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Semiclassical approach to the density of states of the disordered electron gas in a quantum wir
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A theory is given of the density of states~DOS! of the quasi-one-dimensional electron gas~1DEG! in a
semiconductor quantum wire in the presence of some random field. For a smooth random field, the derivation
is carried out within Gaussian statistics and a semiclassical model. The DOS is then obtained in a simple
analytic form, where the input function for disorder interaction is the autocorrelation function of the random
field. This allows one to take completely into account the geometry of the wire, the origin of disorder, and the
many-body screening by 1D electrons. The DOS is demonstrated to be composed of the classical DOS and the
quantum correction, which are connected with fluctuations in the random potential and in the random force,
respectively. The disorder is found to smear out the square-root singularity of the DOS of the ideal 1DEG into
a finite peak tailing below the subband edge. The disorder effects from impurity doping and surface roughness
on the DOS of the 1DEG in a cylindrical GaAs wire of radiusR are thoroughly examined. It is shown that for
R<a* /2 ~with a* as the effective Bohr radius! surface roughness with a radius fluctuation equal to 10% ofR
overwhelms impurity doping with a densityni5106 cm21, but for R>2a* the latter is dominant.
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I. INTRODUCTION

In recent years, quantum wire~QWR! structures have at
tracted much attention, and promising advances have b
obtained in fabrication and application of QWR’s, e.g., la
devices.1 This is primarily motivated by their unique trans
port properties, viz., high electronic mobility2 as well as the
expected enhanced optical properties such as high diffe
tial optical gain3 and optical nonlinearities.4 Thus, from both
fundamental and applied physics viewpoints, there has b
a growing interest in understanding the electronic proper
of QWR’s.

It is well known that various QWR’s may be adequate
described in terms of a quasi-one-dimensional electron
hereafter called for short a one-dimensional electron
~1DEG!, where the electron dynamics is essentially restric
to be one dimensional. In practice, 1DEG’s are always
fected by disorder caused by some random field presen
QWR’s. The field is of different origins, e.g., impurit
doping,5–8 surface roughness,5–10 and alloy disorder.5,7,11

The disorder has been shown to lead to considerable cha
in the electronic energy spectrum of the 1DEG, e.g., dest
ing the square-root singularity of the density of states~DOS!
characteristic of an ideal 1DEG.12,13 Moreover, the disorder
also gives rise to an appreciable modification in the elem
tary collective-excitation spectrum of the 1DEG, e.g., t
dispersion for long-wavelength plasmons.14 Obviously, these
in turn result in remarkable changes in many phenom
occurring in the wire, e.g., optical absorption. Therefo
having useful~especially analytic! expressions for the DOS’
of disordered 1DEG’s is of fundamental importance in bo
explaining observable properties of QWR’s and analyz
the performance of modern semiconductor devices base
them.
PRB 600163-1829/99/60~19!/13648~11!/$15.00
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So far, only a few theoretical investigations12,13,15,16have
been made in order to understand the electronic energy s
trum of disordered 1DEG’s in QWR’s, and only numeric
results have been available in the literature. It should be
prisingly noted that the existing theories of the effect of d
order on the 1D DOS have been established only for
disorder arising from charged impurities chaotically distr
uted in the sample. The other sources of disorder, espec
surface roughness, have recently been confirmed experim
tally to be of importance in very thin QWR’s.17–19Neverthe-
less, the consideration of their influence on the 1D DOS
seemingly been quite scarce. The reason for this is prob
that in the earlier theories the input function for disord
interaction has been chosen to be the potential created b
individual center of force, e.g., a single ionized impurity
doped QWR’s. The one-center potential is clearly inadequ
for describing disorder interaction connected, e.g., with s
face roughness.

Furthermore, existing theories of the impurity doping e
fect turn out to be partly unsatisfactory. Indeed, Das Sar
and Xie15 calculated the DOS for a 1DEG in a doped re
angular QWR. The calculation is based on a self-consis
Born approximation and, hence, is adequate mainly for a
doping level. Takeshima12 evaluated the 1D DOS for a
heavily doped square wire, employing the semiclass
model suggested by Kane20 and Bonch-Bruevich21 for 3D
electron systems. However, a serious shortcoming of
theory is the use of a 3D~bulklike! screened Coulomb im
purity potential, which is evidently seen to dramatica
overestimate the screening by 1D electrons since the
electron system may be polarized merely along the w
axis.22 Therefore, the authors of Ref. 13 applied Klaude
best multiple-scattering approach23 to evaluating the 1D
DOS in a doped cylindrical wire. This enables us to allow f
13 648 ©1999 The American Physical Society
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the geometry of the wire and the features of the ma
body interaction in the 1DEG, e.g., 1D screening of the i
purity field. However, the method must invoke drastic a
proximations, and despite these it is computationally s
very complicated for realistic 1DEG’s. Further, the autho
of Ref. 16 used a 1D version of the multiple-scatteri
theory of Matsubara and Toyozawa.24 Nevertheless, this is
essentially a single-band scheme and, hence, can describ
impurity band formation rather than the tailing of th
1D DOS.

Thus the goal of the present paper is to develop a the
of the electronic energy spectrum of disordered 1DEG
in QWR’s, which is to be applicable to disorder n
only arising from impurity doping but also of any origin
relevant to realistic QWR structures, and which must elim
nate the above-mentioned difficulties of the existing theor
To this end, we will propose a version of the semiclassi
approach to 1DEG’s subjected to smooth random fie
based on modifying the method suggested by Qu
and Tung25 for 2D electron systems. This version allow
taking complete account of the microscopic details of
geometry of the wire and the origin of the disorder, a
providing the DOS of disordered 1DEG’s in a simple an
lytic form.

In Sec. II, we start with a collection of the formulas to b
used for calculating the DOS of the 1DEG in the presence
some Gaussian random field. The derivation of the DOS
disordered 1DEG’s in smooth Gaussian fields proceed
Sec. III within a semiclassical approach. This accounts
the classical effect due to fluctuations in the random poten
as well as the quantum effect due to fluctuations in the r
dom force. In Sec. IV, the theory is applied to a cylindric
wire where the disorder is produced by both impurity dop
and surface roughness. In Sec. V, illustrating plots and c
clusions are presented. Finally, Sec. VI is devoted to a s
mary.

II. BASIC RELATIONS

Two striking aspects of strictly 1D electron systems ha
been shown theoretically. For noninteracting electrons in
presence of any disorder, all electronic states are expo
tially Anderson localized.26 On the other hand, within the
Tomonaga-Luttinger model for interacting electrons~linear
electron energy dispersion, infinite density of negativ
energy electrons, and short-range interaction!, the electrons
in a single-subband QWR in the absence of disorder mak
a singular strongly correlated liquid.27 Thus the disordered
interacting strictly 1DEG was believed, in principle, to b
have as a localized, strongly correlated Luttinger liquid.

Contrary to the above long-standing theoretical cla
Das Sarma and co-workers28–30 recently proved, based on
more realistic model~parabolic dispersion, finite electro
density, and Coulomb interaction!, that even a small amoun
of disorder in an interacting 1DEG would restore the Fer
surface if the localization length becomes larger than
physical length of the wire. The typical localization lengt
turn out to be very long~larger than 10–100mm!.31 There-
fore, 1DEG’s in QWR’s with both disorder and electro
electron interactions behave, for all practical purposes,
sentially as delocalized Fermi liquids.28–31There has been a
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abundance of recent experiments which offer clear evide
supporting the standard Fermi-liquid model for actu
1DEG’s.32–37 Until now, all theories of disordered interac
ing 1DEG’s, e.g., in semiconductor QWR’s5–8,12–16,28–31,38,39

and graphene nanotubules,40–42have seemed to be develope
within this model. These were found to be quantitative
highly successful in explaining the experimental data on
electronic properties of realistic QWR’s, e.g., Raman scat
ing, photoluminescence, and band-gap renormalization.

Thus in what follows we may ignore all aspects of loca
ization and Luttinger-liquid physics uncritically, startin
from the standard Fermi-liquid model. The electrons in t
wire are considered to be confined in two dimensions, e.g
the y andz directions, and to move freely in thex direction
~chosen as the wire axis!. The disorder in the wire is usually
caused by some random field affecting the motion of
electrons along the wire axis.

Hereafter, we shall restrict the discussion to the case w
the random fieldU(x) obeys Gaussian statistics. Therefo
it may completely be described by the autocorrelation fu
tion of the disorder potential

W~x2x8!5^U~x!U~x8!&, ~1!

where the angular brackets stand for averaging over all c
figurations of the random field. The disordered electron s
tem is assumed macroscopically homogeneous, the auto
relation function depending merely on the coordina
difference.

As usual, the strength of the field is determined by the r
of its potentialg and of its forceF, defined by

g25^U2&5W~x2x8!ux5x8 ~2!

and

F25^~¹U !2&5¹x¹x8W~x2x8!ux5x8 . ~3!

The average potential is supposed small compared with
energy separation between neighboring subbands, so tha
intersubband scattering induced by disorder is negligible
the theory may be formulated in a one-subband approxi
tion.

It is well known43 that the DOS is the most adequa
concept describing the energy spectrum of disordered
tems. The electronic DOS per unit length can be represe
in terms of a Fourier transform of the Green’s function a

r~E!5
1

p\ E
2`

`

dt exp~ iEt/\!^G~ t !&, ~4!

where a spin degeneracy of 2 is included. Here^G(t)& de-
notes the diagonal part of the configuration-averaged Gre
function, which describes the one-particle properties of
1DEG in the presence of a random field and is clearly in
pendent of the spatial coordinate in virtue of the macrosco
homogeneity of the electron system.

The Green’s function may be written within the on
subband approximation in terms of a Feynman path inte
as43
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G~ t !5S m

2p i\t D
1/2 1

N R Dx~t!expH i

\ E
0

t

dt

3Fm

2
ẋ2~t!2U@x~t!#G J . ~5!

Here m is the effective mass of the charge carriers with
parabolic 1D subband reckoned from the unperturbed s
band edge,Dx(t) means the Feynman measure, andN is the
normalization factor:

N5 R Dx~t!expH i

\ E
0

t

dt
m

2
ẋ2~t!J . ~6!

The path integrals in Eqs.~5! and ~6! are taken over closed
paths:x(t)5x(0).

For a Gaussian random field, it holds for the averag
Green’s function43 that

^G~ t !&5S m

2p i\t D
1/2 1

N R Dx~t!expH i

\ E
0

t

dt
m

2
ẋ2~t!

2
1

2\2 E
0

t

dtE
0

t

dt8W@x~t!2x~t8!#J . ~7!

Thus Eqs.~4! and~7! set up a basis for studying the DO
of the 1DEG in a QWR in the presence of a Gaussian r
dom field. The disorder effect is then allowed for via t
autocorrelation function, whose form is specified by the
ometry of the wire and the nature of the disorder.5–8

III. DOS OF DISORDERED 1DEG’S IN A SEMICLASSICAL
MODEL

For further evaluation of the DOS of disordered 1DEG
we have to calculate the averaged Green’s function provi
by Eq. ~7!. Hereafter we will assume that the random fie
U(x) producing disorder in the electron system obeys
inequality

\2F2

4mg3 !1, ~8!

whereg and F are, as before, the averages of the rand
potential and of the random force, given by Eqs.~2! and~3!.

It has been pointed out44,45 that if inequality ~8! is ful-
filled, the fieldU(x) and, hence, its autocorrelation functio
W(x2x8), are varying slowly on the average along the w
axis, so that a semiclassical approach to it may be applica
As a consequence, the Green’s function~7! is to be approxi-
mated in the lowest order by25,46

^G~ t !&5S m

2p i\t D
1/2

expS 2
g2t2

2\2 D F11
g2t22J~ t !

2\2 G ,
~9!

whereJ(t) is a path integral, defined by
b-

d

-

-

,
d

e

le.

J~ t !5
1

N R Dx~t!expH i

\ E
0

t

dt
m

2
ẋ2~t!J

3E
0

t

dtE
0

t

dt8W@x~t!2x~t8!#. ~10!

It is to be noticed that the first and second terms inside
square brackets on the right-hand side of Eq.~9! are respon-
sible for the classical DOS in the subband-bending mo
and the quantum correction relative to fluctuations in
random force, respectively.

Now, we must evaluate the functionJ(t) entering Eq.~9!.
The evaluation of the integrals present in Eq.~10! is outlined
as follows. First the autocorrelation function in Eq.~10! is to
be replaced by its Fourier transform withk as a 1D wave
vector, defined by

W~x!5E
2`

` dk

2p
W~k!exp~ ikx!. ~11!

Then the path integral is straightforward, yielding25

J~ t !5E
2`

` dk

2p
W~k!E

0

t

dtE
0

t

dt8 expF2 i
\k2t

2m
s~12s!G ,

~12!

wheres5ut2t8u/t<1 andk5uku.
Next, it is evidently seen from Eqs.~4! and ~9! that the

main contribution to the semiclassical DOS results from su
a time region that

gt/\&1, ~13!

with g being the average random potential.
Furthermore, thek integral in the Fourier representatio

~11! of the autocorrelation function is primarily extende
over such a wave-vector region that

k&1/L. ~14!

Here L is a correlation length of the random field that th
function W(x) becomes small underuxu*L, the field fluc-
tuations with a spacing larger thanL being statistically inde-
pendent.

Upon combining inequalities~13! and ~14!, we are in a
position to estimate the upper limit of the variable of t
exponential in Eq.~12!:

\k2t

m
&

\2/mL2

g
. ~15!

In accordance with the semiclassical nature of the rand
field, we may, as usual, adopt the following inequality:

\2/mL2

g
!1. ~16!

Then expanding the exponential in Eq.~12! into a series in
powers of the small quantity\k2t/m, the functionJ(t) is to
be approximated in the lowest order by

J~ t !5g2t21
\F2

12m
~ i t !3. ~17!
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The rms of the potential and of the force of the random fi
figuring in Eq. ~17! can now be rewritten in terms of th
Fourier transform of the autocorrelation function as

g25E
2`

` dk

2p
W~k! ~18!

and

F25E
2`

` dk

2p
k2W~k!. ~19!

Finally, on substitution of the functionJ(t) in Eq. ~9! by
Eq. ~17!, we may immediately arrive at the following ave
aged Green’s function describing the 1DEG moving in
smooth Gaussian field:

^G~ t !&5S m

2p i\t D
1/2

expS 2
g2t2

2\2 D F12
F2

24\m
~ i t !3G ,

~20!

Let us now return to the derivation of the DOS for th
1DEG in question. We need to insert the Green’s funct
~20! into Eq. ~4!, and perform easily the appearingt integral
by means of47

E
2`

`

dx~ ix !n exp~2b2x22 iqx!

5
Ap

2n/2bn11 expS 2
q2

8b2DDnS q

b&
D , ~21!

with Dn(x) being a parabolic cylinder function. As a cons
quence, we obtain

r~E!5
1

p S 2m

\2 D 1/2 1

~2g!1/2expS 2
E2

4g2D
3FD21/2S 2

E

g D2
\2F2

24mg3 D5/2S 2
E

g D G . ~22!

Thus, within the semiclassical model, the DOS of disorde
1DEG’s in QWR’s is provided by Eqs.~22!, ~18!, and~19!.
This general analytic form of the 1D DOS is the cent
result of the present paper.

With the aid of the asymptotic expansion of the parabo
cylinder function,47 it follows immediately from Eq.~22! that
if the disorder is absent the semiclassical DOS can reprod
the square-root singularity at the subband edge, characte
of the ideal 1DEG,1

r0~E!5
1

p
S 2m

\2 D 1/2u~E!

E1/2 , ~23!

whereu(t) is the Heaviside step function.
In analogy with disordered 2D electron systems,25 within

the semiclassical approach to a smooth Gaussian field
DOS of disordered 1D electron systems may, as expected
represented in terms of an expansion with respect to
small quantity\2F2/4mg3. It is obvious that the first term
inside the square brackets on the right-hand side of Eq.~22!
refers to the classical DOS, while the second one to the qu
tum correction. The former depends merely on the rms
d

n

d

l

c

ce
tic

he
be
e

n-
f

fluctuations in the potential of the random field,g, whereas
the latter depends not only on the rms of fluctuations in
potentialg but in its forceF as well.

It is interesting to note that our approach to a random fi
is capable of including the disorder effect from the poten
and its first spatial derivative into the DOS calculation, wh
the purely classical approximation of Kane20 includes that
from the potential only, and the quantum method of Halpe
and Lax43 that from the potential as well as its first an
second derivatives.

It should be stressed that the semiclassical approach
assumed the random field to be smooth, which implies,
seen below a large width of the wire, a high doping lev
and small fluctuations in the wire width. The smoothne
condition ~8! involves only long-range fluctuations in th
disorder potential, and corresponds to the short-time c
specified by inequality~13!. Consequently, the theory ma
describe properly the high-energy region above and near
subband edge~the latter is of the order of the rms potentia!.
This may be understood physically by considering t
Heisenberg energy-time uncertainty relation in combinat
with inequality ~13!.

It is worthy to note that because of its simple form, o
approach is a flexible tool for the theoretical investigation
disorder effects on the DOS of 1DEG’s in semiconduc
QWR’s. It follows from Eqs.~22!, ~18!, and ~19! that in
distinction from the existing theories,12–16rather than the po-
tential due to a single center of force but the autocorrelat
function of the random field plays the key role as the inp
function for disorder interaction. In the most discussed c
of impurity doping, the random field and, hence, this fun
tion are connected with all ionized impurities present in t
sample.43 It has been shown5–8 that the autocorrelation func
tion may capture the microscopic details not only of the g
ometry of the wire and the nature of the disorder but also
the many-body interaction in the 1DEG. On the other ha
our approach clearly works quite well with an arbitrary for
of that function. Therefore, this enables us, to calculate
disorder effect on the energy spectrum of the interact
1DEG in a QWR of any geometry and subjected to a smo
disorder of any origin.

IV. AUTOCORRELATION FUNCTIONS FOR A
CYLINDRICAL SEMICONDUCTOR QWR

We shall now apply the foregoing theory to assess
influence on the DOS of 1DEG’s in QWR’s due to disord
arising from impurity doping and surface roughness, wh
are, in general, almost unavoidable in realistic wires. As
model of QWR’s, we choose a circular cylinder and confi
the motion of the electrons in the cylinder by an infini
potential barrier at its surface.5–8,48,49Accordingly, the wave
functions of 1D subbands are proved to be expressed
terms of Bessel functions.5 Moreover, at zero temperatur
almost all electrons are assumed to occupy the lowest
subband ~extreme quantum limit!, as shown
experimentally.33,37 As indicated just above, the theoretic
analysis of the disorder effect is simply reduced to findi
the autocorrelation function for the electron system to
treated.
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A. Impurity doping

We begin by examining random fluctuations in the imp
rity density in the sample. It is well known20,21 that the ran-
dom field created by all charged impurities is generally c
sidered smooth at a high doping level. Moreover,
autocorrelation function of the total impurity field can be ca
into the form43

WID~x2x8!5nIE d3r iv~x2r i !v~x82r i !, ~24!

with nI the 3D density of ionized impurities. Herev(x2r i)
is the potential energy of an electron atr5(x,0,0) due to a
single impurity atr i5(xi ,ri).

In the case in question, this potential obviously posses
the symmetry described byv(x2r i)5v(ux2xi u,ri). There-
fore, the Fourier transform of Eq.~24! reads

WID~k!5nIE d2riv
2~k,ri !, ~25!

wherev(k,ri) is the Fourier transform in thex direction of
the one-impurity potential.

The impurity potential is to be screened by interacti
electrons in the 1DEG. This can be quantified by introduc
a static dielectric function as

v~k,ri !5
vei~k,ri !

e~k!
. ~26!

Here vei(k,ri) is the unscreened one-impurity potentia
which is to be modified by a finite extension of the electr
wave functionf(r ) in the y andz directions, i.e., weighted
as5,14

vei~k,ri !52ZE d2r uf~r !u2v~ri ,r ,k!, ~27!

with Z the charge of an ionized impurity in units of th
electron chargee. The Coulomb potential figuring in Eq.~27!
describes bare interaction between an electron atr and an
electron atr 8, given by14

v~r ,r 8,k!5
2e2

eL
K0~kur2r 8u!, ~28!

with eL the dielectric constant of the background lattice.
what follows, I n(x) and Kn(x) are the nth-order modified
Bessel functions of the first and second kind, respectivel47

As previously,48,49 the electrons are, for simplicity, con
sidered to be distributed with a constant density in the w
cross section. This implies that for the lowest subband
may take

uf~r !u25~pR2!21u~R2ur u!, ~29!

whereR is the wire radius. The assumption of the unifor
distribution of electrons may be a somewhat good appro
mation in the high-electron density limit because they re
each other.

Upon putting Eqs.~28! and ~29! into Eq. ~27!, we obtain
the following analytic form for the effective impurity
potential:49
-

-
e
t

es

g

e
e

i-
l

vei~k,ri !52
4Ze2

eL

1

a2 H12aK1~a!I 0~d i ! for d i<a
aI 1~a!K0~d i ! for d i>a,

~30!

wherea5kR andd i5kuri u.
According to Eq.~25!, the autocorrelation function fo

impurity doping depends on the geometry of the impur
system. Hereafter, the charged impurities are supposed t
randomly distributed in a cylindrical tube coaxial with th
wire.

First, we are concerned with an infinitely thin impurit
tube of radiusr, integral~25! being trivial. The autocorrela-
tion function depends on the position of the impurity syste
as follows.

~1! r<R and WID5WMI ~modulation doping inside the
wire!:

WMI~k!5S 4Ze2

eL
D 2 ni

e2~k!

1

a4 @12aK1~a!I 0~d!#2,

~31!

whereni is the 1D impurity density along the tube axis, an
d5kr.

~2! r.R andWID5WMO ~modulation doping outside the
wire!:

WMO~k!5S 4Ze2

eL
D 2 ni

e2~k!

1

a2 I 1
2~a!K0

2~d!. ~32!

For an impurity tube of finite thickness with radiirm and
rM , it is useful to distinguish between two limiting cases
interest.

~3! rm50, rM5R, andWID5WUI ~uniform doping inside
the wire!:

WUI~k!5S 4Ze2

eL
D 2 ni

e2~k!

1

a4 $124I 1~a!K1~a!

1a2K1
2~a!@ I 0

2~a!2I 1
2~a!#%. ~33!

~4! rm5R, rM.R, andWID5WUO ~uniform doping out-
side the wire!:

WUO~k!5S 4Ze2

eL
D 2 ni

e2~k!

1

a4 I 1
2~a!$a2@K1

2~a!2K0
2~a!#

2dM
2 @K1

2~dM !2K0
2~dM !#%, ~34!

wheredM5krM . The 1D impurity density in Eqs.~33! and
~34! is fixed by the 3D one viani5pR2nI .

If there exist several impurity species with chargesZi and
densitiesni in the sample, the productZ2ni in Eqs.~31!–~34!
is to be replaced with an effective impurity density, defin
by

ni* 5(
i

Zi
2ni . ~35!

B. Surface roughness

Next we deal with random fluctuations in the wire radi
that have been found to be important in very thin wires, e
made from AlxGa12xAs/GaAs.17–19 It is well known50 that
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the surface roughness in a QWR is characterized by the
erage size fluctuationD and the correlation lengthL along
the wire axis. Naively, one would argue that a decreasinD
or an increasingL corresponds to a smoother interface.
Gaussian-like decay of the wire radius fluctuations is usu
assumed.

For the lowest subband, the autocorrelation function
surface roughness in a cylindrical QWR of radiusR is then
supplied by5–8

WSR~k!5~2.4!4Ap
\4

m2

D2L

R6

exp~2L2k2/4!

e2~k!
, ~36!

where e(k) allows for screening the surface roughne
induced field by the interacting 1DEG.

It is to be noted51 that in case the 1DEG is affected simu
taneously by both sources of disorder, the autocorrela
function is obviously additive if correlations between the
are neglected, i.e.,

W~k!5WID~k!1WSR~k!. ~37!

C. RPA screening

It has been pointed out52 that the disorder and screenin
effects are to self-consistently determine each other. Scr
ing by interacting 1DEG’s in QWR’s is of great importanc
in determining disorder. In what follows, for the sake
numerical simplicity we neglect the influence of disorder
screening.13,49Then, within the random-phase approximati
of the standard Fermi-liquid model, the static dielectric fun
tion for a 1DEG at zero temperature may be written as14,28–30

e~k!511
2m

p\2

vee~k!

k
lnUk12kF

k22kF
U. ~38!

Herevee(k) denotes the Fourier transform in thex direction
of the bare electron-electron interaction potential, andkF is
the Fermi wave vector fixed by the 1D carrier densityne via
kF5(p/2)ne .

The screening function~38! clearly exhibits a logarithmic
singularity atk52kF . It is well known that within the self-
consistent Born approximation, the 2kF singularity of the
function~38! leads to meaningless results at zero tempera
for the 1D transport property52 and the electronic 1D DOS,6

so that the inclusion of the disorder effect in the calculat
of screening is very important. However, this singularity p
sents no difficulty in our DOS calculation since all quantiti
of interest—the average potentialg and forceF—are given
in terms of the convergentk integrals as seen directly from
Eqs.~18! and~19!. The influence of disorder on screening
likely of less importance in the estimation of the fie
strength since this is significant mainly around the integra
singular point.14

The electron-electron interaction given by Eq.~28! is to
be weighted with the wave function of the subband as5

vee~k!5E d2rE d2r 8uf~r !u2uf~r 8!u2v~r ,r 8,k!. ~39!

Inserting Eqs.~28! and~29! into Eq.~39! yields the effective
electron-electron interaction in analytic form:49
v-

ly

r

-

n

n-

-

re

n
-

y

vee~k!5
4e2

eL

1

a2
@122I 1~a!K1~a!# ~40!

(a5kR).

V. RESULTS AND DISCUSSIONS

To illustrate the theory developed in the preceding s
tions, we have carried out numerical calculations for cyl
drical QWR’s made ofn-type GaAs at zero temperature
whose conduction subband is considered. The material
rameters are the effective massm50.067me and the dielec-
tric constanteL512.9. However, our results are more ge
eral. This is because that the natural scales for the length
energy, and the 1D DOS are atomic units: the effective B
radius a* 5eL\2/me2, the effective Rydberg Ry*
5me4/2eL

2\2, and r* 51/Ry* a* , respectively. For GaAs
wires, we havea* 5100 Å, Ry* 55.6 meV, andr* 51.79
3105 meV21 cm21. The DOS of the disordered 1DEG in
QWR is determined by Eq.~22!, where the average potentia

FIG. 1. rms of the~a! potentialg and ~b! force F for impurity
doping vs wire radiusR under densityni5ne5106 cm21. The la-
bels M1, M2, and M3 refer to modulation doping with variou
impurity positionsr50, R, and 2R. U1 andU2 refer to inside and
outside uniform doping withrm50, rM5R and rm5R, rM

56R, respectively.
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g and forceF of the random field are given by Eqs.~18! and
~19! in terms of its autocorrelation function.

A. Impurity doping

First, we evaluate the disorder effect due to impurity do
ing with the autocorrelation function given by Eqs.~31! and
~32! for modulation doping, and Eqs.~33! and ~34! for uni-
form doping. From these it follows that the random para
etersg andF depend on the radius of the electron wireR and
those of the impurity tuberm andrM as well as their densi
ties ni andne . Hereafter, the case ofni5ne is discussed.

In Fig. 1 the rms of the potentialg and forceF for impu-
rity doping are plotted vs wire radiusR under impurity den-
sity ni5106 cm21: modulation doping with various impurity
positionsr50, R, and 2R; and inside and outside dopin
with rm50, rM5R and rm5R, rM56R, respectively. In
Fig. 2 the random parametersg andF are plotted vs impurity
densityni for different wire radiiR5a* /2 anda* . In Fig. 3
the DOSr(E) is plotted vs energy for the 1DEG subjecte
to impurity doping with densityni5106 cm21 under differ-
ent wire radiiR5a* /2, a* , and 2a* . The DOS of the ideal
1DEG is depicted according to Eq.~23!. In Fig. 4 the DOS
r(E) is plotted vs energy for the 1DEG subjected to outs

FIG. 2. rms of the~a! potentialg and ~b! force F for impurity
doping vs densityni (ni5ne) under different wire radiiR5a* /2
~dashed lines! and a* ~solid lines!. The labels are the same as
Fig. 1.
-

-

e

doping with wire radiusR54a* , under various impurity
densitiesni5105, 53105, and 106 cm21.

In should be mentioned that we cannot employ Eq.~22! to
calculate the disorder effects on the 1D DOS due to ins
and outside doping withni<53105 cm21 andR<2a* , and
inside doping withni<106 cm21 andR<a* /2, since in these
cases the semiclassical condition~8! is broken.

B. Surface roughness

Next we assess the disorder effect from surface roughn
with the autocorrelation function~36!. It is obvious that the
surface roughness parameters depend on the wire fabric
technique. For GaAs the average size fluctuationD is as-
sumed ranged from 3 to 20 Å, and the correlation lengthL
from 20 to 200 Å.10 Small values ofD correspond to fabri-
cation by molecular-beam epitaxy53,54 and the large ones to
fabrication, e.g., by electron-beam lithography and w
chemical etching.55

In Fig. 5 the rms of the potentialg and forceF are plotted
vs wire radiusR under correlation lengthL5a* , various

FIG. 3. DOS r(E) in units of r* vs energy for the 1DEG
subjected to impurity doping with densityni5ne5106 cm21 under
different wire radiiR5a* /2 ~dashed lines!, a* ~dash-dotted lines!,
and 2a* ~solid lines!. The DOS is plotted for~a! modulation doping
M1 andM3, and~b! uniform dopingU1 andU2. The labels are the
same as in Fig. 1. The dotted line represents the DOS of the i
1DEG.
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radius fluctuationsD53, 10, and 20 Å, and different electro
densitiesne5105 and 106 cm21. In Fig. 6 the random param
etersg andF are plotted vs correlation lengthL under wire
radiusR5a* , various radius fluctuationsD53, 10, and 20
Å, and different electron densitiesne5105 and 106 cm21. In
Fig. 7 the DOSr(E) is plotted vs energy for the 1DEG
subjected to surface roughness with correlation lengthL
5a* and various radius fluctuationsD53, 10, and 20 Å
under electron densityne5106 cm21 and different wire radii
R5a* /2 anda* .

Finally, Fig. 8 displays the DOSr(E) of the 1DEG sub-
jected to both sources of disorder: impurity doping with de
sity ni5106 cm21 and surface roughness with radius fluctu
tion D510 Å and correlation lengthL5a* . The DOS using
Eq. ~37!, is plotted under different wire radii:R5a* /2 for
combining the effects of outside doping and surface rou
ness, andR5a* for combining the ones of inside dopin
and surface roughness. As in the 2D case,56 the resulting
effect is found not equal to merely the sum of the two
fects, each one being treated separately.

It is worth noting that the average potential is seen to
small compared with the energy separation between the

FIG. 4. DOS r(E) in units of r* vs energy for the 1DEG
subjected to outside impurity doping with wire radiusR54a* un-
der various densitiesni5ne5105 cm21 ~solid lines!, 53105 cm21

~dash-dotted lines!, and 106 cm21 ~dashed lines!. The DOS is plot-
ted for ~a! modulation dopingM3 and~b! uniform dopingU2. The
labels are the same as in Fig. 1.
-
-

-

-

e
st

and second subbands given by57 E12E058.9(a* /R)2Ry* ,
which warrants the one-subband approximation used.

C. Conclusions

From the curves thus obtained we may draw the follow
results.

~i! Figures 1 and 5 indicate the strength of the rand
fields connected with impurity doping and surface roughn
in thin QWR’s is enhanced rapidly when reducing the w
size. ForR<a* /2 surface roughness~especially with large
D! is observed to overwhelm impurity doping. But forR
>2a* the former is negligible, whereas the latter becom
dominant. These disorder sources compete forR'a* .

~ii ! It follows, as expected, from Fig. 2 that the strength
the total impurity field increases when elevating the dop
level ni .

~iii ! Figures 5 and 6 reveal the strength of the surfa
roughness field exhibits a linear enhancement with incre
ing the radius fluctuationD; see Eq.~36!. Moreover, the
random field is weakened when increasing the correla

FIG. 5. rms of the~a! potentialg and ~b! force F for surface
roughness vs wire radiusR under correlation lengthL5a* , and
different electron densitiesne5105 cm21 ~solid lines! and 106 cm21

~dashed lines!. The labelsS1, S2, and S3 correspond to surface
roughness with various size fluctuationsD53, 10, and 20 Å, re-
spectively.



he
is

not
hes
tail
e.
be
dge

re
eg-

to
f
D
b-
t in5.

i:
s

e

13 656 PRB 60DOAN NHAT QUANG AND NGUYEN HUYEN TUNG
FIG. 7. DOS r(E) in units of r* vs energy for the 1DEG
subjected to surface roughness with correlation lengthL5a* under
different wire radiiR5a* /2 ~dashed lines! anda* ~solid lines!, and
electron densityne5106 cm21. The labels are the same as in Fig.

FIG. 6. rms of the~a! potentialg and ~b! force F for surface
roughness vs correlation lengthL for wire radiusR5a* , under
different electron densitiesne5105 cm21 ~solid lines! and 106 cm21

~dashed lines!. The labels are the same as in Fig. 5.
length L. The surface roughness potential drops withL
rather rapidly for smallR and largeD, but slowly for largeR.

~iv! An examination of Figs. 3, 4, 7, and 8 shows t
squared-root singularity of the DOS of the ideal 1DEG
destroyed by disorder into a finite peak. The disorder
only dramatically reduces the height of the peak and pus
it up toward higher energies, but also gives rise to a band
~of localized states! extending deep below the subband edg
The electronic energy spectrum of the 1DEG is found to
considerably modified in a region around the subband e
and of the order of the average potentialg, as quoted previ-
ously. The DOS of the ideal and disordered 1DEG’s a
asymptotically equal. This means the disorder effect is n
ligible at very high energies.

It is worthy to recall that the DOS tail (E,0) cannot be
provided within the 1D semiclassical theory due
Takeshima,12 nor within the 1D multiple scattering theory o
Ref. 16. Further, in comparison with the 2D and 3
cases,25,43 the modification of the 1D DOS around the su
band edge is much more drastic. The reason for this is tha

FIG. 8. DOS r(E) in units of r* vs energy for the 1DEG
subjected to both impurity doping with densityni5ne5106 cm21

and surface roughness with radius fluctuationD510 Å and corre-
lation lengthL5a* . The DOS is plotted under different wire radi
~a! R5a* /2 for outside dopingM3 andU2 and surface roughnes
S2, and the combined effect is marked byM3S2 andU2S2. ~b!
R5a* for inside dopingM1 andU1 and surface roughnessS2,
and the combined effectM1S2 andU1S2. The labels are the sam
as in Figs. 1 and 5.
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the 1D case the singularity of the DOS at the subband e
and the disorder interaction are both stronger, the scree
by the 1DEG being weaker.

~v! The characteristics of the DOS~its peak and tail! are
seen to depend on the wire size. Figures 3 and 7 indicate
the DOS peak is lowered, and the DOS tail is larger a
more extended below the subband edge when reducing
wire radius. This means that the thinner the wire, the str
ger the disorder effect becomes.

~vi! Figures 4 and 7 reveal that the DOS peak is lowe
and the DOS tail is larger and more extended far below
subband edge when increasing the doping levelni or the size
fluctuationD.

~vii ! As in the 2D and 3D cases, the disorder-induced s
of the Fermi level of the 1DEG is found to be small, which
in contrast to the earlier result.12 Indeed, at densityne5ni
5106 cm21 the Fermi level of the ideal 1DEG is equal
EF

(0)52.50 Ry* . The Fermi level of the disordered 1DEG
a wire of radiusR5a* , using Eq.~22!, is estimated to be
EF52.70 and 2.94 Ry* under inside modulation doping wit
r50 and outside uniform doping withrM56R, respec-
tively; and EF52.54 Ry* under surface roughness withL
5a* andD510 Å. This is interpreted as follows. As quote
above, the 1D DOS, on the one hand, is reduced appreci
in the intrasubband near the subband edge; on the other h
it is remarkably enhanced on the tail far below the subb
edge, the Fermi level being slightly shifted.

VI. SUMMARY

In this paper we have achieved a simple analytic exp
sion @Eq. ~22!# for the DOS of disordered quasi-1DEG’s
semiconductor QWR’s, in which the input function for di
order interaction is the autocorrelation function in wav
vector space. This enables us, to calculate the effect on
s
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1D DOS due to a source of disorder other than impur
doping, e.g., surface roughness, and that due to many-b
screening caused by realistic 1DEG’s in QWR’s. In partic
lar, it is possible to go beyond the random-phase approxi
tion, including the local-field correction~electron exchange
and correlation! into the DOS calculation.

In our model of cylindrical QWR’s with an infinite poten
tial barrier, the cylindrical symmetry is used. As indicat
previously,5,49 this could not alter the order of magnitude
the disorder effects, but does enable the input function to
given in analytic form for various disorder sources. The
fore, a numerical calculation of the 1D DOS as well as t
observable properties of realistic QWR’s relative to t
DOS, e.g., optical absorption, presents no difficulty.

It should be kept in mind that our semiclassical approa
describes a smooth random field which obeys inequality~8!
valid for disorder of any origin. The disorder is clearly co
nected only with long-range fluctuations in the disorder p
tential ~e.g., due to heavy doping and slowly varying surfa
roughness! and modifies the 1D DOS in the high-energy r
gion ~around the subband edge!. For disorder associated wit
short-range potential fluctuations~e.g., doping inside a very
thin QWR or at a lower doping level, and alloy disorder wi
a d potential!, the theory is inapplicable. Then, also to in
clude the short-range potential fluctuations and, hence,
low-energy region~deep tail!, in a forthcoming paper we will
supply a path-integral approach based on a cumulant
proximation, modifying the method developed recently
Quang and Tung58 for 2D electron systems.

Owing to the absence of detailed experimental inform
tion about the electronic energy spectrum of disorde
QWR’s, a quantitative comparison with experiments is pr
ently impossible. We hope that our analytic results stimul
theoretical investigations and help to clarify future expe
mental results.
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