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Semiclassical approach to the density of states of the disordered electron gas in a quantum wire
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A theory is given of the density of statéBOS) of the quasi-one-dimensional electron da®EQG) in a
semiconductor quantum wire in the presence of some random field. For a smooth random field, the derivation
is carried out within Gaussian statistics and a semiclassical model. The DOS is then obtained in a simple
analytic form, where the input function for disorder interaction is the autocorrelation function of the random
field. This allows one to take completely into account the geometry of the wire, the origin of disorder, and the
many-body screening by 1D electrons. The DOS is demonstrated to be composed of the classical DOS and the
guantum correction, which are connected with fluctuations in the random potential and in the random force,
respectively. The disorder is found to smear out the square-root singularity of the DOS of the ideal 1DEG into
a finite peak tailing below the subband edge. The disorder effects from impurity doping and surface roughness
on the DOS of the 1DEG in a cylindrical GaAs wire of radRsre thoroughly examined. It is shown that for
R=<a*/2 (with a* as the effective Bohr radilisurface roughness with a radius fluctuation equal to 10R of
overwhelms impurity doping with a density=10°cm™?, but for R=2a* the latter is dominant.
[S0163-182609)02940-9

. INTRODUCTION So far, only a few theoretical investigatidhs*>®have
been made in order to understand the electronic energy spec-
In recent years, quantum wikQWR) structures have at- trum of disordered 1DEG’s in QWR’s, and only numerical
tracted much attention, and promising advances have beeagsults have been available in the literature. It should be sur-
obtained in fabrication and application of QWR's, e.g., laserprisingly noted that the existing theories of the effect of dis-
devicest This is primarily motivated by their unique trans- order on the 1D DOS have been established only for the
port properties, viz., high electronic mobifitas well as the disorder arising from charged impurities chaotically distrib-
expected enhanced optical properties such as high differentted in the sample. The other sources of disorder, especially
tial optical gairf and optical nonlinearitie$Thus, from both  surface roughness, have recently been confirmed experimen-
fundamental and applied physics viewpoints, there has beemlly to be of importance in very thin QWR¥ °Neverthe-

a growing interest in understanding the electronic propertietess, the consideration of their influence on the 1D DOS has
of QWR’s. seemingly been quite scarce. The reason for this is probably
It is well known that various QWR’s may be adequately that in the earlier theories the input function for disorder
described in terms of a quasi-one-dimensional electron ga#teraction has been chosen to be the potential created by an

hereafter called for short a one-dimensional electron gamdividual center of force, e.g., a single ionized impurity in
(1DEG), where the electron dynamics is essentially restrictedloped QWR’s. The one-center potential is clearly inadequate
to be one dimensional. In practice, 1IDEG’s are always affor describing disorder interaction connected, e.g., with sur-
fected by disorder caused by some random field present iface roughness.

QWR’s. The field is of different origins, e.g., impurity Furthermore, existing theories of the impurity doping ef-
doping®~® surface roughness® and alloy disordef.’!  fect turn out to be partly unsatisfactory. Indeed, Das Sarma
The disorder has been shown to lead to considerable changasd Xie" calculated the DOS for a 1DEG in a doped rect-
in the electronic energy spectrum of the 1DEG, e.g., destroyangular QWR. The calculation is based on a self-consistent
ing the square-root singularity of the density of std@®©9) Born approximation and, hence, is adequate mainly for a low
characteristic of an ideal 1DE&:3 Moreover, the disorder doping level. Takeshinta evaluated the 1D DOS for a
also gives rise to an appreciable modification in the elemenheavily doped square wire, employing the semiclassical
tary collective-excitation spectrum of the 1DEG, e.g., themodel suggested by Kaffeand Bonch-Bruevich for 3D
dispersion for long-wavelength plasmdf€bviously, these electron systems. However, a serious shortcoming of this
in turn result in remarkable changes in many phenomentheory is the use of a 3@bulklike) screened Coulomb im-
occurring in the wire, e.g., optical absorption. Therefore,purity potential, which is evidently seen to dramatically
having usefulespecially analyticexpressions for the DOS’s overestimate the screening by 1D electrons since the 1D
of disordered 1DEG's is of fundamental importance in bothelectron system may be polarized merely along the wire
explaining observable properties of QWR’s and analyzingaxis?? Therefore, the authors of Ref. 13 applied Klauder's
the performance of modern semiconductor devices based drest multiple-scattering approachto evaluating the 1D
them. DOS in a doped cylindrical wire. This enables us to allow for
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the geometry of the wire and the features of the manyabundance of recent experiments which offer clear evidence
body interaction in the 1DEG, e.g., 1D screening of the im-supporting the standard Fermi-liquid model for actual
purity field. However, the method must invoke drastic ap-1DEG's?~3" Until now, all theories of disordered interact-
proximations, and despite these it is computationally stiling 1DEG's, e.g., in semiconductor QWR"§12-16.28-31,38,39
very complicated for realistic 1DEG’s. Further, the authorsand graphene nanotubuf®s*?have seemed to be developed
of Ref. 16 used a 1D version of the multiple-scatteringwithin this model. These were found to be quantitatively
theory of Matsubara and Toyoza®aNevertheless, this is highly successful in explaining the experimental data on the
essentially a single-band scheme and, hence, can describe #dectronic properties of realistic QWR’s, e.g., Raman scatter-
impurity band formation rather than the tailing of the ing, photoluminescence, and band-gap renormalization.

1D DOS. Thus in what follows we may ignore all aspects of local-

Thus the goal of the present paper is to develop a theorization and Luttinger-liquid physics uncritically, starting
of the electronic energy spectrum of disordered 1DEG’Srom the standard Fermi-liquid model. The electrons in the
in QWR’s, which is to be applicable to disorder not wire are considered to be confined in two dimensions, e.g., in
only arising from impurity doping but also of any origins they andz directions, and to move freely in thedirection
relevant to realistic QWR structures, and which must elimi-(chosen as the wire ajisThe disorder in the wire is usually
nate the above-mentioned difficulties of the existing theoriescaused by some random field affecting the motion of the
To this end, we will propose a version of the semiclassicaklectrons along the wire axis.
approach to 1DEG’s subjected to smooth random fields, Hereafter, we shall restrict the discussion to the case when
based on modifying the method suggested by Quanghe random fieldJ(x) obeys Gaussian statistics. Therefore,
and Tung® for 2D electron systems. This version allows it may completely be described by the autocorrelation func-
taking complete account of the microscopic details of thetion of the disorder potential
geometry of the wire and the origin of the disorder, and
providing the DOS of disordered 1DEG's in a simple ana- W(x—x")=(U(x)U(x")), (1)
lytic form.

In Sec. II, we start with a collection of the formulas to be yhere the angular brackets stand for averaging over all con-
used for calculating the DOS of the 1DEG in the presence ofigyrations of the random field. The disordered electron sys-
some Gaussian random field. The derivation of the DOS ofem s assumed macroscopically homogeneous, the autocor-
Sec. Il within a semiclassical approach. This accounts folyjfference.
the classical effect due to fluctuations in the random potential - As ysual, the strength of the field is determined by the rms
as well as the quantum effect due to fluctuations in the rangf jts potentialy and of its forceF, defined by
dom force. In Sec. 1V, the theory is applied to a cylindrical

wire where the disorder is produced by both impurity doping 2112\ — )
and surface roughness. In Sec. V, illustrating plots and con- 7= (UH) = Wx=x) [y 2)
clusions are presented. Finally, Sec. VI is devoted to a sums g
mary.
F2=((VU)?) =V, V,  W(X—X")|y=x' - 3

Il. BASIC RELATIONS
The average potential is supposed small compared with the

Two striking aspects of strictly 1D electron systems havegnergy separation between neighboring subbands, so that the
been shown theore_tlcally. For noninteracting electrons in thentersubband scattering induced by disorder is negligible and
presence of any disorder, all electronic states are exponegye theory may be formulated in a one-subband approxima-
tially Anderson localized® On the other hand, within the tjon.

Tomonaga-Luttinger model for interacting electrdtisear It is well knowr®® that the DOS is the most adequate
electron energy dispersion, infinite density of negative-concept describing the energy spectrum of disordered sys-
energy electrons, and short-range interagtidhe electrons tems, The electronic DOS per unit length can be represented

in a single-subband QWR in the absence of disorder make U terms of a Fourier transform of the Green’s function as
a singular strongly correlated liqufd. Thus the disordered

interacting strictly 1DEG was believed, in principle, to be-
have as a localized, strongly correlated Luttinger liquid. _LJ
: gly ger liq p(E)=

Contrary to the above long-standing theoretical claim, wh

Das Sarma and co-workéfs*°recently proved, based on a

more realistic modelparabolic dispersion, finite electron where a spin degeneracy of 2 is included. HeBgt)) de-

density, and Coulomb interactiprthat even a small amount notes the diagonal part of the configuration-averaged Green’s

of disorder in an interacting 1DEG would restore the Fermifunction, which describes the one-particle properties of the

surface if the localization length becomes larger than thedlDEG in the presence of a random field and is clearly inde-

physical length of the wire. The typical localization lengths pendent of the spatial coordinate in virtue of the macroscopic

turn out to be very longlarger than 10—-10@m).3* There-  homogeneity of the electron system.

fore, 1DEG’s in QWR’s with both disorder and electron- The Green’s function may be written within the one-

electron interactions behave, for all practical purposes, esubband approximation in terms of a Feynman path integral

sentially as delocalized Fermi liquid&:*' There has been an as?

[

dtexp(iEt/2)(G(1)), (4)
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m t t
X E'XZ(T)—U[X(T)] } (5) xf drf dr"W[x(7)—x(7")]. (10)
0 0

. . . . It is to be noticed that the first and second terms inside the
Here m is the effective mass of the charge carriers with a

. square brackets on the right-hand side of &y.are respon-
parabolic 1D subband reckoned from the unperturbed SUbs'ible for the classical DOS in the subband-bending model

band edgeDx(7) means the Feynman measure, afits the and the quantum correction relative to fluctuations in the

normalization factor: random force, respectively.
Now, we must evaluate the functidift) entering Eq(9).
it m The evaluation of the integrals present in EL) is outlined
a - 2
N= 3g Dx(r)exp{ 7 J dr 5 X (T)]' ® a5 follows. First the autocorrelation function in E{O) is to
be replaced by its Fourier transform wikhas a D wave

The path integrals in Eq$5) and (6) are taken over closed vector, defined by

paths:x(t) =x(0). - dk
For a Gaussian random field, it holds for the averaged W(X):J — W(k)exp(ikx). (11
Green’s functiof?® that w2

Then the path integral is straightforward, yieldifg

(GW) (—m )1/21 $ Dx(7 p{i [ {3 2
= =— — x(T)exp ~ | dr=x3(r = dk toot nkt
2mifit N o 2 J(t):le ZW(k)fodeodT’ eX[{—iWO'(l—O') ,
1 [t t
‘Wf drf dT'W[x(T)—x(T')]]. % (12
o Jo whereo=|7—7'|/t<1 andk=|K|.

Next, it is evidently seen from Eq$4) and (9) that the
Thus Eqs(4) and(7) set up a basis for studying the DOS main contribution to the semiclassical DOS results from such
of the 1DEG in a QWR in the presence of a Gaussian rana time region that
dom field. The disorder effect is then allowed for via the
autocorrelation function, whose form is specified by the ge- wWh=1, (13

ometry of the wire and the nature of the disordiet. with  being the average random potential.

Furthermore, thék integral in the Fourier representation

IIl. DOS OF DISORDERED 1DEG'S IN A SEMICLASSICAL (11) of the autocorrelation function is primarily extended
MODEL over such a wave-vector region that

For further evaluation of the DOS of disordered 1DEG's, k=1/L. (14

we have to calculate the averaged Green'’s function provided . . )
by Eq. (7). Hereafter we will assume that the random field Here_L is a correlation length of the random fleld that the
U(x) producing disorder in the electron system obeys thdunction W(x) becomes small unddx|=L, the field fluc-

inequality tuations with a spacing larger thanbeing statistically inde-
pendent.

- Upon combining inequalitie$13) and (14), we are in a
noF <1 ®) position to estimate the upper limit of the variable of the
4my® 7 exponential in Eq(12):

where y and F are, as before, the averages of the random ﬁzt h*mL? (15)
potential and of the random force, given by E(&.and(3). m -y

It has been pointed otft*® that if inequality (8) is ful-
filled, the fieldU(x) and, hence, its autocorrelation function  In accordance with the semiclassical nature of the random
W(x—x'), are varying slowly on the average along the wirefield, we may, as usual, adopt the following inequality:
axis, so that a semiclassical approach to it may be applicable. 212
As a consequence, the Green’s functi{@his to be approxi- A"ImL
mated in the lowest order B3y/*® Y

<1. (16)

" - - Then expanding the exponential in HG2) into a series in
=" R yto—J(t) powers of the small quantityk?t/m, the functionJ(t) is to
(G)= omifit] X 2h° 2r2 | be approximated in the lowest order by

9

hF?
=224 — (it)3.
whereJ(t) is a path integral, defined by JO=71 12m(|t) (17
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The rms of the potential and of the force of the random fieldfluctuations in the potential of the random fietd, whereas
figuring in EqQ. (17) can now be rewritten in terms of the the latter depends not only on the rms of fluctuations in its

Fourier transform of the autocorrelation function as potentialy but in its forceF as well.
It is interesting to note that our approach to a random field
y2= fx %W(k) (18) is capable of including the disorder effect from the potential
—w 2T and its first spatial derivative into the DOS calculation, while
and the purely classical approximation of K&fléncludes that
from the potential only, and the quantum method of Halperin
, (= dk and Lax¥® that from the potential as well as its first and
Fo= f_m 5 K“W(k). (19 second derivatives.

It should be stressed that the semiclassical approach has

Finally, on substitution of the functiod(t) in Eq.(9) by  assumed the random field to be smooth, which implies, as
Eq. (17), we may immediately arrive at the following aver- seen below a large width of the wire, a high doping level,
aged Green’s function describing the 1DEG moving in aand small fluctuations in the wire width. The smoothness

smooth Gaussian field: condition (8) involves only long-range fluctuations in the
7 202 ) disorder potential, and corresponds to the short-time case

<G(t)>:( m ) o p( i )[ . (it)g} specified by inequality13). Consequently, the theory may
2miht 2h? 24hm ' describe properly the high-energy region above and near the

(20 subband edgéhe latter is of the order of the rms potential
This may be understood physically by considering the

Let us now return to the derivation of the DOS for the ,.; . . . S
X . ; .~ Heisenberg energy-time uncertainty relation in combination
1DEG in question. We need to insert the Green’s funcnoquth inequglity(l?%)./ y

(20) into Eq.(4), and perform easily the appearin@itegral It is worthy to note that because of its simple form, our

by means approach is a flexible tool for the theoretical investigation of
- disorder effects on the DOS of 1DEG'’s in semiconductor
f dx(ix)” exp(— B2x?>—iqx) QWR's. It follows from Egs.(22), (18), and (19) that in
- distinction from the existing theorié$; *®rather than the po-
Jr 2 tential due to a single center of force but the autocorrelation
- —,277—+1exp( _ q_z) a4 , (21) function of the random field plays the key role as the input
2" B” 86°) "\ pv2 function for disorder interaction. In the most discussed case

of impurity doping, the random field and, hence, this func-
tion are connected with all ionized impurities present in the
sample®® It has been shown?® that the autocorrelation func-

with D,(x) being a parabolic cylinder function. As a conse-
guence, we obtain

1/{2m\¥2 1 E2 tion may capture the microscopic details not only of the ge-
p(E)= p ?) Wex;{ - 4—72> ometry of the wire and the nature of the disorder but also of

the many-body interaction in the 1DEG. On the other hand,
our approach clearly works quite well with an arbitrary form

(22 of that function. Therefore, this enables us, to calculate the
disorder effect on the energy spectrum of the interacting

Thus, within the semiclassical model, the DOS of disordered DEG in a QWR of any geometry and subjected to a smooth

1DEG’s in QWR's is provided by Eq%22), (18), and(19). disorder of any origin.

This general analytic form of the 1D DOS is the central

result of the present paper.

With the aid of the asymptotic expansion of the parabolic IV. AUTOCORRELATION FUNCTIONS EOR A

cylinder function?’ it follows immediately from Eq(22) that CYLINDRICAL SEMICONDUCTOR QWR

if the disorder is absent the semiclassical DOS can reproduce )

the square-root singularity at the subband edge, characteristic We shall now apply the foregoing theory to assess the

X

E\ #°F?
D_ 1/ — _WDSIZ 5l

of the ideal 1DEG, influence on the DOS of 1DEG’s in QWR’s due to disorder
arising from impurity doping and surface roughness, which
1(2m\Y20(E) are, in general, almost unavoidable in realistic wires. As our
po(E)= ;(ﬁ) i (23) ' model of QWR's, we choose a circular cylinder and confine
the motion of the electrons in the cylinder by an infinite
where 6(t) is the Heaviside step function. potential barrier at its surface®*®4°Accordingly, the wave

In analogy with disordered 2D electron systemsjithin ~ functions of 1D subbands are proved to be expressed in
the semiclassical approach to a smooth Gaussian field therms of Bessel functionsMoreover, at zero temperature
DOS of disordered 1D electron systems may, as expected, lz#most all electrons are assumed to occupy the lowest 1D
represented in terms of an expansion with respect to theubband (extreme quantum limit as  shown
small quantity%2F2/4m+3. It is obvious that the first term experimentally’>3” As indicated just above, the theoretical
inside the square brackets on the right-hand side of ).  analysis of the disorder effect is simply reduced to finding
refers to the classical DOS, while the second one to the quanthe autocorrelation function for the electron system to be
tum correction. The former depends merely on the rms ofreated.
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A. Impurity doping o 42€ 1 (1—aK(a)lo(5) for s<a
We begin by examining random fluctuations in the impu- Vei(kip) =~ er o |ali(a)Ky(s) for §=a,
rity density in the sample. It is well knovih?' that the ran- (30)

dom field created by all charged impurities is generally CONy berea=kR and 5=Kpi|.

sidered Slm.OOt? at a h]igﬂ dopilqg Iev.el.f. l\l/I(;)reovgr, the According to Eq.(25), the autocorrelation function for
iz?]l:go;?ér?o?:ﬂ%n unction of the total impurity field can ecaStimpurity doping depends on the geometry of the impurity
system. Hereafter, the charged impurities are supposed to be
randomly distributed in a cylindrical tube coaxial with the
W,D(x—x’)zn,fd3riv(x—ri)v(x’—ri), (24)  wire.
First, we are concerned with an infinitely thin impurity
with n, the 3D density of ionized impurities. Hekgx—r;)  tube of radiusp, integral(25) being trivial. The autocorrela-
is the potential energy of an electronrat (x,0,0) due to a tion function depends on the position of the impurity system
single impurity atr;=(X; ,p;). as follows.
In the case in question, this potential obviously possesses (1) p<R and Wip=W), (modulation doping inside the
the symmetry described by(x—r;)=v(|x—xi|,p;). There-  wire):
fore, the Fourier transform of E¢24) reads

47e’\? n; 1
WMI(k):<_) 200 —[1—aKy(a)lo()]?
WlD(k):th d?piv(k,p), (25) e | €k e
(31
wherev(k,p;) is the Fourier transform in the direction of ~ Wheren; is the 1D impurity density along the tube axis, and
the one-impurity potential. o=kp.

The impurity potential is to be screened by interacting (2) p>R andWp=Wjyo (modulation doping outside the
electrons in the 1DEG. This can be quantified by introducingwire):
a static dielectric function as

47€%\? n;
Wmo(k)Z(E—L)

1
2 2
Vei(kop) 200 o2 [17(a)K5(0). (32
V(k-l)i)_W- (26)
For an impurity tube of finite thickness with radii,, and
Here v.ik,p) is the unscreened one-impurity potential, pm, it is useful to distinguish between two limiting cases of
which is to be modified by a finite extension of the electroninterest.

wave functiong(r) in they and z directions, i.e., weighted (3) pm=0, py=R, andW,p =Wy, (uniform doping inside
14

as the wire):
, , 4 2 1

Vei(kupi):_zf dr|p(r)|*v(p; 1 k), (27) Wy(k) = o | 2 ?{1—4|1(a)K1(a)
with Z the charge of an ionized impurity in units of the +a2K§(a)[I§(a)—I§(a)]}. (33
electron charge. The Coulomb potential figuring in E€R7)
describes bare interaction between an electron ahd an 4) pm=R, py>R, andW,p =W (uniform doping out-
electron atr’, given by* side the wirg:

2e? 4ze’\? np 1, o2 5
v(r,r’,k)=€—LKo(k|r—r’|), (28 Wuyo(k) = e %?H(a){a [Ki(a)—Kg(a)]

with €, the dielectric constant of the background lattice. In — 84 [K2(8u)—K3(8m) 1), (34)

what follows, I, and K,y are thenth-order modifke}d
Bessel functions of the first and second kind, respectiVely. ) A
As previously?®#° the electrons are, for simplicity, con- (34) is fixed by the 3D one via =R, .

; e ; A ; If there exist several impurity species with chargesnd
sidered to be distributed with a constant density in the wire . i .
: Sributed Wi o " éjensmesni in the sample, the produZfn; in Egs.(31)—(34)

is to be replaced with an effective impurity density, defined

where sy, =kpy . The 1D impurity density in Eq433) and

may take

by
|p(n)[>=(7R*) " 1O(R—|r|), (29)
* __ 2
whereR is the wire radius. The assumption of the uniform n _Ei Zin;. (39
distribution of electrons may be a somewhat good approxi-
mation in the high-electron density limit because they repel B. Surt h
each other. . Surrace rougnness
Upon putting Eqs(28) and(29) into Eq.(27), we obtain Next we deal with random fluctuations in the wire radius

the following analytic form for the effective impurity that have been found to be important in very thin wires, e.g.,
potential*® made from AlGa _,As/GaAs!’ "It is well knowrr° that
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the surface roughness in a QWR is characterized by the av-
erage size fluctuatiod and the correlation lengtiA along
the wire axis. Naively, one would argue that a decreading
or an increasing\ corresponds to a smoother interface. A
Gaussian-like decay of the wire radius fluctuations is usually
assumed.

For the lowest subband, the autocorrelation function for
surface roughness in a cylindrical QWR of radRss then
supplied by 8

v (Ry*)

h* A%A exp(— A%Kk?/4)
= 4 —
Wer(k) = (24— — 20

(36)

where e(k) allows for screening the surface roughness-
induced field by the interacting 1DEG.

It is to be noted that in case the 1DEG is affected simul-
taneously by both sources of disorder, the autocorrelation
function is obviously additive if correlations between them
are neglected, i.e.,

W(k)=Wip(k) +Wsg(k). (37

C. RPA screening

F (108 dyne)

It has been pointed otftthat the disorder and screening
effects are to self-consistently determine each other. Screen-
ing by interacting 1DEG’s in QWR’s is of great importance
in determining disorder. In what follows, for the sake of
numerical simplicity we neglect the influence of disorder on
screening?#°Then, within the random-phase approximation
of the standard Fermi-liquid model, the static dielectric func-
tion for a 1DEG at zero temperature may be writtelf4% 30

2m vedk) |k-+2Ke|

N FIG. 1. rms of the(a) potential y and (b) force F for impurity
mh? Kk k— 2k,:| '

doping vs wire radiuR under densityn,;=n,=10F cm . The la-
belsM1, M2, andM3 refer to modulation doping with various
Herev.d k) denotes the Fourier transform in thealirection  impurity positionsp=0, R, and R. U1 andU?2 refer to inside and
of the bare electron-electron interaction potential, &pds outside uniform doping withp,=0, py=R and p,=R, pum

e(k)=1+ (38)

the Fermi wave vector fixed by the 1D carrier densigyvia  =6R, respectively.
ke=(7/2)n,.
The screening functiotB8) clearly exhibits a logarithmic 462 1
singularity atk=2kg . It is well known that within the self- Ved K)=— —=[1-211(a)K(a)] (40)
consistent Born approximation, thek2 singularity of the €L a?

function (38) leads to meaningless results at zero temperature

for the 1D transport propertyand the electronic 1D DOS, (4=kR).

so that the inclusion of the disorder effect in the calculation

of screening is very important. However, this singularity pre-

sents no difficulty in our DOS calculation since all quantities V. RESULTS AND DISCUSSIONS
of interest—the average potentigland forceF—are given
in terms of the convergerit integrals as seen directly from

Egs.(18) and(19). The influence of disorder on screening is . )
likely of less importance in the estimation of the field drical QWR’s made ofn-type GaAs at zero temperature,

strength since this is significant mainly around the integrabl))"’hose conduction subband is considered. The mqterlal pa-
singular point* rameters are the effective mass=0.067m, and the dielec-

The electron-electron interaction given by Eg8) is to tric con;te}nteL=12.9. However, our results are more gen-

be weighted with the wave function of the subband as eral. This is because that the natur_al sc_ales for the Igngth, the
energy, and the 1D DOS are atomic units: the effective Bohr
radius a*=¢ h%/me’, the effective Rydberg Ry

Vee(k)=f erJ d?r'|p(r)|?| p(r/)|?v(r,r' k). (39  =me"2e24%, and p* =1/Ry*a*, respectively. For GaAs

wires, we havea* =100A, Ry =5.6 meV, andp* =1.79

Inserting Eqs(28) and(29) into Eq.(39) yields the effective X 10°meV tcm L. The DOS of the disordered 1DEG in a

electron-electron interaction in analytic fofth: QWR is determined by Eq22), where the average potential

To illustrate the theory developed in the preceding sec-
tions, we have carried out numerical calculations for cylin-
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FIG. 2. rms of the(a) potential y and (b) force F for impurity FIG. 3. DOSp(E) in units of p* vs energy for the 1DEG

doping vs densityn; (n;=n,) under different wire radiR=a*/2  sybjected to impurity doping with density=n,=10° cm™* under
(dashed lingsanda* (solid lines. The labels are the same as in different wire radiiR=a*/2 (dashed lines a* (dash-dotted lings
Fig. 1. and 22* (solid lines. The DOS is plotted fofa) modulation doping

M1 andM 3, and(b) uniform dopingU1 andU2. The labels are the
v and forceF of the random field are given by Eq4.8) and  same as in Fig. 1. The dotted line represents the DOS of the ideal
(19 in terms of its autocorrelation function. 1DEG.

, , doping with wire radiusR=4a*, under various impurity
A. Impurity doping densitiesn; = 10°, 5x 10°, and 16 cm ™~

First, we evaluate the disorder effect due to impurity dop- In should be mentioned that we cannot employ 8) to
ing with the autocorrelation function given by Eq81) and  calculate the disorder effects on the 1D DOS due to inside
(32) for modulation doping, and Eq$33) and(34) for uni-  and outside doping with;<5x 10° cm ! andR<2a*, and
form doping. From these it follows that the random param-inside doping witm;<10° cm~* andR<a*/2, since in these
etersy andF depend on the radius of the electron wR@nd  cases the semiclassical conditi) is broken.
those of the impurity tube,, andpy, as well as their densi-
tiesn; andn,. Hereafter, the case of =n, is discussed.

In Fig. 1 the rms of the potentigt and forceF for impu-
rity doping are plotted vs wire radiu® under impurity den- Next we assess the disorder effect from surface roughness
sity n;=10° cm™: modulation doping with various impurity with the autocorrelation functiof86). It is obvious that the
positionsp=0, R, and R; and inside and outside doping surface roughness parameters depend on the wire fabrication
with p,=0, py=R and p,,=R, py=6R, respectively. In technique. For GaAs the average size fluctuatlois as-

Fig. 2 the random parameteysandF are plotted vs impurity sumed ranged from 3 to 20 A, and the correlation lenyth
densityn; for different wire radiiR=a*/2 anda*. In Fig. 3  from 20 to 200 A° Small values ofA correspond to fabri-
the DOSp(E) is plotted vs energy for the 1DEG subjected cation by molecular-beam epita®y* and the large ones to
to impurity doping with densityn;=10° cm™* under differ-  fabrication, e.g., by electron-beam lithography and wet
ent wire radiiR=a*/2, a*, and 22*. The DOS of the ideal chemical etching®

1DEG is depicted according to E(3). In Fig. 4 the DOS In Fig. 5 the rms of the potentigt and forceF are plotted
p(E) is plotted vs energy for the 1DEG subjected to outsidevs wire radiusR under correlation lengtth =a*, various

B. Surface roughness



PRB 60 SEMICLASSICAL APPROACH TO THE DENSITY €. .. 13655

3.0 - T . . . 10 ) ' " '
] b a) ¢
254 . 81 .
' s3
—~ 20} i
% ) — 6\ 4
*‘: :f‘ .
& 15f x Y
= >
< 10}
05
ool—t e
16 —————
1.2
R )
* c
-km >
g o o
= o
~ Z
& w
04+
0.0LE= - - -r"/ . . 1 \
-2 -1 0 1 2

E (Ry*)

FIG. 4. DOSp(E) in units of p* vs energy for the 1DEG .
subjected to outside impurity doping with wire radigs-4a* un- FIG. 5. rms (_Jf the(a_l) potential y and (p) force F for iurface
der various densities; =n,=10° cm * (solid lineg, 5x 1P cm™1  fo0ughness vs wire radiu under correlation lengtih=a_, and
(dash-dotted lings and 16 cm™? (dashed lines The DOS is plot- different electron densities,= 10° cm™* (solid lineg and 16 cm™*

ted for (a) modulation dopingV 3 and(b) uniform dopingU2. The (dashed "“e)s_ The !abels_Sl, S2, ano!S3 correspond 1o surface
labels are the same as in Fig. 1. roughness with various size fluctuations=3, 10, and 20 A, re-

spectively.

radius fluctuationa =3, 10, and 20 A, and different electron

densitiesn,=10° and 16 cm™%. In Fig. 6 the random param- and second subbands given®b§; — E,=8.9(a*/R)’Ry*,

etersy andF are plotted vs correlation length under wire  which warrants the one-subband approximation used.

radiusR=a*, various radius fluctuationdA =3, 10, and 20

A, and different electron densitieg=10° and 1§cm 2. In .

Fig. 7 the DOSp(E) is plotted vs energy for the 1DEG C. Conclusions

subjected to surface roughness with correlation lenyth From the curves thus obtained we may draw the following

=a* and various radius fluctuations=3, 10, and 20 A  results.

under electron density,=10° cm™* and different wire radii (i) Figures 1 and 5 indicate the strength of the random

R=a*/2 anda*. fields connected with impurity doping and surface roughness
Finally, Fig. 8 displays the DOB(E) of the 1DEG sub- in thin QWR'’s is enhanced rapidly when reducing the wire

jected to both sources of disorder: impurity doping with den-size. ForR<a*/2 surface roughnes&specially with large

sity n;=10° cm ! and surface roughness with radius fluctua-A) is observed to overwhelm impurity doping. But f&

tion A=10A and correlation length =a*. The DOS using =2a* the former is negligible, whereas the latter becomes

Eq. (37), is plotted under different wire radiR=a*/2 for ~ dominant. These disorder sources competeRisra* .

combining the effects of outside doping and surface rough- (ii) It follows, as expected, from Fig. 2 that the strength of

ness, andR=a* for combining the ones of inside doping the total impurity field increases when elevating the doping

and surface roughness. As in the 2D c¥sthe resulting leveln;.

effect is found not equal to merely the sum of the two ef- (iii) Figures 5 and 6 reveal the strength of the surface

fects, each one being treated separately. roughness field exhibits a linear enhancement with increas-
It is worth noting that the average potential is seen to beng the radius fluctuatiom\; see Eq.(36). Moreover, the

small compared with the energy separation between the firsandom field is weakened when increasing the correlation
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FIG. 7. DOSp(E) in units of p* vs energy for the 1DEG
subjected to surface roughness with correlation ledgta* under
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FIG. 8. DOSp(E) in units of p* vs energy for the 1DEG
subjected to both impurity doping with density=n,=10°cm™?*
and surface roughness with radius fluctuatios 10 A and corre-
lation lengthA =a*. The DOS is plotted under different wire radii:
(a8) R=a*/2 for outside dopingM3 andU2 and surface roughness
S2, and the combined effect is marked M3S2 andU2S2. (b)
R=a* for inside dopingM1 andU1 and surface roughne$2,
and the combined effedf! 1S2 andU1S2. The labels are the same
as in Figs. 1 and 5.

length A. The surface roughness potential drops with
rather rapidly for smalR and largeA, but slowly for largeR.

(iv) An examination of Figs. 3, 4, 7, and 8 shows the
squared-root singularity of the DOS of the ideal 1DEG is
destroyed by disorder into a finite peak. The disorder not
only dramatically reduces the height of the peak and pushes
it up toward higher energies, but also gives rise to a band tail
(of localized statesextending deep below the subband edge.
The electronic energy spectrum of the 1DEG is found to be
considerably modified in a region around the subband edge
and of the order of the average potentjalas quoted previ-
ously. The DOS of the ideal and disordered 1DEG's are
asymptotically equal. This means the disorder effect is neg-
ligible at very high energies.

It is worthy to recall that the DOS tail§<0) cannot be
provided within the 1D semiclassical theory due to
Takeshima? nor within the 1D multiple scattering theory of
Ref. 16. Further, in comparison with the 2D and 3D
case<>* the modification of the 1D DOS around the sub-

electron density,=10° cm™%. The labels are the same as in Fig. 5. band edge is much more drastic. The reason for this is that in
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the 1D case the singularity of the DOS at the subband edgéD DOS due to a source of disorder other than impurity
and the disorder interaction are both stronger, the screenindpping, e.g., surface roughness, and that due to many-body
by the 1DEG being weaker. screening caused by realistic 1DEG’s in QWR’s. In particu-
(v) The characteristics of the DO@s peak and tajlare lar, it is possible to go beyond the random-phase approxima-
seen to depend on the wire size. Figures 3 and 7 indicate th&ibn, including the local-field correctiotelectron exchange
the DOS peak is lowered, and the DOS tail is larger andand correlatiohinto the DOS calculation.
more extended below the subband edge when reducing the In our model of cylindrical QWR’s with an infinite poten-
wire radius. This means that the thinner the wire, the strontial barrier, the cylindrical symmetry is used. As indicated
ger the disorder effect becomes. previously>“° this could not alter the order of magnitude of
(vi) Figures 4 and 7 reveal that the DOS peak is loweredhe disorder effects, but does enable the input function to be
and the DOS tail is larger and more extended far below thgiven in analytic form for various disorder sources. There-
subband edge when increasing the doping leyelr the size  fore, a numerical calculation of the 1D DOS as well as the
fluctuationA. observable properties of realistic QWR'’s relative to the
(vii) As in the 2D and 3D cases, the disorder-induced shifDOS, e.g., optical absorption, presents no difficulty.
of the Fermi level of the 1DEG is found to be small, whichis It should be kept in mind that our semiclassical approach
in contrast to the earlier resdft.Indeed, at densitp,=n,  describes a smooth random field which obeys inequédity
=10°cm™? the Fermi level of the ideal 1DEG is equal to valid for disorder of any origin. The disorder is clearly con-
E®=250Ry. The Fermi level of the disordered 1DEG in nected only with long-range fluctuations in the disorder po-
a wire of radiusR=a*, using Eq.(22), is estimated to be tential(e.g., due to heavy doping and slowly varying surface
Er=2.70 and 2.94 Ry under inside modulation doping with roughnessand modifies the 1D DOS in the high-energy re-
p=0 and outside uniform doping wit,,=6R, respec- dion(around the subband edg&ormsorde_r associated with
tively; and Er=2.54 Ry under surface roughness with ~ Short-range potential fluctugtlor@e.g., doping inside a very
=a* andA=10A. This is interpreted as follows. As quoted thin QWR or at a lower doping level, and alloy disorder with
above, the 1D DOS, on the one hand, is reduced appreciabfy @ Potentia), the theory is inapplicable. Then, also to in-
in the intrasubband near the subband edge; on the other harfd/de the short-range potential fluctuations and, hence, the
it is remarkably enhanced on the tail far below the subbandPW-energy regiorideep tai, in a forthcoming paper we will

edge, the Fermi level being slightly shifted. supply a path-integral approach based on a cumulant ap-
proximation, modifying the method developed recently by
VI. SUMMARY Quang and Tur for 2D electron systems.

Owing to the absence of detailed experimental informa-

In this paper we have achieved a simple analytic exprestion about the electronic energy spectrum of disordered

sion [Eq. (22)] for the DOS of disordered quasi-1DEG’s in QWR'’s, a quantitative comparison with experiments is pres-

semiconductor QWR'’s, in which the input function for dis- ently impossible. We hope that our analytic results stimulate

order interaction is the autocorrelation function in wave-theoretical investigations and help to clarify future experi-
vector space. This enables us, to calculate the effect on thmental results.
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