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Maximum magnetic moment in a field-cooled superconducting disk

Masahito Nakagawa, Shigeaki Utsumi, and Yasukage Oda
Department of Material Science, Faculty of Science, Himeji Institute of Technology, Ako-gun, Hyogo 678-1297, Japan

~Received 12 October 1998!

We studied the maximum magnetic moments in a field-cooled superconducting disk for fields perpendicular
to the disk surface. When the sample was field cooled, a part of the flux remained in the sample. We calculated
the ~positive! maximum magnetic moments only under the following two conditions. One is that the remaining
flux not exceed the flux through the sample aboveTc . The other is that the field component perpendicular to
the sample surface be zero or positive. As a result, the maximum moment turned out to be about 50% of the
full diamagnetic moment. If the observed paramagnetic Meissner effect was caused by flux compression under
the two conditions, a positive magnetic moment over 50% of the full diamagnetic moment is impossible for a
superconducting disk. For example, we calculated magnetic moments and others for a superconducting disk by
assuming that the Bean state is realized around the center of the disk.@S0163-1829~99!11425-5#
d

d

e
e

-
a

e
i

v
ca
h
e

t
t
n

au
up
f
fu

le
ea

-
a
ta
o
b

ax
r.
m
et
th

the
r

u-
the

u-
an
to
xi-
etic
lized
m

he
ld

ller
n-

the

t

I. INTRODUCTION

After some granular high-Tc superconductors were fiel
cooled, positive magnetic moments were observed,1–3 and
this is referred to as the paramagnetic Meissner effect~PME!
or Wohlleben effect. Afterwards many studies were ma
experimentally4–8 and theoretically.9–15 The PME is a very
interesting phenomenon if it appears as a consequenc
unconventional pairing as predicted theoretically. Howev
similar behaviors~positive magnetic moments! were ob-
served ins-wave Nb disks.19,20 In order to explain these ex
perimental results consistently, several studies were m
from the viewpoint of surface superconductivity.16–18In par-
ticular, Geimet al. discussed the origin of the PME on th
basis of their observation of positive magnetic moments
mesoscopic superconductors.18 On the other hand, Koshele
and Larkin pointed out that positive magnetic moments
be caused by flux compression into the sample due to in
mogeneous cooling; that is, the superconducting state
tends from the edges of the sample.21 Thus Rice and Sigris
proposed experimental methods to distinguish between
two different origins of paramagnetism, flux compressio
and orbital magnetic moments~OMM’s!.22 One of them is to
measure the magnitude of the paramagnetic signal, bec
the paramagnetic signal due to OMM’s may exceed the
per limit possible through flux compression. Indeed Knauet
al. reported a paramagnetic susceptibility larger than the
diamagnetic signal (x521/4p).23 The maximum magnetic
moment due to flux compression was calculated by Koshe
and Larkin for a thin superconducting strip assuming a B
state; the value is about 27% of 1/4p.21 Therefore the results
of Knauf et al. were difficult to be explained by flux com
pression. However, the results of Koshelev and Larkin m
strongly depend on the sample geometry, or the Bean s
assumed by Koshelev and Larkin may not be realized. C
sequently, a much larger paramagnetic susceptibility may
caused by flux compression. Thus we calculated the m
mum magnetic moment for a disk-shaped superconducto
this geometry a demagnetizing field affects the magnetic
ment largely; so we suppose that the maximum magn
moment is the largest in all geometry. When obtaining
PRB 600163-1829/99/60~2!/1372~5!/$15.00
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maximum magnetic moment we calculated it only under
following two conditions. One is that the flux which is large
than the flux through the disk atT.Tc not remain in the disk
at T,Tc . The other is that the field component perpendic
lar to the sample surface be zero or positive. Therefore,
~obtained! results are quite general.

This paper is organized as follows. In Sec. II we form
late the method to obtain the magnetic moment when
arbitrary distribution of field components perpendicular
the disk surface is given. In Sec. III we calculate the ma
mum magnetic moments. In Sec. IV we calculate magn
moments and others by assuming that a Bean state is rea
around the center of the disk. We will use the SI units fro
here on in.

II. FORMULATION FOR MAGNETIC MOMENT

In this section we formulate the method to obtain t
magnetic moment when an arbitrary distribution of fie
components perpendicular to the disk surface is given.

We assume that the thickness of the disk is much sma
than the radiusR and consequently we do not need to co
sider thez dependence of the current distribution, wherez is
the axis perpendicular to the disk surface. We integrate
current density with respect toz and we definei as the inte-
grated value. When there is a stationary currenti in a region
of dS8 at r8, the vector potentialdA at r9 created by the
current is

dA5
m0

4pur92r8u
i~r8!dS8; ~2.1!

see Fig. 1. The fluxdF which is created by the curren
i(r8)dS8 inside a radiusr from the center of the disk is

dF5 R dA•ds9 ~2.2!

5
m0

4p
dS8 R i~r8!•ds9

ur92r8u
.

~2.3!
1372 ©1999 The American Physical Society
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Here, the integral path is a circumference of the radiusr from
the center of the disk. After this, we take the center of
disk as the origin of vectors and coordinates. In cylindri
coordinates,

dF5
m0

4p
r 8 dr8 du8

3E
2p

p 2 i r~r 8,u8!sina1 i u~r 8,u8!cosa

Ar 821r 222r 8r cosa

r da,

~2.4!

wherei r andi u are radial and circumferential components
i(r8), respectively.a is the angle betweenr8 and r9. Here
ur9u5r . The term of sina which is an odd function vanishe
and Eq.~2.4! is expressed as

dF5
m0

4p
i u~r 8,u8!

4

k
FS r 8

r D S r 8

r D 21/2

r 8 dr8 du8. ~2.5!

Here,

k2[
4r 8/r

~11r 8/r !2
, ~2.6!

FS r 8

r D[S 12
k2

2 DK~k2!2E~k2!. ~2.7!

K and E are complete elliptic integrals of first and seco
kinds.

We consider a contribution of whole current. Using E
~2.5!, the fluxF through the disk inside the radiusr is

F~ r̃ !5
m0Hext

p
R2E

0

1

Ĩ u~ r̃ 8!
1

k
FS r̃ 8

r̃
D S r̃ 8

r̃
D 21/2

r̃ 8 dr̃8,

~2.8!

where r̃ 8[r 8/R, r̃[r /R, and

Ĩ u~ r̃ 8![
1

Hext
E

0

2p

i u~Rr̃8,u8!du8. ~2.9!

HereHext is an external magnetic field of thez direction. For
convenience, we show the expression ofF(1),

F~1!5
m0Hext

2p
R2E

0

1

~11 r̃ 8!F~ r̃ 8! Ĩ u~ r̃ 8!dr̃8.

~2.10!

FIG. 1. Schematic illustration of the disk sample. The symb
are defined in the text.
e
l

f
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Using Eq.~2.8!,

f~ r̃ ![
1

Fext

dF

dr̃
5

1

2p2E0

1

Ĩ u~ r̃ 8!S K~k2!

r̃ 8/ r̃ 11
1

E~k2!

r̃ 8/ r̃ 21
D dr̃8,

~2.11!

whereFext5pR2m0Hext . HereFext corresponds to the flux
which has penetrated through the disk atT.Tc , andF( r̃ ) is
related toBz as follows:

F~ r̃ !5E BzdS2pR2r̃ 2m0Hext . ~2.12!

The integral region is inside a circle of radiusr from the
center of the disk. Note thatBz is a sum of the field created
by the current and external magnetic field. From Eq.~2.12!,

f~ r̃ !5
r̃

pE0

2pS Bz~ r̃ ,u!

m0Hext
21D du. ~2.13!

Using Eq.~2.13!, f can be obtained from an arbitraryBz
distribution in the disk, and by solving the integral equati
~2.11!, Ĩ u can be obtained. The magnetic moment can
obtained as follows by using thisĨ u . The magnetic momen
is obtained from

m5
1

2E r83 i~r8!dS8. ~2.14!

In cylindrical coordinates,mz is

mz5
1

2E r 82i u~r 8,u8!du8 dr8. ~2.15!

The other components ofm are zero. Equation~2.15! is re-
duced to

m̃z[
mz

R3Hext

5
1

2E0

1

r̃ 82 Ĩ u~ r̃ 8!dr̃8. ~2.16!

Thus the magnetic moment can be obtained from an arbit
Bz distribution inside the disk.

III. MAXIMUM MAGNETIC MOMENT

In this section we calculate the maximum magnetic m
ment under the condition ofF(1)<0 andBz>0 in the disk
region (0< r̃<1). Here F(1) means the flux through th
disk created by current in the disk. Therefore, the form
condition corresponds to the fact that the flux which is larg
than the flux through the disk atT.Tc does not remain in
the disk atT,Tc . It is not obvious that the latter condition i
satisfied. However, it is hard to consider that a region
Bz,0 appears~especially in the inhomogeneous coolin
process!. We should note that the maximum magnetic m
ment is infinite if the latter condition is absent. For inform
tion, in the Appendix we calculate the maximum magne
moment under the condition that the critical current is fin
instead of the latter condition. In this case a region ofBz
,0 exists.

First, the conditionF(1)<0 is written by

s
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E
0

1

f~ r̃ !dr̃<0. ~3.1!

From the conditionBz>0 in the region 0< r̃<1,

E
0

2p

Bz~ r̃ ,u!du>0 ~3.2!

is a necessary condition. By using Eq.~2.13! and from this
condition,

f~ r̃ !>22r̃ . ~3.3!

Equation ~3.3! is the only necessary condition forBz>0.
However, there is no problem if the conditionBz>0 is sat-
isfied when we obtain the maximumm̃z under conditions
~3.1! and ~3.3!.

m̃z can be obtained fromf as well as theBz distribution
in the disk; so we writem̃z(f). It is a linear functional with
respect tof. Thus,f which gives the maximumm̃z under
conditions~3.1! and ~3.3! is obtained as

f~ r̃ !5d~ r̃ 2 r̃ 0!22r̃ , ~3.4!

whered is a delta function andr̃ 0 is some constant obtaine
later. Substituting this for Eq.~2.13!,

E
0

2pBz~ r̃ ,u!

m0Hext
du5

p

r̃
d~ r̃ 2 r̃ 0!. ~3.5!

Infinitely manyBz distributions which satisfyBz>0 and Eq.
~3.5! exist. We giveBz independent ofu in them below:

Bz~ r̃ ,u!5m0Hext

1

2r̃
d~ r̃ 2 r̃ 0!. ~3.6!

Using Eq.~3.4! the maximumm̃z ~we definem̃z,max as this
value! is

m̃z,max5m̃z@d~ r̃ 2 r̃ 0!#1m̃z~22r̃ !. ~3.7!

In order to obtain r̃ 0, we calculated m̃z@d( r̃ 2 r̃)#

1m̃z(22r̃ ) vs r̃ numerically with Eqs.~2.11! and ~2.16!,
which is shown in Fig. 2. Each value ism̃z when the flux
Fext is concentrated only on the radiusRr̃. Here au depen-
dence of the flux distribution is arbitrary as long asBz.0.
The magnetic moment changes from negative to positive
the flux approaches the center from the edge, and the m
mum value is realized whenr̃;0. Consequently,r̃ 0;0 is
obtained.@m̃z(22r̃ ) is a constant28/3. It results from the
fact that a magnetic moment of the disk in the Meissner s
is given by2(8/3)R3Hext .# As a result, the maximum mag
netic moment is realized when the wholeFext is compressed
around the center of the disk and the magnitude is about
which is 50% of that of Meissner state.

IV. CASE OF A CRITICAL BEAN STATE REALIZED
AROUND THE CENTER OF THE DISK

In this section we obtain magnetic moments assum
constant finite critical current which is independent of ma
as
xi-

te

/3

g
-

netic field, i.e., the Bean model.
We consider the situation that the flux through the d

exists only inside a radiusr b from the center of the disk and
the critical currenti c flows here.f is defined as the ratio o
flux compressed inside in field cooling~below Tc) to flux
which has existed in the disk aboveTc . This state is the
same as that assumed by Koshelev and Larkin21 except the
sample geometry. After we fixed the values ofr b and f, we
calculated magnetic moments numerically under the con
tion that the current inside a radiusr b ( i c is defined as the
value! be constant. Thus the value ofi c is obtained after the
calculation. The results are shown in Fig. 3. The3 ’s corre-
spond to the case thati c turned out to be negative, but th
possibility of the realization would be little. Inf 51 mag-
netic moments are always positive and it becomes large
flux is compressed into the center. In calculations of th
strips by Koshelev and Larkin, the magnitude of the ma
mum magnetic moment is 27% of the Meissner state wh
f 51 andr b→0. On the contrary, in a disk sample it is abo

FIG. 2. Numerical result ofm̃z when the fluxFext is concen-

trated only on the radiusRr̃.

FIG. 3. Magnetic moments wheni c5const insider b and the
Meissner state outsider b . The 3 ’s correspond to the case thati c

flows in the negative direction. The line (28/3) shows the magnetic
moment when the whole disk is in the Meissner state. The s
curve (f 51) was predicted by Koshelev and Larkin~Ref. 21!.
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50% under the same conditions and it is larger than that
thin strip. Koshelev and Larkin calculated the magnetic m
ment approximately in a disk sample only forf ;1 and r b
;R. The result is shown by the solid curve inf 51. How-
ever, it is not in agreement with our results. Their result
applicable only inr b;R and we may need to compare the
where the conditions are satisfied more. Ther /R dependence
of the current is shown in Fig. 4 only forf 51. The current
nearr;R flows in the direction in which the magnetic mo
ment is negative, and the current near the center flows in
opposite direction. The contribution of the positive curre
exceeds that of the negative current; consequently a pos
magnetic moment appears. Ther b /R dependence ofi c is
shown in Fig. 5. Herei c must be large in order to compres
large flux into the center of the disk. The field dependence
the magnetic moment is shown in Fig. 6. If the model
assumed is realized, it would correspond to one of the po
in the figure.

V. CONCLUSIONS

We calculated the maximum magnetic moment in the c
of a disk sample under two conditions~see the text! and the

FIG. 4. Ther /R dependence of current forf 51.

FIG. 5. The r b /R dependence ofi c . The values off are
1,0.9,0.8, . . . ,0 from top to bottom. The values ofi c which flow in
the negative direction are not shown.
a
-

s

he
t
ve

f

ts

e

magnitude turned out to be 50% of that of the Meissner st
The conditions would be satisfied~especially in an inhomo-
geneous cooling process!. In order to create a larger mag
netic moment than 50%, we must consider the breakdow
either or both conditions. When OMM’s exist, it is possib
that the flux inside the sample in field cooling is larger th
the flux through the disk atT.Tc and then one of the con
ditions is not applicable.

We calculated magnetic moments and others in the c
of the above-mentioned Bean state, and the maximum m
netic moment is about 50% of that of the Meissner state a
in this case.

APPENDIX: MAXIMUM MAGNETIC MOMENT
IN ANOTHER CASE

In this section we obtain maximum magnetic mome
under the conditions of finite constant critical current dens
andF(1)50 without the condition ofBz>0.

First, we consider the case without the former conditio
For this purpose using an undetermined multiplierl we ob-
tain the current distribution Ĩ u( r̃ 8) which causes m̃z
2p2lF(1)/Fext to be maximum. Using Eqs.~2.10! and
~2.16!,

m̃z2p2l
F~1!

Fext
5

1

2E0

1

D~l, r̃ 8! Ĩ u~ r̃ 8!dr̃8, ~A1!

where

D~l, r̃ 8![ r̃ 822l~11 r̃ 8!F~ r̃ 8!. ~A2!

From the form of Eq. ~A1! we can cause m̃z

2p2lF(1)/Fext , i.e., m̃z , to be large infinitely by taking
an appropriateĨ u( r̃ 8), i.e., i u(r 8,u8).

Second, we calculate the current distribution that cau
m̃z to be maximum under the condition of finite consta
critical current density, namely,

FIG. 6. The field dependence of magnetic moments. The das
and dotted lines are guides to the eye. The values off are
1,0.9,0.8, . . . ,0.1 from top to bottom and the values ofr b /R are
0.9,0.8, . . . ,0.1from right to left. The values are not shown whe
i c flows in the negative direction.
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A ĩ u
21 ĩ r

2< ĩ c , ~A3!

in an arbitrary region in the disk. The tilde refers to the va
divided by Hext . We calculate the current density whic
causesmz to be maximum under the looser condition of

u Ĩ u~ r̃ 8!u<2p ĩ c . ~A4!

Therefore, if the given current density satisfies Eq.~A3!,
then it is a solution. We calculate the condition that cau
m̃z2p2lF(1)/Fext to be maximum. As a result,

Ĩ u~ r̃ 8!5H 2p ĩ c if D~l, r̃ 8!.0,

22p ĩ c if D~l, r̃ 8!,0.
~A5!

Here ĩ r and ĩ u which satisfy Eqs.~A5! and ~A3! exist and

ĩ r~r 8,u8!50, ~A6!

ĩ u~r 8,u8!5H ĩ c if D~l, r̃ 8!.0,

2 ĩ c if D~l, r̃ 8!,0.
~A7!

Next, we determinel. HereF(1) is represented as follow
using Eqs.~2.10! and ~A5!:

F~1!5m0HextR
2 ĩ cE

0

1

sgn@D~l, r̃ 8!#~11 r̃ 8!F~ r̃ 8!dr̃8.

~A8!

We determinel so thatF(1) is zero. We calculatedl nu-
merically and we obtainedl50.406 and

D~l, r̃ 8!.0 if 0.855. r̃ 8.0,

D~l, r̃ 8!,0 if 1. r̃ 8.0.855. ~A9!

Therefore, Eq.~A7! is reduced to
n

v

e-

ys

d,
e

s

ĩ u~r 8,u8!5H ĩ c if 0.855. r̃ 8.0,

2 ĩ c if 1 . r̃ 8.0.855.
~A10!

Next, we calculatem̃z in this case. Substituting Eq.~A5! for
Eq. ~2.16!,

m̃z5p ĩ cE
0

1

r̃ 82 sgn@D~l, r̃ 8!#dr̃8. ~A11!

Integrating it numerically,

m̃z50.260ĩ c , ~A12!

which is positive. We calculatedHz which is created by cur-
rent in this case and the results are shown in Fig. 7.

FIG. 7. The field distribution which gives the maximum ma
netic moment under the condition thati c be finite andF(1)50.
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