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Quantum waveguide theory: A direct solution to the time-dependent Schro¨dinger equation
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In this paper, we present a highly accurate and effective theoretical model to study electron transport and
interference in quantum cavities with arbitrarily complex boundaries. Based on this model, a variety of quan-
tum effects can be studied and quantified. In particular, this model provides information on the transient state
of the system under study, which is important for analyzing nanometer-scale electronic devices such as
high-speed quantum transistors and quantum switches.@S0163-1829~99!02739-3#
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I. INTRODUCTION

As electronic circuits get progressingly smaller to the n
nometer scale, device analysis based on classical or s
classical transport theories would eventually fail since
quantum-wave nature of the electrons starts to play a do
nant role. Very recent advances in semiconductor fabrica
technology have already allowed construction of electro
devices from 500 to 1 nm in size. For example, t
DEC21164 microprocessor chip has a circuit pattern w
details of size 350 nm.1 The quantum dots studied at Delft o
The Netherlands and at NTT of Japan consist of tunnel b
riers of 10 nm thickness.2 Consequently, electron transport
quantum cavities is receiving great attention worldwide.3

A variety of quantum effects have been discovered so
such as conductance fluctuation, resonant tunnelling, no
cality, Aharanov-Bohm effect, Kondo resonance, Coulo
blockade, trapped bound states, and nonlin
magnetoconductance.4–9 These studies raise the possibili
of radically new electronic devices with fascinating physi
Several nanodevices have been proposed, e.g., resonan
nelling diodes, quantum transistors and switches, stub tun
band filters, and Carbon nanotube quantum resistors~see
Refs. 10–13 for an overview!. It is expected that furthe
studies will lead to novel quantum devices with outland
functions that may not yet be foreseen.

Since the characteristic dimensions of nanometer-s
electronic devices are comparable to the wavelengths of e
trons with energy from meV to a few eV, theoretical calc
lations of device properties require a full quantum
mechanical treatment, i.e., by solving the time-depend
Schrödinger equationi\]c(rW,t)/]t5Hc(rW,t). Current the-
oretical work on quantum waveguides is predominan
based on the separability of time and spatial variables, wh
leads to the time-independent Schro¨dinger equation
Hc(rW,t)5Ec(rW,t).14–21

However, there are severe limitations for the tim
independent methods to provide information on transient
havior of the system under study. Much remains to be st
ied in the temporal response of quantum electronic devi
which is of particular importance for analyzing high-spe
PRB 600163-1829/99/60~19!/13668~8!/$15.00
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quantum transistors and quantum switches. In principle,
general solution of the time-dependent Schro¨dinger equation
can be constructed by a complete expansion of all allow
stationary energy eigenfunctions, but this often require
very large number of discrete eigen states as well as an
tegration over the continuous part of the energy spectrum
terms of accuracy and efficiency, the time-independent m
ods cannot compete with the time-dependent approach
sented in this paper. In addition, the separation of time
spatial variables implies explicitly time-independent Ham
tonianH and thus the electronic transportation properties
only be analyzed under steady-state conditions if the tim
independent Schro¨dinger equation is used.

Another difficulty in solving the time-independent Schr¨-
dinger equation lies in the explicit boundary conditions im
posed by the various quantum cavities. In some cases,
cial transformations were carried out to obtain simp
boundaries in the new coordinate system, but this norm
gave rise to more complicated differential equations.19 For
this reason, mainly quantum waveguides with very sim
geometry have been studied. One can employ the finite
ment method and the boundary element methods to trea
regular boundaries by dividing the system into scattering
probe regions and then matching the wave functions at
boundaries.22–26In this way, the quantum scattering proble
is simplified to the solution of a set of algebraic equations
major difficulty is then the inversion of large matrices, whic
can be prohibitively expensive in terms of computer mem
and CPU time.23

In this paper, we employ a highly accurate and effect
time-dependent approach to electron transport in quan
cavities. This method was originally developed by quant
chemists to study a variety of gas-phase reactive scatte
and related chemical processes in recent years.27–31This pa-
per extends their approach to investigate quantum-trans
phenomena in condensed matter physics. Undoubtedly,
time-dependent approach has a more natural correspond
to reality, i.e., starting from an initial state of the system a
following the events through time. It gives a direct solutio
of the quantum equations of motion and consequently
many distinct advantages over the traditional tim
13 668 ©1999 The American Physical Society
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PRB 60 13 669QUANTUM WAVEGUIDE THEORY: A DIRECT . . .
independent methods. For example, it provides informa
on transient behaviors and allows direct visualisation of
transport process, where one can ‘‘watch’’ a system evo
in real time and as a result monitor intermediate stages of
process of interest. As an initial value problem, it is a
comparatively easy to implement, flexible, and versatile
treating a large variety of quantum problems. Another v
important attribute of this approach is that it can be appl
to study quantum waveguides with arbitrarily compl
boundaries and is free of the difficulties encountered b
time-independent methods.

The outline of the paper is as follows: In Sec. II, w
describe the structure of the nanodevice under study and
cuss an effective theoretical scheme for solving the tim
dependent Schro¨dinger’s equation. Section III presen
computer-simulated results and a stringent verification
their accuracy. Finally, conclusions are drawn in Sec. IV

II. THEORY

As a prototype case, we examine a simple nanoelectr
device similar to that described by Kastner32 as a controlled-
barrier artificial atom. The device is illustrated schematica
in Fig. 1~a!, where the gray areas are metallic, white area
insulating (AlxGa12xAs) and dark area is semiconductin
~GaAs!. When a negative voltage is applied to the two me
stripes on the top surface of the GaAs, the accumulated e
trons in the metal stripes form potential walls and barri
due to repulsive Coulomb force, which control the motion
the conduction electrons in the semiconductor~GaAs!.
Shown in Fig. 1~b! is a typical potential imposed on th
conduction electrons. The electron motion is restricted to
dimensions due to the narrow quantum well formed at
GaAs/AlxGa12xAs interface, which essentially forbids mo

FIG. 1. ~a! Schematic diagram of a controlled-barrier ato
gray—metallic, white—insulator, dark—semiconductor; and~b! the
external potential imposed on the conduction electrons in the s
conductor.
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tion perpendicular to the interface. Very recently, Kaneet al.
developed a new quantum-wire fabrication technique t
eliminates the need for a dopant layer in the heterostruct
adjacent to the two dimensional electrons.33 Consequently,
the quantum cavity is free of the impurity that may be intr
duced by modulation doping and has essentially perfect c
talline structure.

Quantum cavities in the nanometer scale are freque
referred to as single-electron tunneling devices, since t
central channels often hold but a single-conduction electr
Of course there are many other electrons in the semicon
tor, because they are fabricated in solids not in vacuum,
almost all of them are tightly bound to the nuclei in the sol
Accordingly, electron-electron correlation effect on electr
transportation properties is small. This independent elec
approximation of mesoscopic structures is supported
many experiments.34 Also, at low temperatures of severa
Kelvin, the energy of phonons is too low to interact with th
electrons and can often be neglected.35 Both the electron
mean-free path and the phase coherence length are gr
than the sample dimension. If, in addition, the few condu
tion electrons in the semiconductor stay near the bottom
the conduction band during the tunneling process and
external potential is not strong enough to induce interba
transitions, the standard single-electron effective-mass
proximation is then valid.

Because of the interaction with the crystal lattice in t
nanostructures, the conduction electrons appear to ha
different mass fromme .36 In this case, the time-depende
Schrodinger equation for describing a two-dimensional el
tron transport in the potential of the lattice plus the poten
of an applied external potentialV(x,y) is given as

i\
]

]t
c~x,y,t !52

\2

2m* S ]2

]x2 1
]2

]y2D c~x,y,t !

1V~x,y!c~x,y,t !, ~1!

where m* 50.066 a.u is the effective mass for GaAs~Ref.
37! and the system Hamiltonian is

H52
\2

2m*
¹21V~x,y!52

\2

2m* S ]2

]x2 1
]2

]y2D1V~x,y!.

~2!

The formal solution of the time-dependent Schroding
equation with time-independent Hamiltonian isc(x,y,t
1Dt)5exp(2iHDt)c(x,y,t). Although this general solution
has been available for quite some time,38,39 computational
techniques for treating the exponential time propaga
exp(2iHDt) had been slow to develop and practical calcu
tions have had to await the arrival of powerful compute
Different approximations to the exponential time propaga
exp(2iHDt) along with the technique used to evaluate t
action of the Laplacian¹2 on the wave function lead to
different time evolution schemes.

The simplest scheme expands the exponential functio
the first order, i.e., the Euler expansionc(r ,t1Dt)5(1
2 iHDt)c(r ,t). This scheme is not symmetric with respe
to time and is therefore unstable. It is also not unitary.
avoid this instability, McCullough and Wyatt40 used a first-
order difference scheme with a unitarised approximation

i-
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13 670 PRB 60J. B. WANG AND S. MIDGLEY
the time evolution propagator~FOD!, c(r ,t1Dt)5@(2
2 iHDt)/(21 iHDt)#c(r ,t). This scheme is unitary and un
conditionally stable, but large matrices need to be inver
which can be prohibitively expensive in terms of compu
memory and CPU time. To overcome this problem, As
and Cakmak41 developed an explicit second-order differen
ing scheme ~SOD!, c(r ,t1Dt)2c(r ,t2Dt)5
22iHDtc(r ,t). It is unitary, symmetric in time and show
to be conditionally stable.

The drawback of these finite difference type of method
that the associated truncation error is proportional
(HDt)2. For this reason, the time stepDt for each propaga-
tion has to be extremely small and, therefore, the numbe
steps required for modeling a complete scattering even
very large. Although both FOD and SOD schemes conse
the norm and energy, errors will accumulate in the pha
There are other existing explicit and implicit propagati
schemes based on a Taylor expansion of the time evolu
operator.42 However, all these methods require small tim
steps and thus suffer the same problem of error accum
tion, which may cause severe distortion of the wavepack

Another propagation scheme worth mentioning is the s
operator method~SPO! devised by Feit, Fleck, and Steiger.43

It splits the exponential operator into three parts and t
treats them consecutively in their diagonal representatio
i.e.,

c~r ,t1Dt !5exp~2 iDt¹2/2!exp~2 iDtV!

3exp~2 iDt¹2/2!c~r ,t !.

This method is unconditionally stable and norm-preservi
since only unitary operators are involved. It has been u
widely and, in many cases, successfully in wavepacket s
ies. Nevertheless, this scheme neglects the commutator
tween the potential and kinetic-energy operators and t
introduces error in both energy and phase in wave functio
The magnitude of the inaccuracy depends strongly on
system under investigation.44

A more accurate and stable method is the Chebys
scheme, pioneered by quantum chemists Tal-Ezer
Kosloff.27 We applied this scheme to one-dimensional pot
tial scattering and our results were in excellent agreem
with exact solutions.45 This paper extends our previous wo
to two dimensions to study electron transport in nanoqu
tum waveguides. Briefly, the Chebyshev scheme appr
mates the exponential time propagator by a Chebyshev p
nomial expansion:

c~x,y,t !5exp@2 i ~Emax1Emin!t/2#

3 (
n50

N

an~a!fn~2 iH̃ !c~x,y,t50!, ~3!

whereEmax andEmin are the upper and lower bounds on t
energies sampled by the wavepacket,a5(Emax2Emin)t/2,
an(a)52Jn(a) except for a0(a)5J0(a), Jn(a) are the
Bessel functions of the first kind,fn are the Chebyshev
polynomials, and the normalized Hamiltonian is defined

H̃5
1

Emax2Emin
@2H2~Emax1Emin!#. ~4!
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The above normalization ensures that the expansion
Chebyshev polynomials is convergent. Since the Bes
function falls to zero exponentially asn increases beyonda,
it follows that terminating the expansion atN.a would
yield accurate results. Note,a is proportional to the time step
t and so is the number of terms required in the expans
Since the time stept can be arbitrarily large, this scheme
often used as a one-step propagator to cover the comp
interaction.

The action of the operatorfn(2 iH̃ ) on the initial wave-
function c(r ,0) can be evaluated using the following recu
rence relation:

fn11~2 iH̃ !c~r ,0!522iH̃fn~2 iH̃ !c~r ,0!

1fn21~2 iH̃ !c~r ,0! ~5!

with f0(2 iH̃ )c(r ,0)5c(r ,0) and f1(2 iH̃ )c(r ,0)5
2 iH̃c(r ,0). The calculation therefore boils down to a s

FIG. 2. Absolute errors in evaluating the second derivative o
Gaussian function using~a! the five-point finite-difference method
~b! seven-point finite-difference method; and~c! the Fourier trans-
formation method.
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FIG. 3. Time evolution of the system wave function in coordinate space. The grid size is 1000 nm3420 nm. The potential heights of th
sidewalls and the barriers are 2 and 0.98 eV, respectively. The initial energy of the electron wave packet is 1 eV.

FIG. 4. Time evolution of the system wave function in momentum space for the same potential and initial energy as Fig.
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FIG. 5. System wave function att5210 fs for different barrier heights~H!. The grid size is 1000 nm3420 nm and the initial energy o
the electron wavepacket is 1 eV.
f
e
th

Th
n

oi
W

e
ti

ze
as
a-
n
i

di-
dary
ted

ion
hod

an
f

in
rsa.
is
he
ide
ing.
rs

he
g to
s-
ries of calculation of the HamiltonianH̃ acting on some
function, which can be split into two parts:~i! the straight-
forward scalar multiplicationV(x,y) f (x,y); and ~ii ! the
second-order derivative¹2f (x,y). An accurate evaluation o
the derivatives is a prerequisite for obtaining reliable tim
dependent wave functions. In this paper, we adopted
Fourier transformation method~FT!, i.e.,30

¹2f ~x,y!5E E @~ i2pkx!
2

1~ i2pky!2#F~kx ,ky!ei2p~kxx1kyy!dkxdky ,

~6!

where

F~kx ,ky!5E E f ~x,y!e2 i2p~kxx1kyy!dxdy. ~7!

Figure 2 shows the absolute error¹2f ~exact!2¹2f ~numerical! in
evaluating the second derivative of a Gaussian function.
numerical error of the FT scheme is found to be nine a
seven orders of magnitude smaller than that of the five-p
and seven-point finite-difference method, respectively.
also checked the FT scheme for several arbitrarily deform
wave functions. The same accuracy is achieved in evalua
their derivatives as long as the wavefunctions approach
at the boundaries. It is important to note that, if the f
Fourier transform~FFT! method is used to compute deriv
tives, care must be taken to ensure that the wave functio
effectively zero along the boundaries at all times. This
-
e

e
d
nt
e
d

ng
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t

is
s

because the FFT method implies periodic boundary con
tions and, as a result, the wave packet crossing one boun
would reemerge on the opposite side giving rise to unwan
artifact.

III. RESULTS AND DISCUSSIONS

In this section, we employ the Chebyshev propagat
scheme together with the fast Fourier transformation met
to obtain solutions of Eq.~1!. The initial wave function
c(x,y,t50) is assumed to be a Gaussian of the form

c~x,y,t50!5
1

2abp
expF22 S x2xc

2a D 2

22 S y2yc

2b D 2Gexp~ ipxx1 ipyy!, ~8!

where (xc ,yc) denotes the center of the initial Gaussi
wave function,px andpy are respectively the peak value o
its momentum in thex and y direction, a and b define the
spread of the wave function in coordinate space, which
turn determine its spread in momentum space and vice ve

For the following calculation, the prototype device
taken as 200 nm in length and 400 nm in width, while t
spatial grid is chosen to be 1000 nm long and 420 nm w
to accommodate the wave packet throughout the tunnel
The heights of the two potential walls and the two barrie
are, respectively, 2 and 0.98 eV. The initial energy of t
electron wave packet is chosen to be 1 eV, correspondin
px50.07 a.u. andpy50.0 a.u. The momentum spread is a
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PRB 60 13 673QUANTUM WAVEGUIDE THEORY: A DIRECT . . .
sumed to be 5% in bothx andy directions. The center of the
initial wavepacket (xc ,yc) is set sufficiently away from the
potential barriers to ensure that the entire wave function
negligible interaction with the potential at timet50.

Figure 3 illustrates the time evolution of the electr
wave packet provided by Eq.~3!, together with the potentia
shown in the same spatial grid (1000 nm3420 nm). Initially,
the wavepacket moves rightward with time as a free wa
At time aroundt530 fs, one starts to observe the distorti
in the wave packet caused by its interaction with the pot
tial. At around t560 fs, a significant portion of the wav
packet is reflected by the barriers. Further along in time
can also see clearly the formation of trapped wave pac
between the two potential barriers and its gradual decay

Since the wave functionc(x,y,t) contains complete
quantum-mechanical information about the system un
study, we can derive from it all possible observables such
reflection and transmission coefficients, lifetime of t
trapped states, phase shifts. The energy spectrum~or the den-
sity of states! can also be obtained from the time propagat
of system wave functions by using the time-energy Fou
transform. In this way, one can filter out intensity weight
spectra from the correlation function defined as the ove
integral ofc(x,y,t) with c(x,y,t50).46,47

FIG. 6. ~a! Absolute error between exact analytical solution a
numerical propagation of a Gaussian wave function through
space;~b! absolute error between initial wave function and the wa
function propagated forward and then backward in time tot50.
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As another illustration of the time evolution of the syste
we show, in Fig. 4, its wave function in momentum space.
time t50, the momentum contribution is a Gaussian ce
tered atpx50.07 a.u. andpy50. At time aroundt530 fs,
we start to see a much wider spread in the momentum w
function including negative components. This correspond
the compression in the spatial wave function shown in Fig
(t530 fs). At t560 fs a significant part of the wave functio
has negative momentum in thex direction due to the increas
ing reflected flux. Att5210 fs, the positive and negativ
parts of the wave function in momentum space are well se
rated, representing transmission and reflection respectiv
Note that we still have a small part of the wavefunction w
near-zero momentum, which represents the trapped stat

The effect of increasing the height of the double barrie
shown in Fig. 5. As expected, complete transmission is
served for sufficiently low barriers. As the height of the ba
riers approaches the incident energy, part of the wave pa
is reflected, part of the wave packet tunnels through the b
riers, and the rest is temporarily trapped between the
barriers. The ratio of the three parts and their relative pha
depend entirely on the structure of the potential and the
tial energy value. For sufficiently high barriers, a comple
reflection is achieved.

There is a general deep concern about the accuracy o
final system wave function obtained using time-depend
propagation approaches, since errors accumulated over m
time steps~normally in the order of hundreds of thousan
time steps! may cause severe distortion of the wave packe
Even for one-step time propagators, such as the Cheby
scheme, errors may accumulate when using repetitively
recurrence relation Eq.~5!. Typical number of iterations
range from a few hundred to several thousand. To ensure
the time dependant solution accurately reflects the sys
being modelled, our calculations were checked against a
of criteria.

First of all, the norm of the wave function must be co
served throughout the time evolution, because the ex
time-evolution operator is unitary. Secondly, the energy
the system should also remain constant throughout the
evolution. We found both the norm̂c(x,y,t)uc(x,y,t)& and
the energŷ c(x,y,t)uHuc(x,y,t)& are conserved to 1 part in
1013 for all of our calculations. The preservation of norm a
energy serve as basic criteria to any propagation schem
For the Chebyshev scheme these two attributes are par
larly important, since the Chebyshev propagator is not u
tary and thus neither norm nor energy conserving by defi
tion. In this case, conservation of norm and energy p
forward a stringent test to the propagation scheme and
computer code.

Thirdly, we set the external potential to zero, i.e., t
wave packet propagates in free space. In this case, the e
analytical solution is known.46 The absolute error betwee
the exact analytical solution and our numerical propagat
of a Gaussian wave function through free space is show
Fig. 6~a!. It is found that the maximum error is in the orde
of 10212.

Lastly, since the Schro¨dinger equation is symmetric with
respect to time reversal, a stringent test of reliability of t

e
e
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13 674 PRB 60J. B. WANG AND S. MIDGLEY
solution is to reverse the evolution with time and the wa
function should return to its initial state.48 If errors were
accumulated along the way, a reverse propagation wo
lead to something quite different from the starting wa
function. This test was performed by propagating the ini
wave function forward in time fort5210 fs under the influ-
ence of the double-barrier potential as shown in Fig. 3. T
resulting wave function was then propagated backward
time by replacingt with 2t in Eq. ~3!. Our results show tha
the wave function is gradually packed together and finally
t50, it looks the same as the initial starting wave functio
The absolute error is found to be less than 3310212 as
shown in Fig. 6~b!. It was this last test that really convince
us that our calculations are highly reliable.

It takes around 35 min of CPU time to complete one
the calculations presented above on a 500 MHz. Digital
pha personal workstation. Typical memory requirement is
Mb. The code is also optimised for parallel computer arc
tectures. About 95% vectorisation has been achieved on
Fujitsu VPP300 supercomputer due to a highly vectorisa
FFT routine in use. The CPU time required to complete
typical calculation on the supercomputer is about 5 m
Greater speed improvement is expected when larger ar
are used for simulating more complex nano quant
waveguides.
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IV. CONCLUSION

In conclusion, we have presented a highly accurate
effective theoretical model to study quantum-transport p
nomena in nano electronic devices. By solving the tim
dependent Schro¨dinger equation, we have quantum
mechanically complete information on the system un
study at all times and we can extract values for any mea
able quantities of interest. Stringent tests on the accurac
our solutions were carried out, including conservation
norm and energy, time reversal propagation, and compar
with exact solutions in the case of free space propagat
This model can be readily applied to other nanometer-sc
quantum waveguides with arbitrarily complex boundaries
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