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Maximum magnetic moment in a field-cooled superconducting disk
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We studied the maximum magnetic moments in a field-cooled superconducting disk for fields perpendicular
to the disk surface. When the sample was field cooled, a part of the flux remained in the sample. We calculated
the (positive maximum magnetic moments only under the following two conditions. One is that the remaining
flux not exceed the flux through the sample ab@ye The other is that the field component perpendicular to
the sample surface be zero or positive. As a result, the maximum moment turned out to be about 50% of the
full diamagnetic moment. If the observed paramagnetic Meissner effect was caused by flux compression under
the two conditions, a positive magnetic moment over 50% of the full diamagnetic moment is impossible for a
superconducting disk. For example, we calculated magnetic moments and others for a superconducting disk by
assuming that the Bean state is realized around the center of thg $Il63-18209)11425-5

I. INTRODUCTION maximum magnetic moment we calculated it only under the
following two conditions. One is that the flux which is larger
After some granular higfi-, superconductors were field than the flux through the disk &> T not remain in the disk

cooled, positive magnetic moments were obseftvéchnd atT<T.. The other is that the field component perpendicu-
this is referred to as the paramagnetic Meissner effeltE)  lar to the sample surface be zero or positive. Therefore, the
or Wohlleben effect. Afterwards many studies were maddobtained results are quite general.
experimentall§~8 and theoretically=*® The PME is a very This paper is organized as follows. In Sec. Il we formu-
interesting phenomenon if it appears as a consequence e the method to obtain the magnetic moment when an
unconventional pairing as predicted theoretically. Howeverarbitrary distribution of field components perpendicular to
similar behaviors(positive magnetic momentswere ob-  the disk surface is given. In Sec. Ill we calculate the maxi-
served inswave Nb diskg>?°In order to explain these ex- Mum magnetic moments. In Sec. IV we calculate magnetic
perimental results consistently, several studies were mad®&oments and others by assuming that a Bean state is realized
from the viewpoint of surface superconductivifyin par- ~ around the center of the disk. We will use the SI units from
ticular, Geimet al. discussed the origin of the PME on the here on in.
basis of their observation of positive magnetic moments in
mesoscopic superconductdfsOn the other hand, Koshelev Il. FORMULATION FOR MAGNETIC MOMENT
and Larkin pointed out that positive magnetic moments can . . .
be caused by flux compression into the sample due to inho- In th!s section we formulate t_he met.hoc_j to_ obtam'the
mogeneous cooling; that is, the superconducting state epagnetic moment w_hen an arbltr_ary d|str|bu_t|on_ of field
tends from the edges of the sampleThus Rice and Sigrist components perpendicular to the disk surface is given.

proposed experimental methods to distinguish between tht% W(?hassu(;nes_\'ghat(;he th'CkneSSt|°f thedd'Sk Its mught smaller
two different origins of paramagnetism, flux compression, an the radiuss and consequently we do not need to con-

and orbital magnetic moment&®MM's).?2 One of them is to sider thez dependence of the current distribution, wheiie

measure the magnitude of the paramagnetic signal, becaug]ee axis perpendl_cular to the disk surface_. We mtegrate the
the paramagnetic signal due to OMM’s may exceed the upgurrent density with respegt mand.we deﬂne. as the mte-

per limit possible through flux compression. Indeed Knetuf grateo/l valu,e. When there is a Sftatlonary”curlenta region

al. reported a paramagnetic susceptibility larger than the fulPf dS atr’, the vector potentiatiA at " created by the
diamagnetic signal= — 1/4m).2% The maximum magnetic CUrrentis

moment due to flux compression was calculated by Koshelev

and Larkin for a thin superconducting strip assuming a Bean dA= Ho i(r'ds': 2.2
state; the value is about 27% of &W#* Therefore the results Ax|r"—r'| '

of Knauf et al. were difficult to be explained by flux com- . L
pression. However, the results of Koshelev and Larkin maf‘e(,a F"%. 1'. The qu>d(I> which is created by th_e c_urrent
strongly depend on the sample geometry, or the Bean stale’ )dS' inside a radius from the center of the disk is
assumed by Koshelev and Larkin may not be realized. Con-

sequently, a much larger paramagnetic susceptibility may be do= j; dA-ds’ (2.2
caused by flux compression. Thus we calculated the maxi-
mum magnetic moment for a disk-shaped superconductor. In

this geometry a demagnetizing field affects the magnetic mo- _Hoyg 3€ M
ment largely; so we suppose that the maximum magnetic 4 [r"—r’|
moment is the largest in all geometry. When obtaining the (2.3
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Using Eq.(2.8),
sy= e _ 1 flT i KA | E(R) | -,
= — == r o= = r,
Doy dr 272J0 ° r'ir+1 T'ir—1
(2.11

where® .= mR2ugH ey Hered,,, corresponds to the flux

which has penetrated through the diskatT,, and®(r) is
related toB, as follows:

FIG. 1. Schematic illustration of the disk sample. The symbols

are defined in the text.

Here, the integral path is a circumference of the radiusm

q>(?)=f B,dS— 7RZr?moH eyt (2.12

the center of the disk. After this, we take the center of theThe integral region is inside a circle of radiusfrom the
disk as the origin of vectors and coordinates. In cylindricalcenter of the disk. Note thd, is a sum of the field created

coordinates,

Mo
dd=—r'dr’ do’
41

rde,

J'w =i (r',0")sina+iy(r',0" )cosa
X

-

\/r'2+r2—2r’r003a
(2.4

wherei, andi 4 are radial and circumferential components of

i(r'), respectively.a is the angle between’ andr”. Here

[r"|=r. The term of sinv which is an odd function vanishes

and Eq.(2.4) is expressed as

d(I)_/LO. f ,4Fr r’ 71/21d/d/ 2
_El"(r’e)E i r'dr’ de’. (2.5
Here,
4r'[r
kzz—, (26)
(1+1'/r)?
r' k2
Fl—|=l1-% K(k?)—E(k?). (2.7)

by the current and external magnetic field. From Eql12),

s=L [

Using EQq.(2.13), ¢ can be obtained from an arbitraBy
distribution in the disk, and by solving the integral equation

(2.12), T, can be obtained. The magnetic moment can be

obtained as follows by using this,. The magnetic moment
is obtained from

BZ(’Fl 9)
HoHext

(2.13

—1)d0.

1
/uzzfr’xi(r’)ds’. (2.19
In cylindrical coordinatesy, is
1 '2: 1 ’ ’
'“Zzifr ig(r’,0")de’ dr’. (2.15

The other components gf are zero. Equatiofi2.15) is re-
duced to

~ Mz
Mz

—lfl?/zTg(?’)dNr’. (2.16

" R3H,, 2Jo

Thus the magnetic moment can be obtained from an arbitrary

K and E are complete elliptic integrals of first and secondB, distribution inside the disk.

kinds.

We consider a contribution of whole current. Using Eq.

(2.5), the flux® through the disk inside the radiuss

(2.8
wherer’=r’/R, T=r/R, and
-~ 1 (27 -
[,(F)= J i (RT,0')d6’. 2.9
Hext 0

HereH.,; is an external magnetic field of tlzdirection. For
convenience, we show the expressiondgfl),

. HoHext

d(1)= R2f1(1+?’)F(?')T9(?')d~r'.
0

(2.10

. MAXIMUM MAGNETIC MOMENT

In this section we calculate the maximum magnetic mo-
ment under the condition b(1)=<0 andB,=0 in the disk

region (0Osr<1). Here ®(1) means the flux through the
disk created by current in the disk. Therefore, the former
condition corresponds to the fact that the flux which is larger
than the flux through the disk &t>T, does not remain in
the disk afT<T,. It is not obvious that the latter condition is
satisfied. However, it is hard to consider that a region of
B,<0 appears(especially in the inhomogeneous cooling
process We should note that the maximum magnetic mo-
ment is infinite if the latter condition is absent. For informa-
tion, in the Appendix we calculate the maximum magnetic
moment under the condition that the critical current is finite
instead of the latter condition. In this case a regionBof
<0 exists.

First, the condition®(1)=<0 is written by
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l ~ ~
J o(r)dr=0. (3.1
0
From the conditiorB,=0 in the region Gr=<1,
2m -
f B,(r,0)d6=0 (3.2
0

is a necessary condition. By using Hg.13 and from this
condition,

d(r)=—2r. (3.3
Equation (3.3) is the only necessary condition fd&,=0.
However, there is no problem if the conditi®}=0 is sat-
isfied when we obtain the maximum, under conditions
(3.1 and(3.3.
1L, can be obtained fronp as well as theB, distribution
in the disk; so we writeu,(¢). It is a linear functional with

respect tog. Thus, ¢ which gives the maximunu, under
conditions(3.1) and(3.3) is obtained as

H(r)=68(r—ro)—2r, (3.4

whereé is a delta function and, is some constant obtained

later. Substituting this for Eq2.13),

thz(?, 6)

3.
0o MoHext 39

T ~ ~
do= = 46(r—ry).
r
Infinitely manyB,, distributions which satisf8,=0 and Eq.
(3.5 exist. We giveB, independent of in them below:

~ 1 - -~
B(r,0)= poHexi= o(r —rp).

= (3.9

Using Eq.(3.4) the maximump, (we definex, max as this
value is
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FIG. 2. Numerical result oft, when the flux®,,, is concen-
trated only on the radiuBp.

netic field, i.e., the Bean model.

We consider the situation that the flux through the disk
exists only inside a radius, from the center of the disk and
the critical curreni . flows heref is defined as the ratio of
flux compressed inside in field coolingelow T;) to flux
which has existed in the disk above . This state is the
same as that assumed by Koshelev and LA&tkémcept the
sample geometry. After we fixed the valuesrgfandf, we
calculated magnetic moments numerically under the condi-
tion that the current inside a radiug (i, is defined as the
valug be constant. Thus the value igfis obtained after the
calculation. The results are shown in Fig. 3. Tkés corre-
spond to the case that turned out to be negative, but the
possibility of the realization would be little. Ii=1 mag-
netic moments are always positive and it becomes large as
flux is compressed into the center. In calculations of thin
strips by Koshelev and Larkin, the magnitude of the maxi-
mum magnetic moment is 27% of the Meissner state where
f=1 andr,—0. On the contrary, in a disk sample it is about

#z,maxzﬂz[é(r_ro)]+ﬂz(_2r)- (3.7 »

In order to obtain T, we calculated u,[8(fr—p)] f=
+71,(—2r) vs p numerically with Egs.(2.11) and (2.16), 019." ~~~~~~~~~~~~ _ |
which is shown in Fig. 2. Each value js, when the flux o8- NN

. S~ . =1 - N
®.,; is concentrated only on the radiip. Here ad depen- 5 ol07: Y
dence of the flux distribution is arbitrary as long Bs>0. I 0.6 . T
The magnetic moment changes from negative to positive as “\::E 05— e x:
the flux approaches the center from the edge, and the maxi- 0.4 T~ 5
mum value is realized whep~0. Consequentlyt,~0 is 0.3- : o
obtained [ u,(— 2r) is a constant-8/3. It results from the _pl0:2- x x5
fact that a magnetic moment of the disk in the Meissner state 01 . .
is given by — (8/3)R3H;.] As a result, the maximum mag- 0 ——E\: :
netic moment is realized when the whdbe,; is compressed Rl
around the center of the disk and the magnitude is about 4/3 -~ —

which is 50% of that of Meissner state.

IV. CASE OF A CRITICAL BEAN STATE REALIZED
AROUND THE CENTER OF THE DISK

/R
FIG. 3. Magnetic moments whein=const insider, and the

Meissner state outsidg,. The X’s correspond to the case that
flows in the negative direction. The line-@8/3) shows the magnetic

In this section we obtain magnetic moments assumingnoment when the whole disk is in the Meissner state. The solid
constant finite critical current which is independent of mag-curve (f=1) was predicted by Koshelev and LarkiRef. 2.
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FIG. 4. Ther/R dependence of current fér=1. FIG. 6. The field dependence of magnetic moments. The dashed

50% under the same conditions and it is larger than that of énodg%oged ”(?isf aret gu;dez :to the syti' Thle Va'“e/ng aire
thin strip. Koshelev and Larkin calculated the magnetic mo-_’ "' "7 """ rom fop fo botiom and the vajues Ob/R are

: . . 0.9,0.8...,0.1from right to left. The values are not shown when
ment approximately in a disk sample only fbr-1 andr i. flows in the negative direction
~R. The result is shown by the solid curve is=1. How- ¢ '
ever, it is not in agreement with our results. Their result is
applicable only inr,~R and we may need to compare them
where the conditions are satisfied more. THe dependence

magnitude turned out to be 50% of that of the Meissner state.
The conditions would be satisfigdspecially in an inhomo-

X T a geneous cooling procesdn order to create a larger mag-
of the CLFJ;rﬂent |s_shﬁwr(1j_|n F!g. 4 Onl?}’. fﬁr_hl' The cu_rrent netic moment than 50%, we must consider the breakdown of
nearr ows In the direction in which the magnetic Mo- gihar or hoth conditions. When OMM's exist, it is possible

ment is negative, and the current near the center flows in thfl"lat the flux inside the sample in field cooling is larger than
opposite direction. The contribution of the positive currenty. o fux through the disk af>T, and then one of the con-
exceeds that of the negative current; consequently a pOSitiV&tions is not applicable ¢

magnetic moment appears. Thg/R dependence of is We calculated magnetic moments and others in the case

shown in Fig. 5. Here, must be large in order to COMPress ot e ahove-mentioned Bean state, and the maximum mag-
large flux mFO the cente_r of the d's_k' T_he field dependence o etic moment is about 50% of that of the Meissner state also
the magnetic moment is shown in Fig. 6. If the model Wein, this case

assumed is realized, it would correspond to one of the points

in the figure.
APPENDIX: MAXIMUM MAGNETIC MOMENT

V. CONCLUSIONS IN ANOTHER CASE

We caloulated the maximum magnetic momentin the casg & i SR T PR TRSCLIE TENEE AR
of a disk sample under two conditiofsee the tejtand the y

and®(1)=0 without the condition oB,=0.
First, we consider the case without the former condition.

A For this purpose using an undetermined multiphewe ob-
10 I\\\\ f= 3 tain the current distributionl ,(r’) which causesu,
I\\\g\J\ —2772)\<I>(1)/<I>ext to be maximum. Using Eq¥2.10 and
:\\ }\ ( 1@1
101- \ -0 g\ R 4
F \\ ) :\\:\ \f\\ - 2 (I)(l) — 1le )\~/ T T d’"'r Al
1_:0 \\\‘ .\\.\\\é\\\\\ paom (Dext_z 0 (A TOT(rt)ar’, (A1)
01> S D
1ok - N \\.\ - where
\ AN '\\
N ) DNT)=T 2= \N(1+T)F(T"). (A2)
4l . | -
10 o From the form of Eq. (A1) we can cause u,
0 05 1 — TND(1)/ Dy, i€., 1y, to be large infinitely by taking
/R an appropriatd ,(r'), i.e.,i (r',6').

FIG. 5. Ther,/R dependence of.. The values off are Second, we calculate the current distribution that causes

1,0.9,0.8. .. ,0from top to bottom. The values of which flow in 1, to be maximum under the condition of finite constant
the negative direction are not shown. critical current density, namely,
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o ~2 =~
|0+Ir$|c,

(A3)

in an arbitrary region in the disk. The tilde refers to the value

divided by H.,;. We calculate the current density which
causesu, to be maximum under the looser condition of

T,(r)|<2mi,. (A4)

Therefore, if the given current density satisfies E43),

then it is a solution. We calculate the condition that causes

1y~ TAD(1)/D 4y, to be maximum. As a result,
2@, if DINY')>0,

-~ ~ (A5)
—2mi, if D(A,r")<0.

Ta(?'):[

HereT, andi, which satisfy Eqs(A5) and (A3) exist and

Ti(r',6)=0, (A6)
. [ T. if DO\T')>0,
o(r',0)=1 _ ~ (A7)
—i. if D(A,r")<0.

Next, we determiné.. Hered(1) is represented as follows
using Egs(2.10 and(A5):
l ~ ~ ~ ~
¢(1)=M0HextRzTcJ sgriD(N,r")J(1+r")F(r')dr’.
0
(A8)

We determine\ so that®(1) is zero. We calculated nu-
merically and we obtainedl=0.406 and

D(\,r")>0 if 0.855>T'>0,
D(A\,r')<0 if 1>T'>0.855.
Therefore, Eq(A7) is reduced to

(A9)

MASAHITO NAKAGAWA, SHIGEAKI UTSUMI, AND YASUKAGE ODA

PRB 60
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2 L L ) )

FIG. 7. The field distribution which gives the maximum mag-
netic moment under the condition thatbe finite and®(1)=0.

if 0.855>T'>0,
if 1>T'>0.855.

Tg(r',a')=| ‘e (A10)

Ic

Next, we calculatex, in this case. Substituting E¢A5) for
Eq. (2.16,

~ ~ l~y ~ ~
MZZWicJ r2sgiD(\,r’)]dr’. (A11)
0
Integrating it numerically,
1,=0.260 ¢, (A12)

which is positive. We calculateld, which is created by cur-
rent in this case and the results are shown in Fig. 7.
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