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Resonant multiple Andreev reflections in mesoscopic superconducting junctions
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We investigate the properties of subharmonic gap structure~SGS! in superconducting quantum contacts with
normal-electron resonances. We find two distinct features of the SGS in resonant junctions which distinguish
them from nonresonant point contacts:~i! The odd-order structures on the current-voltage characteristics of
resonant junctions are strongly enhanced and have pronounced peaks, while the even-order structures are
suppressed, in the case of a normal electron resonance being close to the Fermi level.~ii ! Huge current peaks
develop ateV562E0 whereE0 indicates the distance of the resonance to the Fermi level. These properties are
determined by the effect of narrowing of the resonance during multiple Andreev reflections and by overlap of
electron and hole resonances.@S0163-1829~99!14725-8#
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I. INTRODUCTION

Superconducting quantum point contacts are very inter
ing structures in which the microscopic mechanisms of
current flow through superconducting junctions can be ca
fully investigated. Quantum point contacts are particula
useful for investigation of such complex transport proces
as multiparticle tunneling and coherent multiple Andreev
flections~MAR!. The experimental results recently obtain
on atomic-size point contacts1,2 are in good agreement wit
the theoretical calculations of the subgap current both in
tunnel and contact regimes.3–7 Moreover, detailed compari
son of the calculated subharmonic gap structure with
measured current-voltage characteristics provides deepe
sight into the intrinsic properties of atomic-size junctio
~number of transport modes, transmissivity of individu
modes, etc.!.8

More complex transport processes may occur in quan
junctions containing atomic clusters or single molecul
e.g., carbon nanotubes.9,10 In such junctions, highly resistive
interfaces between the molecule and the electrodes pro
confinement of normal electrons and cause coherent reso
current transport. Resonant quantum transport has also
demonstrated in ‘‘artificial molecule’’ junctions—small me
tallic dots11 and gated two-dimensional~2D! electron gas
~2DEG! islands.12 The theory of dc Josephson transport
resonant junctions,13–16 and the properties of Andreev qua
tization in quantum resonant junctions,17–19have been given
considerable attention. However, the properties of MAR
voltage-biased resonant junctions, and the modification
the subharmonic gap structure~SGS! due to normal electron
resonances, is much less investigated. Nevertheless, our
PRB 600163-1829/99/60~2!/1382~12!/$15.00
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liminary results20 have shown that SGS drastically diffe
between resonant and nonresonant junctions; similar res
were obtained by different methods in Ref. 21. A great a
vantage of experiments with quantum junctions is the po
bility to control the positions of resonant levels by means
electrostatic gates. Thus it is reasonable and desirable to
velop a theory where the current is calculated as a func
of both the driving voltage and the resonance energy. Su
detailed theory is not necessary for macroscopic juncti
where the current must be averaged over randomly dist
uted resonant levels;22,23however it could be a powerful too
for investigation of intrinsic properties of molecular jun
tions.

In this paper, we calculate the current in resonant qu
tum junctions as a function of applied voltage and position
the resonance. We present a detailed study of coherent M
in the presence of Breit-Wigner resonances in the nor
electron tunneling and analyze the resonantn-particle cur-
rents. In order to simplify the description of the interpla
between MAR and normal electron resonances, we neg
the effects of electron-electron interaction, which howev
are often important in practice.24 Our results therefore pro
vide a limiting case for resonant MAR.

The structure of the paper is the following. In Sec. II w
derive equations for the inelastic scattering amplitudes
resonant junctions. In Sec. III we discuss properties of
normal electron resonance in the proximity region betwe
the superconducting electrodes. Results of numerical ca
lations of the current-voltage characteristic for different p
sitions and widths of the resonance are presented in Sec
Finally, Sec. V is devoted to perturbative analysis of re
nant SGS.
1382 ©1999 The American Physical Society
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II. SCATTERING AMPLITUDES

We will consider a junction consisting of a ballistic no
mally conducting region separated from the superconduc
electrodes by tunnel barriers, as shown in Fig. 1. The len
of the junctionL is assumed to be smaller than the cohere
length, and therefore the distance between normal resona
will exceed the superconducting energy gap,vF /L@D (vF
is the normal electron Fermi velocity,\51). We will also
assume that the resonances are well separated,G!vF /L,
where G is the resonance half-width, and that Coulom
charging effects do not dominate in the subgap voltage
gion, EC,2D, whereEC is a Coulomb gap.

We will apply Landauer-Bu¨ttiker scattering theory25–27

extended to superconducting junctions4 for calculating the
current. In voltage-biased superconductive junctions,
quasiparticle scattering is inelastic due to time dependenc
the superconducting phase difference across the junc
f(t)52eVt, and the scattering state wave functions con
of linear combinations of harmonics~sidebands! with ener-
giesEn5E1neVshifted by an integer number of quantaeV
with respect to the energyE of the incoming wave. Below
we will consider one single transport mode in the juncti
and choose the scattering state wave functions in the left~L!
and right~R! electrodes have the form

cL5e2 iEt@d j 1u0
1eik0

1x1d j 2u0
2e2 ik0

2x#

1 (
n52`

`

e2 iEnt@anun
2eikn

2x1cnun
1e2 ikn

1x#, ~1a!

cR5eiszf(t)H e2 iEt@d j 3u0
1e2 ik0

1x1d j 4u0
2eik0

2x#

1 (
n52`

`

e2 iEnt@bnun
2e2 ikn

2x1 f nun
1eikn

1x#J , ~1b!

FIG. 1. Schematic picture of the double-barrier junction. Up
part: dark regions are the tunnel barriers; shadowed region is
normal conductor. Lower part: energy diagram showing one nor
resonant level inside the superconducting gap. In addition, s
normal regions between supeconductors and tunnel barriers ar
troduced for convenience in order to construct the transfer matri
the junction
g
th
e
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whereun
6 are ~non-normalized! two-component elementar

solutions of the Bogoliubov–de Gennes equations

un
65

1

A2
S e6gn/2

sne7gn/2D . ~2!

In this equation

egn5
uEnu1jn

D
, jn5HAEn

22D2, uEnu.D,

isnAD22En
2, uEnu,D,

sn5sgn~En!, kn
65A2m~EF6snjn!.

Index j 51 –4 in Eqs. ~1! labels scattering states of th
electron- and holelike quasiparticles incoming from the l
( j 51,2) or right (j 53,4). The form of wave functions in
Eqs. ~1! and ~2! assumes that superconducting electrod
serve as equilibrium quasiparticle reservoirs, and that the
tential difference between the reservoirs is absorbed into
time-dependent factoreif(t) in Eq. ~1b! due to appropriate
choice of the gauge.

To match the wave functions in Eqs.~1! we will apply a
transfer-matrix technique. In the present case of an inela
scattering problem, the connection betweencL and cR is
nonlocal in time, and the corresponding transfer matrixTnm

S

mixes the sidebands,

S A
BD

Ln

5(
m

Tnm
S S A

BD
Rm

. ~3!

The matrixTnm
S is a 434 matrix defined on a space of wav

function coefficients,A5(A1,A2), B5(B1,B2),

cn5e2 iEnt@An
1un

1eikn
1x1An

2un
1e2 ikn

1x

1Bn
1un

2eikn
2x1Bn

2un
2e2 ikn

2x#. ~4!

The transfer matrix in Eq.~3! can be expressed, similarly t
the case of unbiased junctions,19 through a transfer matrix
T(E) associated with elastic electron scattering by the n
mal junction. Let us introduce auxiliary normal regions b
tween the superconductors and the tunnel barriers of
junction ~see Fig. 1!; the length of these normal regions
small compared to the coherence length, and will be
equal to zero at the end of the calculations. The wave fu
tions in the normal regions have the form

cn
N5S An

N1eikn
N1x1An

N2e2 ikn
N1x

Bn
N1eikn

N2x1Bn
N2e2 ikn

N2xD e2 iEnt, ~5!

where kn
N65A2m(EF6En) is the normal electron wave

vector. The wave functions Eq.~5! in the left and right nor-
mal regions~at points L and R in Fig. 1! are related as

S AN

BND
Ln

5Tn
NS AN

BND
Rn

, Tn
N5S T~En! 0

0 T~2En!D . ~6!

We note that the transfer matrixT(E) describes scattering o
the normal electrons by the actual potential of the junctio
at a given voltage, i.e., it includes effects of potential def
mation due to applied voltage,T(E;V).
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Continuous matching at the perfect superconuctin
normal-metal~SN! interface at pointL yields in the quasi-
classical approximationkn'kn

N'kF ,28

S AN

BND
Ln

5Tn
NSS A

BD
Ln

, Tn
NS5S egn/2 e2gn/2

sne2gn/2 snegn/2D .

~7!

A matching condition at the right NS interface~point R! is
derived in a similar way but an additional time-depend
factor eiszeVt in Eq. ~1b! must be taken into account. Th
latter gives different equations for upper~electron! and lower
~hole! components of the coefficient vectors:

ARn
N 5P1Tn11

NS S A
BD

R(n11)
, BRn

N 5P2Tn21
NS S A

BD
R(n21)

.

~8!

In this equation,P6 are projectors on upper/lower vecto
components.

Combination of Eqs.~6!–~8! gives the following equation
for the transfer matrix in Eq.~3!:

Tnm
S 5(

6
~Tn

NS!21Tn
NP6Tm

NSdm(n61) . ~9!

The normal electron transfer matrix enters this equation w
different arguments6En . This energy difference introduce
effects of electron-hole dephasing during quasipart
propagation through the junction. In nonresonant short c
strictions, the energy dispersion of the transfer matrix is n
ligible, and Eq.~9! is equivalent to the matching equatio
derived in Ref. 4. In resonant junctions~and also in long
SNS and SIS junctions29! dephasing effects are important.

The matching equations~3! and ~9! can be written in an
equivalent form,

P6Tn
NSS A

BD
Ln

5T~6En!P6TRn61
NS S A

BD
R(n61)

. ~10!

Applied to the scattering state wave functions in Eqs.~1!, it
yields the following recurrences for the scattering amp
tudes:

eszg/2dn0S d j 1

d j 2
D1e2szgn/2S a

cD
n

5T~En!Feszg/2d (n11)0S d j 3

d j 4
D1e2szgn11/2S f

bD
n11

G ,
~11a!

e2szg/2dn0S d j 1

d j 2
D1eszgn/2S a

cD
n

5T~2En!snsn21Fe2szg/2d (n21)0S d j 3

d j 4
D

1eszgn21/2S f
bD

n21
G . ~11b!
–

t

h

e
n-
-

-

Analytical solutions of the recurrences in Eqs.~11! can be
presented in chain-fraction form,~see Appendix A! similar to
the case of nonresonant junctions.3,4

III. MODEL FOR RESONANCES

Now we will specify the normal electron transfer matr
T(E) in the particular case of the double barrier reson
junction shown in Fig. 1. We will restrict ourselves to sym
metric junctions, T115T22* 51/d(E) and T215T12*
5r (E)/d(E). Since the resonances were supposed to be
separated,G,D!vF /L, we will consider only one resonanc
level in the vicinity of the superconducting gap. Assuming
Breit-Wigner resonance form for transmission and reflect
amplitudesd and r gives

d~E!5
iG

E2Er1 iG
, r ~E!52

E2Er

E2Er1 iG
. ~12!

The position of the resonance levelEr as well as the reso
nance half-widthG are generally dependent on the appli
voltage. However, while the subharmonic gap structure
affected in an essential way by the position of the resonan
the dependence on the resonance width is less impor
Thus we will assumeG5const. We will not specify the volt-
age dependence of the resonance level position, but ra
present the current as a function of two variables: driv
voltage and resonance position,I (V,Er). The current voltage
characteristics can then be reconstructed from such a de
dence by specifying theEr(V) dependence determined b
the self-consistent distribution of the electric potential acr
the junction.

The normal electron resonance, being confined betw
superconducting electrodes, possesses specific prope
which will be important for further analysis of the resona
MAR. Since the transfer matrixT(E) enters the recurrence
for the scattering amplitudes in Eq.~11! at two different
energies6E, the resonance consists of two, electron a
hole, resonances situated symmetrically with respect to
Fermi level,E56Er ~proximity splitting of the resonance!.
Within the adopted approach, the current is calculated
using the scattering amplitudes defined in thesuperconduct-
ing electrodes@see further Eq.~15!# and the recurrences in
Eq. ~11! are formulated for these amplitudes. Althoug
equivalent, such an approach is different from the discuss
of MAR amplitudes in the normal region of the junction~see,
e.g., Ref. 30!. Within our approach, the nonsuperconducti
region of the junction is considered as a black box and
represented by the transfer matrixT(E). Due to the different
choices of gauge in the left and right electrodes, the re
nance is seen from the left and right electrodes at differ
energies@cf. Eqs. ~7! and ~8!#. Indeed, the resonances a
seen from the left electrode atE56Er , i.e., quasiparticles
incoming from the left undergo resonant transition ifE5
6Er , while the resonances are seen from the right electr
at E56(Er1eV), as shown in Fig. 2. In the scattering dia
gram in Fig. 2~c!, the resonance therefore is presented w
two segments:En5Er↔En115Er1eV for the electron
resonance, andEn52Er↔En2152Er2eV for the hole
resonance.
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There is a symmetry between the scattering states o
nating from the left and right electrodes:

S a
cD

n,3
~g,G,E0!5s0snS f

bD
n,1

~2g,2G,2E0!, ~13!

with an analogous relation for the second pair of scatter
amplitudes. In Eq.~13!, E05Er1eV/2 is the distance of the
normal resonance level with respect to the midpoint betw
the chemical potentials in the left and right electrodes. Eq
tion ~13! leads to a symmetry property of the current whi
is an even function of the resonance positionE0 : I (V,E0)
5I (V,2E0). Below we will indicate the resonance positio
by means of the energyE0 and abbreviate the Breit-Wigne
amplitudes~12!,

dn
65

iG

En
61 iG

, r n
65

En
6

En
61 iG

, En
65En7~E02eV/2!.

~14!

IV. DC CURRENT

In the quasiclassical approximation, the equation for
current reads3,4

I 5
eD

2pED

`dE

j (
n5odd

F (
j 51,2

~ ubn, j u22u f n, j u2!

2 (
j 53,4

~ ucn, j u22uan, j u2!Gcosh~Regn!tanh
E

2T
. ~15!

FIG. 2. Energy diagram of resonant junctions under app
voltage.~a! Resonance in thenormal junction; the distance to the
chemical potentials of the left and right electrodes isEr and Er

1eV, respectively.~b! Electron and hole resonances in thesuper-
conducting junction; the resonance with respect to the glob
chemical potential is different in the left and right electrodes a
equalizing the chemical potentials of the electrodes by means o
gauge transformation.~c! Resonant transition in the scattering di
gram.
i-

g

n
a-

e

The current in Eq.~15! is calculated using transmitted stat
~in the right and left electrodes for scattering statesj 51,2
and j 53,4 respectively!, and it consists of contributions
from all odd sidebands. By virtue of the symmetry equatio

S f
bD

n,2
~g,T!5S b

f D
n,1

~2g,T* !,

S a
cD

n,2
~g,T!5S c

aD
n,1

~2g,T* !, ~16!

directly following from Eqs.~11! ~analogous relations hold
for the scattering statesj 53,4) and the symmetry equation
~13!, the current in Eq.~15! can be expressed through th
sideband contributions

Kn5@ ubnu22u f nu2#cosh~Regn! ~17!

of one single scattering state (j 51, index j is omitted!,

I 5
eD

2pED

`dE

j (
n5odd

@Kn2K̄n1~E0→2E0!#tanh
E

2T
,

~18!

whereK̄n5Kn(2jn ,2G).
Equation~18! together with the recurrences in Eqs.~11!

provide a basis for numerical calculation of the current. T
calculation of scattering amplitudes should obey the bou
ary condition at6` where the amplitudes approach zer
The simplest way to obtain such solutions is to iterate
recurrences from largeuEnu towardsE. The correct solution
will then grow exponentially and numerically ‘‘kill’’ the so-
lution growing at infinity. By this procedure one gets th
correct scattering states for each incoming quasiparticle
every energy.

The results of numerical calculation of current-volta
characteristics~IVC! are presented in Fig. 3 for differen
values of resonance level positionE05Er1eV/25const.
This particular case corresponds to a perfectly symme
distribution of the electric potential across the junction w
E0 indicating the departure of the resonance level from
Fermi level in equilibrium (V50). The IVC with the reso-
nance level situated at the Fermi level,E050, shows an
onset of the single-particle current ateV52D accompanied
by a current peak caused by large density of states nea
superconducting gap@see below Eqs.~24! and ~25!#. Such
behavior of the single-particle current has been observe
the experiments on metallic dots11 and carbon-nanotube
junctions.31 A striking feature of this IVC is the absence o
current structure ateV5D, while the structure ateV
52D/3 is pronounced, consisting of a peak similar to t
structure of the single-particle current. Calculation of t
IVC at lower voltage, presented in Fig. 4, shows the sa
feature—only odd subharmonic gap structures are prese

If the resonant levelEr departs from the Fermi level an
E05Er1eV/2Þ0, the single-particle current onset shifts t
wards larger voltage,eV.2D, and the current peak broad
ens. A striking feature in this case is the development o
huge current peak at voltages lower than the position of
structure of single-particle current. This peak, associa
with resonant pair current~see below Sec. V!, appears as
soon asE0.D/2 and is situated at voltageeV52E0 which
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coincides with position of the resonant current onset in n
mal junctions. If the resonance level departs far from
Fermi level,E0@D, the IVC’s in the subgap voltage regio
eV,2D approach the form typical for nonresonant po
contacts, as could be expected, while strong broadenin
the resonance,G@D, gives rise to SNS-type IVC’s, a
shown in Fig. 5.

A complete description of the current in resonant jun
tions is given by the functionI (V,E0), as already mentioned
in Sec. III. A plot of this function is presented in Fig. 6. Th
IVCs plotted in Figs. 3–5 correspond to horizontal cu
(E05const) of the plot in Fig. 6. In Fig. 6~a!, the light
wedgelike region ateV.2D corresponds to the resonan
single-particle current. The resonant peak of the pair cur
is seen as the light streaks directed along the linesE05
6eV/2, the structure starting ateV5D. Figure 6~b! presents
a similar plot for the region of small voltage,eV,D. The
picture shows quite a complex structure of the current c
sisting of wedgelike plateaux of the resonant current as w
as of light streaks corresponding to current peaks.

In order to interpret the features of the IVC’s one needs
analyze the properties of the sideband currentsKn presented
in Eqs.~17! and ~A7!.

FIG. 3. IVC of symmetric resonant junctions.~a! IVC of normal
junction ~dashed line! and superconducting junction~solid line!,
E0 /D5 0, 1.2 ~left and right curves, respectively!, G/D50.05. ~b!
IVC of superconducting junction,E0 /D50 ~1!, 0.6 ~2!, 0.9 ~3!, 1.2
~4!.
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V. DISCUSSION

A convenient expression for the analysis of the subh
monic gap structure is derived in Appendix B:

I SGS~V,E0!5 (
n51

`

I n~V,E0!,

I n~V,E0!5
eD

2pED

neV2DdE

j
@K̃2n2K! 2n

1~E0→2E0!#tanh
E

2T
. ~19!

In Eq. ~19! only contributions from processes creating re
excitations~transitions across the gapE.D→En,2D! re-
sponsible for the subharmonic gap structure4 are retained,
while a contribution of thermal excitations is omitted. Fu
thermore, the sum over the sideband currents in Eq.~18! is
now rearranged in order to explicitly separate the contri

FIG. 4. Subharmonic gap structure on the IVC of a symme
resonant junction withE050, G/D50.2. The structures appea
only at eV52D/n with odd n.

FIG. 5. IVC of symmetric resonant junctions withE050 and
G/DP $0.1, 0.4, 0.7, 1.0, 2.0, 3.0, 10.0% ~from bottom to top!. The
current is normalized byI 05eD/\p.
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tions of all inelastic channels@contributions ofeveninelastic
channels are hidden in Eq.~18!#. This is done by proper
renormalization of the sideband currentsKn→K̃n presented
in Appendix B, the equation forK̃n being given in Eq.~B9!.
We will now develop a perturbative analysis of the current
the limit of narrow width of the resonance,G!D, and zero
temperature.

A. Single-particle current

The single-particle current is given by the first term in E
~19!. In accordance with Eq.~B9!, it has explicit form

I 15
4e

p E
D

eV2D

dE
uE21ujj21

D3

3H D0
2S e2g

P1
1

eg

P̄1
D 1~E0→2E0!J , ~20!

P1 is defined in Eq.~B10!. This current has no contributio
from Andreev reflections and it has only one resonance.
sufficient to consider only scattering states incoming fr

FIG. 6. Intensity plots showing the dependence of the curr
I (V,E0) on the applied bias voltageV and the resonance positio
E0. ~a! Single-particle current and pair current ateV.D (G
50.2D). ~b! Pair current and high-order currents ateV,2D (G
50.05D).
.

is

the left @the first term in curly brackets in Eq.~20!#, the
resonance equation in this case beingE0

252E02eV/250
@Eq. ~14!#. The resonance is only involved if it belongs to th
integration interval. This determines the resonance reg
eV/2.D1uE0u in the plane (V,E0) ~regionI in Fig. 7!. The
resonant scattering diagram is shown in Fig. 8~a!.

In nonresonant junctions, the currentsK̃2n in Eq. ~19!
have singularities which are responsible for the main curr
onset ateV52D and at the subharmonic gap structures
eV52D/n. In resonant junctions, these singularities a
washed out due to strong electron-hole dephasing, and
resonant transmissivity is simultaneously renormalized.
the case of the single-particle current in Eq.~20!, the onset of
nonresonant current is caused by zeros of the functionP1.

t

FIG. 7. Resonant regions in the plane (eV,E0) for sideband
currentsI n . I, II , and III are resonant regions for single-partic
current, pair current and three-particle current, respectively.
resonant regions are bounded by dotted linesE056(D2neV/2)
~labeled with 6n). Bold dashed lines show positions of doub
resonances.

FIG. 8. Resonant scattering diagrams; bold lines show reso
transitions.~a! Resonance in the single-particle current;~b! single
resonance in the pair current;~c! double resonance in the pair cu
rent; ~d! central resonance in the three-particle current.
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Calculation ofP1 for the resonant junctions by using the ru
in Eq. ~B10! and retaining only the resonant scattering a
plitude d0

2 yields

D0
2

P1
'

D4G2

16j2j21
2 UE0

21
i

2
~G01G21!U22

, ~21!

whereGn5GuEnu/jn . Equation~21! shows the transforma
tion of the resonant tunneling probability in the superco
ducting junctions: the resonance width is broadened du
superconducting density of statesE/j. Taking into account
Eq. ~21! and similar equations for the other terms in Eq.~20!,
we may present the single-particle current on the form of
Landauer formula,

I 15
e

pED

eV2D

dE D̃1~E! ~22!

with the effective single-particle transmission coefficient,

D̃1~E!5
G0G21

uE0
21~ i /2!~G01G21!u2

. ~23!

A similar equation has been derived in Ref. 21 using a d
ferent method.

Equations ~22! and ~23! determine the current in th
wedge region in Fig. 6~a!. In the limit of G→0, the resonant
current reads

I 15
2e2GV1V2u@eV22~D1uE0u!#

V2A~eV1!224D21V1A~eV2!224D2
, ~24!

where eV65eV62uE0u. This equation quantitatively de
scribes the single-particle current feature in Fig. 3. The c
rent has maximum at the wedge edges and decreases at
eV, approaching the value for the resonant current in
normal junctionI N5eG ~see Fig. 3!,

I 15I N5
2uE0u1D

AuE0u~ uE0u1D!
, eV52~D1uE0u!,

11
2D2

~eV!2 , eV@D,E0 .

~25!

The current peak is the result of enhancement of the effec
width of the resonance in Eq.~23! at low energyj50 (E
5D). Equation~25! is applicable everywhere except at th
wedge vertex,E050, eV52D, where the current grows
without limit. In fact, the current is determined by the sing
larity, and turns to zero ateV52D due to the shrinking
interval of integration in Eq.~22! when the threshold is ap
proached. The maximum current is achieved when the i
gration interval becomes comparable with the resona
width, eV22D;GAD/(eV22D). These arguments yield
estimate for the maximum current ateV52D, namely
(I 1)max;I N(D/G)1/3
-

-
to

e

-

r-
rge
e

e

e-
e

.

B. Pair current

The pair current has the form

I 25
4e

p E
D

2eV2D

dE
uE22ujj22

D3

3H D0
2D22

1 S e2gw22

P2
1

egw̄22

P̄2
D 1~E0→2E0!J .

~26!

Restricting again the consideration to quasiparticles inco
ing from the left, we find that this current gets contributio
from two resonances,E0

250 and E22
1 50, which simulta-

neously enter the integration interval within regionII 1 in
Fig. 7 ~region II 2 corresponds to resonant quasiparticles
coming from the right!. Therefore, the resonant pair curre
only appears if the normal resonance is sufficiently far fro
the Fermi level,E0.D/2, while at E0,D/2 the current is
nonresonant within the voltage intervalD,eV,2D. This
means in particular that the onset of the pair current ateV
5D is small: I 2;I N(G/D)3 if E050. In regionsII , the pair
current undergoes resonant enhancement,I 2;I N(G/D)2 due
to independent contributions of two separate resonan
@Fig. 8~b!#, each contribution being described by the equ
tions similar to Eqs.~22!, ~23!.

The most interesting phenomenon in the resonant
current is the overlap of the resonances occurring along
lines eV562uE0u in Fig. 7. The overlap of the resonance
produces a huge current peak near these lines, seen as
streaks in the Fig. 6~a! ~we note that these lines correspond
the position of the onset of resonant current in normal ju
tions!. The scattering diagram for this case is presented
Fig. 8~c!. This crossing of resonances can be clearly see
the 3D plot of the total current density as a function of e
ergy of incoming quasiparticles and bias voltage in Fig.
Applying Eq. ~B10! for calculation ofP2 and retaining both
the resonant amplitudesd0

2 andd22
1 , we obtain

FIG. 9. A 3D plot of the total current density as a function
energy of incoming quasiparticles and bias voltage (G/D50.05).
The current peak appears at the crossing point of two single r
nances.



PRB 60 1389RESONANT MULTIPLE ANDREEV REFLECTIONS IN . . .
D0
2D22

1

P2
'

D6G4

u8jj21j22u2
UFE0

21 i S G01G21

2 D G
3FE22

1 1 i S G211G22

2 D G2
G2D2

4uj21u2U22

.

~27!
n
e
g

e

c
co
le
is
o

e

g.

gl

to
-
o

a
-
a
ce
ica

lo
th
rm
Substituting Eq.~27! into Eq. ~26! for the current and col-
lecting the contributions of all scattering modes, we find

I 25
e

pED

2eV2D

dE D̃2~E!, ~28!

where
D̃2~E!5
G0G22G2D2/4uj21u2

uẼ0
2Ẽ22

1 2~G0G221G2D2/uj21u2!/41 i ~G22E0
21G0E22

1 !/2u2
, Ẽ5E1 iG21/2. ~29!
the

of
di-
us

e

ns
-

cess
r
l of
Equation~29! shows a remarkable similarity to the resona
transmissivity of Schro¨dinger three-barrier structures: th
probability to leak outside the superconducting gap throu
the sidebandsn50 andn522 @Fig. 8~c!# corresponding to
probability of tunneling through side barriers, while th
probability of Andreev reflection by the sidebandn521
corresponding to transmissivity of a central barrier. Su
three-barrier structures have been investigated, e.g., in
nection with normal electron transport properties of coup
quantum dots.32,33 The strong overlap of the resonances
explained by the fact that shift of the resonances is prop
tional toG2 due to Andreev reflection, according to Eq.~29!,
while the resonance width is proportional to the first pow
of G ~the quantityG21 is equal to zero at the lineseV5
62uE0u).

In the vicinity of the lineseV562uE0u and in the limit
G→0, the pair current has following form:

I 25I N

G2eVA~eV!22D2

~eV22uE0u!2@~eV!22D2#1G2@2~eV!22D2#
. ~30!

~We notice that this formula is valid at all voltageseV.D
because the sidebandn521 is inside the energy gap ifeV
'62uE0u.) Equation~30! describes the current peak in Fi
3, the height of the peak

~ I 2!max5I N

2uE0uA4E0
22D2

8E0
22D2

~31!

being comparable to the magnitude of the resonant sin
particle current; in particular, (I 2)max5I N/2 for E0@D.

According to Eq.~30! the resonant pair current tends
zero at large voltageeV@D,E0, which means that, rigor
ously speaking, there is no resonant excess current. H
ever, if the resonance is far beyond the gap,uE0u@D, the
current may strongly deviate from the current in the norm
junction in the regionD!eV!2uE0u because the single
particle current is nonresonant in this region, while the p
current is resonant. Such an effect is particularly pronoun
in junctions where the resonance level follows the chem
potential of one of the electrodes,E0(eV)6eV/2'e
5const. The IVC in this case corresponds to cuts in the p
in Fig. 6~a! parallel to the light streaks. In such a case,
peak of the pair current is very broad, and even transfo
t

h

h
n-
d

r-

r

e-

w-

l

ir
d
l

t
e
s

into a plateau with a sharp onset ateV5D (e50), as shown
in the inset in Fig. 10. The magnitude of the current at
plateau can be found directly from Eq.~A7! when assuming
E05e6eV/2 andeV5`,

I 2~e,G!5
2e

p E
0

`

dE cosh~Reg!

3
2D0

2sinh~Reg!1D0
2D0

1e2Reg

ueg2r 0
2* r 0

1e2gu2
, ~32!

D0
65G2/@(E7e)21G2#. This current as function ofe is

shown in Fig. 10.
There is an interesting difference between the property

the resonance in the single-particle current and that of in
vidual resonances of the pair current. To be specific, let
consider the resonanceE0

2 : in the pair current this resonanc

FIG. 10. Current for asymmetric junction at large voltage (eV
51000D) as a function of the position of the resonancee5uE0u
2eV/2. The thin lines 1 and 2 denote superconducting junctio
with G50.01D andG50.41D, respectively; the bold line 3 corre
sponds to a normal junction withG50.41D. The difference be-
tween currents 2 and 3 shows strong dependence of the ex
current on the position of the resonance. Inset shows IVC foe
50: the resonance level coincides with the chemical potentia
one of the electrodes.
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is more narrow because the quantityG21 is imaginary and
causes a resonant shift rather than a contribution to the r
nance width. The physical reason for this narrowing of
resonance is that direct leakage of a quasiparticle through
sidebandn521 is blocked, and the only escape from t
resonant region into the continuum is through the state
the sidebandn50.

C. High-order currents

The effect of the resonance narrowing is even more
portant for the third-order current,

I 35
4eD

p E
D

3eV2D

dE
uE23ujj23

D3 H D0
2D22

1 D22
2

3S e2gw23

P3
1

egw̄23

P̄3
D 1~E0→2E0!J . ~33!

The third-order current has three resonances
E0

2 ,E22
1 ,E22

2 50 which belong to the interval of integratio
within the regionsIII 1 ,III 2 ,III 3 in Fig. 7, respectively. The
side resonances atE0

2 ,E22
2 50 are characterized by an effe

tive transmissivity similar to the effective transmissivity
the resonances of the pair current~times an additional facto
;G2). The contribution of these resonances to the curren
therefore estimated asI 3;I N(G/D)4. The central resonanc
E22

1 50 is much more narrow. Indeed, in this case@Fig.
8~d!#, direct leakage of the resonant particle into continu
is blocked at both of the sidebandsn521,22, and the par-
ticle can escape only through the sideband statesn50,23,
traversing the junction one more time. The central resona
determines the current in the vicinity of the thresholdeV
52D/3, E050.

Calculation of the quantityP3 in regionIII 2 according to
Eq. ~B10! yields

D0
2D22

1 D22
2

P3
'

D4G̃0G̃23

u42jj23EE23u
UẼ22

1 1
i

2
~ G̃01G̃23!U22

,

~34!

where Ẽ22
1 5E22

1 1 i (G211G22)/21O(G2) and G̃0

5G0D0
2D2/4uju2, G̃235G23D22

2 D2/4uj22u2. According to

Eq. ~34!, the resonance width is of the order ofG̃;G3 which
yields giant enhancement of the current,I 3;I N(G/D)2, ex-
ceeding by two orders ofG the contribution of the side reso
nances. Such narrowing of the central resonance occu
the quadrangle region in Fig. 7 bounded by the edges of
resonance regionIII 2 and regionsII . The current in this
region has a form similar to the one in Eq.~22!,

I 35
e

pED

3eV2D

dE D̃3~E!, ~35!

with the effective resonant transmissivity

D̃3~E!5
3G̃0G̃23

uẼ22
1 2 i ~ G̃01G̃23!/2u2

. ~36!

In the limit of G→0, the current becomes
o-
e
he

of

-

at

is

ce

in
e

I 356eG̃0G̃23 /~ G̃01G̃23!E5uE0u13eV/2 . ~37!

The phenomenon of resonance narrowing provides the
planation for the absence of SGS current structure at volt
eV5D, namely the dominance of the third-order currentI 3
at the threshold of the pair current. The current in Eq.~37! is
responsible for the light wedgelike region ateV,D in Fig.
6~b!. Similarly to the case of single-particle current, th
third-order current in Eq.~37! has a peak at the edges of th
wedge with the height increasing proportionally to (eV
22D/3)21/2 towards the vertex of the wedge,eV52D/3,
E050. This growth is again limited due to interplay betwe
shrinking integration interval and growing resonance wid
eV22D/3;G3@D/(eV22D/3)#1/2. This estimate gives a
height (I 3)max;I N(G/D) of the current peak ateV52D/3.
As one may see in Fig. 6~b!, there are no current structures
the edgeseV52(D2uE0u) of the above-mentioned quad
rangle where the the narrow resonance of three-particle
rent dies: this is because of the resonant pair current eme
at the same lines, giving rise to a gradual crossover betw
three-particle current and pair current, both having the m
nitude of the order ofI N(G/D)2.

The phenomenon of resonance narrowing results in
hancement of central resonances in all higher odd-order
rents, giving rise to current peaks ateV52D/(2k11), E0
50 with heightsI max;I N(G/D)2k21. The magnitude of the
current between neighboring peaks isI;I N(G/D)2k. Also,
the overlap of narrow resonances of even-order currents
the lineseV562uE0u yields current peaks with heightsI
;I N(G/D)2k within the intervals 2D/(2k12),eV
,2D/(2k11). These current peaks are clearly seen in F
6~b! in the form of light streaks.

VI. CONCLUSION

In conclusion, we have considered the effect of norm
electron resonant tunneling on the subharmonic gap struc
~SGS! in mesoscopic superconducting junctions. In nonre
nant tunnel junctions, the SGS consists of sharp onsets
narrow peaks in the current at voltageseV52D/n. In reso-
nant junctions, the SGS is considerably modified depend
on the position of the resonance level with respect to
chemical potentials of the electrodes. If the resonance lev
situated exactly in the middle between the chemical pot
tials of electrodes, the odd-n current structures are tremen
dously enhanced while the even-n current structures are no
affected by the resonance. This enhancement is explaine
the resonance narrowing during multiple Andreev refle
tions. When the resonance energy deviates from the midp
between the chemical potentials of the electrodes, new
rent structures appear ateV562E0 in the form of current
peaks. These features result from overlap of electron
hole resonances.

In our calculations, the Coulomb charging energy w
assumed to be smaller than the superconducting gap, an
charging effects were neglected. In experiments on meta
dots11 and carbon nanotubes,9,10,31the opposite situation ha
been observed with the Coulomb charging energy excee
the superconducting gap, leading to suppression of the
gap current. The charging energy in quantum transport
periments can be reduced by enhancing the capacitanc
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the resonant structure, e.g., by using substrates with l
dielectric constants. This will allow direct application of o
results to such structures. Another way could be to use h
Tc materials with large gap energies for fabrication of sup
conducting electrodes for the nanotube experiments.
theory is applicable to ballistic plane junctions with lar
capacitance such as resonant junctions in high mob
S-2DEG-S devices34 and atomic plane junctions in layere
cuprates~intrinsic Josephson junctions35!. Current-voltage
characteristics of such multimode junctions can be obtai
on the basis of our theory by summation of contributio
from all transport modes.20
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APPENDIX A: DERIVATION OF CURRENTS

Following the method of Refs. 3 and 4, we eliminate t
Andreev scattering amplitudesan andbn from Eqs.~11! for
the scattering statej 51 and obtain a closed set of equatio
for the normal amplitudescn and f n ,

c2n1V2n11
2 f 2n111V2n21

1 f 2n215
2j

DJ0
dn0 , ~A1!

f 2n111V2n12
1 c2n121V2n

2 c2n50.

The coefficients in these equations are

V2n
2 5d2n

1* e(g2n1g2n11)/2/J2n11 ,

V2n
1 52s2ns2n21d2n

2* e2(g2n1g2n21)/2/J2n21 ,

V2n11
2 5d2n

1* e(g2n1g2n11)/2/J2n ,

V2n21
1 52s2ns2n21d2n

2* e2(g2n1g2n21)/2/J2n ,

where the quantitiesJn are defined as

J2n5r 2n
1* eg2n2r 2n

2* e2g2n,

J2n215r 2n22
1* eg2n212r 2n

2* e2g2n21. ~A2!

In nonresonant junctions, the functionsJn approachr jn
since energy dispersion of the reflection amplitude is ne
gibly small. SGS in nonresonant junctions is caused by ze
of the functionsjn ,4 and renormalization of these function
in the resonance case,jn→Jn , is the reason for the consid
erable difference between the SGS in resonant and nonr
nant junctions. We solve Eqs.~A1! by introducing ratios
S2n5c2n / f 2n21 and S2n115 f 2n11 /c2n and expressingf n
throughc0,

f n5)
i 50

n

Sic0 , ~A3!
ge

h-
-
ur

y

d
s

e

i-
os

so-

c0 being related toS61 by virtue of the first equation in Eq
~A1!. By introducing chain fractionsZn ,

Z0512~d0
1* !2

eg1g1

J0J1Z1
2~d0

2* !2
e2g2g21

J0J21Z21
, ~A4!

Z2n512~d2n
2* !2

e2g2n2g2n21

J2nJ2n21Z2n21
,

Z2n21512~d2n22
1* !2

eg2n211g2n22

J2n21J2n22Z2n22
,

one can rewrite Eq.~A3! for f n , e.g., with negative sideban
index n522k21,0, in the following form:

f 22k215
2j

D
~21!kd0

2* e2(g1g22k21)/2

3 )
0

2k11
s2 i

J2 iZ2 i
)

1

k

d22i
1* d22i

2* . ~A5!

An equation forb22k21 follows from Eqs.~11! and ~A5!,

b22k215r 22k22
1* eg22k21

3S 11
D22k22

1 eg22k22

r 22k22
1 J22k22Z22k22

D f 22k21 ,

~A6!

whereDn
65udn

6u2.
Collecting the normal and Andreev transmission amp

tudes in Eqs.~A5! and ~A6! and substituting them into Eq
~15! for the current, we finally get

Kn52u f nu2cosh~Regn!S 12e2 Regn~12Dn21
1 !

3U11
Dn21

1 egn21

r n21
1 Jn21Zn21

U2D n,0. ~A7!

The corresponding equation for positiven.0 is obtained
from Eq. ~A7! via the substitutionsg→2g, D1→D2, and
n21→n11.

APPENDIX B: TRANSFORMATION OF Kn

Equation~A7! is not convenient for analysis of the sub
harmonic gap structure.4 The current structures are caused
the processes of creation of real excitations during acro
the-gap transitionsE→En,2D. The currents of other side
bands (En.D) perfectly cancel each other at ze
temperature.7 Furthermore, there is rigorous balance betwe
Andreev and normal channel currents among the states l
within the superconducting gap,7 which provides successiv
drops of the current with decreasing applied voltage. All
these features are not explicitly seen in the currentsKn in Eq.
~A7!. Moreover, the current structures related to the crea
of real excitations in even-order sidebands are hidden in
~17! which consists of contributions from only odd sid
bands.

To overcome this difficulty, we will transform the side
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band currents in Eq.~A7! following the method suggested i
Ref. 4. Assuming the transparencyDn21

1 in Eq. ~A7! to be
small, we find that the currentKn to leading order is propor
tional to sinh(Regn);u(En

22D2). This observation allows
us @in Eq. ~19!# to separate the contributions from states b
low, En,2D, and above,En.2D the energy gap. Having
separated out the leading term, we rewrite Eq.~A7! in the
form

Kn5u f nu2cosh~Regn!S 2sinh~Regn!eRegn

2
Dn21

1 e2 Regn

uJn21Zn21u2
Fn21D , ~B1!

Fn5uJnZnu222 Re~egn* r n
1JnZn!2Dn

1e2 Regn. ~B2!

Equation~B2! possesses a similar property: it is proportion
to u(En

22D2) to leading order with respect toD. Separating
out this leading term, we further transform Eq.~B2! into the
equation

Fn522sinh~2 Regn!2
Dn

2e22 Regn

uJn21Zn21u2
Gn21 , ~B3!

where

Gn215uJn21Zn21u212 Re~e2gn21* r n
2Jn21Zn21!

2Dn
2e22 Regn21. ~B4!

One more transformation,

Gn2152sinh~2 Regn21!2
Dn22

1 e2 Regn21

uJn22Zn22u2
Fn22 ,

~B5!

accomplishes the cycle, yielding the quantityF in Eq. ~B2!
with shifted index. Performing repeatedly such transform
tions, we get for the current in Eq.~A7! the following ex-
pansion:

Kn5u~En
22D2!Qn12u~En21

2 2D2!

3e2Regncosh~Regn!Qn2112u~En22
2 2D2!

3e2Regn12 Regn21cosh~Regn!Qn2212u~En23
2 2D2!
ten

in

ett

ys

ev
-

l

-

e2Regn12 Regn2122 Regn22cosh~Regn!Qn231•••.

~B6!

In this equation, the quantityQn is defined as

Qn5
8j2jnuEnue2g

D4Pn

D0
2S )

i 51

k21

D22i
1 D22i

2 D
3D22k

1 H 1, unu52k

D22k
2 , unu52k11, ~B7!

where

Pn5)
i 50

unu

uJ2 iZ2 i u2. ~B8!

Collecting together all terms with similaru functions, we
can finally rearrange the sum in Eq.~18!:

(
n5odd

Kn→(
n51

`

K̃n , K̃n5u~En
22D2!Qnwn , ~B9!

wherewn is given by the recurrence equation

wn21511exp@~21!n112 Re~gn!#wn , w2151.

Far from resonance, the quantityPn may cause strong
singularity in the sideband current due to the presence
zeros in the functionsJn , and accounting for the factorsZn
is absolutely necessary for regularization of the singulari4

In the resonant case, the functionsJn do not tend to zero
because of strong electron-hole dephasing,r n

1Þr n
2 , and the

quantitiesZn can be omitted from Eq.~B8! in the limit of
narrow resonanceG!D,

Pn')
i 50

n

8 uJ2 i u2. ~B10!

The role of Zn in this limit reduces to cancellation of th
terms in the product~B10! which are proportional to the
squared resonance amplitudes (dn

6)2; this is denoted by the
prime in Eq.~B10!. The presence of the resonant denomin
tors in Eq.~A2! for J gives rise to renormalization of th
normal electron transmission coefficientsDn

6 in Eq. ~19! for
the current.
n,
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