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Backbending current-voltage characteristic for an annular Josephson junction in a magnetic field
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Excitation of the Josephson plasma radiation by a fluxon moving in an annular Josephson junction is studied
experimentally, numerically, and using an analytical approach. An externally applied magnetit fields a
cosinelike potential relief for the fluxon in a ring-shaped junction. The motion of the fluxon in the junction
leads to an emission of plasma waves, which give rise to a resonance at a certain fluxon velocity. The
experimental data agree well with numerical simulations which indicate a locking of the fluxon to the radiation
frequency. The peculiar feature indicated by both experiment and numerical simulations is the shape of the
resonance in the current-voltageV) characteristic which shows a clear backbending, with a negative differ-
ential resistance. The analytical approach developed in this work is based on the perturbation theory for
radiation emission generated by a kink in the perturbed sine-Gordon equation. To explain the observed effect,
we introduce an addition to the perturbation theory, which proves to be crucial for explanation of the back-
bendingl -V curves: We take into account the fact that the background radiation field, supported by a balance
between emission from the moving kink and dissipative absorptiarrpwsthe junction’s plasma frequency
gap. In the case when the emission has a resonant character, even a small change of the gap produces a strong
reciprocal effect on the emission power. Following this idea, we develop a fully analytical self-consistent
approximation that readily allows us to obtain the backbendivgcurves.
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[. INTRODUCTION trapping of fluxons in them still remains a difficult art. Using
different trapping techniques, both single-fluforand

A fluxon in a long Josephson junction carrying a magneticmultifluxon7 experiments have been reported with homoge-
flux quantumd,, is a well-known example of a solitary wave neous annular junctions.
described by the perturbed sine-Gordon model. The motion In this paper we present experiments, numerical simula-
of a sine-Gordon solitokkink) in a spatially periodic poten- tions, and analysis of the dynamics of a single fluxon trapped
tial is a classic problem which has been studied in manyn @n annular Josephson junction which is placed in an ex-
theoretical papers, starting from Refs. 1 an@ee a review ternally applied magnetic field. The geometry is schemati-

It has been shown that the soliton radiates small-amplitud&@lly shown in Fig. 1. Due to the interaction of the fluxon
waves with the plasma dispersion relation. The radiation fre-
guency depends on the soliton velocity and the period of the
potential>® It has been also predictéthat in a periodically
modulated junction the generated radiation should lead to fluxon
resonances which appear as additional constant-voltage steps
on the current-voltage 1{V) characteristics. These reso-
nances have been observed in experimamig a long Jo-
sephson junction with an artificially fabricated lattice of in-
homogeneities. Such a realization of the periodic potential
appears to be rather straightforward but it does not allow one
to control the amplitude and shape of the effective potential
during the experiment.

Ring-shapedannulaj long Josephson junctions serve as
the best experimental systems for studying fluxon dynamics.
Due to the magnetic flux quantization in a superconducting
ring, the number of fluxons initially trapped in an annular
junction is conserved. The soliton dynamics can be studied FIG. 1. Schematic view of an annular junction with a trapped
here under periodic boundary conditions. While the fabricafluxon; a magnetic fieldH is applied in the plane of the tunnel
tion of annular Josephson tunnel junctions is rather easyarrier.
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with the radial field componefitthe fluxon feels a periodic o5 ' ' T
potential U(#) ~H cosd. The minimum of the potential is o fluxon
located in the region of the ring where the fluxon’s magnetic
field is directed along the field. This problem has recently
attracted considerable interest which has led to new
experiments~12Most of the work done thus far was focused
on the fluxon pinning in the field-induced potential. Here we
present a systematic study of the fluxon dynamics, strongly
affected by nonlinear Josephson plasma wave radiation
emission due to the fluxon motion. Thignear (small-
amplitude case of radiation emission by a moving fluxon,
leading to a new resonance observed in experiment, has been
already reported in Ref. 10.

The theoretical model for this system was proposed by
Grénbech-Jenseat al®. The field gives rise to an additional
term in the perturbed sine-Gordon equation which governs FIG. 2. Critical current dependence on magnetic field measured

the fluxon motion: in the annular junction with no fluxosolid line) and with one
fluxon trapped(points during cooling down througﬁ"c\'b.

e 1 fluxon

c

critical current I_(mA)

magnetic field H (Oe)

Pxx— @ Sing=ae+ y+hsin(gx), 1)

a factor of about 300 smaller than the critical currermnea-
where ¢(x,t) is the superconducting phase difference be-gyred for the same junction without the trapped fluxon. This
tween the electrodes of the junction, the spatial coordirate jngicates a very high homogeneity of the junction. The linear
directed along the ring is normalized to the Josephson penfpcrease ofl, at low field H is well described by the theo-
etration depthh;, the timet is normalized to the inverse retical model based on Eq(1): the zero-voltage state exists
plasma frequency, *, « is a dissipation coefficient due to as long as the maximum pinning force due to the field-
the quasiparticle tunneling across the barrier, ani the induced potential is larger than the bias current force acting
bias current density normalized to the critical current densityon the fluxon. This is satisfied in the ranpg < y., wheré
Jc of the junction. The parameteq=2w/l, where | =hsech¢?/1). Inthe low-field range, fluxon pinning and
=wD/\; is the normalized circumference of the junction, retrapping by the magnetic field-induced potential have been
with D being the ring’s diameter. The last term in E4)  recently studied in experiments and analytically in Ref. 12.
accounts for the coupling between the applied field and thghe nonlinear dependence bf(H) at high fields with a
flux density in the junction. The dimensionless amplitide different number of trapped fluxons has been investigated
~H is normalized by a sample-specific geometrical fattor. earlier in detail by Vernilet al1%.

In case of one fluxon trapped in the ring, K@) is supple- The fluxon’s |-V characteristics at low magnetic fields
mented by the periodic boundary conditiap(l)=¢(0)  and three different temperatures are shown in Fig. 3. As in-
+2m. At low velocities the fluxon’s equation of motion that dicated on the plot, different curves correspond to different
can be derived from Ed1), that of a driven pendulum in a values of the magnetic field. With increasihfjthe critical
lossy medium? current |, increases, and hysteresis appears on Ithe
curves. Atl>1, the fluxon overcomes the pinning potential
Il. EXPERIMENTAL RESULTS and starts to move in the junction, which induces dc voltage.
If the bias current is decreased, the underdamped fluxon mo-
Experiments have been performed on Nb/AI-QI@b  tion continues until the current is low enough for the fluxon
Josephson junctions. Measurements were performed by af be retrapped by the wéeff. The |-V characteristics pre-
plying the bias current from top to the bottom electrode of sented in Fig. @) show a clear resonant step at 28—aV.
the junction and measuring the dc voltage generated due f@irst, at smallH, thel-V curve shows a little bump at about
the fluxon motion. The results presented below were ob30 .V which evolves into a well-pronounced step at larger
tained for a junction with mean diamet®r=132 um and fields. At fields larger than about 0.15 Oe, this step disap-
ring width W=10 um. The normalized ring’s circumfer- pears due to the increase of the retrapping current.
encel varied between 8.3 and 7.7. The shape of the resonant step strongly depends on tem-
Trapping of a magnetic flux in the junction was achievedperature. Figures.(B) and 3c) show thel-V characteristics
while cooling the sample below the critical temperaturemeasured at lower temperatures. The asymptotic voltages of
T’c\'b=9.2 K of niobium with a small bias current passing the fluxon step and of the field-induced resonant step in-
through the junction. Figure 2 shows the junction criticalcrease at lower temperatures due to the decrease of the Lon-
current dependence on magnetic field measured with ndon penetration depth of Nb. At low temperatures, the reso-
trapped fluxon(solid line) and with one fluxon trapped nance very clearly shows #&ackbending i.e., negative
(points during cooling down. This dependence is a verydifferential resistance in some current range. The backbend-
clear “fingerprint” of the junction state. With no fluxon ing is observed starting from the fielitl=0.08 Oe. Decreas-
I.(H) has the usual Fraunhofer-like form withaximum |  ing temperature makes this feature sharper, as can be seen
at zero field. In contrast, the junction state with a trappedrom Fig. 3c). In this plot we can also notice additional
fluxon is characterized by minimumof | .(H) at H~0. small bumps on thé-V curve which appear at lower volt-
At H=0 the fluxon depinning curremt, is very small, by ages, at about 224V and 36 uV.
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FIG. 3. Current-voltage characteristics of a single fluxon moving in the junctidh=at.3 K. Different applied magnetic fieldd are

indicated on the plot. Horizontal arrows show switching directigasT=7.31 K with @~0.052,(b) T=6.87 K with «~0.043, and(c)
T=5.91 K with a~0.030.

lIl. NUMERICAL SIMULATIONS points on the simulated current-voltage curves at the field-

We have calculated the current-voltage curves by numeri'—rlduced resonant ste@ and on the ma|n'fluxon ste@).
cally integrating Eq(1). In the simulations, thé-V curve is One can see that the resonant s_te@_aat).?S 'S character_lzed
determined by the dependence of the fluxon velagion the ~ 2Y the background voltage oscillatiofislasma waveswith
bias currenty. The periodic boundary conditior(l,t) atime period 3 times smaller thz_an the fluxon oscillation pe-
=27+ ¢(0}) has been used. The simulation results with the/i0d- Thus, at the resonant reginta) the fluxon strongly
parameter$ =7.8 anda=0.05, close to that in the experi- !nteracts wlth the fmld—mduced potenngl and a large part of
ment shown in Figs. ®) and 3c), are presented in Fig. 4. ItS energy is transferred into the radiation.

One can see that the simulations show very clearly a rather In order to investigate the dependence of the resonant
good qualitative agreement with the experimental data ofeatures on the junction parameters, we performed numerical
Fig. 3. The magnetic fielth induces a resonance step at thesimulations for different lengths of the junction. With in-
fluxon velocity of about 0.75. With increasirty this step  creasing the junction length we have found that the main
becomes very pronounced and, finallyhat0.7 it shows the field-induced resonance shifts towards high velocities. In ad-
backbending behavior. dition, for relatively small damping, other resonant steps ap-

The internal dynamics of the junction corresponding topear at lower velocities. Figure 6 presents an example of the
the simulatedy(v) characteristics can be learned from thel-V curve for a long ringl=25 with small dampinga
time dependence of the instantaneous Josephson voltage a$.01 and magnetic field amplitude=0.3. There are three
shown in Fig. 5. Case&@) and (b) correspond to the stable major resonant features at=0.81, 0.89, and 0.96.
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FIG. 4. Numerically simulated current-voltage characteristics of
a single fluxon for the junction’s parametérs 7.8, «=0.05, anch
as indicated on the plot. The resonant step associated with the in-
teraction of the fluxon with its radiation is seenw#0.75. The

resonance at=0.7 shows clear backbending.

IV. THEORY

A. Calculation of the resonance frequency: Fluxon interaction

with small-amplitude Josephson plasma waves
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FIG. 6. Numerical simulations of the fluxon in a long ring (
=25) with small dampingr=0.01. Magnetic field amplitude is
=0.3. Dashed lines show fluxon velocities corresponding to the
thresholds of different harmonics of fluxon radiation.

10. Here we discuss it in more detail in order to explain the
main features of the experiments and numerical simulations
presented above.

A fluxon moving in an annular junction can be viewed as
a particle moving in a periodic potential with a spatial period

A simple model for the fluxon resonance due to the Jo€qual tol. Under such conditions, the fluxon is predictéal
sephson plasma-wave radiation has been put forward in Regmit small-amplitude plasma waves with wave nuniband

3 T T T
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FIG. 5. Voltage oscillations at=0 for two different points of
the y(v) curve withh=0.5 shown in Fig. 4(a) at the radiation-
induced step Y=0.09p=0.75) and(b) at the main fluxon step

(y=0.10p =0.84).
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frequencyw= 1+ k? which depend on the periddand the
fluxon velocityv . According to Mkrtchyan and Schmidthe
amplitude of the emitted waves is largest near the radiation
threshold At velocities below the threshold the fluxon does
not emit radiation because of the Josephson plasma gap in
the dispersion relation. The fluxon velocity corresponding to
the radiation threshold is given by the following formdla:

1
T T 2mla)?] @

wherea is the period of the potentidin the present case,
actually,a=1).

In a finite system, the radiation should lead to a series of
resonances between the fluxon circulation frequengy
=27qv/l and the frequency of emitted radiation, at
=nwy, with n being an integer. These resonances where
predicted?* to induce steps on-V characteristics at the
fluxon velocities

I I \?
Up= \/(.’L—Ei + m) . 3)

Using Eq.(3) with a=1=7.8, we obtain3~0.785 to be the
closest resonance to the threshold veloeity~0.779. This
prediction is in good agreement with the experimentally
measuredFig. 3 and numerically calculate@ig. 4) posi-

tion of the resonance step. Moreover, the radiation frequency
in Fig. 5@a) corresponds to= 3, as predicted by this model.
Figure 7 shows the resonance velocitigs of the fluxon

2
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1.0 — T 7 T T T T the absence of perturbations, the fluxon is described by the
] / ] kink soluti he sine-Gord ti
1 ;== -=n=1 1 ink solution to the sine-Gordon equation,
| /o ----- n=2 P ( 9
g 0.9 / ———e - o(x—v
> ] n ] Punk=4tan !l exp ——| |, )]
3 V1i—v

wherev is the kink’s velocity andr= *1 is its polarity.

A well-known result of the perturbation thedryis that,
for a fluxon moving in a periodic potenti@enerally speak-
ing, of an arbitrary formwith perioda=2=/q (in our case,
it is simply equall), a strong resonant emission of quasilin-
ear dispersive waves by the fluxon appears when its velocity
attains the threshold value

fluxon velocity

5 6 7 8 9 10

. . 1
ring circumference 1 -
g Vo= 1 i q2 ’ (6)

FIG. 7. Dependence of the resonance velocitiggor the first

harmonic m=1) of the fluxon radiation as a function of the junc- which is tantamount to Eq2). In this analysis we will as-

tion length. The solid line shows the radiation threshold velocity.sume, as above, that the radiation takes place at some wave

The arrow indicates the junction lengtk 7.8 approximately cor- numberq,,=2mm/a, which gives a resonance at some ve-

responding to the experimentallzig. 3(b)] and numericallyFig.  locity very close to the thresholb). Close to the velocity

4) studied cases. (6), i.e., at smallSv=v—wv, (Which may be both positive
and negativg a general expression for the emission power

radiation versus the junction lengthThe solid line shows W, i.e., the rate at which energy is emitted by the fluxon, was

the radiation threshold velocitp). obtained in Ref. 15:
At low damping, the radiation decay time can be very
long, and the emitted waves can survive several fluxon cir- V(aq)?2+4(1+9°)%(6v)°+2(1+g?) dv

culation periods. This means that, in such a case, high spatial W?=Ch?

2 2 2\2 2
harmonics of the periodic potential can contribute into the [9°(aq)“+4(1+q°)*(6v)“]

dynamics. The formula for the radiation threshdl® is @)
modified to where all information about a particular form of the
emission-generating perturbation condenses into a single nu-
1 merical constanC; notice that the smallness parametesf
Vihy=—FT—, (4)  the perturbatioriproportional to the external magnetic figld
V1+(2mm/a)? was separated from this constant, to explicitly show at which

order of the perturbation theory the result has been obtained.

wherem is the harmonic number. The dashed lines in Fig. 4 The resonant character of express{@his quite obvious:
and Fig. 6 show the fluxon velocities corresponding to thef one omitse, the emission power diverges & =0, while
thresholds of different harmonies of the fluxon radiation. the dissipation prevents this divergence. Nevertheless, at a
One can see that the agreement with numerically calculateghite but small @ the emission power7), regarded as a
resonances is very good. function of év, has a sharp maximum aroudd =0.°

An important step to be done in the present analysis is to
take into regard a finite amplitude of the background radia-
tion in an established regime of motion of the fluxon. If the
radiation’s amplitude is finite but still small enough, one ex-

The problem formulated above, i.e., explanation of theyands the unperturbed sine-Gordon equation in a straightfor-
conspicuous backbending section on th¥ curve of a \5q way:

fluxon moving in a circular Josephson junction in the exter-
nal magnetic field, is a challenge for analytical consider- 1
ations based on the perturbation theory for solitons in the O — Oyxt @ — 690320. (8)
sine-Gordon equatioh.As we will see below, a crucially
important element that must be added to this well-establishefl solution to Eq.(8) can be looked for, as usual, in the form
technique is a downshift of the junction’s plasma frequencyof an anharmonic expansion
under the action of dinite-amplituderadiation field. Of
course, it is difficult to develop an absolutely rigorous per- o(x,t)=Acogkx— wt)+-- -, 9)
turbation theory in the presence of a finite-amplitude back-
ground; nevertheless, we will demonstrate below that quitévhich immediately leads to théweakly) nonlinear disper-
reasonable and not too complicated results can be obtain&don relation for the finite-amplitude radiation:
on the basis of a simple self-consistent approximation. 1

The model which furnishes quite an accurate description 2_ . 2.1,2 ,2_1_ a2
of this system is the perturbed sine-Gordon equatipnin 0 =wptkt, 0p=1 8A ' (10

B. Strong interaction: Analytical approach to explain
the backbendingl-V curves
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In this relation, w3 is nothing else but an effective plasma calculation of radiation effects in the perturbed sine-Gordon
frequency(frequency gapof the junction, with a decreasing model which takes into account the background-induced nar-
correction originating from the finite-amplitude background.rowing of the junction’s plasma frequency gap, i.e., actually,
Strictly speaking, the finite-amplitude background is subjecthe nonlinearcharacter of the emitted radiation.
to a modulational instability. However, for a small back- The form of the resultant equation is radically simplified
ground’s amplitude this is a very weak effect, which can beby the rescalings
additionally suppressed by the dissipatisee below, there-
fore we ignore it. W=8ma’q ?J1+q°P,

The change of the effective plasma frequency will also 4 s s )
change the resonant velocity, as follows[cf. Eq. (6)]: Ch=(8m)%a>(1+0q°)E, (17)

1
~ ®o 5v=§aq(l+q2)7lA,

Jopr e o
- whereP, A, and £ are, respectively, the rescaled emission
Although the difference betweer, andv, is small, as we  power, velocity deviation, and the perturbation-strength pa-
assume the correctiohA® in Eq. (10) to be small, it may rameter. In terms of this notation, the final equation follow-
considerably change tteffectivevelocity deviation from the ing from Egs.(16), (12), and (7) takes a relatively simple
resonant value: form:

A(‘SUEU_;()% Sv + %q2(1+q2)73/2(1_wg), (12) P2:g\/1+(A+ P)2+(A+ P) (18)
1+(A+P)2 '

where the smallness of lw3) [see Eq(10)] has been used

to expand expressiofil).

The next step is to relate the emission pow¢iand the
squared amplitudé\? of the radiation background. To this
end, we consider radiation ener@y which, in the linear-
wave approximation, is

where we have made use of the identity2#/q.

Equation (18) gives a relation between the emission
power and the velocitymore accurately, velocity deviatign
However, the experimentally observable dynamical charac-
teristic of the Josephson junction is ¥/ characteristic, i.e.,

a relation between the bias current densitgnd the fluxon’s

1 [+ velocity v; see Sec. Il. To obtain theV characteristic, we

E= —J' (02 + @2+ @?)dx. (13y add to Eq.(18), which was obtained, essentially, from the
2) e energy-balance equation for the radiation, an equation of mo-

In the near-resonant case, the emitted waves have small WaUQ” for the fluxon itself, which can b? easily derived as an

numbers™® Therefore, in the first approximation, the ggjradient(atm":‘rgy ba'aﬂc? for the fluxon, taking into regard the dissipa-

(secondlterm in Eq.(13) may be neglected. Then, substitut- tive and radiative losses:

ing the simple wave fornf9) into Eqg.(13), we easily obtain ay
1 402(1—vz)fl/2+47raq72\/1+q2P=Tv, (19

E=SAY, (14 : ined i i
2 where P is the rescaled power defined in EG.7). A final

éink between Eqs(18) and (19) is the relationv=vy+ dv,
being defined in Eq6), wheredv should be expressed in
ms ofA as per Eqs(17).
Note that we did not specify the value of the numerical
coefficientC in the underlying expressiof¥) for the emis-
sion power. Its particular value defines the perturbation-
dE strength parametef according to Eq(17) and, in fact, can
E:W_QE’ (15  be adjusted by changing the parametein (1), i.e., the
strength of the magnetic field.
W being the emission power defined above. A stationary In Fig. 8, we display a set of theV curves obtained from
solution to Eq(15) is evidentE,=W/«. Finally, equating it @ numerical solution of the system of two algebraic equations
to expressior{14), we arrive at the following expression for (18) and(19) for different values of and fixed values of the
the stationary value of the squared background amplitude ifunction’s length,|=7.8, and the dissipative constant,
terms of the emission power: =0.05. Using these parameters, the solutions(&ré=1,
(b) £&=10, and(c) £=100 are plotted. The most prominent
peculiarity of the family of theé-V curves is quite obvious: if
the perturbation-strength paramefegxceeds a critical value
E~2.71(corresponding t&€~0.0068 forh=0.6), there ap-
Now, we can obtain a closed self-consistent approximapears the backbending on thev curves, i.e., exactly the
tion, inserting expressioflL6) into Eq.(12), and then substi- feature that we seek to explain. In other terms, the backbend-
tuting the latter expression, instead &f, into Eq.(7). To  ing can be described as negative differential resistance cor-
the best of our knowledge, this is the first example of aresponding to a givei+V curve.

| being, as above, the length of the junction. In the sam
approximation, it is easy to calculate the rate of dissipatiorf0
of the energy: dE/dt) 4~ — «E, wherea is the dissipative er
constant in Eq(1). With regard to this, the balance equation
for the energy is

- 2W
Ag=—r (16)

al -’
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0.20 confirm that an externally applied magnetic figddforms a
] sinusoidal potential relief for a fluxon in an annular Joseph-
son junction. We have shown that the earlier observed par-
1 ticlelike effects of fluxon pinning and trapping by the
y potential?> are accompanied by the radiation of large-
| amplitude Josephson plasma waves which are responsible for
the novel resonances observed in experiments. In this paper
1 we presented a systematic study of these resonances as a
y function of the potential height and losses in the junction.
| We extend here the analogy between the fluxon dynamics in
annular junctions and the motion of a particle in a wash-
1 board potential. Our study clearly demonstrates that the
T fluxon behaves as a solitary wave which emits quasilinear
] waves in a spatially varying potential.
We note that at low temperatures the fluxon radiation step
Do shape becomes more complicated, showing negative differ-
05 06 07 08 09 10 ential resistance and chaotic switching between several
closely located branches. This behavior is found in detailed
fluxon velocity v study of the resonant step region in Figc)3 Such a com-
plex resonance dynamics was simulated earlier numertcally
FIG. 8. Analytically derived current-voltage characteristics in gngq was attributed to a strong fluxon-plasma wave interac-
f[he region of the baclfbgndi.ng resonance. Ma.lgnetic field amplitudggp, leading to an intrinsically chaotic dynamics in the junc-
is taken ash=0.6, dissipationa=0.05, and junction’s length  {jon Though the background oscillations were discussed, the
izbs'aﬁ'(g? gielsoeo g?;ag?:ttt‘zzs' the solutions @re=1, (0) € 5 thors of Ref. 13 did not suggest any analytical model
’ ' which can predict the voltage of the resonance or the radia-
tion harmonic content. Based on the model presented in the
resent paper it can be argued that chaos in this system oc-
urs due to a competition between several resonances lying

0.15

0.10 7

bias current density y

0.05

The increase of the parametérmeans enhancement of
the radiative effects and increase of the radiation-backgroun@

amplitude. This tendency is clearly seen from Fige)8 at close voltages. As an example, for 7.8 the resonances

8(c). Thus, we conclude that a decrease of the effective _ _ . —
plasma frequency gap produced by the finite-amplitude ra% 2 andn=4 predicted by Eq(3) occur atw,~0.797 and

> AL : v4~0.812. These values are very close to that pandv g,
dlathn backgrounq is indeed a C“.Jc'al fact that allows us todiscussed in Sec. IV A. Thus, the reduction of losses at low
consistently explain the backbending of th&¥ curves.

temperature can be expected to complicate the dynamics, as

was indeed observed in experiment.
V. DISCUSSION

. . . ACKNOWLEDGMENTS
The theory presented in the preceding section demon-

strates good overall agreement with experiments and numeri- This work was partly supported by Grant No. G0464-
cally simulated current-voltage characteristics. These fact247.07/95 from the German-Israeli Foundation.

Ip.w. McLaughlin and A.C. Scott, Phys. Rev.18, 1652(1978. 8N. Grinbech-Jensen, P.S. Lomdahl, and M.R. Samuelsen, Phys.
2G.S. Mkrtchyan and V.V. Schmidt, Solid State Comm86, 791 Lett. A 154, 14 (199)).

(1979. °N. Martucciello and R. Monaco, Phys. Rev.58, 3471(1996.
3yu.S. Kivshar and B.A. Malomed, Rev. Mod. Phy8L 763 10A.V. Ustinov, Pis'ma Zh. Esp. Teor. Fiz64, 178(1996 [JETP
Lett. 64, 191(1996)].

(1997. 1 . . .
4 . I.V. Vernik, S. Keil, N. Thyssen, T. Doderer, A.V. Ustinov, H.
AA. | A.V. IEEE T . MagMAG-2

781?1?3;;0\/ and Ustinov, rans. MagMAG-23, Kohlstedt, and R.P. Huebener, J. Appl. Ph§%, 1335(1997.
5 ’ ) . , . 12p v, Ustinov, B.A. Malomed, and N. Thyssen, Phys. Lett233

I.L. Serpuchenko and A.V. Ustinov, Pis’'ma Zhk$p. Teor. Fiz. 239(1997)

46, 435(1987) [JETP Lett.46, 549 (1987)]. 13N. Grenbech-Jensen, P.S. Lomdahl, and M.R. Samuelsen, Phys.
®A. Davidson, B. Dueholm, B. Kryger, and N.F. Pedersen, Phys. Rev. B43, 12 799(1991).

Rev. Lett.55, 2059(1985. A A. Golubov, I.L. Serpuchenko, and A.V. Ustinov, Zhksp.

"AV. Ustinov, T. Doderer, R.P. Huebener, N.F. Pedersen, B. Teor. Fiz.94, 297 (1988 [Sov. Phys. JETB7, 1256(1989].
Mayer, and V.A. Oboznov, Phys. Rev. LeB9, 1815(1992. 15B.A. Malomed, Phys. Lett. A44, 351 (1990.



