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We illustrate the relation between the scattering phase appearing in the Friedel sum rule and the phase of the
transmission amplitude for quantum scatterers connected to two one-dimensional leads. Transmission zero
points cause abrupt phase changes of the phase of the transmission amplitude. In contrast, the Friedel
phase is a continuous function of energy. We investigate these scattering phases for simple scattering problems
and illustrate the behavior of these models by following the path of the transmission amplitude in the complex
plane as a function of energy. We verify the Friedel sum rule for these models by direct calculation of the
scattering phases and by direct calculation of the density of s{&8%63-18289)06343-2

[. INTRODUCTION 7. Such a behavior is shown in Fig. 2. A specific model
giving rise to the behavior shown in Fig. 1 is the transmis-
The phase is an essential concept in quantum scatterirgion amplitude of a simple one-dimensional resonant tunnel
theory. Some key results and techniques, such as partidbarrier structure. The transmission probability never van-
wave expansioh,and the Friedel sum rudedepend in an ishes, and the phas#? is a continuous function of energy
explicit manner on the scattering phase. The Friedel sum rulthat increases in each complete revolution by. 2n con-
connects the density of states to the chaea charge dif- trast, Fig. 2 shows the transmission amplitude for a simple
ference of the system via the phase of the eigenvalues of thenodel of a side branch of finite length attached to a perfect
scattering matriX° Since the Friedel phase is related to thewire. The transmission amplitude as a function of energy
density of states, it is also connected to thermodynamic stgpasses through zero, and the phase that increases by
tistical mechanics quantiti#§such as the persistent currént. through each revolution also exhibits a jumpmf(or — =)
In addition to the total density of states, the scattering phasdsringing the phase back to its origin.
also play an important role in the partial density of states  The two models with the very distinctive behavior can be
(density of states with a preselection or postselection of theombined, and the evolution of the transmission amplitude of
incident or exiting quantum channelnd in transport coeffi- such a combined model is shown in Fig. 3. Now the graph
cients such as capacitantesand charge relaxation shows very many revolutions through the origin and occa-
resistances’ sionally a revolution around the origin. We believe that this
The principal aim of this work is to investigate the behav-reflects the generic behavior of the transmission amplitude in
ior of the phase in simple scattering problems as they frethe complex plane.
quently occur in mesoscopic physics. In particular, we would  Obviously, the phase of the transmission amplitude in the
like to understand which phases are continuous functions adecond example, Fig. 2, since it is not a continuous function,
external parametergFermi energy, magnetic field, or cannot play the role of the scattering phase, which is used in
Aharonov-Bohm flux and which phases are permitted to ex-the Friedel sum rule. For a system with a density of states
hibit jumps as a function of the external parameters. Wethere must exist a phase that we denote¥yand which we
consider coherent quantum scattering systems connected ¢all the Friedel phase such that its energy derivative is di-
two semi-infinite, one-channel leads in the absence of a magectly related to the density of states
netic field and without spin-orbit scattering. Consider, for
instance, the transmission amplitudlevhich determines the
transmitted current amplitude if there is an incident current 96"
of unit amplitude. The transmission amplitude can be ex- 9 TP @
pressed in terms of its modullig and its phase®,
t=|te! . (1)
If, as a function of energyt| is always positive, the path of
the transmission amplitude will encircle the origin of the
complex plane but always stay at a finite distance from it. An
example of such a behavior is shown in Fig. 1. As a conse-
quence, the phas#? is a continuous function of the energy.
If, on the other handlt| is zero for a certain value of the
external parameter, the path of the transmission amplitude in
the complex plain will necessarily pass through the origin. FIG. 1. Transmission amplitude as a function of energy for a
As a consequence, the pha#8 will jump at this energy by  resonant double-barrier.
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tunneling involving several levels might generate interaction
induced correlations between the parity observed at subse-
quent peaks. A possible role of zero’s of the transmission
probability, Fig. 2, was suggested to us in informal commu-
nication by Levy Yeyafl’ and has since found interest in a
number of works822:2325-2{\/e mention here especially the
work by Ryu and Ch® who investigate ai\B ring with a
dot that is also connected to a side branch. Apart from Ref.
13, the Friedel sum rule has thus far only found interest in
FIG. 2. Transmission amplitude as a function of energy for athe recent Work of Le€! The work presented here is in very

e e close connection to the paper by Ryu and Cho and the paper
wire with a side branch. by Lee.

. . i i It is possible that the experimental observation of identi-
Since the density of states should be a continuous function qfy| yenavior over many subsequent conductance peaks is in

the energy for the scattering problems we have in mind, they et generidi.e., is observed for a fully chaotic quantum Hot
Friedel phase must also be a continuous function of energy,nq goes not require a system with special properties that
One aim of our work is to investigate and illustrate the be-generates tunneling through the same state. The parity of the
havior of the different phase#" and 6" and to investigate  Apronov-Bohm effect was observed in a multichannel GaAs

their connection to the scattering matrix of the problem. ring already almost a decade ago in an experiment by Ford
The problem investigated here is of interest in connectiony; 5131 | this experiment the ring is coupled to a back gate

- : 1 12
with the experiments of Yacobst al,™ and Schusteet al.® 5 the experiment shows wide regions in the gate voltage —
In the experiment of Yacobgt al, an Aharonov-Bohm ring  magnetic-field plane in which the parity of the Aharonov-
with a quantum dot was investigated in a two terminal ge-gonm effect remains the same.
ometry. In a two terminal geometry, the Aharonov-Bohm | this work we investigate the various phases of the scat-
effect exhibits aparity:™ As a function of the Aharonov-  tering matrix and their relation to the phase of the transmis-
Bohm flux, the conductance is either a local minimum atg;, amplituded® and the Friedel phasé” comparing in
zero flux(positive parity or a local maximuninegative par-  jetail two simple model systems, a one-dimensional resonant
ity). In the experiment of Yacobgt al, it was observed that  ,nnejing problem and a perfect wire with a side branch, and

over a sequence of more than a dozen Coulomb blockadgiefly discuss also the combination of these two models.
peaks the parity changes at each peak in an identical manner.

It is observed that the parity is positive to the left of the
Coulomb blockade peak and negative to the right of the Coull- FRIEDEL PHASE AND TRANSMISSION AMPLITUDE
lomb blockade peak. Such a behavior is incompatible with a PHASE

simple resonant tunneling _modéH‘-ig. 1) but .WO_Uld be ir_1 We consider systems connected to two semi-infinite, one-
accordance with the evolution of the transmission amplitudgjimensional leads. The system itself can be a multidimen-
shown in Fig. 2. The second important experimental fact is;jona| je., a quantum dot. We consider phase-coherent scat-
that the phase drops by between Coulomb blockade peaks (oring and neglect particle-particle interactions and inelastic-
as shown in the experiment of Schusgral. Again, this  goatering effects. In such systems the scattering matiix

behavior is comzsa_tigle with Fig. 2 but not With_Fig. 1A the particle energ)E is represented as ax2 matrix in
number of efforts™"have been made to explain the fact piqh S;; is the reflection amplitude back into théh lead

that the behavior of the parity is the same at each peakror carriers incident in theth lead (=1,2), andS is the

Reference 13 suggested a screening effect, Ref. 15 alluded % nsmission amplitude from thieth lead to thejth lead (

degeneracies, and Refs. 17, 20, 21, and 24 proposed asyn;gk j=1,2, andk=1,2). The scattering matrix is a unitary

metric deformation of the dot and repeated tunneling throquEwatrix S 1=S'. This condition guarantees a conservation
exactly thesamestate. The same mechanism due to a do f the particle current. Furthermore, it implies that the eigen-

that is only semichaotic is supported by Silvestrov andvalues of the scattering matr&are on the unit circle. There-

Imry yvho pomt to the large variation in the lifetime of fore, the eigenvalue of the scattering matfixan be repre-
states in a semichaotic dot. Reference 29 proposes that CQanted as exp(®) with a real quantity; (j=1,2). Below
J 1 . )

we show that we obtain the Friedel sum rule if we define the
Im{t} » Friedel phases‘”) by
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2
o= 21 &. (3)
i=

As for any definition of a phase, E@3) defines the Friedel
O B phase only up to a multiple af. A unitary 2X2 matrix can
556 o5 7 Relt} be parametrized as

FIG. 3. Transmission amp!itude as a function of the pgrticle iei(”*‘”l)sinqs i (0+¢2) cos¢
energy for a model that combines the resonant tunnel barrier and s=| . )
the side branch. el cosp e’ ¢Vsing

(4)
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with real phase9, ¢, ¢,, and¢. The eigenvalues of this where we have used the abbreviatidrn=d/JE. Equation

matrix exp(2¢;) are determined by (11) shows that only if the condition caes#0 is satisfied for
_ ) all values of the parameters is the phase of the transmission
sin(2§;— ) =sinp; cosé. (5)  amplitudes equal to the Friedel phase. The conditiond¢cos

The eigenvalues are independentef Furthermore, i_is 70 Means that the transmission probabilitif is nowhere
equal to zero. Therefore, it is the existence of zero points of

a solution of Eq.(5), then a second solution is£2 — 0= - 2 : - :
—(2¢_—0). an(s)equently the sum of the tsval(i) phasZs ofthe transmission probability that is at the origin of the differ-

these eigenvalues ist2 +2¢_ =7+ 26. Thus, according to ence of the Friedel phase and the phase of the transmission

Eq. (3), the Friedel phase is given b amplitude.
9-(3). the Friedel phase is given by To be more precise, in addition to a zero point in the

aT transmission probability, it is also required that the energy
o) =0+ 7 (6)  derivative ofd cos¢/JE is nonzero at the transmission zero-
points. To see this, we consider phase changes due to the
Apart from a constantr/2, the Friedel phase is determined energyE only and assume that the number of zero points of
only by the phas# of the scattering matrix. In particular, as the transmission probability is finite or countable. The zero
also emphasized by Lé&&,it would be incorrect to identify points of the transmission probability determine a sequence
the Friedel phase with the argument of the transmission anof energies that we denote 8™, n=1,2, ... .Using Egs.
plitude. (7) and(11), we obtain
The derivative of the Friedel phag¥’) with respect to the
particle energ\E can be related to the energy derivatives of 26 9 COS¢ -
the scattering matrix. The density of states can also be ex- g = 7P+ TF; sgr( IE )5(E—E )s
pressed in terms of the scattering mafriXhis gives us a (12)
relation that connects the energy derivative of the Friedel
phase and the scattering matrix with the density of states, \ynere the function sgnj of x is the sign function. It may be
noted that the second term of the right-hand side of(E®.
2 x OOk T8k ) 7p.  (7) is zero even at a transmission zero point dos¢/JE is zero
ik P .
at such a point. However, we expect that such cases are

: . : . unlikely, and we proceed by assuming tldatos¢/JE is not
Integration of this relation over the energy interyah ,E>] .. a%/any trans?nission zgro point 9 4

gives the Friedel sum rule, which thus states that the differ- To summarize, the Friedel phase is a continuous function

i (f) — oM i
ence in phasé’(E;)— ¢' '(E,) is equal to the number of of energy. On the other hand, the argument of the transmis-

particlesN(E;,E,) multiplied by o in the system in this  gjon ampiitude might exhibit jumps. These conclusions agree
energy interval, with Lee?’

E=EM

2600
JE

00 (E,) — 6(Ey) = 7N(E;,E,). (8)
I1l. EVOLUTION OF THE PATH OF THE TRANSMISSION
AMPLITUDE CONNECTING CONSECUTIVE
RESONANCES

The Friedel phase is thus @ntinuousfunction of energy
(eitherE, or E;) since the density of states is a continuous
function of energy.

Another phase that is frequently discussed is the argument We now discuss, from a general point of view, the condi-
6 of the transmission amplitude defined by Et). Below, tions that lead to the behavior shown in Figs. 1, 2, and 3. We
we will consider only systems with time-reversal invariance.consider a set of parameters for which the transmission prob-
For such systems, the scattering matrix is symme®jig  ability shows a series of peaks as function of energy. We
=S,,, and consequentlyp,=0 or ¢,=m. To be definite, now ask: What portion of the path of the transmission am-
we take ¢,=0. In this case the phase of the transmissionplitude shown in Fig. 1 and Fig. 2 is traced out if we increase

amplitude is given by the energy from its value at a peak in the transmission prob-
. ability to a value corresponding to the subsequent peak in the
0= 6+ O (cosg), (9 transmission probability? Let us denote the energy ofithe

peak in the transmission probability By . In addition, let us

where® (x) is the step function ox. In contrast to the Frie- ) "
ﬁpnsmer the condition

del phase, the phase of the transmission amplitude is thus,
general, not a continuous function of energy but exhibits a
jump of = when cosp changes sign. The Friedel phase and J'ganE -1

. : ; p~1, (13
the transmission amplitude phase are not completely inde- N
pendent. From Eqgg6) and(9) we find
which according to the Friedel sum rule implies that one
particle is added to the scattering region. Using this condi-
tion and integrating both sides of Ed.2) with respect to the
energy fromé&, to &,.1, we find

ar
O = g(H _ >+ mO(cose). (10

Differentiating Eq.(10) with respect to energgor any other
variable of interestwe find

T caseA
e(t)(5n+l) - e(t)(gn)N{ (14

A9O=A0D+ 75(cosp)A cose, (12) 0 or 27 caseB.
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Lm{t} lead ai 1 (bl ﬂcz 1 di lead
P v o h_
/—\(. a: b: Ci1 d:
0 ~n/j}/ FIG. 6. Current amplitudes in the double-barrier model.
pd ;
< Aharonov-Bohm effect in a two terminal geometryost of
phaseon consecutive resonant peaks, whereas for a scatterer
-1_1 0 ] Re{t} of type B (see Fig. 3 the Aharonov-Bohm oscillations aie

phase With respect to the experiment of Yacobyal, it is

FIG. 4. Schematic representation of the path of the transmissioAn in-phase behavior that is needed to explain the data.
amplitude as a function of the particle energy for the case that there
is no transmission zero. The energy interval covered is that needed
for the transition from one resonant pe@k the transmission prob-
ability) to the next resonant peak. The phase changes by ahout  |n this section we present the calculations that lead to

Figs. 1, 2, and 3 for the transmission amplitude. In addition
In caseA there is no transmission zero point in the energywe present results for the density of states as a function of
interval (£,,&,+1), and in casd there is a transmission zero energy that we compare with the transmission probability.
point in the energy interval&,,&,.1). In caseA the phase
6 evolves byr through the consecutive resonant peaks, so
that the resulting path of the transmission amplitude is as
shown in Fig. 4. On the other hand, in c&¢he phases®" The first example is a one-dimensional double-barrier
of the transmission amplitude increases by or 0) be- model, which consists of two consecutive potential barriers
tween the consecutive resonant peaks, so that the trace of tHtat scatter particles moving along theaxis. A schematic
transmission amplitude is as shown in Fig. 5. illustration is shown in Fig. 6.

It is clear that Fig. 1 is composed of two paths of the type We assume that the two potential barriers in this model
shown in Fig. 4, and Fig. 2 is the result of a path of the typeare identical and that each potential barrier is symmetric with
shown in Fig. 5. Consequently, there is a profound differencéespect to particles incident from the left and the right. The
in the behavior of these two systems: Whereas, for instanc€urrent amplitudesa;, by, ¢; and d;, j=1,2, which are
in a double-barrier scattering problem, we need to increaséhown in Fig. 6, are connected by the relations
the energy over two consecutive states to rearrive at the start-
ing point, for the wire with a side branch an energy increase a, T\ (ay
over one state only is sufficient to bring the system back to (b ) = = (b ) (15

2 1

X T) ( Cl)
paths that are taken in the complex plane as we proceed from _ ) (16)
one transmission peak to another. Here we have emphasized do r)\ds
only two paths, namely those shown in Figs. 4 and 5. These
two possibilities are direct consequences of the conditiotHereT andt are the reflection and the transmission ampli-
tion of a particle to the system can lead to at least two vernphase accumulated by a one time traversal of the well.
distinct paths of the transmission amplitude in the complex We have to find the scattering matr&that relates the
plane. For paths of typé (see Fig. 4, the parity of the outgoing current amplitudes,,d, to the incoming current

amplitudesa; ,d;. A little algebra gives

IV. EXAMPLES

A. The resonant double barrier

=1 ~1 =1

—~+1

the same point. We also remark that Fig. 3 is composed of
combinations of the paths shown in Figs. 4 and 5.

Clearly, it would be desirable to classify all the possible (Cz) (
(13), but, of course, there might exist scattering problemsude of the potential barriers, respectively. The amplitudes in
that do not obey this condition. the well are related byb,;=7c, and c,=r7b,, where 7
To summarize this section, we have shown that the addi=exp(¢) is the transmission amplitude of the well andhe

Im{t}
L R Ry T O 2y [rr 1 an
S= - t—= ~ |- 1
/?\ 0 F) 1-r*22\1 Tr
’l / ':K/ ly.
0 ..‘ o To proceed, we parametrize the scattering matrix of the
7 single barrier also in terms of angular variabjese Eq(4)].
Al e R ot We taker =ie'’sing andt=e'’ cosé with real anglesd
-1 0 1 andé. In our model the potential is uniforitexcept for the

FIG. 5. Schematic representation of the path of the transmissioFlW0 barrier$, and ¢ is thus connected to the energyof a

amplitude as a function of the particle energy for the case that therigcat'[erlng _pamde, Vig= kl_’ WLerel IS.the distance between
is a transmission zero. The energy interval covered is that needeﬂi‘e potential barriers ankl= y2mE/7% is the wave vector of

for the transition from one resonant pefik the transmission prob- the particle away from the barriers. We assume that the
ability) to the next resonant peak. The phase changes by about 2 quantitiesé and ¢ are independent of the ener@y This
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ov scattering states with unit amplitude of incident carriers from
6n the left by®,(x) and the scattering state of carriers with unit
Z: amplitude of carriers incident from the right kly,(x), the
i local density of states can be expressetf by
2n

4 2 1

0 _ il 2

0 m 2r 3t 4 5% 6m K V(X) - le hv |¢M(X)| . (22)

FIG. 7. Phase of the transmission amplitude as a function of he d . f in th I idb h
kI(=1y2mE/%) for the double-barrier model. The density of states in the well regidbetween the two

barrierg is the integral over the local density of states
_ i - - - -
implies, in particular, that there is no particle density inside=J ~1.2dX¥(x). With an explicit calculation of the scattering
each potential barrier. With these specifications the transmigtates, we obtain
sion amplitudet is given by
ei(k|+2~0) cos??b

Tl 6 iy

"f 2

1-Tr%72

2
p=—

1+[r|?+2 Rer 7}

(23

sing
@

Th . litude i f . ¢ | Here, for simplicity, we assume that the phase increment of a
h c tr?nimlssmn arc;lp tu de 'S a fur;]ctlon 0 eerlf(rjlgz' ONYharrier traversal is zero. We have considered here the density
through the energy dependence of the wave VECIMIS ¢ giate5 that are obtained in terms of energy derivatives of

result is used to give the transmission amplitude in the com- hases or scattering matricéss is widely dong Such de-
plex plane as a function of energy in Fig. 1. The parametery, aiyes do not naturally lead to an answer for a spatially
chosen for Fig. 1 ar¢=2.2 and¢=2.1. local density of states. The density of states in the region
between the two barriers is, however, a local question. A
B. Phases and density of states in the double-barrier model  rigorous procedure to obtain local densities is via derivatives

f phases and scattering matrices with respect to local

For comparison with the wire connected to a side branch® tentiald The di . . herén t f
we now examine the phases in the double-barrier scatterirl?o entials. The discussion given hergn terms of energy

problem and the density of states. To find the Friedel phas erivatives is correct only up to WKB-like corrections. The
we use Eq(7) and find from Eq(17) ast term in Eq(23) contains a factor 1Kl) and is thus small

for wells that are much larger than a wavelength. Neglecting

a0 g 1- |?|4 this term, we obtain
JE OE|1-r2:22" (19 ~
— 2 1+sirfe
The derivative of the phasé® of the transmission ampli- “hy cogd+ 4 tart co2(B+kl) (24)
tude is found from tad®¥ =Im{t}/Re{t},
260 Im{t}\2] "t & Im{t} As if well known, for the case of opaque barriets— /2
E ={ + (W) ] E m (20 and ¢— m/2), the d_ensity of states becomes a series of delta

functions linf_,_, p==3."8(E— #*%2n?/(2mI?)) that co-
Substituting Eq(18) into Eq.(20), we can show that for the incide with the peaks of perfect transmission. For wells
resonant double barrier the derivatives of the two phases aiuch wider than the wavelength, we find from E24) that

identical, the peaks in the density of states are at the energies
(t) (f)
" omi2 ™ 2)]"

This result just restates E€lL1) for the double-barrier model.

The phasey= 6= 6" — x/2 for the double-barrier model Here n takes any integer value larger than®2)/2m.

as a function okl (wave vector times well widthis shown  comparison of Eq(19) with Eq. (24), leads tod6"/9E

in Fig. 7. The specific parameters afe=2.2 and$¢=2.1. =7 ie., the Friedel sum rule in the double-barrier model.
Thus, the phase shows a steplike behavior. It is nearly con- ysing Eqs.(18) and (24), we obtain

stant as a function df and increases sharply whé&nor the

energyE=7%2k?/(2m), coincides with a resonant state. To T2 whv
show this, we now examine the density of states. |t|2=——— ——p, (26)
For a perfect one-dimensional wire, the density of states 1+]r|? |

per unit length and in a small interval of wave vectors is .

dn/dk=1/(27) for carriers moving to the right. Since a relation between the density of stajegnd the transmis-
dE/dk=#v, wherev is the velocity of the carrier, the den- sion probability|t|2. This relation implies that the energy
sity of states per unit length and in a small energy interval isvaluesé, that determine the peaks in the transmission prob-
v=dn/dE=1/(hv). We are interested in the density of ability coincide with the energiek, of the peaks in the
states in the region between the two barriers. Denoting thdensity of states. Using this fact and Eg4), we can show
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[tI2P/po a, Toe 1 a;
b)|=| ¢ o = bi |, (28
Cs T e T’ (o34

and bj=7"b,)=e'*'b} with ¢'=2kl’+ 7. Herek is the
Kl wave vector of a particle with enerdy The constantr in ¢
guarantees that the wave function has a node at the upper end
FIG. 8. Transmission probabilitidashed lingand the density  of the stub. In Eq(28), T’ is the reflection amplitude from a
of statesp (solid line) in units of po=mI*/(7#:?) as a function of  |ead to itselft’ is the transmission amplitude from a lead to

% 3 4% 5% 6m

kl(=1\/2mE/#) for the double barrier. another leady is the reflection amplitude from the stub to
itself, & is the transmission amplitude from a lead to the stub
Eov1 or from the stub to a lead, and is the transmission ampli-
j dEp=1. (27)  tude by which the particle starting from the junction returns
n

to the junction through the stub.
For the scattering matrix, relating the incident amplitudes

. . . . . oAt
In particular, Eq(13) applies to the resonant double barriersn e wiréay,c; to the out-going amplitudea;, c; in the

with well widths large compared to the wavelength. Figure gVire (see Fig. 9, we obtain

shows the transmission probability and the density of states ~, =, 5,
as a function okl for the double barrier for the parameters o= rt " eT (1 1) 29
'9=2.2 and $=2.1. We emphasize this behavior of the T 7 1-o7\1 1)

double barrier, since, as we show in the next section, a wire

with a side branch exhibits a transmission probability and 41€"€ the first matrix on the right-hand side arises from direct
density of state that do not peak at the same energy. transmission past the side branch and direct reflection at the

wave splitter due to the side branch, whereas the second term
on the right-hand side is the contribution due to carriers that
C. Wire with a side branch enter the stub and thus undergo a multiple-scattering process.

The second example that we investigate is a perfect onev—ve assume that the scattering amplitudést’, o, ande

dimensional wire with a side branch, which we also call th are real numbers; # 0, and are independent of the enefy

“stub” model. Such models have already a long history. Th:These assumptions, and the fact that the scattering matrix

conductance of a wire with a side branch was investigated ir(128) must be unitary, demaritfs

Refs. 33, 34, and 35. References 36, 37, and 38 considered ~, 7

charging effects in structures with side branches. The parity r'=(\+haV1-26912, (30
of such closed structures is discussed in Refs. 37 and 39. In ~

the context of the present work, the phase behavior of the t'=(=N1+N2V1-28%)12, (31)
transmission amplitude was investigated by Singha Deo and

Jayannavdf****and Ryu and Ché® However, neither of o=—N\1-2¢%, (32

these two works makes the distinction between the Fried%}vhere)\- is 1 or—1 (j=1,2). Depending on the choice of
j 4)

pha_se an_d the phase of the transmission amp_htude. Bglo%e)\,s, four different wave splitters are obtained. The value
we investigate these two phases for a perfect wire to which a

. . . .~ of the coupling constante is in the interval
side branch of length’ is attached. A schematic illustration . :
of this system is shown in Fig. 9. [—1/4/2,14/2]. Using such a wave splitter leads to a trans-

The junction between the wire and the side branch is gemisston amplitude

scribed by a wave splitté?**We consider the time-reversal = 2ikl’
invariant case only and consider a splitter, which is symmet- — Mt AVI—2e 1+he . (33
ric with respect to carriers incident from the left and right 2 1—N,\1—2e2 2K

lead. Furthermore, we assume the potential away from the

junction is the same in all branches. The current amplituded "€ Path of this amplitude in the complex plane as a function

aj’, bj’, and cj’, j=1,2, which are shown in Fig. 9, are .Of energy 1 shown in Fig. Z.f.or th'e caﬁ@z—l: Thg path

connected by the relations is a circle through the origin since Ed33) |mplles !t
+\1/2|?=1/4. From Eq.(33) it follows that the wire with

the stub has zero points of the transmission probability at the

branch energies
al bt b c £ w*h? ( 1+N,\2 (34
lead - , 4_ lead 2m|,2 4 ’
& ¢ n=1,2,... . Were-emphasize that in contrast to the case of

FIG. 9. Current amplitudes for the model of a wire with a side the double barrier the origin is included in the path of the
branch. transmission amplitude.



13820 TOORU TANIGUCHI AND MARKUS BUTTIKER PRB 60

given by the integral of the local density of states over the
entire length of the stutpzf'()'dyv(y). We find

! 2 H !
I 2¢ ‘ sing
P= - T + . (39)
hv|1-gel® ‘ o' =
0 = 2r ar 4n 51 er K In the WKB limit of interest here, for a side branch much

longer than the Fermi wavelength, the second term in the
bracket of the right-hand side of E(B9) can be neglected.
Using Eq.(32), we obtain for a long side branch the density
of states

FIG. 10. Phase of the transmission amplituéf® (solid line)
and Friedel phasé#¥ — 7/2 (dashed lingas a function okl’ for
the wire with the side branch.

D. Phases and density of states in wire with a side branch |’ 4s2

Let us now investigate the Friedel phase and the phase of  P' =1y 77— =904 S 7o —. (40
the transmission amplitude for the wire with a side branch. (1-V1-26%+4V1-26"sim(Kal ")
Using Egs.(7) and(29), the derivative of the Friedel phase HereK;, j=1,2 is defined byKj=k+ (1—\;)#w/(4l"). For
0" with respect to the energf in the wire with a side a stub much longer than a wavelength, the energies at which

branch is given by the density of states peaks are given by
a0\ g’ e |? w2h? ( 1 )\2)2
- = E = n— . 41
JE B |1-g7 39 " 2ml'? 4 (41)

As shown in Sec. IV C, there are zero points in the transmis!n the weak-coupling limit — +0, using Eq.(40), we ob-
sion amplitude as a function of the energy in the stub modeltain lim,_,  op’ ==."8(E—E,). Here the right-hand side
so that abrupt phase changes of the transmission amplitude the density of states of a particle confined in the com-
do occur. Thus, we need a limiting procedure to define theletely isolated stub but taking into account that the phase
phase of the transmission amplitude. To this end, we add ehange at the closed coupler is as dictated\py=1. The

small perturbation+ 7, 7>0 to the transmission amplitude comparison of Eq.35) with Eq. (40) leads tod6"/9E

_ =mp’'. We have thus verified the Friedel sum rule for the
L=ttty (36)  wire with a side branch.
— o Let us now show that in this scattering probléfar the
and evaluate the phase of in the limit »— +0. The de-  gpjitters withx ;A ,= — 1) the peaks in the transmission prob-
rivative of the phas@) of the transmission amplitude with apility do not coincide with the peaks in the density of states.

respect to the enerdy is thus given by Using Eq.(33), the transmission probabilitit|> can be ex-
o1 . pressed in the form
a6 im 1 Im{t.} g Im{t.} 5
& Rty | Ry 7 It[2= (1-Mahay1-20% %Kyl )

_ . o , (1= A A p1—282)2+ 4N Aoy 1— 262 sirA (K4l )|
Using our specific result for the transmission amplitude, we (42)
obtain

Therefore, the energy valués, n=1,2,..., atwhich the
900 59 +oo o transmission probability peaks are given by
-+ —
T _xlwn; S(E—EM), (39) o ( 1_)\1)2
= - . (43
A detailed derivation of Eq(38) is given in the Appendix. " 2ml? 4

Figure 10 shows the phase of the transmission amplitude a

the Friedel phase of the wire with a side branch as a functiorgi/e see that fo

of kl". We have chosen the branch of the wave splitter WithE, n—12 which determine the peaks of the density
I — H — n? Ty ey

A1=—1, A,=1 and a coupling constast'=0.35. . of states. Indeed, using Eq40) and(42), we obtain for the

Let us next investigate the density of states. The wire IS’relation between density of states and the transmission prob-
taken to be on the axis, with the splitter located a¢=0. y P

1\»=—1 (i.e., depending on the choice of
e splittej these energy values are not equal to the energies

The stub points along the positiyeaxis. The splitter is de- ability

scribed by an energy independent scattering matrix and can 1 v

thus be viewed as pointlike. A scattering state of unit ampli- |t|2:_[“frz_ ?] (44)
tude exgik,x} describing particles incident from theth lead Ao 21’

(v=1,2) gives in the side branch rise to a wa¥g,(y). . PR
Herek, = k for a wave incident from the left ariy=—k for ~ USing E@s.(40) and (43), we can show thaf""*dE p

a wave incident from the right. The local density of states=1. This implies that the conditiof13) is fulfilled also by a
v(y) in the side branch is given by »(y) wire with a side branch. The different behavior, depending
=2i:1|\I'M(y)|2/(hv), and the total density of states is on the sign of\i\,, is especially apparent in the weak-
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2 _ ~ ~
[t] P/ e ch r' e t’ cy
5= e o e || di]. 47)
ey T e T’ e}

Furthermore, as in the model with the side branch, we put
K di=7'd3.
For the overall scattering matrix of these systems, we ob-
FIG. 11. Transmission probabilitidashed lingand the density tain
of statesp’ (solid ling) in units of py=ml'?/ (2742 for a wire with

2% 3n 4n 5m 6m

a side branch. 1 ( \Y W )

S T*D\W =\ 7 72V* (48)
coupling limit. In this limit, for \;\A,=—1, almost all the , ,
particles incident from the wire on the wave splitter passn Which D, V, andW are defined by
through the junction without noticing the side branch. Con- , o~ N
versely, in the weak-coupling limit of a wave splitter with D=1-o7"—rr’(1+A\7") 7", (49)
MiNo,=1 almost all the particles incident from the wire on ~
the wave splitter are reflected at the wave splitter. Figure 11 V=D—[t|*(1-0o7'), (50
shows the transmission probability and the density of states
as a function okl’ for the wire with a side branch connected W=T*Tt" (1-\y7') 7 (51

by a junction withx;=—1,\,=1, ande?=0.35. . _ _
The transmission amplitudecan be brought into the form

E. Wire with scattering and a side branch — ﬁ'(1+)\162ik|’)eik| 52
The previous two models are examples that demonstrate 1+ 0eK' T (1— £, e2k" )2kl
two different behaviors of the transmission amplitude in theI this representation the transmission amplitacepends
complex plane. These different behaviors are illustrated b th P £ N th h th P pt i«
Figs. 4 and 5. Clearly, both of these models are very particu(-)n € energy = only throug e wave veclo

lar (nongenerig, and the question arises how the behavior— Y2ME/#. As a function of energy, the path of this trans-

exemplified by these two simple models shows up in mord™iSsion amplitude in the complex plane is shown in Fig. 3.
complicated structures. To examine this question, we nowlere the parameters chosen for Fig. 3 are2.2, ¢=2.1,
consider a structure that incorporates both the resonamti=—1, \,=1, £?=0.35, I=1, and|’'=4. This figure
double barrier and the side branch. A schematic illustratiorshows clearly that a more general model combines the be-
of this system is shown in Fig. 12. havior of the resonant double-barrier model and the stub
We use the same potential barrier as in the resonarifodel. Sequences of turns of the transmission amplitude that
double-barrier structure and the same wave splitter as weath through the origin are interrupted by “double turns”
used for the description of the wire with the side branch.characteristic of the resonant double barrier in which the
Again, we will assume that the potential outside these scafransmission amplitude is nonzero. From Esp), it can be
terers is everywhere the same. In this model the current anftoted that the wire with scattering and with a side branch has
plitudesa’ , bj’, c’, dj', ande}’, j=1,2, which are shown the same zero points for the transmission amplitude as the

in Fig. 12 with the directions, are connected by the relationdVire with the side branch.

V. CONCLUSIONS

" ~ 7 "
(a2> (' t) (al) (45) In this work we have discussed the transmission ampli-
b3 ' tude as function of energy in the complex plane for scatter-
ing systems(without a magnetic field connected to two
single-channel leads. We emphasize that there are two
(b{) 0 r7\/b} phases that are of importance, namely the phase that appears
—( ) ) (46) in the Friedel sum rule and the phase of the transmission
amplitudes. Except in special cases, these two phases are, in
general, different. This important point has also been empha-
branch sized by Le€’ The two phases are different if the transmis-
sion amplitude exhibits an energy at which it is zero. At
these energies the transmission amplitude phase and the Frie-
del phase acquire an additional difference givenzby. If
lead ¥ b C | o€ the transmission amplitude exhibits no zero point between
T resonances, the variation of the phase from one resonant
a: b, ¢ €1 . . .
peak to another is close to. If a zero point exists, the phase
FIG. 12. Current amplitudes for a model with scattering in thechange between consecutive resonance peaks of the trans-
wire and with a side branch. mission probability is close to2. This difference is shown

"

C1

" "
& dy
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clearly in the paths of the transmission amplitude in the comsupport of the Swiss Federal government. M.B. was sup-
plex plane. ported by the Swiss National Science Foundation.

For a sufficiently general model, we expect sequences of
resonant peaks that are in phdge phase increases byr?
interrupted by peaks that are out of phadee phase in-
creases only byr as we go from one peak to the ngxin
terms of the parity of the Aharonov-Bohm effect, these im- In this appendix we outline the derivation of E(®8),

ply sequences of peaks over which the parity is conservedyhich relates the Friedel phase and transmission amplitude

These sequences are interruptEd by transitions that generat@lease for the wire with a side branch. First, using Eas)
flip in the parity. It is clearly desirable to investigate now a and(36), we find

number of statistical questions: For example, for a fully cha-
otic quantum dot, one would like to find the ensemble- P h— o 1= \.ei¢’
. . . — 1— O )\16

averaged density of zeros and compare this with the = _

ensemble-averaged density of states. Furthermore, one - 2 l1-o0¢€'?

would like to know if such a cavity exhibits correlations in

the occurrence of zerdfong sequences of zeros interrupted  The transmission amplitudeis dependent on the energy

by a flip in the parity, etc. Since the distribution of eigen- only through the quantity’, so that we obtain

values is known, random matrix theory likely gives an an-

swer to these questions. 2600 g¢' darg(t.)
We add a remark on Fano resonances: Fano resonances = lim —4— —

arise due to the coupling of discrete states with continuous S R

states. Such resonances also exhibit transmission Z&t8s. _

Consequently, for such resonances the Friedel phase alstsing Eq.(Al) the derivatived arg{t.}/d¢’ is found to be

does not coincide with the phase of the transmission ampli-

tudes. The wire with a side branch investigated here also garg{t.} [ N Im{t_t})z}l o Im{t.)

APPENDIX: RELATION BETWEEN PHASES
FOR THE WIRE WITH A SIDE BRANCH

+ 7. (A1)

. (A2)

couples a set of discrete states with a continuum and thus ;

provides for interfering transmission paths. However, the Ie Relt.} d¢" Reft.}
resonances in this case are not of the Fano tgpeshown in 1 1— o2
Fig. 11) but rather Breit-Wigner resonances in the reflection =—
probability. 2 1+ ¢°—20cose’

In this work we considered only the case of a scatterer B , ,
connected to two single-channel leads. Fomwa terminal x *2f1 (0, ) ptf5(oN1,0")
structure withmultichannelleads, it can be shown that the 2fo(a, 0" ) P+ (17201 7)fa(o Ny, 0")

scattering matrix can always be brought into a basis, in

which the transmission and reflection matrices are separately 1
diagonal. Thus, such a multichannel problem can always be ) 1
decomposed into single-channel problems of the type inves-

tigated here. Moreover, in the experimentally relevant case, 1 1+N,

the dot is connected to the arms of the ring via tunnel barri- +t5F 1720 Mo, @'t —— ], (A3)
ers. Thus, the transmission probabilities of the eigenchannels

differ exponentially, and we can expect that it is only one ofwhere the function$;(x,y), fo(x,y), andf;(x,y,z) are de-
the channels that is relevant. Nevertheless, the question @hed by

what would actually be measured in a multichannel experi-

1-02

+0?—20 cose’

ment requires additional analysis that we have not provided f1(X,y)=2Xx—(1+x?)cosy, (A4)
here. Still a different situation arises multiterminal struc-
tures, experimentally investigated by Schusteal,'* where fo(x,y)=1+x2— 2x cosy, (A5)

the constraints on phases are much less stringent, and addi-
tional types of graphs, beyond those discussed here, might be
realized.
It is very interesting to investigate the behavior of theand the functiorF(x,y,z) is defined by

transmission amplitude in the complex plane for variations in

parameters other than the energy. For instance, we can asllé( ) (1—-x%)(1—y?)
about the path of the transmission amplitude if &K@ flux X,Y,2)= .
increases by a flux quantum in a multiple connected geom- (1—x)2(1—y)2+2(1+xy)(x+y)(1+cosz&7
etry. The additional questions raised in this section clearly (A7)

demonstrate that the investigation of the path of the transg(x,y,z) has the following properties. First, it follows that
mission amplitude in the complex plane is an interesting av-

f3(x,y,2)=(1+xy)?(1—y cosz), (AB)

enue of future research. I ) 0 in z=(2n+1)m
im F(x,y,2)=3 _ .
ACKNOWLEDGMENTS x-10 FSgl-y*)xe in z#(2n+1)m,
(A8)

We are grateful to A. Levy Yeyati, M. Devoret, and D.
Esteve for stimulating discussions. T.T. acknowledges th@=0,=1,=2,... . Second, it follows that
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N+2m
f dz F(x,y,2)
X

1 3g . (1-x2)(1-y?)

T e Yl xy) o+ x+yl[(x+Y) o+ 1+xY]
+27 in 0% |[x+y|<|1+xy|

| =27 in |x+y|>|1+xy| #0,

where A is a real number and=exp(z). C is the path

(A9)

running counterclockwise on the circle whose center is the

origin and the radius is 1. Equatiof&8) and (A9) lead to
+ 00

lim F(x,y,z)=F2msgrl—y?) >, &8(z—(2n+1)m).
Xx—1+0 n=-—o

(A10)
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Using Eq.(34) and the inequalitfe>0, we obtain

ry —1
)\177—(2n+1)77)=<071)

S(E—EM).
(A11)

ol o'+ E

From Egs.(A2), (A3), (A10), and(A11) we derive

2 + o0

N 7Y, S(E—EM).
n=1
(A12)

36" ¢’
JE  OE

€

!

l1-o71

Using Eqgs.(35) and(A12), we obtain Eq(38).
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