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Electronic structure in space-charge layers of narrow-gap semiconductors
in the presence of strong magnetic fields
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In the presence of strong normal magnetic fields, the electronic structure of inversion electrons in the
space-charge layers of narrow-gap semiconductors is considered. We use the effective mass and local-density
approximations and include band mixing exactly in the full eight-band Kane model. The wave function
satisfies special derived boundary conditions which are generalized to include the split-off band; moreover, an
improved semiclassical approximation is introduced and successfully exploited to deduce the subband struc-
ture. A special unitary transformation taking the finite field problem into its zero-field counterpart is found. In
addition, the same transformation allows for the separation of the two contributions to the spin splitting of the
energy levels: The one due to the self-consistent field and the one due to the external normal magnetic field.
Extensive numerical computations are carried out on InSb metal oxide semiconductor field-effect transistors
and used to interpret existing experimental cyclotron resonance data. The cyclotron masses of the levels
involved in cyclotron resonance are computed as a function of areal electron densityNinv and compared to
experiment with which they show satisfactory agreement. In the ground subband, our theory predicts multiple
masses not found in previous interpretations; moreover, the Fermi energyEF(B) oscillates aroundEF(B
50) asNinv varies leading to an effective massm* showing the same behavior through a combination of
nonparabolicity, Landau-level filling, and the Pauli exclusion principle.@S0163-1829~99!01340-5#
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I. INTRODUCTION

Narrow-gap semiconductors~NGS! such as InSb and
Hg12xCdxTe alloys have a fairly complex band structur1

from which follows a vast variety of exciting optical an
magneto-optical properties.2 These peculiarities make them
excellent candidates for fundamental research as wel
technological applications in areas such as infrared~IR!
detection.3 Substantial studies have been carried out, on
ferent systems based on these materials in many diffe
experimental settings. Among these investigations, a v
large number have been devoted to studies of the electr
properties of inversion layers encountered4 in MOSFETs
~metal oxide semiconductor field-effect transistors!. In these
systems, ap-type semiconductor substrate is covered with
thin insulating layer, usually an oxide, which is itself cover
with a metallic layer called the ‘‘gate.’’ When the gate vo
ageVg exceeds a threshold valueVt.0, a thin quasi-two-
dimensional~2D! electron gas, called an inversion laye
forms and is trapped between the insulating interface and
depleted substrate region.5 The motion normal to the inter
face becomes quantized, the electrons in the inversion l
occupy so-called 2D subbands, and the system thus for
acquires many properties of its own.

Inversion layers on NGS are special in many respe
First, their bulk conduction-band dispersion is not parabo
and is rather ‘‘relativisticlike.’’6 Second, their very smal
band-edge massm* translates into a small density of sta
D(E) which in turn leads to the occupation of a large nu
ber of subbands for a given areal electronic densityNinv .
Third, the electron wave function in these materials is no
scalar but transforms rather as an eight-component sp
This particularity imposes on the wave function spec
PRB 600163-1829/99/60~19!/13636~12!/$15.00
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boundary conditions~BC! at the insulator/semiconducto
interface.7,8 Moreover, in the presence of a strong magne
field, the Landau spacing of the levels is comparable to
intersubband spacing. These important peculiarities make
interpretation of experiments delicate and the need for th
retical self-consistent calculations a necessity.9

Among the published theoretical works7,10 on NGS inver-
sion layers a large share deals with the system in zero m
netic field. Some others, however, include the effects o
finite magnetic field in a simplified two-band model11 and, in
addition to that, assume the system to be in the quan
limit where only one subband is occupied. On the oth
hand, Shubnikov–de Hass,~SdH! measurements4 indicate
the occupation of many more subbands, typically up to fo
~eight if we include spin!, in commonly encountered situa
tions. In the same work,4 cyclotron resonance experimen
are reported and their authors stress in their interpretation
occupation of many subbands to get a best fit. The result
the simplified theoretical model already alluded to cannot
directly compared to experiment and the need for a the
where the experimental conditions are taken into accoun
obvious. The problem has recently been addressed by
present author in a short publication9 in which the important
details of the theory were not exposed. Because of the r
tion of this problem to systems such as CdTe/In
heterojunctions,12 NGS quantum wires,13 etc., we deem it
useful to give a full account of the theory underlying th
results already published.

The paper is organized as follows: In Sec. II we give
full presentation of the zero-field theory and explicitly e
pose the basic equations for three particular models. Co
quently, our self-consistent results are shown and compa
to experiment. In Sec. III we use the self-consistent poten
of Sec. II and develop a theory for the finiteB field case. The
13 636 ©1999 The American Physical Society
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PRB 60 13 637ELECTRONIC STRUCTURE OF SPACE-CHARGE LAYERS . . .
basic equations are derived and a method for their solutio
systematically shown and applied; the results are then c
pared to experiment. Section IV concludes the paper
summarizes the salient features of this work and its poss
applications. In addition, the paper contains two append
A and B which further complete the expositions in Secs.
and III, respectively.

II. ZERO-FIELD THEORY

A. Formulation of the problem

This section presents the general theory used to find
electronic structure in the inversion layer in the absence
magnetic field. For convenience we suppose the semicon
tor to be on the right-hand side and the insulator on
left-hand side. Let thex axis be normal to the interface whic
is taken to lie in theyzplane. We work in the full eight-band
Kane model and denote byu1&,u2&,...,u8& the basis vectors in
terms of which we expand the wave functionuc& within the
k•p approximation. For the sake of clarity the expressio
for the basis vectors and thek•p Hamiltonian are given in
Appendix A. LetH(K ), with K5kxê11kyê21kzê3 , denote
the Kanek•p Hamiltonian in which all the quadratick terms
are neglected. This approximation for the full Hamiltonian
valid only when dealing with electrons in the lowestG6 con-
duction band and is widely used; in the expression forK , ê1 ,
ê2 , andê3 are the unit vectors along the respective directio
x, y, andz.

In the effective-mass approximation14 ~EMA! the wave
function uc& is written asuC&5( i 51

8 f i u i&, where thef i ’s are
slowly varying envelope functions ofuc&. Similarly within
this single-particle approximation, the Hamiltonian of t
system is given byH85H(K )1V(x)I , whereI is an 838
identity matrix, K52 i¹, and V(x) denotes the self-
consistent potential felt by an electron in the space-cha
layer near the interface. In the absence of a magnetic fi
for an ideal interface where roughness is neglected and
purities are distributed uniformly, the total Hamiltonian
translationally invariant in theyz plane and the componen
K i in this plane is conserved. Hence,K i5kyê21kzê3 is a
constant vector and may simply be written askyê2 by choos-
ing the direction ofK i to coincide withê2 ; henceforth we let
kz50 in H8 and simply denoteK i by k.

The Schro¨dinger equation

H8uC&5EuC&, ~1!

which is a set of eight coupled first-order differential equ
tions for the envelope functionsf 1 , f 2 ,...f 8 breaks into two
subsets of equations, of lower dimension, given by

H ~u!uC~u!&5EuC~u!&, ~2a!

H ~d!uC~d!&5EuC~d!&. ~2b!

The HamiltonianH8 and wave functionuc& are given by the
direct sums H (u)

% H (d) and uc (u)& % uc (d)&, respectively.
Note thatH (u) and H (d) are related to one another by th
relationH (u)(k)5H (d)(2k), similarly for a given energyE
the four-spinorsuc (u)& and uc (d)& turn into each other, apar
from a phase factor taken to be unity, if we make the tra
formation $u,k%→$d,2k%. This important property, which
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is nothing more than Kramer’s theorem applied toH8, sim-
plifies the writing of computer codes when solving the pro
lem self-consistently. From now on we focus on Eq.~2a! for
uc (u)& since Eq.~2b! can be obtained from it by the afore
mentioned transformation.

In the local-density approximation15 LDA V(x) is written
as:

V~X!5VH~X!1Vim~X!1Vxc~X!, ~3!

where VH(x), Vim(x), and Vxc(x) are the Hartree, image
and exchange-correlation potentials, respectively. Based
the results of prior works7 we neglect the effects ofVim(x)
and Vxc(x); these approximations help make the proble
more manageable without losing the main physics. Mo
over, the effect of impurities on the band-gap narrowing w
be ignored at the doping levels considered.
The Hartree potentialVH(x) satisfies the Poisson equation

d2

dx2 VH~x!52
4pe2

es
@r inv~x!1rdep#, ~4!

wherees is the static dielectric constant of the semicondu
tor, r inv(x) is the electron density due to the inversion ele
trons, andrdep is the density of ionized impurities assume
to be uniform. The induced electron densityr inv(x) may be
written as

r inv5 (
E<EF

uC~u!u21uC~d!u25r inv
~u!~x!1r inv

~d!~x!, ~5!

where the summation runs over all occupied surface bo
states. We assume thatT50 K; therefore, only the lowes
states are occupied; this assumption is justified by
experiment4 to which the present theory is to be applied. T
bound electrons of the inversion layer are described by
kinds of states8 ucnk

(u)& and ucnk
(d)&, wheren is the subband

index, a new quantum number which ranges over the inte
values$0,1,...% andk is the in-plane wave vector already d
fined and restricted to the first Brillouin zone. With this n
tation r inv

(u)(x) andr inv
(d)(x) become

r inv
~u!~x!5

S

2p (
n
E

0

KF
~nu!

uCnk
~u!u2k dk, ~6a!

r inv
~d!~x!5

S

2p (
n
E

0

KF
~nd!

uCnk
~d!u2k dk. ~6b!

In Eqs. ~6a! and ~6b! the sums are over all occupied su
bands, andkF

(nu) andkF
(nd) , are the Fermi wave vectors of th

nth subband for species~u! and (d), respectively, whileS is
the lateral surface area. The Fermi wave vectors satisfy
relationEF5En i(kF

(n i )), whereEF is the Fermi energy of the
2D electron gas andEn i(k), with i 5u or d, is the energy
spectrum of subbandn and species~i!.

We write uc (u)& as t(w1
(u) , w2

(u) , w3
(u) , w4

(u)) with
w1

(u) , ...,w4
(u) being slowly varying envelope functions stan

ing for the components of the 4-spinoruc (u)& on the relevant
basis~see Appendix A! and t(¯) standing for the transpos
operation, foruc (d)& replace~u! by ~d! everywhere. In Eqs.
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13 638 PRB 60SAADI LAMARI
~6a! and ~6b! for r inv
(u)(x) andr inv

(d)(x), the probability densi-
ties ucnk

(u)u2 and ucnk
(d)u2 then become

uCnk
~u!~x!u25(

i 51

4

uw i ,nk
~u! ~x!u2, ~7a!

uCnk
~d!~x!u25(

i 51

4

uw i ,nk
~d! ~x!u2. ~7b!

Note that the density isk dependent since the componen
w1 ,w2 ,... of the4-spinorsuCk(u)& and uCk(d)& arek depen-
dent.

Far away from the interface the effects of the gate volta
are screened by the charge distribution and the electric
vanishes beyond the depletion layer depthd defined through
VH8 (d)50. Using this condition andVH(0)50 as BC for
VH(x), the Hartree potential may then be written in its int
gral representation as

VH~x!5
4pe2

es
H ~Ninv1Ndep!x2

Ndep

2d
x2

2E
0

x

~x2x8!r inv~x8!dx8J . ~8!

In Eq. ~8! for VH(x), Ninv5*0
dr inv(x)dx and Ndep5d(NA

2ND) are the areal electronic density in the inversion la
and the surface density of ionized impurities, respective
with NA andND being the volume densities of acceptors a
donors, respectively. The depletion layer depthd defined
previously is given by

d25
2

uND2NAu S es

4pe2 ~EF1«g/2!2E
0

`

xr inv~x!dxD ,

~9!

Equations~3!–~9!, together with the Schro¨dinger equation
~1!, form the basis of the zero-field treatment of the ele
tronic structure in a NGS inversion layer. The equations
somewhat complicated and their solution necessitates el
rate self-consistent computations that are performed num
cally. To solve the self-consistent problem we proceed in
following way. We first writew1

(u) in the following form:

w1
~u!5g~x!Au~x!

eiky

AS
~10!

with g(x) being given by

g~x!5U@«g/21E2V~x!#@«g/21D1E2V~x!#

@«g/212D/31E2V~x!#
U1/2

~11!

andAu(x) an unknown function satisfying the equation

d2

dx2 Au~x!1Qu~x!Au~x!50. ~12!

In Eq. ~11! for g(x), «g andD are, respectively, the energ
gap between theG6 andG8 bands on the one hand and th
spin-orbit splitting between theG7 and G8 bands on the
e
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other, with G6 , G8 , and G7 being, respectively, the lowes
conduction bands, the topmost valence bands, and the s
off bands.

In Eq. ~12!, note that the ‘‘reduced wave amplitude
Au(x) depends both onE andk; moreover, the same equatio
may be thought of as a one-dimensional~1D! Schrödinger
equation withQu(x) being a squared wave vector which isx,
E, andk dependent and given by

Qu~x!5bu~x!1a1~x!
d

dx
lnug~x!u1

1

g~x!

d2

dx2 g~x!

~13!

with the new functionsa1(x) andbu(x) given by

a1~x!5
dV~x!

dx S 1

«g/21E2V~x!
1

1

«g/21D1E2V~x!

2
1

«g/21E12D/32V~x! D , ~14!

bu~x!5
@E2V~x!#22«g

2/4
2
3 P2

J~D!

1

1
2 kV8~x!

«g/21E2V~x!
Q~D!2k2, ~15!

whereJ~D! andQ~D! are

J~D!5
D1E1«g/22V~x!

D13/2@E2V~x!1«g/2#
,

Q~D!5

4
3 D@«g/21E2V~x!1D/2#

@«g/21D1E2V~x!#@«g/21E2V~x!12D/3#
.

In Eq. ~15! for bu(x) the new parameter P
52 i\/m^SuPzuz& is simply Kane’s momentum matrix ele
ment with m being the free-electron mass. In the six-ba
model D→`, J~D! and Q~D! tend to 1 and these expres
sions take a much simpler form,

g~x!→u3@«g/21E2V~x!#/2u1/2, ~118!

a1~x!→ V8~x!

«g/21E2V~x!
, ~148!

bu~x!→ @E2V~x!#22«g
2/4

2
3 P2

2k21
1

2

kV8~x!

«g/21E2V~x!
.

~158!

In the four-band model the equations are

g~x!→A«g/21E2V~x!, ~1188!

b~x!→ @E2V~x!#22«g
2/4

P2 2k2, ~1588!

a1~x!→ V8~x!

«g/21E2V~x!
. ~1488!
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B. Self-consistent computations

Consider Eq.~12! for the ‘‘reduced wave amplitude’
Au(x), which is essentially a 1D second-order different
equation with two parametersE andk, and look for solutions
satisfying the proper BC at the interface~Appendix A! and
vanishing atx51`. The ad hocBC at x51` is imposed
on physical grounds only because the electrons in the in
sion layer are bound to the surface and are not likely
‘‘stray away’’ very far from it. In other words, this approxi
mation neglects tunneling16 from the conduction band into
the valence bands, although tunneling into the gap is p
tially allowed, and is expected to break down when the f
bidden gap«g becomes very small as the case is in the N
compound Hg12xCdxTe as the Cd content diminishes andx
approaches zero. No effort will be spent on considering
effects of tunneling on the electronic structure.

Let x1 be the classical turning point defined byQu(x1)
50. Then in the classically allowed region defined by 0,x
<x1 , whereQu(x).0, the semiclassical solution of Eq.~12!
is17

Au~x!}A 8pz

3Qu
1/2 H cosS h1

p

3 D J1/3~z!

1cosS p

3
2h D J21/3~z!J , ~16!

where the ‘‘phase’’z(x) is given by z5*x
x1AQu(x8)dx8,

andh is a real constant. In the classically forbidden regio
defined byx>x1 and whereQu(x),0, the solution is given
by17

Au~x!}A 8uzu
puQuu1/2Fp sin~h!I 1/3~ uzu!

12 cosS p

3
2h DK1/3~ uzu!G , ~168!

with z(x) given by z5*x1

x AuQu(x8)udx8. In both cases the

‘‘phase’’ z(x) is E andk dependent since bothQu(x) andx1
are. In Eq.~16! for Au(x), J61/3 are Bessel functions of th
first kind of order61/3, similarly in Eq.~168! K1/3 and I 1/3
are modified Bessel functions of the same order.18 These
functions are distinct from the Airy functions Ai and Bi a
though they are related to them through well-know
expressions.18 For an argumentu real and large the modified
Bessel functionsKn(u) and I n(u) have the asymptotic
behaviors18 I n(u);euY1(u) and Kn(u);e2uY2(u), where
Y1(u) andY2(u) are regular functions ofu. Sincez(x) is a
positive and increasing function ofx, we define the bound
states ofH8 by settingh to zero to eliminate the diverging
term in Eq.~168!. In the classically forbidden regionAu(x)
takes on the form

Au~x!}2S 8uzu
puQuu1/2D 1/2

K1/3~ uzu! ~17!

with a corresponding form in the classically allowed regio

Au~x!}A 8pz

3Qu
1/2$J1/3~z!1J21/3~z!%. ~178!
l

r-
o

r-
-
S

e

,

At the interface the total wave functionuC (u). vanishes
identically in the whole planex50; this requirement im-
poses onAu(x) the following BC:

1

Au

dAu

dx U
x50

5G~E,k!, ~18!

whereG(E,k) is anE andk-dependent function given by

G~E,k!5
eEx~0!

2
G1~D!2

k

2
G2~D!

1
1

A2/3P
~E1«g/2!J~D! ~19a!

and the new functionsG1(D) andG2(D) are written as

G1~D!5

2
3 D21 4

3 D~E1«g/2!1~E1«g/2!2

~E1«g/21 2
3 D!~E1«g/21D!~E1«g/2!

,

~19b!

G2~D!5
D

D1 3
2 ~E1«g/2!

, ~19c!

with the already defined functionJ~D! to be evaluated atx
50.

In the six-band model the expressions forG1(D) and
G2(D) are obtained by taking the limitD→` while in the
four-band model one must setD to 0 in the expressions fo
G1(D) andG2(D) and replaceP by P853/2P. In Eq. ~19a!
for G(E,k), e is the proton charge andEx(0) is the electric-
field strength right at the interface. Although the right-ha
side of Eq.~18! involves the electric field at the interfac
only, the spectrum depends on the self-consistent potenti
the whole inversion layer because bothx1 andz depend on it
there, too.

For a given potentialV(x), the use of the semiclassica
expression forAu(x), given by Eq.~178!, in Eq. ~18! com-
bined with Eqs.~19a!–~19c! results in a highly nonlinear
eigenvalue equation forE where the wave vectork enters as
a parameter. The values ofE(k) obtained in this way are
approximate, but within a meV or so of the exact valu
nonetheless, they need to be refined later in order to get
right wave functions which are very energy sensitive; t
approximate subband structure is nevertheless very usef
obtaining the right subband structure for an otherwise v
complex numerical problem. The parameterses , «g , D, and
P are fixed by the choice of the material and taken to
those of bulk. The extensive amount of experimental data
InSb ~Ref. 4! led us to choose it for our numerical comput
tions. Moreover, for simplicity we use the six-band model
dropping the split-off band~i.e., we letD→`), in this ap-
proximation the bulk effective mass at theG point is given
by \2/2m* 52P2/3«g .

The self-consistent calculations proceed in the followi
way. For a given areal electronic densityNinv we make a first
guess, e.g., triangular potential;5 for V(x) to start the com-
putations; this allows us to find the energy spectrum,
wave functionsuCnk

(u)& anduCnk
(d)&, the Fermi energyEf , and

the depletion layer depthd. The electronic density is then
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evaluated and used in Eq.~8! to compute the new potentia
V(x) which will then be used in the next iteration until se
consistency is reached. To make the numerical calculat
stable it is useful to use the schemeVin

(n11)5Vin
(n)1l(Vout

(n)

2Vin
(n)),5 where 0,l,1, andVin

(m) and Vout
(m) are the input

and output potentials in themth iteration, respectively. In
practice, we start withl'0.3 and then increasel toward 1
as self-consistency approaches. For a given potentialV(x),
i.e., within a given iteration, we first look for the spectru
within the semiclassical approximation and then later refi
the results using a bracketing algorithm; the paramete19

used are«g5236.8 meV for the direct gap,m* 50.0139 m
for the bulk band-edge mass,es517.8 for the static dielectric
constant, anduNA2NDu5331014cm23 ~Ref. 4! for the den-
sity of the ionized uncompensated impurities.

C. Results and discussion

This section presents the results of our self-consis
computations and checks them against available experim

FIG. 1. Subband structure of electrons in the inversion layer
the absence of a magnetic field, with the Fermi energyEF and the
wave vector along the interfaceK i ; the indices~u! and ~d! are
explained in the text.

FIG. 2. Subband energy atK i50 as a function of areal electro
densityNinv . The indices 0, 1, .., denote the subband and the das
curve represents the Fermi energy.
ns

e

nt
n-

tal data found in the published literature. The comparis
serves as a test of the complex self-consistent calculat
and allows us to make some assessments about the
consistent potential to which the electrons in the invers
layer are submitted.

Figure 1 shows a typical subband structure calcula
with the present theory; very clearly seen is the spin splitt
of the subbands caused by the strong surface electric fiel
Fig. 2 we plotEn

u,d(k50) as a function of the areal electro
densityNinv for the subband indexn ranging from 0 to 3.
Also shown in dashes is the Fermi energyEF whose inter-
section with the solid lines labeled byn indicates at which
density a given subband starts to be populated. For a g
densityNinv we define the spin splitting within a given sub
bandn asDE(k)5En

(d)(k)2En
(u)(k). In Fig. 3 we show this

spin splittingDE as a function of the in-plane wave vectork
for Ninv52.5931012cm22. Note how the spin splitting di-
minishes as the subband index increases; note also ho
increases withk and reaches rather large values in the or
of a few tens of meV. In Fig. 4 we display our calculate
subband occupanciesnn as a function ofNinv . The subband

n

ed

FIG. 3. Electric-field-induced splitting@En
(d)(k)2En

(u)(k)#, as a
function of the in-plane wave vector; the indices 0, 1, .., denote
subbands.

FIG. 4. Theoretical subband occupancies~solid lines! along with
the experimental subband occupancies taken from Ref.
n0 ,n1 ,...,n3 are, respectively, the occupancies of the zeroth, firs
and third subbands.
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occupancy nn is computed using nn5(1/2p)(kf
(nu)2

1kf
(nd)2

), wherekf
(nu) andkf

(nd) are defined in Sec. II A. Also
shown on the same figure are experimental data points ta
from Ref. 4 for three different sets of samples. It is clear t
agreement is excellent over the whole range ofNinv , i.e.,
from 0.2131012cm22 to about 2.5931012cm22; however,
the experimental data seem to show some structure, asNinv is
varied, which the present computation does not reprod
We believe that this structure originates entirely from t
presence of the finite magnetic field present in the SdH
periments used to deduce the subband occupancies. W
fine a subband density-of-state massmns* with s being equal
to ~u! or ~d!, evaluated at the Fermi level, as

mns* 5\2kF
~ns!S ]Ens~k!

]k D
k5k

F
~ns!

21

.

It is clear thatmns* depends on the subband index, the s
index, and the electron densityNinv . In Fig. 5 we display the
calculated subband density of state mass together with
experimental CR mass as measured in Ref. 4. Three im
tant features should be commented on here.~1! All calcu-
lated masses occur in doublets, thus reflecting a notice
difference in mass for each branch~u or d! of the spin split
subband.~2! The subband massmns* is very subband depen
dent, which is a well-known characteristic of NGS and c
be traced back to the nonparabolicity of the 3D band str
ture. ~3! All massesmns* are monotonously increasing func
tions ofNinv . On the other hand, the experimental masses
deduced in the same reference, show the following pro
nent aspects:~1! there is a set of three different masses, ea
of which corresponds to a given subband,~2! the masses
increase steadily asNinv increases, and~3! the mass, espe
cially in the zeroth subband, shows a marked oscillatory
havior superimposed on its steady increase. We now c
ment on these important issues. First, the discrepa
between the calculated density-of-state~DOS! mass and the
experimental CR mass is rather large; second, the DOS m
shows no oscillatory behavior; and third the latter is s
split whereas the experimental CR mass is not. These re
show that unlike the situation in a wide gap semiconduc

FIG. 5. Calculated spin split density-of-state~DOS! massmva*
~solid lines! along with the measured CR masses~j! taken from
Ref. 4 as a function of the areal electron densityNinv .
en
t

e.

x-
de-

n

he
r-

le

n
-

as
i-
h

-
-

cy

ss

lts
r,

in a NGS it is just inadequate to compare the zero-field m
mns* with finite field CR mass, a practice which has be
widely adopted. This result demonstrates clearly the nec
sity of including the effects of the magnetic field in th
whole picture.

III. FINITE FIELD TREATMENT

A. Formulation of the problem

Consider now the problem of the electronic structure
the presence of a finite magnetic field. For later convenie
we consider two frames of reference$x,y,z% and $X,Y,Z%
denoted by~a! and ~b!, respectively. Frames~a! and ~b! are
related to one another by the identitiesx[Z, y[X, z[Y.
Frame ~a! is convenient for the study of electrons in th
absence of a normal magnetic field and is the one use
Sec. II. On the other hand, because the natural direction
quantizing angular momentum is the one provided by
magnetic fieldB, frame~b! is the frame of choice for study
ing the electronic structure in the presence of aB field. As
the need arises we will make use of either frame.

As in the preceding sections the semiconductor occup
the right-hand side and the insulator the left-hand side w
the magnetic fieldB being normal to the interface and poin
ing in the positiveZ direction. The eight-band Kane mode
with all the quadratick terms being neglected, is used with
the EMA; moreover, the self-consistent potentialV(Z) is
assumed to be independent of the magnetic fieldB. In the
EMA H8, the one-particle Hamiltonian of the system, m
be written asH(k)1IV(Z), whereI is the identity operator
andH(k) is the Kane Hamiltonian with the corresponden
k→2 i¹1e/\cA being made. Note that inH8 both H(k)
and I are 838 matrix operators written on the basis vecto
$u1&,...,u8&% of Appendix A where lowercase letters are, how
ever, replaced by uppercase ones because of cubic symm
We introduce the vector potentialA which we write in the
Landau gauge as (2BY,0,0); furthermore, we define th
creation and annihilation operatorsa and a† by 2s(kX

1 ikY)/& and 2s(kX2 ikY)/&, respectively, with the cy-
clotron radiuss being given by (c\/eB)1/2. The operatorsa
and a† in terms of which we express the operatork given
above satisfy the commutation relation@a,a†#51. In addi-
tion, a†xn5An11xn11 and axn5Anxn21 , where xn(Y
2Y0) is the harmonic-oscillator wave function of ordern
centered atY05s2kX ; in the expression givingY0 , kX is the
wave vector along theX direction which is conserved be
cause of our choice of gauge.

To alleviate the notation we will drop the subscriptX
from kX and denote it simply byk; the new quantum num
bers, in the presence a magnetic field, then becomen, n, k
ands with n being the Landau index of the state ands the
spin which we quantize alongZ. As beforen denotes the
subband, note thatn ranges over the set of integer valu
$21,0,1,2,...%, and the convention of Ref. 8 is used, i.e., t
Landau index of a given state refers to the Landau index
the first component of its spinor and the component of
spinor is taken to be identically zero if the oscillator wa
functionxn8(Y2Y0) for that component involves a negativ
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index n8. As for s it can take on one of two values61,
denoted6, andk is limited to the first Brillouin zone.

The eigenstateFnnks of H8 satisfies the Schro¨dinger
equation
-

th
a
.
ch

e

H8Fnnks5EFnnks . ~20!

With L denoting the length of the sample in theX direction,
Fnnks is written as
Fnnks5
eikX

AL
t~F1xn8F2xn118F3xn218F4xn8F5xn118F6xn128F7xn8F8xn11!, ~21!
rms
ian

ed

tum
m

nts

es
k-

ms

ter-
where$F j% for j 51,...,8 areZ-dependent slowly varying en
velopes functions, which depend on the three indicesn, n,
and s; because of the presence of the electric field in
space-charge layer and also because of the special BCZ
50, solving Eq.~20! is not a trivial task. As it stands Eq
~20! is a set of eight first-order differential equations whi
we solve as follows: First Eq.~21! for Fnnks is plugged into
Schrödinger’s equation, Eq.~20!, which turns into

h~n!jnns5Ejnns , ~22!

whereh(n) is an 838 matrix operator andjnns(Z) is given
by

jnns~Z!5 t~F1,F2,F3,F4,F5,F6,F7,F8!. ~23!

Now let h̃(n)5Uh(n)U† andj̄5Uj be the transforms ofh(n)

andj, respectively, by the unitary transformationU given by

U5S P1

0
0

0
P2

0

0
0

P1

D . ~24!

In Eq. ~24! for U, 0 stands for a nil matrix of appropriat
dimensions~i.e., 232, 234, or 432) andP1 and P2 are
given by

P15
1

2 S 2a
a*

2a
2a* D ,

P25
1

4 S a*
)a

2)a*
2a

)a*
a

a*
)a

)a*
2a
a*

2)a

a*
2)a

2)a*
a

D ~25!

with a511 i . We write h̃(n) explicitly as

h̃~n!5S H0
~1 !

0

0
H0

~2 !D1gS R
0

0
2RD1dS 0

R
R
0 D ~26!

with
e
t

R5S 0
2 i

2 i)
0

i
0
0
0

i)
0
0
0

0
0
0
0
D ,

where g5
P

4s
~2An112An2An12!

and d5
P

4s
~An122An!. ~27!

In Eq. ~26! H05H0
(1)

% H0
(2) , the first part ofh̃(n) describes

the semiclassical effects while the second and third te
describe the quantum contributions. Note that the Hermit
434 matrix R, with eigenvalues$0,62%, is constant. The
importance of the quantum corrections are all includ
within the coupling constantsd andg, which both tend to 0
as the magnetic fieldB vanishes or asn increases towards
infinity. In practice the lowest levels~with small n! are the
only ones of interest and one has to consider the quan
contributions very seriously because their effect is far fro
being small. Moreover, although both coupling consta
tend to vanish for largen, the contribution of the last term is
always dominant.

Let uznns& be an eigenstate ofH0 with eigenvalueenns .
Then, becauseH0 is already block diagonal, its eigenstat
uznns& can be obtained from the 4-spinors of Sec. II by ma
ing the substitutionk→2A2(n11)/s. For n fixed the states
uznns& satisfy the orthogonality relation̂ znnsuzn8ns8&
5dnn8dss8 , and form, therefore, a convenient basis in ter
of which the eigenstatesu j̄nns& of h̃(n) can be expanded as

u j̄nns&5 (
n8s8

Cn8s8,nsuzn8ns8&, ~28!

where the complex expansion coefficients are to be de
mined. Hence, the eigenvalue problem becomes

~enns2E!Cns,ns1 (
n850;s8561

`

^znnsuR~n!uzn8ns8&

3Cn8s8,ns50, ~29!

where we introduced the operatorR(n)5h̃(n)2H0 .
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B. Results and discussion

We solved Eq.~29! numerically proceeding in the follow
ing way: For a given densityNinv , the self-consistent poten
tial being that of Sec. II, we fixn and B. First we find the
eigenvaluesenn8s and eigenvectorsuznn8s& of H0 for s
56 ~corresponding tou and d, respectively! and n
50,...,5, then we construct the matrix̂zn8ns8uR(n)

1ennsI uznns& which we diagonalize numerically. The cha
acter of the resulting states is determined from the value
the dominant expansion coefficients. Note that converge
in the expansion given by Eq.~28! is assured because asn
increases the eigenfunctionsznns(Z) oscillate more and
more rapidly and this makes the influence of higher subba
on the lower ones~the ones actually populated! less and less
effective because the overlap integrals defining the ma
elements ofR(n) become very small. By repeating this pr
cedure for another value ofn at the same magnetic-fiel
strengthB we get the whole spectrum. Since our aim is t
interpretation of CR spectra, we restrict our computatio
only to those values ofB extracted from CR traces at whic
resonance seems to occur. Our calculations of the Lan
ladder cover the rangeNinv50.2131012cm22 to 2.11
31012cm22 and at each density the computations are p
formed for a fewB values. Figure 6 shows a typical Landa
ladder, the doublet structure on the left exhibits the Land
levels ~LL ! in the semiclassical approximation~i.e., give
enns) while those on the right include the quantum corre
tions already mentioned. The calculation is forNinv50.21
31012cm22 and B'2.34 T; the indices (nns) identify the
different LL with 1̄ denoting the casen521. It is worth
noting the intricate structure of this energy spectrum wh
comes as a consequence of the very small bulk massm* and
large g* for InSb. Note, in particular, how LL from highe
subbands, e.g.,~101!, are lower in energy than levels from
lower subbands, e.g.,~011! or ~002!. It is noteworthy to

FIG. 6. Landau ladder in the presence of a finite normal m
netic field; the indices (nn s) are explained in the text and th
doublet on the left represents the energy levels within the semic
sical approximation as defined in Sec. III.
of
ce
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stress that the order in which the levels occur is import
because it determines which LL the CR process will involv
and hence the corresponding effective mass. Based on
knowledge of the LL we identified the levels involved in th
absorption process of the CR experiments reported in Re
~for details see Ref. 9!. In the experiment4 the authors use an
infrared laser of energy\v517.6 meV and sweepB to
achieve resonance. In our identification of the lines we u
the following guidelines: First we locate the position of th
Fermi level and look for states above the Fermi level that
be coupled to states below it, then compute the energy
ference between them and compare it to the laser energ
the difference is not too great compared to the line broad
ing \/t, the transition is considered resonant; otherwise,
look for states which are as close as possible to resona
Use is made of the line broadenings: 3.25, 1.625, and
meV for the ground, first, and second subbands, respectiv
as were reported and used to get the best fit in Ref. 4.

For n>0 the cyclotron mass is given bymnns*
5\v/(Enn8s2Enn821s), with n85n1 1

2 (11s) and
s561; v5eB/mc being the angular cyclotron frequenc
of free electrons.

In Fig. 7 the calculated cyclotron massmnns* is shown
together with the experimental results for comparison. F
we notice that theB50 masses (mns* ) are larger than the
BÞ0 masses for all values ofNinv contrary to what was
believed,14 as it was thought that the ‘‘energy associate
with B would add on to that due to the surface electric fie
alone and through nonparobolicity would lead to an incre
of the effective mass. That conjecture is, of course, errone
since it manifestly overlooks the variation of the Fermi e
ergy with the magnetic field. The results exhibited in Fig
deserve some discussion; in the second subband (n52) the
calculated mass ism202* in the two cases shown; note ho
the calculated mass shows a slight decrease asNinv increases
and thus follows remarkably well the trend of the experime
tal mass in contrast to theB50 theory of Sec. II which
predicts a spin-split mass and a steady increase of the la

-

s-

FIG. 7. Theoretical subband cyclotron resonance masses~m, h,
j! along with the measured cyclotron resonance masses~s! of
Ref. 4 for comparison. The abscissa represents the areal ele
density in the inversion layer and the dashes are guides for the
only.
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In the first subband (n51) the calculated masses atNinv

50.7131012cm22 and 0.9831012cm22 coincide with the
experimental masses. At higher densities we note, howe
less agreement with experiment. Nonetheless, the tren
well as the superimposed structure of the experimental m
are reproduced and the calculated mass is brought clos
the experimental one. We note in passing that atNinv51.17
31012cm22 the calculated masses representm111* andm102*
which are equal, within our numerical accuracy; at high
densities, on the other hand, the calculated masses repr
a single LL. In the ground subband (n50) the calculated
masses show a steady increase with some structure tha
lows quite well the experimental one; a doublet structure
also present at densities below 1.7731012cm22. The fit of
Ref. 4 uses only one mass per subband as a fitting param
and thus cannot predict multiple masses for each subban
is also of interest to note the stronger structure in the gro
subband which mainly comes as a result of the stronger m
netic fields required to achieve CR. These strong magn
fields produce large oscillations of the Fermi energy arou
its value in the absence of the magnetic field as is v
clearly seen in Fig. 8. These oscillations inEF are repro-
duced in the CR mass through two mechanisms. First,
oscillations ofEF determine which of the LL are capable o
contributing to the absorption process through the interp
of the filling factor of the levels, the selection rules, the Pa
exclusion principle, and the resonance condition. Second
nonparabolicity of the bulk band structure further comple
the picture by yielding field and Landau index-depend
masses.

IV. CONCLUSIONS AND SUMMARY

The present paper developed a self-consistent theor
electronic structure in the presence of strong magnetic fi

FIG. 8. Variations ofDEF5EF(B50)2EF(BÞ0) as a func-
tion of the areal electron densityNinv ; dashes are guides for th
eyes.
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for electrons in the space-charge layer of a III-V NG
MOSFET. The theory uses the effective-mass approxima
and the multiband Kane Hamiltonian within the Hartree a
proximation. The interface between the insulator and
NGS is taken care of through adequately derived bound
conditions for the spinor wave function. These BC lead,
they ought, to a vanishing current6 as the potential barrier in
the insulator becomes infinitely high.

The computation of the energy levels proceeded in t
stages. ~1! In the first step the magnetic fieldB is set to
zero and the self-consistent potentialV(x) @or V(Z)# is cal-
culated.~2! In the second step we letBÞ0 and useV(Z) in
the Hamiltonian which we transform using a special rotat
matrix and write in a way which makes the mathemati
structure of theB50 case of stage~1! obvious. This has the
advantage of making the computer codes of step~1! useful in
step~2! as well; physically it also helps see more clearly t
mechanisms which are at work in spin splitting the ene
levels.

To make the theory more widely useful, we discuss it
three different models: the eight-band model, the six-ba
model, and the spinless four-band model and we derive
propriate BC for all three cases. Our self-consistent com
tations are carried out on InSb within the six-band model.
the absence of magnetic fields (B50) we compute severa
physical quantities such as the self-consistent potentialV(x),
the subband structure, the electric-field-induced spin splitt
of the subbands, the subband occupancies, the Fermi en
and the subband density of state mass at the Fermi level.
calculated subband occupancies show excellent agree
with the experimental data of other workers; however,
calculated subband density-of-state mass does not show
a good agreement. We used this result to discredit the us
B50 theories inBÞ0 experiments~e.g., CR! on NGS. To
describe properly the experimental trends of the CR mas
NGS inversion layers, one has to include the effects of thB
field because of the strong nonparabolicity of theG6 bulk
conduction band. The calculatedBÞ0 energy levels show a
fairly complex spectrum with LL of higher subbands mer
ing with levels of lower ones due to the very small mass a
the largeg factor. TheBÞ0 theory is aimed at interpreting
experimental data; the values ofB, at which the computation
of the Landau ladder is performed, are taken directly fro
CR traces found in Ref. 4. Comparison between our ca
lated cyclotron resonance masses and experiment yields
following: ~i! The BÞ0 CR masses are brought closer
the experimental ones as compared to theirB50 counter-
parts, contrary to what was believed.4 ~ii ! The CR masses
show some structure as a function ofNinv which follows
quite well the structure observed experimentally and wh
was absent from theB50 density-of-state masses.~iii ! The
structure in~ii ! is attributed to the combination of two fac
tors: ~a! The dependence of the CR mass on the Lan
and spin indicesn ands, respectively, because of nonpar
bolicity, and~b! oscillations of the Fermi energyEF(BÞ0)
with respect toEF(B50) asNinv is varied.

The present theory applied to InSb MOSFETS appl
equally well to other systems, e.g., Cd12xHgxTe and other
III-V NGS. It can also be applied with minor modification
to CdTe/InSb heterojunctions and doped quantum wells.
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APPENDIX A

Let s be an eigenfunction of the crystal Hamiltonian
G6 , the conduction-band minimum, and letx, y, andz be the
spatial part of the eigenfunctions at theG7 andG8 , the top of
the valence band. Note thats, x, y, andz are periodic func-
tions which transform like atomics, x, y, andz atomic wave
functions under the action of the tetrahedral point group.
↑ denote a spin-up state and↓ a spin-down state with respec
to thez axis. The basis vectorsu1&,u2&,...,u8& are then given by

u1&5u is↑&,

u2&5u is↓&,
r

l-
l-

4/

t

u3&52u~x1 iy !/&↑&,

u4&52u~x1 iy !/A6↓&1A2/3uz↑&,

u5&5A2/3uz↓&1u~x2 iy !/A6↑&,

u6&5u~x2 iy !/&↓&,

u7&5u~x1 iy !/)↓&1uz↑&/),

u8&52uz↓&/)1u~x2 iy !/)↑&. ~A1!

Now let kz50 in the Hamiltonian and denoteky by k, then
the states $u1&,u3&,u5&,u8&% decouple from the state
$u2&,u4&,u6&,u7&%. Let us now define two new basis se
$uI&,...,uIV &% and $uI8&,...,uIV 8&% with uI&5u1&, uII &5u3&, uIII &
5u5&, uIV &5u8&, and uI8&5u2&, uII 8&52u6&, uIII 8&
52u4&, and uIV 8&5u7&. With respect to these two decou
pled sets the Hamiltonian readsH85H (u)

% H (d), whereH (u)

andH (d) are written on the unprimed and primed basis ve
tors, respectively, andH (u) is explicitly given by
s

H ~u!51
«g/21V~x!

P

&
S i

]

]x
2 ik D P

A6
S 2 i

]

]x
2 ik D P

)
S 2 i

]

]x
2 ik D

P

&
S i

]

]x
1 ik D 2«g/21V~x! 0 0

P

A6
S 2 i

]

]x
1 ik D 0 2«g/21V~x! 0

P

)
S 2 i

]

]x
1 ik D 0 0 2«g/22D1V~x!

2 ~A2!

andH (d) obtains fromH (u) by substitutingk by 2k.
At the interfacex50, the components of the wave function satisfy the BC,

w1
~u!~0!5 i S 2

)

2
w2

~u!~0!1
1

2
w3

~u!~0!1
1

&
w4

~u!~0!D ~A3!

with a corresponding expression for the spin-down case.

APPENDIX B

When the Landau indexn521, Eqs.~28! and ~29! cease to be valid and the eigenvalue problem of Sec. III become

h̄uC&5EuC&, ~B1!

whereh̄ is a 434 matrix operator given by
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h̄5S «g/21V~Z! 2 iA2

3
P

]

]Z

P

s
i

P

)

]

]Z

2 iA2

3
P

]

]Z
2«g/21V~Z! 0 0

P/s 0 2«g/21V~Z! 0

i
P

)

]

]Z
0 0 2«g/22D1V~Z!

D ~B2!

with the basis vectors beingu2&, u5&, u6&, and u8&, respectively, whose expressions are given in Appendix A. Now we writ

C5
eikX

AL
t@w2~Z!w5~Z!w6~Z!w8~Z!#, ~B3!

and we must find the bound states of Eq.~B1! subject to the BC,

i&w2~0!5w8~0!2&w5~0!. ~B4!

The solution of Eq.~B1! is now easy since it is amenable to theB50 case with very slight modifications in the comput
codes. In solving Eq.~B1! within the six-band model, we found it useful to writeh̄ as h̄01h̄1 with

h̄05S «g/21V~Z! 2 i
P

)
S& ]

]Z
1

1

sD P

s

i
P

)
S 2&

]

]Z
1

1

sD 2«g/21V~Z! 0

P

s
0 2«g/21V~Z!

D ~B5!
be

ons
and

h̄15
P

s)
S 0

2 i
0

i
0
0

0
0
0
D . ~B6!

Now let ^r uCn
(0)&5 t@w2,n(Z)w5,n(Z)w6,n(Z)#eikX/AL be a

solution of h̄0ucn
(0)&5«nucn

(0)& and writeuC& as

uC&5(
n

CnuCn
~0!&. ~B7!
ys

.

ev
Then

~«n2E!Cn1 (
n850

`

^Cn
~0!uh̄1uCn8

~0!&Cn850, ~B8!

which is now very easy to solve. Note that«n is exactly
equal to the semiclassical energy of the state and can
obtained from Sec. II by making the substitutionk
52&/s; h̄1 in this case represents the quantum correcti
to this semiclassical approximation.
o,

f

oc.
1E. O. Kane, J. Phys. Chem. Solids1, 249 ~1957!.
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