddn.

V. DISCUSSION

A convenient expression for the analysis of the subhar-

z
= monic gap structure is derived in Appendix B:
0-5' )
lscdV,Eo)= 2, In(V,Eo),
eA (nevV-AdE _ ~
00 5 |n(VvE0):ZfA ?[K—n_K—n
(b) eV/A
E
FIG. 3. IVC of symmetric resonant junction®) IVC of normal +(Eg— — EO)]tanhZ_T' (19

junction (dashed ling and superconducting junctiofsolid line),

Eo/A= 0, 1.2(left and right curves, respectivelyi'/A=0.05.(b) |, £q.(19) only contributions from processes creating real
IVC of superconducting junctioro/A=0 (1), 0.6(2), 0.9(3). 1.2 gy iitations(transitions across the gdb>A—E, < —A) re-
@. sponsible for the subharmonic gap structusee retained,

coincides with position of the resonant current onset in noryvh”e a contribution of thermal excitations is omitted. Fur-

mal junctions. If the resonance level departs far from thdhermore, the sum over the sideband currents in (8. IS
Fermi level,E>A, the IVC's in the subgap voltage region now rearranged in order to explicitly separate the contribu-

eV<2A approach the form typical for nonresonant point
contacts, as could be expected, while strong broadening of
the resonancel'>A, gives rise to SNS-type IVC's, as
shown in Fig. 5.

A complete description of the current in resonant junc- 6
tions is given by the functioh(V,E), as already mentioned
in Sec. lll. A plot of this function is presented in Fig. 6. The
IVCs plotted in Figs. 3-5 correspond to horizontal cuts Scjf_
(Ep=const) of the plot in Fig. 6. In Fig. (@), the light
wedgelike region aeV>2A corresponds to the resonance
single-particle current. The resonant peak of the pair current
is seen as the light streaks directed along the liBgs
+eV/2, the structure starting &V=A. Figure &b) presents
a similar plot for the region of small voltageV<A. The
picture shows quite a complex structure of the current con- 0
sisting of wedgelike plateaux of the resonant current as well 0 eV/A
as of light streaks corresponding to current peaks.

In order to interpret the features of the IVC’s one needs to  FIG. 5. IVC of symmetric resonant junctions wif,=0 and
analyze the properties of the sideband curréqgtgpresented T/Ae {0.1,0.4,0.7, 1.0, 2.0, 3.0, 10.0from bottom to top. The
in Egs.(17) and(A7). current is normalized by,=eA/% .
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(a) eV/A

FIG. 7. Resonant regions in the planeME,) for sideband
currentsl,,. I, I, andIll are resonant regions for single-particle
current, pair current and three-particle current, respectively. The
resonant regions are bounded by dotted liggs- = (A —neV/2)
(labeled with =n). Bold dashed lines show positions of double
resonances.

the left [the first term in curly brackets in Eq20)], the
resonance equation in this case belg=2E,—eV/2=0
[Eq.(14)]. The resonance is only involved if it belongs to the
integration interval. This determines the resonance region
eVI2>A+|Ey| in the plane V,E) (regionl in Fig. 7). The
resonant scattering diagram is shown in Fi@g)8

In nonresonant junctions, the curreris ,, in Eq. (19)
have singularities which are responsible for the main current
onset ateV=2A and at the subharmonic gap structures at

FIG. 6. Intensity plots showing the dependence of the curren€V=2A/n. In resonant junctions, these singularities are
I(V,E,) on the applied bias voltagé and the resonance position Washed out due to strong electron-hole dephasing, and the
Eo. (@ Single-particle current and pair current av>A (T resonant transmissivity is simultaneously renormalized. In
=0.2A). (b) Pair current and high-order currents eY/<<2A (I’ the case of the single-particle current in E20), the onset of
=0.0%). nonresonant current is caused by zeros of the funddign

0.5 1
(b) eV/A

15 2 Log(In)

tions of all inelastic channel[gontributions ofeveninelastic 0
channels are hidden in Eq18)]. This is done by proper \

renormalization of the sideband curretts— K, presented
in Appendix B, the equation fd{,, being given in Eq(B9). ~ "~TTTT§T ctttttooees
We will now develop a perturbative analysis of the current in

the limit of narrow width of the resonancE<A, and zero
temperature.

A. Single-particle current

The single-patrticle current is given by the first term in Eq.
(19). In accordance with EqB9), it has explicit form

) =7

4e [ev-A E_ _
__f dE| 1|€€1
-Y e?’

T A A3
P_+: +(E0—>_Eo)]a (20 c) d)

XDy ©
0 1 Pl
FIG. 8. Resonant scattering diagrams; bold lines show resonant
P, is defined in Eq(B10). This current has no contribution transitions.(a) Resonance in the single-particle currefft} single
from Andreev reflections and it has only one resonance. It isesonance in the pair currerft) double resonance in the pair cur-
sufficient to consider only scattering states incoming fromrent; (d) central resonance in the three-particle current.
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Calculation ofP, for the resonant junctions by using the rule
in Eq. (B10) and retaining only the resonant scattering am-
plitude d, yields

Po AT Eq i(F r-y) N (21)
B .2 |FoT ol ;
Py 16§2§2—1 2

L?g(l/evF)

whereT',=T'|E,|/&,. Equation(21) shows the transforma-
tion of the resonant tunneling probability in the supercon-
ducting junctions: the resonance width is broadened due tc
superconducting density of statBs¢. Taking into account
Eqg.(21) and similar equations for the other terms in E2(),

we may present the single-particle current on the form of the

Landauer formula, 1 eV/A
e (ev-A  _ FIG. 9. A 3D plot of the total current density as a function of
|1:_f dE Dy(E) (22)  energy of incoming quasiparticles and bias voltafié(=0.05).
mTJA . . .
The current peak appears at the crossing point of two single reso-
nances.
with the effective single-particle transmission coefficient,
~ I'ol' -4
D1(E) (23 B. Pair current

|Eg +(I2(Tg+T )2
The pair current has the form
A similar equation has been derived in Ref. 21 using a dif-

ferent method. | _4e 2erAdE|E,2|§§,2
Equations (22) and (23) determine the current in the 277 )a A3
wedge region in Fig. @. In the limit of I'— 0, the resonant .
current reads _ L€ e ., €79,
X DoD_2 + e +(E0_)_EO) "
P, )
_ 2e’TV.V_6[eV—2(A+|Eg|)] 24 (26)
YV J(eV,)2—4A%+ V. (eV_ )2—aA?’ Restricting again the consideration to quasiparticles incom-

ing from the left, we find that this current gets contributions
where eV.=eV*2|Ey|. This equation quantitatively de- from two resonances, =0 andE’,=0, which simulta-
scribes the single-particle current feature in Fig. 3. The curneously enter the integration interval within regibny in
rent has maximum at the wedge edges and decreases at lagig. 7 (regionll, corresponds to resonant quasiparticles in-
eV, approaching the value for the resonant current in the&coming from the right Therefore, the resonant pair current
normal junctionly=el" (see Fig. 3, only appears if the normal resonance is sufficiently far from
the Fermi level,Ey,>A/2, while atEy<A/2 the current is
nonresonant within the voltage intervAl<eV<2A. This
2|Eq| +A eV=2(A+|Ey|), means in particular that the onset of the pair currerg\at

TEAN(EA+A) =A is small:1,~1(I'/A)3 if E;=0. In regionsl|, the pair
_ |Eol(|Eo| +4) 2
=1 ) (25  current undergoes resonant enhancerment) y(I'/A)? due
24 S to independent contributions of two separate resonances
14+ —, eV>A E,. dt : |
(eV) [Fig. 8b)], each contribution being described by the equa-

tions similar to Egs(22), (23).
The current peak is the result of enhancement of the effective The most interesting phenomenon in the resonant pair
width of the resonance in E@23) at low energyé=0 (E current is the overlap of the resonances occurring along the
=A). Equation(25) is applicable everywhere except at the lines eV= +2|E,| in Fig. 7. The overlap of the resonances
wedge vertex,Eo=0, eV=2A, where the current grows produces a huge current peak near these lines, seen as light
without limit. In fact, the current is determined by the singu- streaks in the Fig.®) (we note that these lines correspond to
larity, and turns to zero atV=2A due to the shrinking the position of the onset of resonant current in normal junc-
interval of integration in Eq(22) when the threshold is ap- tions). The scattering diagram for this case is presented in
proached. The maximum current is achieved when the inteFig. 8(c). This crossing of resonances can be clearly seen in
gration interval becomes comparable with the resonancthe 3D plot of the total current density as a function of en-
width, eV—2A~T\JA/(eV—2A). These arguments yield ergy of incoming quasiparticles and bias voltage in Fig. 9.
estimate for the maximum current &V=2A, namely Applying Eq.(B10) for calculation ofP, and retaining both
(1) max~ | N(A/T) Y3 the resonant amplitudesy, andd*,, we obtain
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D;D7, AST4 [T+ T_, Sub_stituting Eq.(_27)_into Eq. (26) for t_he current and _col-
= 51| Eo i — lecting the contributions of all scattering modes, we find
P2 [8£.1¢,
-2 e (2ev-A
w|E* +i F1+T2”_ r2a? | |2=—f dED,(E), (29)
Tt 5 5 )
alg-1P?
(27 where
|
~ Lol _,I2A%/4 &2 ~
D,(E) 9 -2 €4l E=E+il_,/2. (29)

BB, — (Tl o+ T2A%|£_4|2)/a+i(T _,Eq +ToE™,)/22’

Equation(29) shows a remarkable similarity to the resonantinto a plateau with a sharp onsetesf=A (e=0), as shown
transmissivity of Schidinger three-barrier structures: the in the inset in Fig. 10. The magnitude of the current at the
probability to leak outside the superconducting gap througiplateau can be found directly from E@\7) when assuming
the sidebandea=0 andn= -2 [Fig. 8c)] corresponding to Ey=e*eV/2 andeV=co,

probability of tunneling through side barriers, while the

probability of Andreev reflection by the sidebamd=—1 e~

corresponding to transmissivity of a central barrier. Such '2(5’”:?]0 dEcoshRey)

three-barrier structures have been investigated, e.g., in con-

nection with normal electron transport properties of coupled 2D, sinh(Rey)+ D, D e Re?
quantum dot§?3* The strong overlap of the resonances is X — . (32
explained by the fact that shift of the resonances is propor- le’—rg*rge”

tlonal tol'* due to Andrgev reflectlon,_accordlng to.EQQ), DZ=TZ[(E¥€)°+T2]. This current as function of is
while the resonance width is proportional to the first power

; . . v shown in Fig. 10.
TZI[E(T)]e quantityl’ ., is equal to zero at the linesV= There is an interesting difference between the property of
— O .

I . . . the resonance in the single-particle current and that of indi-
=+
In the vicinity of the lineseV ._2|E°| a.md in the limit vidual resonances of the pair current. To be specific, let us
I'—0, the pair current has following form: . . . ;
consider the resonan&g : in the pair current this resonance

I'%eVy(eV)°—A? 15

l,=I . (30
* Mev-2|El) 2 (eV)2- A2+ T 2(eV)?- A7
1 0.5
(We notice that this formula is valid at all voltagey/>A
because the sidebamd= —1 is inside the energy gap &V &

~ +2|Eg|.) Equation(30) describes the current peak in Fig. 1E
3, the height of the peak

(I 2)max_ N

Z
2|Eq| AEZ— A2 a = 2
2 2
8E2—A 05l

being comparable to the magnitude of the resonant single-

particle current; in particular,l §) max=n/2 for Eg>A.
According to Eq.(30) the resonant pair current tends to

zero at large voltageV>A,E,, which means that, rigor- .

ously speaking, there is no resonant excess current. How- -4 -2

ever, if the resonance is far beyond the gHpy|>A, the

current may strongly deviate from the current in the normal FIG. 10. Current for asymmetric junction at large voltaga/(

junction in the regionA<eV<2|E,| because the single- =100Q\) as a function of the position of the resonance|E|

particle current is nonresonant in this region, while the pair_g.\,> The thin lines 1 and 2 denote superconducting junctions

current is resonant. Such an effect is particularly pronouncegith, r=0.01A and"'=0.41A respectively: the bold line 3 corre-
in junctions where the resonance level follows the chemicalponds to a normal junction withi=0.41A. The difference be-

potential of one of the electrodesto(eV)*eVI2~e  tween currents 2 and 3 shows strong dependence of the excess
=const. The IVC in this case corresponds to cuts in the plogurrent on the position of the resonance. Inset shows IVCefor

in Fig. 6(a) parallel to the light streaks. In such a case, the=0: the resonance level coincides with the chemical potential of
peak of the pair current is very broad, and even transformsne of the electrodes.
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is more narrow because the quantity ; is imaginary and la=6eTol 5/ (To+T _2) e £+ 30v0- (37)
causes a resonant shift rather than a contribution to the reso- =[Egl+3e
nance width. The physical reason for this narrowing of the 1,4 phenomenon of resonance narrowing provides the ex-

resonance is that direct leakage of a quasiparticle through tha, nation for the absence of SGS current structure at voltage
sidebandn=—1 is blocked, and the only escape from the V=A, namely the dominance of the third-order currént

resonant region into the continuum is through the states of; ine threshold of the pair current. The current in &) is
the sidebanah=0. responsible for the light wedgelike region@¥<A in Fig.
6(b). Similarly to the case of single-particle current, the

C. High-order currents third-order current in Eq(37) has a peak at the edges of the
The effect of the resonance narrowing is even more imWedge with the height increasing proportionally te\{
portant for the third-order current, —2A/3)""? towards the vertex of the wedgeV=2A/3,

Eo=0. This growth is again limited due to interplay between

shrinking integration interval and growing resonance width,
{ D,D’,D_, eV—2A/3~T3A/(eV—2A/3)]*2 This estimate gives a

height (3) max—1n(I'/A) of the current peak adV=2A/3.

4eA (3ev-A E_ _

- JeE-dléEs
T JA A3
As one may see in Fig.(B), there are no current structures at
+(Ep——Eg){. (33 the edgeseV=2(A—|E|) of the above-mentioned quad-
rangle where the the narrow resonance of three-particle cur-

h hird-ord h h rent dies: this is because of the resonant pair current emerges
Tie +t " :or_ er F:urrent as t_ree resonances t the same lines, giving rise to a gradual crossover between
Eo ,EZ5,E_,=0 which belong to the interval of integration ree particle current and pair current, both having the mag-
within the regiondll 4,111 5,111 5 in Fig. 7, respectively. The nitude of the order of y(T/A)2.
side resonances B ,E_,=0 are characterized by an effec-  The phenomenon of resonance narrowing results in en-
tive transmissivity similar to the effective transmissivity of hancement of central resonances in all higher odd-order cur-
the resonances of the pair currétitnes an additional factor rents, giving rise to current peaks @V=2A/(2k+1), E,
~T?). The contribution of these resonances to the current is- g with heightsl | y(T/A)2%~ 1, The magnitude of the
therefore estimated dg~Iy(I'/A)* The central resonance current between neighboring peakslis I(I'/A)%. Also,
E72=0. is much more narrow. Indeed, in thIS 05{3@9- the overlap of narrow resonances of even-order currents near
8(d)], direct leakage of the resonant particle into continuumhe lineseV= *+2|E,| yields current peaks with heights
is blocked at both of the sidebands- —1,—2, and the par- ~|(T'/A)?¢ within the intervals 2A/(2k+2)<eV
ticle can escape only through the sideband state®,—3,  <2A/(2k+1). These current peaks are clearly seen in Fig.
traversing the junction one more time. The central resonancg(b) in the form of light streaks.
determines the current in the vicinity of the thresheld

e Yo 3 €e'p_3

+—
Ps3 P3

X

=2A/3, Eg=0. o _ VI. CONCLUSION
Calculation of the quantity?; in regionlll , according to
Eg. (B10) yields In conclusion, we have considered the effect of normal
electron resonant tunneling on the subharmonic gap structure
D,D*,DT, AT T o N DO -2 (SG9 in mesoscopic superconducting junctions. In nonreso-
~— El,+5(To+ Il _3)| nant tunnel junctions, the SGS consists of sharp onsets and
P3 |42¢6_3EE 4| 2

narrow peaks in the current at voltage¥=2A/n. In reso-

(34) nant junctions, the SGS is considerably modified depending
where  E1,=El;+i(Ty+T-0/2¢0(%) and To - C0 e B ectiodes. I the resonance level i
=ToDo A4 ¢[%, T 5=T 3D _,A%/4¢ " éccordlng 0 situated exactly in the middle between the chemical poten-
Eq. (34), the resonance width is of the orderlof-I'® which tials of electrodes, the odd-current structures are tremen-
yields giant enhancement of the curreng-1y(I'/A)? ex-  dously enhanced while the eveneurrent structures are not
ceeding by two orders df the contribution of the side reso- affected by the resonance. This enhancement is explained by
nances. Such narrowing of the central resonance occurs e resonance narrowing during multiple Andreev reflec-
the quadrangle region in Fig. 7 bounded by the edges of thgons. When the resonance energy deviates from the midpoint
resonance regiomll ; and regionsll. The current in this petween the chemical potentials of the electrodes, new cur-

region has a form similar to the one in E@2), rent structures appear aV= =+ 2E, in the form of current
o [3ev_a peaks. These features result from overlap of electron and
|3:_J dE By(E), (35) hole resonances. .
m)a In our calculations, the Coulomb charging energy was
. . o assumed to be smaller than the superconducting gap, and the
with the effective resonant transmissivity charging effects were neglected. In experiments on metallic
o dots and carbon nanotub@2%3the opposite situation has
By(E)= ] Iyo) e (36) been observed with the Coulomb charging energy exceeding

the superconducting gap, leading to suppression of the sub-
gap current. The charging energy in quantum transport ex-
In the limit of I'—0, the current becomes periments can be reduced by enhancing the capacitance of

|Ef,—i(To+T_5)/2%
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the resonant structure, e.g., by using substrates with largg, being related t. ; by virtue of the first equation in Eq.
dielectric constants. This will allow direct application of our (A1). By introducing chain fractionZ,, ,

results to such structures. Another way could be to use high-

T. materials with large gap energies for fabrication of super- ertn e 71

conducting electrodes for the nanotube experiments. Our ZO:l_(dg*)ZEoilzl_(do*)ZEoE—lz—l’ (A4)

theory is applicable to ballistic plane junctions with large

capacitance such as resonant junctions in high mobility e Y2n~ Yan-1

S-2DEG-S devicé$ and atomic plane junctions in layered Zyn=1-(dy) 5= >

cuprates(intrinsic Josephson junctio?®. Current-voltage ~2n=an-1tan-d

characteristics of such multimode junctions can be obtained @¥2n-1% Yan—2

on the basis of our theory by summation of contributions ZZn,1=1—(d§n*_2)2z2 o 7o’
—~2n—1~2n— n—

from all transport mode®
one can rewrite EqA3) for f,, e.g., with negative sideband
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APPENDIX A: DERIVATION OF CURRENTS An equation forb_,,_, follows from Eqgs.(11) and(A5),

Following the method of Refs. 3 and 4, we eliminate the ~ b_p_1=r "3, _,e7-21
Andreev scattering amplitudes, andb,, from Eqgs.(11) for .
the scattering state=1 and obtain a closed set of equations D g pe7- 22 ) f
; — —2k—1>
for the normal amplitudes,, andf,,, M o0 —ok—2Z k2
2¢ (A6)

C2n+V£n+lf2n+1+vzrn—lf2n—1:A_%5n01 (A1) whereD? = |d= |2
el n - n .

Collecting the normal and Andreev transmission ampli-
font1+ Vans 2Cont2+ VonCon=0. tudes in Eqs(A5) and (A6) and substituting them into Eq.
(15) for the current, we finally get

x| 1+

The coefficients in these equations are

— 4+ + 2=
Von=ds et vn =2, Kn:_|fn|2003|'(R97n)(1_92 ReMn(1-D,_y)
+ _ — - _DI2p=
V2n__0'2n0'2n71dZn*e (Van*7an-2) 1E2n-1, D et
n—
X 1++'_1— n<O0. (A7)
V£n+1:d2+n* elvnt v 2/ 5, r-12n-1Zn-1

. o (Yo )12y The corresponding equation for positive>0 is obtained
Von-1= —02n0an-10y, € 7207 Y20 E from Eq. (A7) via the substitutiongy— —y, D*—D~, and

where the quantitieE,, are defined as n—l-n+l.

EZn:r;n* e¥Yan— rgn* e Yan, APPENDIX B: TRANSFORMATION OF K,

_ e e Equation(A7) is not convenient for analysis of the sub-
Eon-1=Tpn €720 1—ryr e 721, (A2)  harmonic gap structureThe current structures are caused by

. . : the processes of creation of real excitations during across-
In nonresonant junctions, the functiois, approachr &, o :

. ; X X . . .the-gap transitiongE —E,<—A. The currents of other side-
since energy dispersion of the reflection amplitude is negli;

ibly small. SGS in nonresonant junctions is caused b zerobands En>4) perfectly cancel each other at zero
gibly . ! y tsemperaturé.Furthermore, there is rigorous balance between

of the functions¢,, ,* and renormalization of these functions And d | ch | h i
in the resonance cas&,— E,, is the reason for the consid- ndreev and normal channel currents among the states lying
within the superconducting gdpwhich provides successive
S8Fops of the current with decreasing applied voltage. All of
these features are not explicitly seen in the curr&nts Eq.
(A7). Moreover, the current structures related to the creation
of real excitations in even-order sidebands are hidden in Eq.
(17) which consists of contributions from only odd side-

n
- bands.
f,= ; A
" iHo Sico. (A3) To overcome this difficulty, we will transform the side-

nant junctions. We solve Eq$Al) by introducing ratios
Son=Conlfon—1 and Sy 1="F5441/Cy, and expressing,
throughcy,
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band currents in EqA7) following the method suggested in e Remt2Reym_1=2Rem-2c0shRey,)Qn gt - - -.
Ref. 4. Assuming the transparenBy_, in Eq. (A7) to be (B6)
small, we find that the currett,, to leading order is propor-

tional to sinh(Rey,)~ #(E2— A?). This observation allows In this equation, the quantit, is defined as

us[in Eq. (19)] to separate the contributions from states be-

_ k-1
low, E,<—A, and aboveE,>—A the energy gap. Having 0 _8&%¢,|E e yD‘ I] o*, D"
separated out the leading term, we rewrite E&7) in the n— AP, 0y —-2a--a
form
1, |n|=2k
. xD?* - - B7
K,=|f,|?°cosiRey,)| 2sinRey,)ee™ 2| DIy, In[=2k+1, &7
D Le?Rem ) where
B Te— ST (B1)
|':'nflzn71|2 "

[n]
Pn=i1]O |E_iz|% (B8)

Fo=|EnZa2—2 ReemnrE,Z,)— D e?Rem. (B2)
Collecting together all terms with similgt functions, we

Equation(B2) possesses a similar property: it is proportional ., | finally rearrange the sum in E@.8):

to 0(Eﬁ—A2) to leading order with respect . Separating
out this leading term, we further transform E§2) into the

equation > Ko— 2 Ky, Ka=0(EZ-A%)Qu¢,, (BY)
n=odd n=1

—a—2Rey
n€ n

D where ¢, is given by the recurrence equation
|»—« Z |2Gn711 (83)
En-14n-1

eno1=1+exd (=" 12 Re y)]en, @_1=1.

Fn=—2sinh(2 Rey,)—

where
_ ) e Far from resonance, the quantiB;,, may cause strong
Gn-1=|En-1Zn-a|*+2 Refe” "n-1r B 17, 1) singularity in the sideband current due to the presence of
zeros in the function& ,, and accounting for the facto#,

—a—2Rey,_
~Dne . (B4) is absolutely necessary for regularization of the singuldrity.
One more transformation, In the resonant case, the functioBs, do not tend to zero
because of strong electron-hole dephasifig#r, , and the
_ D! ,e?Rem-1 guantitiesZ,, can be omitted from EqB8) in the limit of
Gn-1=2sinM(2 Reyn-1) =~ 2 Fn-2, narrow resonancE <A
|En-2Zn-2| '
(BS) n
accomplishes the cycle, yielding the quanfiyin Eq. (B2) P”%Ho, |= il2 (B10)
=

with shifted index. Performing repeatedly such transforma-
tions, we get for the current in EGA7) the following ex-  The role ofZz,, in this limit reduces to cancellation of the

pansion: terms in the productB10) which are proportional to the
. —+ 2. . .
K. = 0(E2— A2)O.+ 20(E2 . — A2 square_d resonance amplitudek §<; this is denoted by th_e
n=0(Eq )Qn (Ens ) prime in Eq.(B10). The presence of the resonant denomina-
x e RermcosiRey,) Q-1+ 26(E2_,—A?) tors in Eq.(A2) for E gives rise to renormalization of the

5 normal electron transmission coefficiems in Eq. (19) for
X e Remt2Rem-1cosH{Rey,)Qn_p+26(Ef_3—A%)  the current.
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