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Quantum waveguide theory: A direct solution to the time-dependent Schrdinger equation
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In this paper, we present a highly accurate and effective theoretical model to study electron transport and
interference in quantum cavities with arbitrarily complex boundaries. Based on this model, a variety of quan-
tum effects can be studied and quantified. In particular, this model provides information on the transient state
of the system under study, which is important for analyzing nanometer-scale electronic devices such as
high-speed quantum transistors and quantum swit¢l8€4.63-182609)02739-3

[. INTRODUCTION quantum transistors and quantum switches. In principle, the
general solution of the time-dependent Sclinger equation
As electronic circuits get progressingly smaller to the na-can be constructed by a complete expansion of all allowed
nometer scale, device analysis based on classical or senstationary energy eigenfunctions, but this often requires a
classical transport theories would eventually fail since thevery large number of discrete eigen states as well as an in-
guantum-wave nature of the electrons starts to play a domtegration over the continuous part of the energy spectrum. In
nant role. Very recent advances in semiconductor fabricatioterms of accuracy and efficiency, the time-independent meth-
technology have already allowed construction of electronimds cannot compete with the time-dependent approach pre-
devices from 500 to 1 nm in size. For example, thesented in this paper. In addition, the separation of time and
DEC21164 microprocessor chip has a circuit pattern withspatial variables implies explicitly time-independent Hamil-
details of size 350 nrhThe quantum dots studied at Delft of tonianH and thus the electronic transportation properties can
The Netherlands and at NTT of Japan consist of tunnel barenly be analyzed under steady-state conditions if the time-
riers of 10 nm thicknessConsequently, electron transport in independent Schdinger equation is used.
quantum cavities is receiving great attention worldwide. Another difficulty in solving the time-independent Schro
A variety of quantum effects have been discovered so farginger equation lies in the explicit boundary conditions im-
such as conductance fluctuation, resonant tunnelling, nonlgosed by the various quantum cavities. In some cases, spe-
cality, Aharanov-Bohm effect, Kondo resonance, Coulombcial transformations were carried out to obtain simpler
blockade, trapped bound states, and nonlineaboundaries in the new coordinate system, but this normally
magnetoconductanée® These studies raise the possibility gave rise to more complicated differential equatiGh&or
of radically new electronic devices with fascinating physics.this reason, mainly quantum waveguides with very simple
Several nanodevices have been proposed, e.g., resonant tgieometry have been studied. One can employ the finite ele-
nelling diodes, quantum transistors and switches, stub tunerment method and the boundary element methods to treat ir-
band filters, and Carbon nanotube quantum resistee® regular boundaries by dividing the system into scattering and
Refs. 10-13 for an overview It is expected that further probe regions and then matching the wave functions at the
studies will lead to novel quantum devices with outlandishboundarie$?=2%In this way, the quantum scattering problem
functions that may not yet be foreseen. is simplified to the solution of a set of algebraic equations. A
Since the characteristic dimensions of nanometer-scalmajor difficulty is then the inversion of large matrices, which
electronic devices are comparable to the wavelengths of elecan be prohibitively expensive in terms of computer memory
trons with energy from meV to a few eV, theoretical calcu-and CPU time?3
lations of device properties require a full quantum- In this paper, we employ a highly accurate and effective
mechanical treatment, i.e., by solving the time-dependenime-dependent approach to electron transport in quantum
Schralinger equationifdy(f,t)/dt=Hy(f,t). Current the- cavities. This method was originally developed by quantum
oretical work on quantum waveguides is predominantlychemists to study a variety of gas-phase reactive scattering
based on the separability of time and spatial variables, whicand related chemical processes in recent y&ars This pa-
leads to the time-independent Sdfimger equation per extends their approach to investigate quantum-transport
Hy(F,t)=Ey(r,t). 142 phenomena in condensed matter physics. Undoubtedly, the
However, there are severe limitations for the time-time-dependent approach has a more natural correspondence
independent methods to provide information on transient beto reality, i.e., starting from an initial state of the system and
havior of the system under study. Much remains to be studfollowing the events through time. It gives a direct solution
ied in the temporal response of quantum electronic device®f the quantum equations of motion and consequently has
which is of particular importance for analyzing high-speedmany distinct advantages over the traditional time-
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Drain tion perpendicular to the interface. Very recently, Kanel.
developed a new quantum-wire fabrication technique that
eliminates the need for a dopant layer in the heterostructures
adjacent to the two dimensional electrdAsConsequently,

the quantum cavity is free of the impurity that may be intro-
duced by modulation doping and has essentially perfect crys-
talline structure.

Quantum cavities in the nanometer scale are frequently
referred to as single-electron tunneling devices, since their
central channels often hold but a single-conduction electron.
Of course there are many other electrons in the semiconduc-
tor, because they are fabricated in solids not in vacuum, but
almost all of them are tightly bound to the nuclei in the solid.
Accordingly, electron-electron correlation effect on electron
transportation properties is small. This independent electron
approximation of mesoscopic structures is supported by
many experimentd! Also, at low temperatures of several
Kelvin, the energy of phonons is too low to interact with the
electrons and can often be neglect2dBoth the electron
mean-free path and the phase coherence length are greater
than the sample dimension. If, in addition, the few conduc-
tion electrons in the semiconductor stay near the bottom of
FIG. 1. (8 Schematic diagram of a controlled-barrier atom: the conductlon. bapd during the tunneling [rocess and the
gray—metallic, white—insulator, dark—semiconductor; &oythe extemal potential is not strong enough to mdupe interband
external potential imposed on the conduction electrons in the semffansitions, the standard single-electron effective-mass ap-
conductor. proximation is then valid.

Because of the interaction with the crystal lattice in the
fanostructures, the conduction electrons appear to have a
different mass fronm, . In this case, the time-dependent
echrodinger equation for describing a two-dimensional elec-
fron transport in the potential of the lattice plus the potential
of an applied external potenti&l(x,y) is given as

(b)

independent methods. For example, it provides informatio
on transient behaviors and allows direct visualisation of th
transport process, where one can “watch” a system evolv
in real time and as a result monitor intermediate stages of th
process of interest. As an initial value problem, it is also

comparatively easy to implement, flexible, and versatile in J 52 | P2 2

treating a large variety of quantum problems. Another very i —g(x,y,t)=— _(_+ _> P(X,Y,1)

. > . . . . ot 2m* (9X2 o 2

important attribute of this approach is that it can be applied Yy

to study quantum waveguides with arbitrarily complex

boundaries and is free of the difficulties encountered by VoYY, @

time-independent methods. where m* =0.066 a.u is the effective mass for GafRef.
The outline of the paper is as follows: In Sec. Il, we 37) and the system Hamiltonian is

describe the structure of the nanodevice under study and dis-

cuss an effective theoretical scheme for solving the time- h? 5 w2 [P

dependent Schidinger's equation. Section Il presents 1=~ ome v TV(XY)=- 50w w2 a2 +TV(XY).

computer-simulated results and a stringent verification of 2)

their accuracy. Finally, conclusions are drawn in Sec. IV.

The formal solution of the time-dependent Schrodinger
equation with time-independent Hamiltonian ig(x,y,t
+At)=exp(—iHA) ¥(x,y,t). Although this general solution

As a prototype case, we examine a simple nanoelectronicas been available for quite some tifié® computational
device similar to that described by Kastfeais a controlled- techniques for treating the exponential time propagator
barrier artificial atom. The device is illustrated schematicallyexp(~iHAt) had been slow to develop and practical calcula-
in Fig. 1(a), where the gray areas are metallic, white area igions have had to await the arrival of powerful computers.
insulating (AlGa _,As) and dark area is semiconducting Different approximations to the exponential time propagator
(GaAs. When a negative voltage is applied to the two metalexp(—iHAt) along with the technique used to evaluate the
stripes on the top surface of the GaAs, the accumulated eleection of the LaplaciarV? on the wave function lead to
trons in the metal stripes form potential walls and barrierddifferent time evolution schemes.
due to repulsive Coulomb force, which control the motion of The simplest scheme expands the exponential function to
the conduction electrons in the semiconduct@aAs. the first order, i.e., the Euler expansiof(r,t+At)=(1
Shown in Fig. 1b) is a typical potential imposed on the —iHAt)(r,t). This scheme is not symmetric with respect
conduction electrons. The electron motion is restricted to twao time and is therefore unstable. It is also not unitary. To
dimensions due to the narrow quantum well formed at theavoid this instability, McCullough and Wy&%used a first-
GaAs/ALGa, _,As interface, which essentially forbids mo- order difference scheme with a unitarised approximation to

Il. THEORY
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the time evolution propagatofFOD), (r,t+At)=[(2 2 V2

—iHAt)/(2+iHAt)](r,t). This scheme is unitary and un- v f(exact) - f(FDS)

conditionally stable, but large matrices need to be inverted,

which can be prohibitively expensive in terms of computer

memory and CPU time. To overcome this problem, Askar

and Cakmak! developed an explicit second-order differenc-

ing scheme (SOD), P(r,t+At) —(r,t—At)=

—2iHAty(r,t). It is unitary, symmetric in time and shown

to be conditionally stable. -0.0005 80
The drawback of these finite difference type of methods is 40 A Yy

that the associated truncation error is proportional to

(HAt)?. For this reason, the time steyt for each propaga- X

tion has to be extremely small and, therefore, the number of

steps required for modeling a complete scattering event is sz _sz

very large. Although both FOD and SOD schemes conserve (exact) (FDT)

the norm and energy, errors will accumulate in the phase.

There are other existing explicit and implicit propagation

schemes based on a Taylor expansion of the time evolution

operator*? However, all these methods require small time 0.00006

steps and thus suffer the same problem of error accumula- \ 120

tion, which may cause severe distortion of the wavepackets. ~0.00003 |
Another propagation scheme worth mentioning is the split

operator methodSPO devised by Feit, Fleck, and Steid&r.

It splits the exponential operator into three parts and then

treats them consecutively in their diagonal representations,

ie.,

0.0015
120

80
120

$(r t+At) =exp(—i AtV 2/2)exp(—i AtV)
X exp( —i AtV2/2) g(r ).

This method is unconditionally stable and norm-preserving,

since only unitary operators are involved. It has been used 2x10"
widely and, in many cases, successfully in wavepacket stud-
ies. Nevertheless, this scheme neglects the commutators be-
tween the potential and kinetic-energy operators and thus
introduces error in both energy and phase in wave functions.
The magnitude of the inaccuracy depends strongly on the
system under investigatid.

A more accurate and stable method is the Chebyshev FIG.2. Absolute errors in evaluating the second derivative of a
scheme, pioneered by quantum chemists Tal-Ezer angaussian fur_1ctio_n_usin_ga) the five-point finite-differencz_a method;
Kosloff.2” We applied this scheme to one-dimensional potenib) sev_en-pomt finite-difference method; afg) the Fourier trans-
tial scattering and our results were in excellent agreemerffmation method.
with exact solqtioné?This paper extends our previous wWork The apove normalization ensures that the expansion of
to two d|men3|ons to study electron transport in nanoquanchepyshev polynomials is convergent. Since the Bessel
tum waveguides. Briefly, the Chebyshev scheme approxignction falls to zero exponentially asincreases beyond,
mates the exponential time propagator by a Chebyshev poly fojjows that terminating the expansion &>« would
nomial expansion: yield accurate results. Note,is proportional to the time step
t and so is the number of terms required in the expansion.
Since the time stepcan be arbitrarily large, this scheme is

N often used as a one-step propagator to cover the complete
X 2 ag(@)¢a(—iH)g(x,y,t=0), (3) interaction.
n=0 The action of the operatap,(—iH) on the initial wave-
whereE ., andE i, are the upper and lower bounds on the function ¢(r,0) can be evaluated using the following recur-
energies sampled by the wavepackets (E.—Emnn)t/2,  rence relation:
a,(a)=2J,(a) except forag(a)=Jy(a), J,(a) are the L~ i~ o~
Bessel functions of the first kindg, are the Chebyshev bn+2(—TH)Y(r,0)=—2iH dy(—1H) (r,0)
polynomials, and the normalized Hamiltonian is defined as + b (—iF)W(r,0) )

H= ;[ZH_(Emax"' Emin) 1. (4 Wi_ﬂl ¢o(—i|:|)l/f(r,0)=¢_(f,0) and ¢1(__iﬁ)¢(rvo):
—iH (r,0). The calculation therefore boils down to a se-

_2x10°"2

W(x,y,t)=exd —i(Emaxt Emin)t/2]

Emax_ Emin
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Potential t=0 t=30fs

800

t=60fs t=90fs t=120fs

800

800
t=150fs t=180fs t=210fs

800 800 800

FIG. 3. Time evolution of the system wave function in coordinate space. The grid size is 16002@mm. The potential heights of the
sidewalls and the barriers are 2 and 0.98 eV, respectively. The initial energy of the electron wave packet is 1 eV.

t=0

t=120fs

t=150fs t=180fs

FIG. 4. Time evolution of the system wave function in momentum space for the same potential and initial energy as Fig. 3.
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H=0.73eV H=0.83eV H=0.88eV

H=0.93eV H=0.98eV H=1.03eV

H=1.08eV H=1.13eV : H=1.23eV

800 800 800

FIG. 5. System wave function a& 210 fs for different barrier heightdd). The grid size is 1000 n420 nm and the initial energy of
the electron wavepacket is 1 eV.

ries of calculation of the Hamiltoniail acting on some because the FFT method implies periodic boundary condi-
function, which can be split into two parté) the straight- tions and, as a result, the wave packet crossing one boundary
forward scalar multiplicationV(x,y)f(x,y); and (ii) the Wo.uld reemerge on the opposite side giving rise to unwanted
second-order derivativE2f(x,y). An accurate evaluation of artifact.

the derivatives is a prerequisite for obtaining reliable time-

dependent wave functions. In this paper, we adopted the Ill. RESULTS AND DISCUSSIONS

Fourier transformation metho@T), i.e.° _ . .
o) In this section, we employ the Chebyshev propagation

scheme together with the fast Fourier transformation method
sz(X,Y)=f f [(i27ky)? to obtain solutions of Eq(1). The initial wave function
. ¥(X,y,t=0) is assumed to be a Gaussian of the form
+(iZka)z]F(kx!ky)eIZﬂ(kXX+kyy)dedkyl 1 X—X 2
6 — — _ C
(6) W(X,y,t=0) Zabwexp{ 2|25 )

where

-2 il i explipyX+i (8)
2b pX pyy)f

where (.,y.) denotes the center of the initial Gaussian
Figure 2 shows the absolute erm?f(exac,—vzf(numerica] in  wave function,p, andp, are respectively the peak value of
evaluating the second derivative of a Gaussian function. Thiés momentum in thex andy direction,a and b define the
numerical error of the FT scheme is found to be nine andpread of the wave function in coordinate space, which in
seven orders of magnitude smaller than that of the five-pointurn determine its spread in momentum space and vice versa.
and seven-point finite-difference method, respectively. We For the following calculation, the prototype device is
also checked the FT scheme for several arbitrarily deformethken as 200 nm in length and 400 nm in width, while the
wave functions. The same accuracy is achieved in evaluatingpatial grid is chosen to be 1000 nm long and 420 nm wide
their derivatives as long as the wavefunctions approach zernm accommodate the wave packet throughout the tunneling.
at the boundaries. It is important to note that, if the fastThe heights of the two potential walls and the two barriers
Fourier transformFFT) method is used to compute deriva- are, respectively, 2 and 0.98 eV. The initial energy of the
tives, care must be taken to ensure that the wave function lectron wave packet is chosen to be 1 eV, corresponding to
effectively zero along the boundaries at all times. This isp,=0.07 a.u. angp,=0.0a.u. The momentum spread is as-
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As another illustration of the time evolution of the system
l//exac,()_c,y,t) ~ W umerical (X, Y>1) we show, in Fig. 4, its wave function in momentum space. At
time t=0, the momentum contribution is a Gaussian cen-
tered atp,=0.07a.u. andp,=0. At time aroundt=230fs,
we start to see a much wider spread in the momentum wave
function including negative components. This corresponds to
the compression in the spatial wave function shown in Fig. 3
(t=30fs). Att=60fs a significant part of the wave function
has negative momentum in tialirection due to the increas-
ing reflected flux. Att=210fs, the positive and negative
parts of the wave function in momentum space are well sepa-
rated, representing transmission and reflection respectively.
Note that we still have a small part of the wavefunction with
near-zero momentum, which represents the trapped states.

The effect of increasing the height of the double barrier is
shown in Fig. 5. As expected, complete transmission is ob-
served for sufficiently low barriers. As the height of the bar-
riers approaches the incident energy, part of the wave packet
is reflected, part of the wave packet tunnels through the bar-
riers, and the rest is temporarily trapped between the two
barriers. The ratio of the three parts and their relative phases
depend entirely on the structure of the potential and the ini-
tial energy value. For sufficiently high barriers, a complete
reflection is achieved.

There is a general deep concern about the accuracy of the
final system wave function obtained using time-dependent
propagation approaches, since errors accumulated over many
time steps(normally in the order of hundreds of thousand
time steps may cause severe distortion of the wave packets.
Even for one-step time propagators, such as the Chebyshev
scheme, errors may accumulate when using repetitively the

FIG. 6. (a) Absolute error between exact analytical solution and recurrefnce refla“%n Iqu(gc)j). Typical Inrl]meer (;)f_l_lteratlons h
numerical propagation of a Gaussian wave function through fred@Nge from a few hundre to several thousand. To ensure that

spacefb) absolute error between initial wave function and the wavethe_ time dependant 50|Uti0”_ accurately reflects th? system

function propagated forward and then backward in time=®. being modelled, our calculations were checked against a set
of criteria.

sumed to be 5% in botkandy directions. The center of the First of all, the norm of the wave function must be con-

initial wavepacket X.,yc) is set sufficiently away from the gerved throughout the time evolution, because the exact

potential barriers to ensure that the entire wave function hagme_evolution operator is unitary. Secondly, the energy of

negligible interaction with the potential at tinte=0. the system should also remain constant throughout the time

Figure 3 illustrates the time evolution of the electron ;
: . . " evolution. We found both the norfs(x,y,t)|#(x,y,t)) and
wave packet provided by E¢3), together with the potential the energy(w(x,y,t)[H|i(x,y,t)) are conserved to 1 part in

shown in the same spatial grid (1000 "20 nm). Initially, E . )
the wavepacket moves rightward with time as a free Wave.1 for all of our CaICl.“at'O.nS'. The preservation Qf norm and
At time aroundt=301fs, one starts to observe the distortion €"¢'9Y SEIVE as basic criteria to any propagation schemes.

in the wave packet caused by its interaction with the potenF or the Chebysh_ev scheme these two attributes are paf“‘?”'
tial. At aroundt=60fs, a significant portion of the wave |2y important, since the Chebyshev propagator is not uni-

packet is reflected by the barriers. Further along in time ond"y @nd thus neither norm nor energy conserving by defini-
can also see clearly the formation of trapped wave packéf{on- In this case, conservation of norm and energy puts
between the two potential barriers and its gradual decay. forward a stringent test to the propagation scheme and the
Since the wave function/(x,y,t) contains complete Computer code.
quantum-mechanical information about the system under Thirdly, we set the external potential to zero, i.e., the
study, we can derive from it all possible observables such agave packet propagates in free space. In this case, the exact
reflection and transmission coefficients, lifetime of theanalytical solution is knowf® The absolute error between
trapped states, phase shifts. The energy spediouthe den- the exact analytical solution and our numerical propagation
sity of stategcan also be obtained from the time propagationof a Gaussian wave function through free space is shown in
of system wave functions by using the time-energy FouriefFig. 6@). It is found that the maximum error is in the order
transform. In this way, one can filter out intensity weightedof 10~ 2.
spectra from the correlation function defined as the overlap Lastly, since the Schoinger equation is symmetric with
integral of (x,y,t) with ¥(x,y,t=0).4647 respect to time reversal, a stringent test of reliability of the

-1
2x10
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solution is to reverse the evolution with time and the wave IV. CONCLUSION

function should return to its initial stafé.If errors were

accumulated along the way, a reverse propagation would In conclusion, we have presented a highly accurate and
lead to something quite different from the starting waveeffective theoretical model to study quantum-transport phe-
function. This test was performed by propagating the initialnomena in nano electronic devices. By solving the time-
wave function forward in time fot=210fs under the influ- dependent Scﬁlﬁnger equation, we have quantum_
ence of the double-barrier potential as shown in Fig. 3. Thgnechanically complete information on the system under
resulting wave function was then propagated backward iryyqy at all times and we can extract values for any measur-
time by replacing with —t in Eq. (3). Our results show that g6 quantities of interest. Stringent tests on the accuracy of
the wave function is gradually packed together and finally, ag ;- gojutions were carried out, including conservation of
t=0, it looks the same as the initial starting Wav%Ignctlon.norm and energy, time reversal propagation, and comparison
The ab.SO'L!te error 1S found to be less than B 8S with exact solutions in the case of free space propagation.
shown in Fig. 6b). It was this last test that really convinced This model can be readily applied to other nanometer-scale

us that our calculations are highly reliable. id ith arbitraril lex boundari
It takes around 35 min of CPU time to complete one ofduantum waveguides with arbitrarily complex boundaries.

the calculations presented above on a 500 MHz. Digital Al-

pha personal workstation. Typical memory requirement is 40

Mb. The code is also optimised for parallel computer archi- ACKNOWLEDGMENTS
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