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Friedel phases and phases of transmission amplitudes in quantum scattering systems
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Département de Physique The´orique, Universite´ de Gene`ve, CH-1211, Gene`ve 4, Switzerland

~Received 30 June 1999!

We illustrate the relation between the scattering phase appearing in the Friedel sum rule and the phase of the
transmission amplitude for quantum scatterers connected to two one-dimensional leads. Transmission zero
points cause abrupt phase changes6p of the phase of the transmission amplitude. In contrast, the Friedel
phase is a continuous function of energy. We investigate these scattering phases for simple scattering problems
and illustrate the behavior of these models by following the path of the transmission amplitude in the complex
plane as a function of energy. We verify the Friedel sum rule for these models by direct calculation of the
scattering phases and by direct calculation of the density of states.@S0163-1829~99!06343-2#
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I. INTRODUCTION

The phase is an essential concept in quantum scatte
theory. Some key results and techniques, such as pa
wave expansion,1 and the Friedel sum rule2 depend in an
explicit manner on the scattering phase. The Friedel sum
connects the density of states to the charge~or a charge dif-
ference! of the system via the phase of the eigenvalues of
scattering matrix.2–5 Since the Friedel phase is related to t
density of states, it is also connected to thermodynamic
tistical mechanics quantities5,6 such as the persistent curren7

In addition to the total density of states, the scattering pha
also play an important role in the partial density of stat8

~density of states with a preselection or postselection of
incident or exiting quantum channel! and in transport coeffi-
cients such as capacitances9 and charge relaxation
resistances.10

The principal aim of this work is to investigate the beha
ior of the phase in simple scattering problems as they
quently occur in mesoscopic physics. In particular, we wo
like to understand which phases are continuous function
external parameters~Fermi energy, magnetic field, o
Aharonov-Bohm flux! and which phases are permitted to e
hibit jumps as a function of the external parameters.
consider coherent quantum scattering systems connecte
two semi-infinite, one-channel leads in the absence of a m
netic field and without spin-orbit scattering. Consider,
instance, the transmission amplitudet, which determines the
transmitted current amplitude if there is an incident curr
of unit amplitude. The transmission amplitude can be
pressed in terms of its modulusutu and its phaseu (t),

t[utueiu(t)
. ~1!

If, as a function of energy,utu is always positive, the path o
the transmission amplitude will encircle the origin of th
complex plane but always stay at a finite distance from it.
example of such a behavior is shown in Fig. 1. As a con
quence, the phaseu (t) is a continuous function of the energ
If, on the other hand,utu is zero for a certain value of th
external parameter, the path of the transmission amplitud
the complex plain will necessarily pass through the orig
As a consequence, the phaseu (t) will jump at this energy by
PRB 600163-1829/99/60~19!/13814~10!/$15.00
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p. Such a behavior is shown in Fig. 2. A specific mod
giving rise to the behavior shown in Fig. 1 is the transm
sion amplitude of a simple one-dimensional resonant tun
barrier structure. The transmission probability never va
ishes, and the phaseu (t) is a continuous function of energ
that increases in each complete revolution by 2p. In con-
trast, Fig. 2 shows the transmission amplitude for a sim
model of a side branch of finite length attached to a perf
wire. The transmission amplitude as a function of ene
passes through zero, and the phase that increases bp
through each revolution also exhibits a jump ofp ~or 2p)
bringing the phase back to its origin.

The two models with the very distinctive behavior can
combined, and the evolution of the transmission amplitude
such a combined model is shown in Fig. 3. Now the gra
shows very many revolutions through the origin and oc
sionally a revolution around the origin. We believe that th
reflects the generic behavior of the transmission amplitud
the complex plane.

Obviously, the phase of the transmission amplitude in
second example, Fig. 2, since it is not a continuous funct
cannot play the role of the scattering phase, which is use
the Friedel sum rule. For a system with a density of statesr,
there must exist a phase that we denote byu ( f ) and which we
call theFriedel phase, such that its energy derivative is d
rectly related to the density of states

]u ( f )

]E
5p r. ~2!

FIG. 1. Transmission amplitude as a function of energy fo
resonant double-barrier.
13 814 ©1999 The American Physical Society
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PRB 60 13 815FRIEDEL PHASES AND PHASES OF TRANSMISSION . . .
Since the density of states should be a continuous functio
the energy for the scattering problems we have in mind,
Friedel phase must also be a continuous function of ene
One aim of our work is to investigate and illustrate the b
havior of the different phasesu (t) andu ( f ) and to investigate
their connection to the scattering matrix of the problem.

The problem investigated here is of interest in connect
with the experiments of Yacobyet al.,11 and Schusteret al.12

In the experiment of Yacobyet al., an Aharonov-Bohm ring
with a quantum dot was investigated in a two terminal g
ometry. In a two terminal geometry, the Aharonov-Boh
effect exhibits aparity:13 As a function of the Aharonov-
Bohm flux, the conductance is either a local minimum
zero flux~positive parity! or a local maximum~negative par-
ity!. In the experiment of Yacobyet al., it was observed tha
over a sequence of more than a dozen Coulomb block
peaks the parity changes at each peak in an identical man
It is observed that the parity is positive to the left of t
Coulomb blockade peak and negative to the right of the C
lomb blockade peak. Such a behavior is incompatible wit
simple resonant tunneling model~Fig. 1! but would be in
accordance with the evolution of the transmission amplitu
shown in Fig. 2. The second important experimental fac
that the phase drops byp between Coulomb blockade pea
as shown in the experiment of Schusteret al. Again, this
behavior is compatible with Fig. 2 but not with Fig. 1.
number of efforts13–28 have been made to explain the fa
that the behavior of the parity is the same at each pe
Reference 13 suggested a screening effect, Ref. 15 allud
degeneracies, and Refs. 17, 20, 21, and 24 proposed a
metric deformation of the dot and repeated tunneling thro
exactly thesamestate. The same mechanism due to a
that is only semichaotic is supported by Silvestrov a
Imry28 who point to the large variation in the lifetime o
states in a semichaotic dot. Reference 29 proposes tha

FIG. 2. Transmission amplitude as a function of energy fo
wire with a side branch.

FIG. 3. Transmission amplitude as a function of the parti
energy for a model that combines the resonant tunnel barrier
the side branch.
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tunneling involving several levels might generate interact
induced correlations between the parity observed at su
quent peaks. A possible role of zero’s of the transmiss
probability, Fig. 2, was suggested to us in informal comm
nication by Levy Yeyati30 and has since found interest in
number of works.18,22,23,25–27We mention here especially th
work by Ryu and Cho23 who investigate anAB ring with a
dot that is also connected to a side branch. Apart from R
13, the Friedel sum rule has thus far only found interest
the recent work of Lee.27 The work presented here is in ver
close connection to the paper by Ryu and Cho and the p
by Lee.

It is possible that the experimental observation of iden
cal behavior over many subsequent conductance peaks
fact generic~i.e., is observed for a fully chaotic quantum do!
and does not require a system with special properties
generates tunneling through the same state. The parity o
Ahronov-Bohm effect was observed in a multichannel Ga
ring already almost a decade ago in an experiment by F
et al.31 In this experiment the ring is coupled to a back ga
and the experiment shows wide regions in the gate voltag
magnetic-field plane in which the parity of the Aharono
Bohm effect remains the same.

In this work we investigate the various phases of the sc
tering matrix and their relation to the phase of the transm
sion amplitudeu (t) and the Friedel phaseu ( f ) comparing in
detail two simple model systems, a one-dimensional reson
tunneling problem and a perfect wire with a side branch, a
briefly discuss also the combination of these two models

II. FRIEDEL PHASE AND TRANSMISSION AMPLITUDE
PHASE

We consider systems connected to two semi-infinite, o
dimensional leads. The system itself can be a multidim
sional, i.e., a quantum dot. We consider phase-coherent s
tering and neglect particle-particle interactions and inelas
scattering effects. In such systems the scattering matrixS in
the particle energyE is represented as a 232 matrix in
which Sj j is the reflection amplitude back into thej th lead
for carriers incident in thej th lead (j 51,2), andSjk is the
transmission amplitude from thekth lead to thej th lead (j
Þk, j 51,2, andk51,2). The scattering matrix is a unitar
matrix, S215S†. This condition guarantees a conservati
of the particle current. Furthermore, it implies that the eige
values of the scattering matrixSare on the unit circle. There
fore, the eigenvalue of the scattering matrixS can be repre-
sented as exp(2ijj) with a real quantityj j ( j 51,2). Below,
we show that we obtain the Friedel sum rule if we define
Friedel phaseu ( f ) by

u ( f )[(
j 51

2

j j . ~3!

As for any definition of a phase, Eq.~3! defines the Friede
phase only up to a multiple ofp. A unitary 232 matrix can
be parametrized as

S5S iei (u1w1) sinf ei (u1w2) cosf

ei (u2w2) cosf iei (u2w1) sinf D ~4!
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13 816 PRB 60TOORU TANIGUCHI AND MARKUS BÜTTIKER
with real phasesu, w1 , w2, andf. The eigenvalues of this
matrix exp(2ijj) are determined by

sin~2j j2u!5sinw1 cosf. ~5!

The eigenvalues are independent ofw2. Furthermore, ifj2 is
a solution of Eq.~5!, then a second solution is 2j12u5p
2(2j22u). Consequently, the sum of the two phases
these eigenvalues is 2j112j25p12u. Thus, according to
Eq. ~3!, the Friedel phase is given by

u ( f )5u1
p

2
. ~6!

Apart from a constantp/2, the Friedel phase is determine
only by the phaseu of the scattering matrix. In particular, a
also emphasized by Lee,27 it would be incorrect to identify
the Friedel phase with the argument of the transmission
plitude.

The derivative of the Friedel phaseu ( f ) with respect to the
particle energyE can be related to the energy derivatives
the scattering matrix. The density of states can also be
pressed in terms of the scattering matrix.5 This gives us a
relation that connects the energy derivative of the Frie
phase and the scattering matrix with the density of state

]u ( f )

]E
5

1

4i (
j 51

2

(
k51

2 S Sjk*
]Sjk

]E
2

]Sjk*

]E
SjkD 5p r. ~7!

Integration of this relation over the energy interval@E1 ,E2#
gives the Friedel sum rule, which thus states that the dif
ence in phaseu ( f )(E2)2u ( f )(E1) is equal to the number o
particlesN(E2 ,E1) multiplied by p in the system in this
energy interval,

u ( f )~E2!2u ( f )~E1!5pN~E2 ,E1!. ~8!

The Friedel phase is thus acontinuousfunction of energy
~eitherE2 or E1) since the density of states is a continuo
function of energy.

Another phase that is frequently discussed is the argum
u (t) of the transmission amplitude defined by Eq.~1!. Below,
we will consider only systems with time-reversal invarianc
For such systems, the scattering matrix is symmetricS12
5S21, and consequently,w250 or w25p. To be definite,
we takew250. In this case the phase of the transmiss
amplitude is given by

u (t)5u1pQ~cosf!, ~9!

whereQ(x) is the step function ofx. In contrast to the Frie-
del phase, the phase of the transmission amplitude is thu
general, not a continuous function of energy but exhibit
jump of p when cosf changes sign. The Friedel phase a
the transmission amplitude phase are not completely in
pendent. From Eqs.~6! and ~9! we find

u (t)5u ( f )2
p

2
1pQ~cosf!. ~10!

Differentiating Eq.~10! with respect to energy~or any other
variable of interest! we find

Du (t)5Du ( f )1pd~cosf!D cosf, ~11!
f
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where we have used the abbreviationD5]/]E. Equation
~11! shows that only if the condition cosfÞ0 is satisfied for
all values of the parameters is the phase of the transmis
amplitudes equal to the Friedel phase. The condition cof
Þ0 means that the transmission probabilityutu2 is nowhere
equal to zero. Therefore, it is the existence of zero points
the transmission probability that is at the origin of the diffe
ence of the Friedel phase and the phase of the transmis
amplitude.

To be more precise, in addition to a zero point in t
transmission probability, it is also required that the ene
derivative of] cosf/]E is nonzero at the transmission zer
points. To see this, we consider phase changes due to
energyE only and assume that the number of zero points
the transmission probability is finite or countable. The ze
points of the transmission probability determine a seque
of energies that we denote byE(n), n51,2, . . . .Using Eqs.
~7! and ~11!, we obtain

]u (t)

]E
5pr1p(

n
sgnS ] cosf

]E U
E5E(n)

D d~E2E(n)!,

~12!

where the function sgn(x) of x is the sign function. It may be
noted that the second term of the right-hand side of Eq.~12!
is zero even at a transmission zero point if] cosf/]E is zero
at such a point. However, we expect that such cases
unlikely, and we proceed by assuming that] cosf/]E is not
zero at any transmission zero point.

To summarize, the Friedel phase is a continuous func
of energy. On the other hand, the argument of the transm
sion amplitude might exhibit jumps. These conclusions ag
with Lee.27

III. EVOLUTION OF THE PATH OF THE TRANSMISSION
AMPLITUDE CONNECTING CONSECUTIVE

RESONANCES

We now discuss, from a general point of view, the con
tions that lead to the behavior shown in Figs. 1, 2, and 3.
consider a set of parameters for which the transmission p
ability shows a series of peaks as function of energy.
now ask: What portion of the path of the transmission a
plitude shown in Fig. 1 and Fig. 2 is traced out if we increa
the energy from its value at a peak in the transmission pr
ability to a value corresponding to the subsequent peak in
transmission probability? Let us denote the energy of thenth
peak in the transmission probability byEn . In addition, let us
consider the condition

E
E n

En11
dE r;1, ~13!

which according to the Friedel sum rule implies that o
particle is added to the scattering region. Using this con
tion and integrating both sides of Eq.~12! with respect to the
energy fromEn to En11, we find

u (t)~En11!2u (t)~En!;H p caseA

0 or 2p caseB.
~14!
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PRB 60 13 817FRIEDEL PHASES AND PHASES OF TRANSMISSION . . .
In caseA there is no transmission zero point in the ener
interval (En ,En11), and in caseB there is a transmission zer
point in the energy interval (En ,En11). In caseA the phase
u (t) evolves byp through the consecutive resonant peaks,
that the resulting path of the transmission amplitude is
shown in Fig. 4. On the other hand, in caseB the phaseu (t)

of the transmission amplitude increases by 2p ~or 0) be-
tween the consecutive resonant peaks, so that the trace o
transmission amplitude is as shown in Fig. 5.

It is clear that Fig. 1 is composed of two paths of the ty
shown in Fig. 4, and Fig. 2 is the result of a path of the ty
shown in Fig. 5. Consequently, there is a profound differe
in the behavior of these two systems: Whereas, for insta
in a double-barrier scattering problem, we need to incre
the energy over two consecutive states to rearrive at the s
ing point, for the wire with a side branch an energy increa
over one state only is sufficient to bring the system back
the same point. We also remark that Fig. 3 is composed
combinations of the paths shown in Figs. 4 and 5.

Clearly, it would be desirable to classify all the possib
paths that are taken in the complex plane as we proceed
one transmission peak to another. Here we have emphas
only two paths, namely those shown in Figs. 4 and 5. Th
two possibilities are direct consequences of the condi
~13!, but, of course, there might exist scattering proble
that do not obey this condition.

To summarize this section, we have shown that the a
tion of a particle to the system can lead to at least two v
distinct paths of the transmission amplitude in the comp
plane. For paths of typeA ~see Fig. 4!, the parity of the

FIG. 4. Schematic representation of the path of the transmis
amplitude as a function of the particle energy for the case that t
is no transmission zero. The energy interval covered is that nee
for the transition from one resonant peak~in the transmission prob
ability! to the next resonant peak. The phase changes by aboup.

FIG. 5. Schematic representation of the path of the transmis
amplitude as a function of the particle energy for the case that t
is a transmission zero. The energy interval covered is that nee
for the transition from one resonant peak~in the transmission prob
ability! to the next resonant peak. The phase changes by aboutp.
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Aharonov-Bohm effect in a two terminal geometry isout of
phaseon consecutive resonant peaks, whereas for a scat
of typeB ~see Fig. 5!, the Aharonov-Bohm oscillations arein
phase. With respect to the experiment of Yacobyet al., it is
an in-phase behavior that is needed to explain the data.

IV. EXAMPLES

In this section we present the calculations that lead
Figs. 1, 2, and 3 for the transmission amplitude. In addit
we present results for the density of states as a function
energy that we compare with the transmission probability

A. The resonant double barrier

The first example is a one-dimensional double-barr
model, which consists of two consecutive potential barri
that scatter particles moving along thex axis. A schematic
illustration is shown in Fig. 6.

We assume that the two potential barriers in this mo
are identical and that each potential barrier is symmetric w
respect to particles incident from the left and the right. T
current amplitudesaj , bj , cj and dj , j 51,2, which are
shown in Fig. 6, are connected by the relations

S a2

b2
D 5S r̃ t̃

t̃ r̃
D S a1

b1
D , ~15!

S c2

d2
D 5S r̃ t̃

t̃ r̃
D S c1

d1
D . ~16!

Here r̃ and t̃ are the reflection and the transmission amp
tude of the potential barriers, respectively. The amplitude
the well are related byb15tc2 and c15tb2, where t
5exp(iw) is the transmission amplitude of the well andw the
phase accumulated by a one time traversal of the well.

We have to find the scattering matrixS that relates the
outgoing current amplitudesa2 ,d2 to the incoming current
amplitudesa1 ,d1. A little algebra gives

S5S r̃ 0

0 r̃
D 1

t̃ 2t

12 r̃ 2t2 S r̃ t 1

1 r̃ t
D . ~17!

To proceed, we parametrize the scattering matrix of
single barrier also in terms of angular variables@see Eq.~4!#.
We take r̃ 5 iei ũ sinf̃ and t̃ 5ei ũ cosf̃ with real anglesũ
andf̃. In our model the potential is uniform~except for the
two barriers!, andw is thus connected to the energyE of a
scattering particle viaw5kl, wherel is the distance betwee
the potential barriers andk5A2mE/\ is the wave vector of
the particle away from the barriers. We assume that
quantitiesũ and f̃ are independent of the energyE. This

n
re
ed

n
re
ed

FIG. 6. Current amplitudes in the double-barrier model.
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13 818 PRB 60TOORU TANIGUCHI AND MARKUS BÜTTIKER
implies, in particular, that there is no particle density ins
each potential barrier. With these specifications the transm
sion amplitudet is given by

t5
ei (kl12ũ) cos2f̃

11e2i (kl1 ũ) sin2f̃
. ~18!

The transmission amplitude is a function of energy o
through the energy dependence of the wave vectork. This
result is used to give the transmission amplitude in the co
plex plane as a function of energy in Fig. 1. The parame
chosen for Fig. 1 areũ52.2 andf̃52.1.

B. Phases and density of states in the double-barrier model

For comparison with the wire connected to a side bran
we now examine the phases in the double-barrier scatte
problem and the density of states. To find the Friedel ph
we use Eq.~7! and find from Eq.~17!,

]u ( f )

]E
5

]w

]E

12u r̃ u4

u12 r̃ 2t2u2
. ~19!

The derivative of the phaseu (t) of the transmission ampli
tude is found from tanu (t)5Im$t%/Re$t%,

]u (t)

]E
5H 11S Im$t%

Re$t% D
2J 21 ]

]E

Im$t%

Re$t%
. ~20!

Substituting Eq.~18! into Eq. ~20!, we can show that for the
resonant double barrier the derivatives of the two phases
identical,

]u (t)

]E
5

]u ( f )

]E
. ~21!

This result just restates Eq.~11! for the double-barrier model
The phaseu5u (t)5u ( f )2p/2 for the double-barrier mode
as a function ofkl ~wave vector times well width! is shown
in Fig. 7. The specific parameters areũ52.2 andf̃52.1.
Thus, the phase shows a steplike behavior. It is nearly c
stant as a function ofk and increases sharply whenk, or the
energyE5\2k2/(2m), coincides with a resonant state. T
show this, we now examine the density of states.

For a perfect one-dimensional wire, the density of sta
per unit length and in a small interval of wave vectors
dn/dk51/(2p) for carriers moving to the right. Sinc
dE/dk5\v, wherev is the velocity of the carrier, the den
sity of states per unit length and in a small energy interva
n[dn/dE51/(hv). We are interested in the density o
states in the region between the two barriers. Denoting

FIG. 7. Phase of the transmission amplitude as a function
kl(5 lA2mE/\) for the double-barrier model.
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scattering states with unit amplitude of incident carriers fro
the left byF1(x) and the scattering state of carriers with un
amplitude of carriers incident from the right byF2(x), the
local density of states can be expressed by32

n~x!5 (
m51

2
1

hv
uFm~x!u2. ~22!

The density of states in the well region~between the two
barriers! is the integral over the local density of statesr
5*2 l /2

l /2 dxn(x). With an explicit calculation of the scatterin
states, we obtain

r5
2l

hv U t̃

12 r̃ 2t2U2S 11u r̃ u212 Re$ r̃ t%
sinw

w D . ~23!

Here, for simplicity, we assume that the phase increment
barrier traversal is zero. We have considered here the den
of states that are obtained in terms of energy derivatives
phases or scattering matrices~as is widely done!. Such de-
rivatives do not naturally lead to an answer for a spatia
local density of states. The density of states in the reg
between the two barriers is, however, a local question
rigorous procedure to obtain local densities is via derivati
of phases and scattering matrices with respect to lo
potentials.8 The discussion given here~in terms of energy
derivatives! is correct only up to WKB-like corrections. Th
last term in Eq.~23! contains a factor 1/(kl) and is thus small
for wells that are much larger than a wavelength. Neglect
this term, we obtain

r̄5
2l

hv
11sin2f̃

cos2f̃14 tan2f̃ cos2~ ũ1kl !
. ~24!

As is well known, for the case of opaque barriers (ũ→p/2
andf̃→p/2), the density of states becomes a series of d
functions limr̃→21 r̄5(n51

1` d„E2p2\2n2/(2ml2)… that co-
incide with the peaks of perfect transmission. For we
much wider than the wavelength, we find from Eq.~24! that
the peaks in the density of states are at the energies

En5
p2\2

2ml2
Fn2

1

p S ũ2
p

2 D G2

. ~25!

Here n takes any integer value larger than (2ũ2p)/2p.
Comparison of Eq.~19! with Eq. ~24!, leads to]u ( f )/]E

5p r̄, i.e., the Friedel sum rule in the double-barrier mod
Using Eqs.~18! and ~24!, we obtain

utu25
u t̃ u2

11u r̃ u2

p\v
l

r̄, ~26!

a relation between the density of statesr̄ and the transmis-
sion probability utu2. This relation implies that the energ
valuesEn that determine the peaks in the transmission pr
ability coincide with the energiesEn of the peaks in the
density of states. Using this fact and Eq.~24!, we can show

f
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E
E n

En11
dEr̄51. ~27!

In particular, Eq.~13! applies to the resonant double barrie
with well widths large compared to the wavelength. Figure
shows the transmission probability and the density of sta
as a function ofkl for the double barrier for the paramete
ũ52.2 and f̃52.1. We emphasize this behavior of th
double barrier, since, as we show in the next section, a w
with a side branch exhibits a transmission probability an
density of state that do not peak at the same energy.

C. Wire with a side branch

The second example that we investigate is a perfect o
dimensional wire with a side branch, which we also call t
‘‘stub’’ model. Such models have already a long history. T
conductance of a wire with a side branch was investigate
Refs. 33, 34, and 35. References 36, 37, and 38 consid
charging effects in structures with side branches. The pa
of such closed structures is discussed in Refs. 37 and 3
the context of the present work, the phase behavior of
transmission amplitude was investigated by Singha Deo
Jayannavar18,40,41 and Ryu and Cho.23 However, neither of
these two works makes the distinction between the Frie
phase and the phase of the transmission amplitude. Be
we investigate these two phases for a perfect wire to whic
side branch of lengthl 8 is attached. A schematic illustratio
of this system is shown in Fig. 9.

The junction between the wire and the side branch is
scribed by a wave splitter.42,43We consider the time-reversa
invariant case only and consider a splitter, which is symm
ric with respect to carriers incident from the left and rig
lead. Furthermore, we assume the potential away from
junction is the same in all branches. The current amplitu
aj8 , bj8 , and cj8 , j 51,2, which are shown in Fig. 9, ar
connected by the relations

FIG. 8. Transmission probability~dashed line! and the density

of statesr̄ ~solid line! in units of r0[ml2/(p\2) as a function of
kl(5 lA2mE/\) for the double barrier.

FIG. 9. Current amplitudes for the model of a wire with a si
branch.
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S a28

b28

c28
D 5S r̃ 8 « t̃ 8

« s «

t̃ 8 « r̃ 8
D S a18

b18

c18
D , ~28!

and b185t8b28[eiw8b28 with w852kl81p. Here k is the
wave vector of a particle with energyE. The constantp in w
guarantees that the wave function has a node at the uppe
of the stub. In Eq.~28!, r̃ 8 is the reflection amplitude from a
lead to itself,t̃ 8 is the transmission amplitude from a lead
another lead,s is the reflection amplitude from the stub t
itself, « is the transmission amplitude from a lead to the s
or from the stub to a lead, andt8 is the transmission ampli
tude by which the particle starting from the junction retur
to the junction through the stub.

For the scattering matrix, relating the incident amplitud
in the wire a18 ,c18 to the out-going amplitudesa28 ,c28 in the
wire ~see Fig. 9!, we obtain

S5S r̃ 8 t̃ 8

t̃ 8 r̃ 8
D 1

«2t8

12st8
S 1 1

1 1D . ~29!

Here the first matrix on the right-hand side arises from dir
transmission past the side branch and direct reflection at
wave splitter due to the side branch, whereas the second
on the right-hand side is the contribution due to carriers t
enter the stub and thus undergo a multiple-scattering proc
We assume that the scattering amplitudesr̃ 8, t̃ 8, s, and«
are real numbers,«Þ0, and are independent of the energyE.
These assumptions, and the fact that the scattering m
~28! must be unitary, demands43

r̃ 85~l11l2A122«2!/2, ~30!

t̃ 85~2l11l2A122«2!/2, ~31!

s52l2A122«2, ~32!

wherel j is 1 or 21 ( j 51,2). Depending on the choice o
thel8s, four different wave splitters are obtained. The val
of the coupling constant « is in the interval
@21/A2,1/A2 #. Using such a wave splitter leads to a tran
mission amplitude

t5
2l11l2A122«2

2

11l1e2ikl 8

12l2A122«2 e2ikl 8
. ~33!

The path of this amplitude in the complex plane as a funct
of energy is shown in Fig. 2 for the casel1521. The path
is a circle through the origin since Eq.~33! implies ut
1l1/2u251/4. From Eq.~33! it follows that the wire with
the stub has zero points of the transmission probability at
energies

E(n)5
p2\2

2ml82 S n2
11l1

4 D 2

, ~34!

n51,2, . . . . Were-emphasize that in contrast to the case
the double barrier the origin is included in the path of t
transmission amplitude.



e
ch
e

is
de
itu
th
d

h

w

a
tio
it

c
pl

te

is

the

h
the
.
ity

hich

m-
ase

he

b-
es.

f
gies
ity

rob-

ing
-

13 820 PRB 60TOORU TANIGUCHI AND MARKUS BÜTTIKER
D. Phases and density of states in wire with a side branch

Let us now investigate the Friedel phase and the phas
the transmission amplitude for the wire with a side bran
Using Eqs.~7! and ~29!, the derivative of the Friedel phas
u ( f ) with respect to the energyE in the wire with a side
branch is given by

]u ( f )

]E
5

]w8

]E U «

12st8
U2

. ~35!

As shown in Sec. IV C, there are zero points in the transm
sion amplitude as a function of the energy in the stub mo
so that abrupt phase changes of the transmission ampl
do occur. Thus, we need a limiting procedure to define
phase of the transmission amplitude. To this end, we ad
small perturbation6h,h.0 to the transmission amplitude

t̄ 6[t6h ~36!

and evaluate the phase oft̄ 6 in the limit h→10. The de-
rivative of the phaseu (t) of the transmission amplitude wit
respect to the energyE is thus given by

]u (t)

]E
5 lim

h→10
H 11S Im$ t̄ 6%

Re$ t̄ 6%
D 2J 21

]

]E

Im$ t̄ 6%

Re$ t̄ 6%
. ~37!

Using our specific result for the transmission amplitude,
obtain

]u (t)

]E
5

]u ( f )

]E
6l1 p (

n51

1`

d~E2E(n)!. ~38!

A detailed derivation of Eq.~38! is given in the Appendix.
Figure 10 shows the phase of the transmission amplitude
the Friedel phase of the wire with a side branch as a func
of kl8. We have chosen the branch of the wave splitter w
l1521, l251 and a coupling constant«250.35.

Let us next investigate the density of states. The wire
taken to be on thex axis, with the splitter located atx50.
The stub points along the positivey axis. The splitter is de-
scribed by an energy independent scattering matrix and
thus be viewed as pointlike. A scattering state of unit am
tude exp$ikmx% describing particles incident from themth lead
(m51,2) gives in the side branch rise to a waveCm(y).
Herek15k for a wave incident from the left andk252k for
a wave incident from the right. The local density of sta
n(y) in the side branch is given by n(y)
5(m51

2 uCm(y)u2/(hv), and the total density of states

FIG. 10. Phase of the transmission amplitudeu (t) ~solid line!
and Friedel phaseu ( f )2p/2 ~dashed line! as a function ofkl8 for
the wire with the side branch.
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given by the integral of the local density of states over

entire length of the stub,r5*0
l 8dyn(y). We find

r5
l 8

hv U 2«

12seiw8U2S 11
sinw8

w82p
D . ~39!

In the WKB limit of interest here, for a side branch muc
longer than the Fermi wavelength, the second term in
bracket of the right-hand side of Eq.~39! can be neglected
Using Eq.~32!, we obtain for a long side branch the dens
of states

r̄85
l 8

hv
4«2

~12A122«2!214A122«2 sin2~K2l 8!
. ~40!

HereK j , j 51,2 is defined byK j[k1(12l j )p/(4l 8). For
a stub much longer than a wavelength, the energies at w
the density of states peaks are given by

En85
p2\2

2ml82 S n2
12l2

4 D 2

. ~41!

In the weak-coupling limit«→10, using Eq.~40!, we ob-
tain lim«→10r̄85(n51

1` d(E2En8). Here the right-hand side
is the density of states of a particle confined in the co
pletely isolated stub but taking into account that the ph
change at the closed coupler is as dictated byl251. The
comparison of Eq.~35! with Eq. ~40! leads to ]u ( f )/]E

5p r̄8. We have thus verified the Friedel sum rule for t
wire with a side branch.

Let us now show that in this scattering problem~for the
splitters withl1l2521) the peaks in the transmission pro
ability do not coincide with the peaks in the density of stat
Using Eq.~33!, the transmission probabilityutu2 can be ex-
pressed in the form

utu25
~12l1l2A122«2!2cos2~K1l 8!

~12l1l2A122«2!214l1l2A122«2 sin2~K1l 8!
.

~42!

Therefore, the energy valuesEn , n51,2, . . . , atwhich the
transmission probability peaks are given by

En5
p2\2

2ml82 S n2
12l1

4 D 2

. ~43!

We see that forl1l2521 ~i.e., depending on the choice o
the splitter! these energy values are not equal to the ener
En8 , n51,2, . . . , which determine the peaks of the dens
of states. Indeed, using Eqs.~40! and~42!, we obtain for the
relation between density of states and the transmission p
ability

utu25
1

l1s H t̃ 822
p\v«2

2l 8
r̄8J . ~44!

Using Eqs.~40! and ~43!, we can show that*E n

En11dE r̄8

51. This implies that the condition~13! is fulfilled also by a
wire with a side branch. The different behavior, depend
on the sign ofl1l2, is especially apparent in the weak
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coupling limit. In this limit, for l1l2521, almost all the
particles incident from the wire on the wave splitter pa
through the junction without noticing the side branch. Co
versely, in the weak-coupling limit of a wave splitter wit
l1l251 almost all the particles incident from the wire o
the wave splitter are reflected at the wave splitter. Figure
shows the transmission probability and the density of sta
as a function ofkl8 for the wire with a side branch connecte
by a junction withl1521, l251, and«250.35.

E. Wire with scattering and a side branch

The previous two models are examples that demonst
two different behaviors of the transmission amplitude in
complex plane. These different behaviors are illustrated
Figs. 4 and 5. Clearly, both of these models are very part
lar ~nongeneric!, and the question arises how the behav
exemplified by these two simple models shows up in m
complicated structures. To examine this question, we n
consider a structure that incorporates both the reso
double barrier and the side branch. A schematic illustrat
of this system is shown in Fig. 12.

We use the same potential barrier as in the reson
double-barrier structure and the same wave splitter as
used for the description of the wire with the side bran
Again, we will assume that the potential outside these s
terers is everywhere the same. In this model the current
plitudesaj9 , bj9 , cj9 , dj9 , andej9 , j 51,2, which are shown
in Fig. 12 with the directions, are connected by the relatio

S a29

b29
D 5S r̃ t̃

t̃ r̃
D S a19

b19
D , ~45!

S b19

c19
D 5S 0 t

t 0D S b29

c29
D , ~46!

FIG. 11. Transmission probability~dashed line! and the density

of statesr̄8 ~solid line! in units ofr08[ml82/(2p\2) for a wire with
a side branch.

FIG. 12. Current amplitudes for a model with scattering in t
wire and with a side branch.
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S c29

d29

e29
D 5S r̃ 8 « t̃ 8

« s «

t̃ 8 « r̃ 8
D S c19

d19

e19
D . ~47!

Furthermore, as in the model with the side branch, we
d195t8d29 .

For the overall scattering matrix of these systems, we
tain

S5
1

r̃ * D
S V W

W 2l1t8t2V* D ~48!

in which D, V, andW are defined by

D[12st82 r̃ r̃ 8~11l1t8!t2, ~49!

V[D2u t̃ u2~12st8!, ~50!

W[ r̃ * t̃ t̃8~12l1t8!t. ~51!

The transmission amplitudet can be brought into the form

t5
t̃ t̃ 8~11l1e2ikl 8!eikl

11se2ikl 82 r̃ r̃ 8~12l1e2ikl 8!e2ikl
. ~52!

In this representation the transmission amplitudet depends
on the energy E only through the wave vectork
5A2mE/\. As a function of energy, the path of this tran
mission amplitude in the complex plane is shown in Fig.
Here the parameters chosen for Fig. 3 areũ52.2, f̃52.1,
l1521, l251, «250.35, l 51, and l 854. This figure
shows clearly that a more general model combines the
havior of the resonant double-barrier model and the s
model. Sequences of turns of the transmission amplitude
path through the origin are interrupted by ‘‘double turns
characteristic of the resonant double barrier in which
transmission amplitude is nonzero. From Eq.~52!, it can be
noted that the wire with scattering and with a side branch
the same zero points for the transmission amplitude as
wire with the side branch.

V. CONCLUSIONS

In this work we have discussed the transmission am
tude as function of energy in the complex plane for scat
ing systems~without a magnetic field! connected to two
single-channel leads. We emphasize that there are
phases that are of importance, namely the phase that app
in the Friedel sum rule and the phase of the transmiss
amplitudes. Except in special cases, these two phases a
general, different. This important point has also been emp
sized by Lee.27 The two phases are different if the transm
sion amplitude exhibits an energy at which it is zero.
these energies the transmission amplitude phase and the
del phase acquire an additional difference given by6p. If
the transmission amplitude exhibits no zero point betwe
resonances, the variation of the phase from one reso
peak to another is close top. If a zero point exists, the phas
change between consecutive resonance peaks of the t
mission probability is close to 2p. This difference is shown
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13 822 PRB 60TOORU TANIGUCHI AND MARKUS BÜTTIKER
clearly in the paths of the transmission amplitude in the co
plex plane.

For a sufficiently general model, we expect sequence
resonant peaks that are in phase~the phase increases by 2p)
interrupted by peaks that are out of phase~the phase in-
creases only byp as we go from one peak to the next!. In
terms of the parity of the Aharonov-Bohm effect, these i
ply sequences of peaks over which the parity is conserv
These sequences are interrupted by transitions that gene
flip in the parity. It is clearly desirable to investigate now
number of statistical questions: For example, for a fully ch
otic quantum dot, one would like to find the ensemb
averaged density of zeros and compare this with
ensemble-averaged density of states. Furthermore,
would like to know if such a cavity exhibits correlations
the occurrence of zeros~long sequences of zeros interrupt
by a flip in the parity!, etc. Since the distribution of eigen
values is known, random matrix theory likely gives an a
swer to these questions.

We add a remark on Fano resonances: Fano resona
arise due to the coupling of discrete states with continu
states. Such resonances also exhibit transmission zeros44–46

Consequently, for such resonances the Friedel phase
does not coincide with the phase of the transmission am
tudes. The wire with a side branch investigated here a
couples a set of discrete states with a continuum and
provides for interfering transmission paths. However,
resonances in this case are not of the Fano type~as shown in
Fig. 11! but rather Breit-Wigner resonances in the reflect
probability.

In this work we considered only the case of a scatte
connected to two single-channel leads. For atwo terminal
structure withmultichannelleads, it can be shown that th
scattering matrix can always be brought into a basis,
which the transmission and reflection matrices are separa
diagonal. Thus, such a multichannel problem can always
decomposed into single-channel problems of the type inv
tigated here. Moreover, in the experimentally relevant ca
the dot is connected to the arms of the ring via tunnel ba
ers. Thus, the transmission probabilities of the eigenchan
differ exponentially, and we can expect that it is only one
the channels that is relevant. Nevertheless, the questio
what would actually be measured in a multichannel exp
ment requires additional analysis that we have not provi
here. Still a different situation arises inmultiterminalstruc-
tures, experimentally investigated by Schusteret al.,12 where
the constraints on phases are much less stringent, and
tional types of graphs, beyond those discussed here, migh
realized.

It is very interesting to investigate the behavior of t
transmission amplitude in the complex plane for variations
parameters other than the energy. For instance, we can
about the path of the transmission amplitude if theAB flux
increases by a flux quantum in a multiple connected ge
etry. The additional questions raised in this section clea
demonstrate that the investigation of the path of the tra
mission amplitude in the complex plane is an interesting
enue of future research.
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APPENDIX: RELATION BETWEEN PHASES
FOR THE WIRE WITH A SIDE BRANCH

In this appendix we outline the derivation of Eq.~38!,
which relates the Friedel phase and transmission amplit
phase for the wire with a side branch. First, using Eqs.~33!
and ~36!, we find

t̄ 65
2l12s

2

12l1eiw8

12s eiw8
6h. ~A1!

The transmission amplitudet is dependent on the energ
only through the quantityw8, so that we obtain

]u (t)

]E
5 lim

h→10

]w8

]E

] arg$ t̄ 6%

]w8
. ~A2!

Using Eq.~A1! the derivative] arg$ t̄ 6%/]w8 is found to be

] arg$ t̄ 6%

]w8
5H 11S Im$ t̄ 6%

Re$ t̄ 6%
D 2J 21

]

]w8

Im$ t̄ 6%

Re$ t̄ 6%

5
1

2

12s2

11s222s cosw8

3
72 f 1~s,w8!h1 f 3~s,l1 ,w8!

2 f 2~s,w8!h21~172l1h! f 3~s,l1 ,w8!

5
1

2

12s2

11s222s cosw8

1
1

2
FS 172l1h, l1s, w81

11l1

2
p D , ~A3!

where the functionsf 1(x,y), f 2(x,y), and f 3(x,y,z) are de-
fined by

f 1~x,y![2x2~11x2!cosy, ~A4!

f 2~x,y![11x222x cosy, ~A5!

f 3~x,y,z![~11xy!2~12y cosz!, ~A6!

and the functionF(x,y,z) is defined by

F~x,y,z![
~12x2!~12y2!

~12x!2~12y!212~11xy!~x1y!~11cosz!
.

~A7!

F(x,y,z) has the following properties. First, it follows tha

lim
x→160

F~x,y,z!5H 0 in z5~2n11!p

7sgn~12y2!3` in zÞ~2n11!p,
~A8!

n50,61,62, . . . . Second, it follows that
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E
l

l12p

dz F~x,y,z!

5
1

i R
C
dv

~12x2!~12y2!

@~11xy!v1x1y#@~x1y!v111xy#

5H 12p in 0Þ ux1yu,u11xyu

22p in ux1yu.u11xyu Þ0,
~A9!

where l is a real number andv[exp(iz). C is the path
running counterclockwise on the circle whose center is
origin and the radius is 1. Equations~A8! and ~A9! lead to

lim
x→160

F~x,y,z!572psgn~12y2! (
n52`

1`

d„z2~2n11!p….

~A10!
s

ys

s.

nd
e

Using Eq.~34! and the inequalityE.0, we obtain

dS w81
11l1

2
p2~2n11!p D5S ]w8

]E D 21

d~E2E(n)!.

~A11!

From Eqs.~A2!, ~A3!, ~A10!, and~A11! we derive

]u (t)

]E
5

]w8

]E U «

12st8
U2

6l1 p (
n51

1`

d~E2E(n)!.

~A12!

Using Eqs.~35! and ~A12!, we obtain Eq.~38!.
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