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Backbending current-voltage characteristic for an annular Josephson junction in a magnetic field
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Excitation of the Josephson plasma radiation by a fluxon moving in an annular Josephson junction is studied
experimentally, numerically, and using an analytical approach. An externally applied magnetic fieldH forms a
cosinelike potential relief for the fluxon in a ring-shaped junction. The motion of the fluxon in the junction
leads to an emission of plasma waves, which give rise to a resonance at a certain fluxon velocity. The
experimental data agree well with numerical simulations which indicate a locking of the fluxon to the radiation
frequency. The peculiar feature indicated by both experiment and numerical simulations is the shape of the
resonance in the current-voltage (I -V) characteristic which shows a clear backbending, with a negative differ-
ential resistance. The analytical approach developed in this work is based on the perturbation theory for
radiation emission generated by a kink in the perturbed sine-Gordon equation. To explain the observed effect,
we introduce an addition to the perturbation theory, which proves to be crucial for explanation of the back-
bendingI -V curves: We take into account the fact that the background radiation field, supported by a balance
between emission from the moving kink and dissipative absorption,narrows the junction’s plasma frequency
gap. In the case when the emission has a resonant character, even a small change of the gap produces a strong
reciprocal effect on the emission power. Following this idea, we develop a fully analytical self-consistent
approximation that readily allows us to obtain the backbendingI -V curves.
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I. INTRODUCTION

A fluxon in a long Josephson junction carrying a magne
flux quantumF0 is a well-known example of a solitary wav
described by the perturbed sine-Gordon model. The mo
of a sine-Gordon soliton~kink! in a spatially periodic poten
tial is a classic problem which has been studied in ma
theoretical papers, starting from Refs. 1 and 2~see a review!.
It has been shown that the soliton radiates small-amplit
waves with the plasma dispersion relation. The radiation
quency depends on the soliton velocity and the period of
potential.2,3 It has been also predicted4 that in a periodically
modulated junction the generated radiation should lead
resonances which appear as additional constant-voltage
on the current-voltage (I -V) characteristics. These reso
nances have been observed in experiments5 using a long Jo-
sephson junction with an artificially fabricated lattice of i
homogeneities. Such a realization of the periodic poten
appears to be rather straightforward but it does not allow
to control the amplitude and shape of the effective poten
during the experiment.

Ring-shaped~annular! long Josephson junctions serve
the best experimental systems for studying fluxon dynam
Due to the magnetic flux quantization in a superconduct
ring, the number of fluxons initially trapped in an annul
junction is conserved. The soliton dynamics can be stud
here under periodic boundary conditions. While the fabri
tion of annular Josephson tunnel junctions is rather ea
PRB 600163-1829/99/60~2!/1365~7!/$15.00
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trapping of fluxons in them still remains a difficult art. Usin
different trapping techniques, both single-fluxon6 and
multifluxon7 experiments have been reported with homog
neous annular junctions.

In this paper we present experiments, numerical simu
tions, and analysis of the dynamics of a single fluxon trapp
in an annular Josephson junction which is placed in an
ternally applied magnetic fieldH. The geometry is schemati
cally shown in Fig. 1. Due to the interaction of the fluxo

FIG. 1. Schematic view of an annular junction with a trapp
fluxon; a magnetic fieldH is applied in the plane of the tunne
barrier.
1365 ©1999 The American Physical Society
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1366 PRB 60USTINOV, MALOMED, AND GOLDOBIN
with the radial field component,8 the fluxon feels a periodic
potential U(u);H cosu. The minimum of the potential is
located in the region of the ring where the fluxon’s magne
field is directed along the field. This problem has recen
attracted considerable interest which has led to n
experiments.9–12Most of the work done thus far was focuse
on the fluxon pinning in the field-induced potential. Here w
present a systematic study of the fluxon dynamics, stron
affected by nonlinear Josephson plasma wave radiati
emission due to the fluxon motion. Thelinear ~small-
amplitude! case of radiation emission by a moving fluxo
leading to a new resonance observed in experiment, has
already reported in Ref. 10.

The theoretical model for this system was proposed
Gro”nbech-Jensenet al.8. The field gives rise to an additiona
term in the perturbed sine-Gordon equation which gove
the fluxon motion:

wxx2w tt2sinw5aw t1g1h sin~qx!, ~1!

where w(x,t) is the superconducting phase difference b
tween the electrodes of the junction, the spatial coordinax
directed along the ring is normalized to the Josephson p
etration depthlJ , the time t is normalized to the inverse
plasma frequencyv0

21, a is a dissipation coefficient due t
the quasiparticle tunneling across the barrier, andg is the
bias current density normalized to the critical current den
Jc of the junction. The parameterq52p/ l , where l
5pD/lJ is the normalized circumference of the junctio
with D being the ring’s diameter. The last term in Eq.~1!
accounts for the coupling between the applied field and
flux density in the junction. The dimensionless amplitudeh
;H is normalized by a sample-specific geometrical factor8,9

In case of one fluxon trapped in the ring, Eq.~1! is supple-
mented by the periodic boundary conditionw( l )5w(0)
12p. At low velocities the fluxon’s equation of motion tha
can be derived from Eq.~1!, that of a driven pendulum in a
lossy medium.13

II. EXPERIMENTAL RESULTS

Experiments have been performed on Nb/Al-AlOx /Nb
Josephson junctions. Measurements were performed by
plying the bias currentI from top to the bottom electrode o
the junction and measuring the dc voltage generated du
the fluxon motion. The results presented below were
tained for a junction with mean diameterD5132 mm and
ring width W510 mm. The normalized ring’s circumfer
encel varied between 8.3 and 7.7.

Trapping of a magnetic flux in the junction was achiev
while cooling the sample below the critical temperatu
Tc

Nb59.2 K of niobium with a small bias current passin
through the junction. Figure 2 shows the junction critic
current dependence on magnetic field measured with
trapped fluxon~solid line! and with one fluxon trapped
~points! during cooling down. This dependence is a ve
clear ‘‘fingerprint’’ of the junction state. With no fluxon
I c(H) has the usual Fraunhofer-like form withmaximum Ic
at zero field. In contrast, the junction state with a trapp
fluxon is characterized by aminimumof I c(H) at H'0.

At H50 the fluxon depinning currentI cr is very small, by
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a factor of about 300 smaller than the critical currentI c mea-
sured for the same junction without the trapped fluxon. T
indicates a very high homogeneity of the junction. The line
increase ofI cr at low field H is well described by the theo
retical model8 based on Eq.~1!: the zero-voltage state exist
as long as the maximum pinning force due to the fie
induced potential is larger than the bias current force ac
on the fluxon. This is satisfied in the rangeugu,gcr where8

gcr5h sech(p2/ l ). In the low-field range, fluxon pinning an
retrapping by the magnetic field-induced potential have b
recently studied in experiments and analytically in Ref. 1
The nonlinear dependence ofI cr(H) at high fields with a
different number of trapped fluxons has been investiga
earlier in detail by Verniket al.11.

The fluxon’s I -V characteristics at low magnetic field
and three different temperatures are shown in Fig. 3. As
dicated on the plot, different curves correspond to differ
values of the magnetic field. With increasingH the critical
current I cr increases, and hysteresis appears on theI -V
curves. AtI .I cr the fluxon overcomes the pinning potenti
and starts to move in the junction, which induces dc volta
If the bias current is decreased, the underdamped fluxon
tion continues until the current is low enough for the flux
to be retrapped by the well.12 The I -V characteristics pre-
sented in Fig. 3~a! show a clear resonant step at 28–30mV.
First, at smallH, the I -V curve shows a little bump at abou
30 mV which evolves into a well-pronounced step at larg
fields. At fields larger than about 0.15 Oe, this step dis
pears due to the increase of the retrapping current.

The shape of the resonant step strongly depends on
perature. Figures. 3~b! and 3~c! show theI -V characteristics
measured at lower temperatures. The asymptotic voltage
the fluxon step and of the field-induced resonant step
crease at lower temperatures due to the decrease of the
don penetration depth of Nb. At low temperatures, the re
nance very clearly shows abackbending, i.e., negative
differential resistance in some current range. The backbe
ing is observed starting from the fieldH'0.08 Oe. Decreas
ing temperature makes this feature sharper, as can be
from Fig. 3~c!. In this plot we can also notice additiona
small bumps on theI -V curve which appear at lower volt
ages, at about 22mV and 36 mV.

FIG. 2. Critical current dependence on magnetic field measu
in the annular junction with no fluxon~solid line! and with one
fluxon trapped~points! during cooling down throughTc

Nb .



PRB 60 1367BACKBENDING CURRENT-VOLTAGE CHARACTERISTIC . . .
FIG. 3. Current-voltage characteristics of a single fluxon moving in the junction atT57.3 K. Different applied magnetic fieldsH are
indicated on the plot. Horizontal arrows show switching directions.~a! T57.31 K with a'0.052,~b! T56.87 K with a'0.043, and~c!
T55.91 K with a'0.030.
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III. NUMERICAL SIMULATIONS

We have calculated the current-voltage curves by num
cally integrating Eq.~1!. In the simulations, theI -V curve is
determined by the dependence of the fluxon velocityv on the
bias currentg. The periodic boundary conditionw( l ,t)
52p1w(0,t) has been used. The simulation results with
parametersl 57.8 anda50.05, close to that in the exper
ment shown in Figs. 3~b! and 3~c!, are presented in Fig. 4
One can see that the simulations show very clearly a ra
good qualitative agreement with the experimental data
Fig. 3. The magnetic fieldh induces a resonance step at t
fluxon velocity of about 0.75. With increasingh, this step
becomes very pronounced and, finally, ath50.7 it shows the
backbending behavior.

The internal dynamics of the junction corresponding
the simulatedg(v) characteristics can be learned from t
time dependence of the instantaneous Josephson volta
shown in Fig. 5. Cases~a! and ~b! correspond to the stabl
i-

e

er
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points on the simulated current-voltage curves at the fie
induced resonant step~a! and on the main fluxon step~b!.
One can see that the resonant step atv'0.75 is characterized
by the background voltage oscillations~plasma waves! with
a time period 3 times smaller than the fluxon oscillation p
riod. Thus, at the resonant regime~a! the fluxon strongly
interacts with the field-induced potential and a large part
its energy is transferred into the radiation.

In order to investigate the dependence of the reson
features on the junction parameters, we performed nume
simulations for different lengths of the junction. With in
creasing the junction lengthl, we have found that the main
field-induced resonance shifts towards high velocities. In
dition, for relatively small damping, other resonant steps
pear at lower velocities. Figure 6 presents an example of
I -V curve for a long ringl 525 with small dampinga
50.01 and magnetic field amplitudeh50.3. There are three
major resonant features atv'0.81, 0.89, and 0.96.
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IV. THEORY

A. Calculation of the resonance frequency: Fluxon interaction
with small-amplitude Josephson plasma waves

A simple model for the fluxon resonance due to the
sephson plasma-wave radiation has been put forward in

FIG. 4. Numerically simulated current-voltage characteristics
a single fluxon for the junction’s parametersl 57.8, a50.05, andh
as indicated on the plot. The resonant step associated with th
teraction of the fluxon with its radiation is seen atv'0.75. The
resonance ath50.7 shows clear backbending.

FIG. 5. Voltage oscillations atx50 for two different points of
the g(v) curve with h50.5 shown in Fig. 4:~a! at the radiation-
induced step (g50.09,v50.75) and~b! at the main fluxon step
(g50.10,v50.84).
-
ef.

10. Here we discuss it in more detail in order to explain t
main features of the experiments and numerical simulati
presented above.

A fluxon moving in an annular junction can be viewed
a particle moving in a periodic potential with a spatial peri
equal tol. Under such conditions, the fluxon is predicted2 to
emit small-amplitude plasma waves with wave numberk and
frequencyv5A11k2 which depend on the periodl and the
fluxon velocityv. According to Mkrtchyan and Schmidt,2 the
amplitude of the emitted waves is largest near the radiat
threshold. At velocities below the threshold the fluxon doe
not emit radiation because of the Josephson plasma ga
the dispersion relation. The fluxon velocity corresponding
the radiation threshold is given by the following formula:2

v thr5
1

A11~2p/a!2
, ~2!

wherea is the period of the potential~in the present case
actually,a5 l ).

In a finite system, the radiation should lead to a series
resonances between the fluxon circulation frequencyvfl
52pv/ l and the frequency of emitted radiation, atv
5nvfl , with n being an integer. These resonances wh
predicted4,14 to induce steps onI -V characteristics at the
fluxon velocities

vn5AS 12
l

naD 2

1S l

2pnD 2

. ~3!

Using Eq.~3! with a5 l 57.8, we obtainv3'0.785 to be the
closest resonance to the threshold velocityv thr'0.779. This
prediction is in good agreement with the experimenta
measured~Fig. 3! and numerically calculated~Fig. 4! posi-
tion of the resonance step. Moreover, the radiation freque
in Fig. 5~a! corresponds ton53, as predicted by this mode
Figure 7 shows the resonance velocitiesvn of the fluxon

f

in-

FIG. 6. Numerical simulations of the fluxon in a long ringl
525) with small dampinga50.01. Magnetic field amplitude ish
50.3. Dashed lines show fluxon velocities corresponding to
thresholds of different harmonics of fluxon radiation.



ry
ci
at
th

.
th

at

th

er
er
th

he
c

er
ck
ui
in

tio

the

n-
city

ave
e-

er
as

e
nu-

ich
ed.

at a

to
ia-
e
x-
tfor-

m

c-
ity

PRB 60 1369BACKBENDING CURRENT-VOLTAGE CHARACTERISTIC . . .
radiation versus the junction lengthl. The solid line shows
the radiation threshold velocity~2!.

At low damping, the radiation decay time can be ve
long, and the emitted waves can survive several fluxon
culation periods. This means that, in such a case, high sp
harmonics of the periodic potential can contribute into
dynamics. The formula for the radiation threshold~2! is
modified to

v thr5
1

A11~2pm/a!2
, ~4!

wherem is the harmonic number. The dashed lines in Fig
and Fig. 6 show the fluxon velocities corresponding to
thresholds of different harmonicsm of the fluxon radiation.
One can see that the agreement with numerically calcul
resonances is very good.

B. Strong interaction: Analytical approach to explain
the backbending I -V curves

The problem formulated above, i.e., explanation of
conspicuous backbending section on theI -V curve of a
fluxon moving in a circular Josephson junction in the ext
nal magnetic field, is a challenge for analytical consid
ations based on the perturbation theory for solitons in
sine-Gordon equation.3 As we will see below, a crucially
important element that must be added to this well-establis
technique is a downshift of the junction’s plasma frequen
under the action of afinite-amplitude radiation field. Of
course, it is difficult to develop an absolutely rigorous p
turbation theory in the presence of a finite-amplitude ba
ground; nevertheless, we will demonstrate below that q
reasonable and not too complicated results can be obta
on the basis of a simple self-consistent approximation.

The model which furnishes quite an accurate descrip
of this system is the perturbed sine-Gordon equation~1!. In

FIG. 7. Dependence of the resonance velocitiesvn for the first
harmonic (m51) of the fluxon radiation as a function of the jun
tion length. The solid line shows the radiation threshold veloc
The arrow indicates the junction lengthl 57.8 approximately cor-
responding to the experimentally@Fig. 3~b!# and numerically~Fig.
4! studied cases.
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the absence of perturbations, the fluxon is described by
kink solution to the sine-Gordon equation,

wkink54 tan21FexpS s~x2vt !

A12v2 D G , ~5!

wherev is the kink’s velocity ands561 is its polarity.
A well-known result of the perturbation theory2,3 is that,

for a fluxon moving in a periodic potential~generally speak-
ing, of an arbitrary form! with perioda52p/q ~in our case,
it is simply equall ), a strong resonant emission of quasili
ear dispersive waves by the fluxon appears when its velo
attains the threshold value

v05
1

A11q2
, ~6!

which is tantamount to Eq.~2!. In this analysis we will as-
sume, as above, that the radiation takes place at some w
numberqm52pm/a, which gives a resonance at some v
locity very close to the threshold~6!. Close to the velocity
~6!, i.e., at smalldv[v2v0 ~which may be both positive
and negative!, a general expression for the emission pow
W, i.e., the rate at which energy is emitted by the fluxon, w
obtained in Ref. 15:

W25Ch4
A~aq!214~11q2!2~dv !212~11q2!dv

@q2~aq!214~11q2!2~dv !2#
,

~7!

where all information about a particular form of th
emission-generating perturbation condenses into a single
merical constantC; notice that the smallness parameterh of
the perturbation~proportional to the external magnetic field!
was separated from this constant, to explicitly show at wh
order of the perturbation theory the result has been obtain

The resonant character of expression~7! is quite obvious:
if one omitsa, the emission power diverges atdv50, while
the dissipation prevents this divergence. Nevertheless,
finite but small a the emission power~7!, regarded as a
function of dv, has a sharp maximum arounddv50.15

An important step to be done in the present analysis is
take into regard a finite amplitude of the background rad
tion in an established regime of motion of the fluxon. If th
radiation’s amplitude is finite but still small enough, one e
pands the unperturbed sine-Gordon equation in a straigh
ward way:

w tt2wxx1w2
1

6
w350. ~8!

A solution to Eq.~8! can be looked for, as usual, in the for
of an anharmonic expansion

w~x,t !5A cos~kx2vt !1•••, ~9!

which immediately leads to the~weakly! nonlinear disper-
sion relation for the finite-amplitude radiation:

v25v0
21k2, v0

2[12
1

8
A2. ~10!

.
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1370 PRB 60USTINOV, MALOMED, AND GOLDOBIN
In this relation,v0
2 is nothing else but an effective plasm

frequency~frequency gap! of the junction, with a decreasin
correction originating from the finite-amplitude backgroun
Strictly speaking, the finite-amplitude background is subj
to a modulational instability. However, for a small bac
ground’s amplitude this is a very weak effect, which can
additionally suppressed by the dissipation~see below!, there-
fore we ignore it.

The change of the effective plasma frequency will a
change the resonant velocityv0 as follows@cf. Eq. ~6!#:

ṽ05
v0

Av0
21q2

. ~11!

Although the difference betweenṽ0 and v0 is small, as we
assume the correction18 A2 in Eq. ~10! to be small, it may
considerably change theeffectivevelocity deviation from the
resonant value:

d̃v[v2 ṽ0'dv1
1

2
q2~11q2!23/2~12v0

2!, ~12!

where the smallness of (12v0
2) @see Eq.~10!# has been used

to expand expression~11!.
The next step is to relate the emission powerW and the

squared amplitudeA2 of the radiation background. To thi
end, we consider radiation energyE, which, in the linear-
wave approximation, is

E5
1

2E2`

1`

~w t
21wx

21w2!dx. ~13!

In the near-resonant case, the emitted waves have small w
numbers.15 Therefore, in the first approximation, the gradie
~second! term in Eq.~13! may be neglected. Then, substitu
ing the simple wave form~9! into Eq. ~13!, we easily obtain

E5
1

2
A2l , ~14!

l being, as above, the length of the junction. In the sa
approximation, it is easy to calculate the rate of dissipat
of the energy: (dE/dt)diss52aE, wherea is the dissipative
constant in Eq.~1!. With regard to this, the balance equatio
for the energy is

dE

dt
5W2aE, ~15!

W being the emission power defined above. A station
solution to Eq.~15! is evident,E05W/a. Finally, equating it
to expression~14!, we arrive at the following expression fo
the stationary value of the squared background amplitud
terms of the emission power:

A0
25

2W

a l
. ~16!

Now, we can obtain a closed self-consistent approxim
tion, inserting expression~16! into Eq. ~12!, and then substi-
tuting the latter expression, instead ofdv, into Eq. ~7!. To
the best of our knowledge, this is the first example o
.
t
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a

calculation of radiation effects in the perturbed sine-Gord
model which takes into account the background-induced n
rowing of the junction’s plasma frequency gap, i.e., actua
the nonlinearcharacter of the emitted radiation.

The form of the resultant equation is radically simplifie
by the rescalings

W[8pa2q22A11q2P,

Ch4[~8p!2a5~11q2!E, ~17!

dv5
1

2
aq~11q2!21D,

whereP, D, and E are, respectively, the rescaled emissi
power, velocity deviation, and the perturbation-strength
rameter. In terms of this notation, the final equation follo
ing from Eqs.~16!, ~12!, and ~7! takes a relatively simple
form:

P25E
A11~D1P!21~D1P!

11~D1P!2
, ~18!

where we have made use of the identityl 52p/q.
Equation ~18! gives a relation between the emissio

power and the velocity~more accurately, velocity deviation!.
However, the experimentally observable dynamical char
teristic of the Josephson junction is itsI -V characteristic, i.e.,
a relation between the bias current densityg and the fluxon’s
velocity v; see Sec. II. To obtain theI -V characteristic, we
add to Eq.~18!, which was obtained, essentially, from th
energy-balance equation for the radiation, an equation of
tion for the fluxon itself, which can be easily derived as
energy balance for the fluxon, taking into regard the dissi
tive and radiative losses:3

4v2~12v2!21/214paq22A11q2P5
pg

a
v, ~19!

whereP is the rescaled power defined in Eq.~17!. A final
link between Eqs.~18! and ~19! is the relationv[v01dv,
v0 being defined in Eq.~6!, wheredv should be expressed i
terms ofD as per Eqs.~17!.

Note that we did not specify the value of the numeric
coefficientC in the underlying expression~7! for the emis-
sion power. Its particular value defines the perturbatio
strength parameterE according to Eq.~17! and, in fact, can
be adjusted by changing the parameterh in ~1!, i.e., the
strength of the magnetic field.

In Fig. 8, we display a set of theI -V curves obtained from
a numerical solution of the system of two algebraic equati
~18! and~19! for different values ofE and fixed values of the
junction’s length, l 57.8, and the dissipative constant,a
50.05. Using these parameters, the solutions for~a! E51,
~b! E510, and~c! E5100 are plotted. The most prominen
peculiarity of the family of theI -V curves is quite obvious: if
the perturbation-strength parameterE exceeds a critical value
Ecr'2.71~corresponding toC'0.0068 forh50.6), there ap-
pears the backbending on theI -V curves, i.e., exactly the
feature that we seek to explain. In other terms, the backbe
ing can be described as negative differential resistance
responding to a givenI -V curve.
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The increase of the parameterE means enhancement o
the radiative effects and increase of the radiation-backgro
amplitude. This tendency is clearly seen from Figs. 8~a!–
8~c!. Thus, we conclude that a decrease of the effec
plasma frequency gap produced by the finite-amplitude
diation background is indeed a crucial fact that allows us
consistently explain the backbending of theI -V curves.

V. DISCUSSION

The theory presented in the preceding section dem
strates good overall agreement with experiments and num
cally simulated current-voltage characteristics. These fa

FIG. 8. Analytically derived current-voltage characteristics
the region of the backbending resonance. Magnetic field amplit
is taken ash50.6, dissipationa50.05, and junction’s lengthl
57.8. Using these parameters, the solutions for~a! E51, ~b! E
510, and~c! E5100 are plotted.
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confirm that an externally applied magnetic fieldH forms a
sinusoidal potential relief for a fluxon in an annular Josep
son junction. We have shown that the earlier observed p
ticlelike effects of fluxon pinning and trapping by th
potential12 are accompanied by the radiation of larg
amplitude Josephson plasma waves which are responsibl
the novel resonances observed in experiments. In this p
we presented a systematic study of these resonances
function of the potential height and losses in the junctio
We extend here the analogy between the fluxon dynamic
annular junctions and the motion of a particle in a was
board potential. Our study clearly demonstrates that
fluxon behaves as a solitary wave which emits quasilin
waves in a spatially varying potential.

We note that at low temperatures the fluxon radiation s
shape becomes more complicated, showing negative di
ential resistance and chaotic switching between sev
closely located branches. This behavior is found in deta
study of the resonant step region in Fig. 3~c!. Such a com-
plex resonance dynamics was simulated earlier numerica13

and was attributed to a strong fluxon-plasma wave inter
tion leading to an intrinsically chaotic dynamics in the jun
tion. Though the background oscillations were discussed,
authors of Ref. 13 did not suggest any analytical mo
which can predict the voltage of the resonance or the ra
tion harmonic content. Based on the model presented in
present paper it can be argued that chaos in this system
curs due to a competition between several resonances l
at close voltages. As an example, forl 57.8 the resonance
n52 andn54 predicted by Eq.~3! occur atv2'0.797 and
v4'0.812. These values are very close to that ofv3 andv thr
discussed in Sec. IV A. Thus, the reduction of losses at
temperature can be expected to complicate the dynamic
was indeed observed in experiment.
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