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In the presence of strong normal magnetic fields, the electronic structure of inversion electrons in the
space-charge layers of narrow-gap semiconductors is considered. We use the effective mass and local-density
approximations and include band mixing exactly in the full eight-band Kane model. The wave function
satisfies special derived boundary conditions which are generalized to include the split-off band; moreover, an
improved semiclassical approximation is introduced and successfully exploited to deduce the subband struc-
ture. A special unitary transformation taking the finite field problem into its zero-field counterpart is found. In
addition, the same transformation allows for the separation of the two contributions to the spin splitting of the
energy levels: The one due to the self-consistent field and the one due to the external normal magnetic field.
Extensive numerical computations are carried out on InSb metal oxide semiconductor field-effect transistors
and used to interpret existing experimental cyclotron resonance data. The cyclotron masses of the levels
involved in cyclotron resonance are computed as a function of areal electron ddpsignd compared to
experiment with which they show satisfactory agreement. In the ground subband, our theory predicts multiple
masses not found in previous interpretations; moreover, the Fermi ebBg(d) oscillates aroundEg(B
=0) asN,, varies leading to an effective mass* showing the same behavior through a combination of
nonparabolicity, Landau-level filling, and the Pauli exclusion princif$2163-182@9)01340-3

I. INTRODUCTION boundary conditions(BC) at the insulator/semiconductor
interface’® Moreover, in the presence of a strong magnetic

Narrow-gap semiconductorNGS) such as InSb and field, the Landau spacing of the levels is comparable to the
Hg;_.Cd,Te alloys have a fairly complex band structre intersubband spacing. These important peculiarities make the
from which follows a vast variety of exciting optical and interpretation of experiments delicate and the need for theo-
magneto-optical propertiésThese peculiarities make them retical self-consistent calculations a necessity.
excellent candidates for fundamental research as well as Among the published theoretical wofkS on NGS inver-
technological applications in areas such as infraft) sion layers a large share deals with the system in zero mag-

detectior® Substantial studies have been carried out, on dif"€tic field. Spr?.elgt.hers,_ hom(_av(jer, in‘;'JIUdS thea];fife(;:ﬁ of a
ferent systems based on these materials in many diﬁererﬁﬂg_et_ma%nettr'lct'e n aswtr;]pl 1€ ttwo-tanb mo h nd, In ;
experimental settings. Among these investigations, a ver tion 1o that, ‘assume the system to be n he gquantum

large number have been devoted to studies of the electronl'%:mit where only one subband is occupied. On the other
properties of inversion layers encountétdd MOSFETs and, Shubnikov—de Has¢SdH measuremerttsindicate

i ) : . the occupation of many more subbands, typically up to four
(metal oxide semiconductor field-effect transisjoia these (eight if we include spily in commonly encountered situa-

systems, g-type semiconductor substrate is covered with &jong |y the same work,cyclotron resonance experiments
thininsulating layer, usually an oxide, which is itself covered 5e reported and their authors stress in their interpretation the
with a metallic layer called the “gate.” When the gate volt- ccypation of many subbands to get a best fit. The results of
ageV, exceeds a threshold valig>0, a thin quasi-two-  the simplified theoretical model already alluded to cannot be
dimensional(2D) electron gas, called an inversion layer, directly compared to experiment and the need for a theory
forms and is trapped between the insulating interface and th@here the experimental conditions are taken into account is
depleted substrate regidriThe motion normal to the inter- obvious. The problem has recently been addressed by the
face becomes quantized, the electrons in the inversion lay@iresent author in a short publicatfon which the important
occupy so-called 2D subbands, and the system thus formagktails of the theory were not exposed. Because of the rela-
acquires many properties of its own. tion of this problem to systems such as CdTe/InSb
Inversion layers on NGS are special in many respectsheterojunctions? NGS quantum wire&® etc., we deem it
First, their bulk conduction-band dispersion is not parabolicuseful to give a full account of the theory underlying the
and is rather “relativisticlike.”® Second, their very small results already published.
band-edge mass* translates into a small density of state  The paper is organized as follows: In Sec. Il we give a
D(E) which in turn leads to the occupation of a large num-full presentation of the zero-field theory and explicitly ex-
ber of subbands for a given areal electronic denbity, . pose the basic equations for three particular models. Conse-
Third, the electron wave function in these materials is not aquently, our self-consistent results are shown and compared
scalar but transforms rather as an eight-component spinoto experiment. In Sec. Il we use the self-consistent potential
This particularity imposes on the wave function specialof Sec. Il and develop a theory for the finBdield case. The
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basic equations are derived and a method for their solution is nothing more than Kramer’s theorem appliedH6, sim-
systematically shown and applied; the results are then conplifies the writing of computer codes when solving the prob-
pared to experiment. Section IV concludes the paper antem self-consistently. From now on we focus on Ezp) for
summarizes the salient features of this work and its possiblps()) since Eq.(2b) can be obtained from it by the afore-
applications. In addition, the paper contains two appendixementioned transformation.

A and B which further complete the expositions in Secs. Il In the local-density approximatidhLDA V(x) is written
and 11, respectively. as:
Il. ZERO-FIELD THEORY V(X)=Vh(X) +Vin(X) + Vy(X), (€)
A. Formulation of the problem where V4 (X), Vin(X), and V,(x) are the Hartree, image,

This section presents the general theory used to find thand exchange-correlation potentials, respectively. Based on

electronic structure in the inversion layer in the absence of 1€ results of prior worlstye neglect the effects 0fjn(x)
magnetic field. For convenience we suppose the semiconduNd Vxc(X); these approximations help make the problem
tor to be on the right-hand side and the insulator on thdén0ré manageable without losing the main physics. More-
left-hand side. Let the axis be normal to the interface which OVer, the effect of impurities on the band-gap narrowing will
is taken to lie in the/zplane. We work in the full eight-band P& ignored at the doping levels considered. _
Kane model and denote H),|2),...|8) the basis vectors in The Hartree potentia¥/,,(x) satisfies the Poisson equation
terms of which we expand the wave functiph within the 5
k-p approximation. For the sake of clarity the expressions
for the basis vectors and the p Hamiltonian are given in
Appendix A. LetH(K), with K=k,& +k,&+k,&;, denote
the Kanek - p Hamiltonian in which all the quadraticterms
are neglected. This approximation for the full Hamiltonian is
valid only when dealing with electrons in the lowd&f con-
duction band and is widely used; in the expressiorkipg, , .
&, andé&; are the unit vectors along the respective directiongVrtten as

Ae?
WVH(X):_ G_S[Pinv(x)+Pde[;Ir (4)

wheree; is the static dielectric constant of the semiconduc-
tor, pinv(X) is the electron density due to the inversion elec-
rons, andpge, is the density of ionized impurities assumed
to be uniform. The induced electron density,(x) may be

X, y, andz
In_the ef_fectl\_/e—mass approgqmat_l’é‘n(EMA) the,wave piv= > WV |24 [ W D)2= )W (%) 4 p iy (5
function |y is written as|W)=37_,f;|i), where thef;’s are E<Eg

slowly varying envelope functions dfs). Similarly within
this single-particle approximation, the Hamiltonian of the
system is given byH' =H(K)+V(x)I, wherel is an 8x8
identity matrix, K=—iV, and V(x) denotes the self-
consistent potential felt by an electron in the space-chari)f

where the summation runs over all occupied surface bound
states. We assume th@t=0 K; therefore, only the lowest
states are occupied; this assumption is justified by the
xperimertt to which the present theory is to be applied. The

layer near the interface. In the absence of a magnetic fiel ound electrons of the inversion layer are described by two

i (u) (d) i
for an ideal interface where roughness is neglected and infiinds of state$|y1)) and[y,)), where is the subband
purities are distributed uniformly, the total Hamiltonian is Nd€X, @ new quantum number which ranges over the integer
translationally invariant in the'z plane and the component Valuesio,1,..} andk is the in-plane wave vector already de-
K, in this plane is conserved. Hendé,=k,&+k.&; is a fined ar(u? restr|cte<(jd)to the first Brillouin zone. With this no-
H u
constant vector and may simply be writtenkg8, by choos- ~ tation Pinv(X) andpiny(x) become
ing the direction oK, to coincide with&,; henceforth we let s o
k,=0 in H' and simply denot& by k. (W)= JKFVU W12k gk 6
The Schrdinger equation Pinv(X) 2772;‘ 0 Vel ’ (63

H'[W)=E[¥), 1)

@y > Ke @2
which is a set of eight coupled first-order differential equa- Pinv(X) = ZEV fo W[k dk (6b)
tions for the envelope functiorfy, f,,...fg breaks into two
subsets of equations, of lower dimension, given by In Egs. (6a) and (6b) the sums are over all occupied sub-
WO — (W) bands, an&{") andk{"?, are the Fermi wave vectors of the
HW W) =E[W), (23 vth subband for specids) and d), respectively, whileSis
HO Py — g (@ 25 the lateral surface area. The Fermi wave vectors satisfy the
(WD) =E[WD). @D relationEr=E,;(kI"), whereEr is the Fermi energy of the

The HamiltonianH' and wave functioriy) are given by the 2D electron gas ané&,;(k), with i=u or d, is the energy
direct sumsHWeH@ and |¢W)ya|y(D), respectively. spectrum of subband and speciesi).

Note thatH® and H(@ are related to one another by the We write [#() as (o{”, @8, ¢, ¢{") with
relationH® (k) =H@(—k), similarly for a given energf  ¢{,...,¢{" being slowly varying envelope functions stand-
the four-spinorg ¢ ") and|®) turn into each other, apart ing for the components of the 4-spinja¥")) on the relevant
from a phase factor taken to be unity, if we make the transbasis(see Appendix Aand '(--+) standing for the transpose
formation {u,k}—{d,—k}. This important property, which operation, for| (9} replace(u) by (d) everywhere. In Egs.
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(6a) and (6b) for p{W(x) andp{W(x), the probability densi- other, withT'g, ', andI'; being, respectively, the lowest
ties|¢(;|‘2|2 and|¢(vdk)|2 then become conduction bands, the topmost valence bands, and the split-
off bands.
4 In Eqg. (12), note that the “reduced wave amplitude”
W W) 2= o (x)|?, (7ad  A,(x) depends both oE andk; moreover, the same equation
=1 may be thought of as a one-dimensioiaD) Schralinger
equation withQ,(x) being a squared wave vector whiclxis

4
E, andk dependent and given b
[WR00P=3 lel S0l (7b) P gien by
< . ,
Note that the density i& dependent since the components Qu(X)=ﬁu(X)+6¥1(X)d—x|n|9(X)|+ Y] 729X
®1,¢,... of thed-spinors| WkW) and|wk®) arek depen- (13)

dent.
Far away from the interface the effects of the gate voltagevith the new functionsy,(x) and 5,(x) given by
are screened by the charge distribution and the electric field dV(x) 1 1
|

vanishes beyond the depletion layer degttiefined through ay(X) = n
V{,(d)=0. Using this condition and/;;(0)=0 as BC for ! dx \egl2+E—-V(X) g¢2+A+E-V(X)

Vy(X), the Hartree potential may then be written in its inte- 1
gral representation as - (14)
£4/2+E+2A/3—-V(x))’
e2 Ndep 2
Vh(x)= p (Niny+ Ngep X — 2d X [E—V(X)]2—£2/4
) BuX)=——— - E(4)
2p2
X 3
- fo<x—x'>pmv<x'>dx']. ® e
2
+——————0(A)—K? 15
In Eq. (8) for Viy(x), Niny=/3pin(X)dx and Nge;=d(Na ggl2+E—V(X) (4) 19
—Np) are the areal electronic density in the inversion Iayerwhereﬁ(A) andO(A) are
and the surface density of ionized impurities, respectively, -
with N, andNp being the volume densities of acceptors and A+E+zg/2-V(X)

donors, respectively. The depletion layer depithdefined BE(A)= ,
previously is given by A+3IZE-V(X) +e4/2]
I P f ) d

_|ND—|\|A| 47762( Fegl2)— OXPinv(X) X/, O(A)=

9
) . . _ In Eq. (15 for pBy(x) the new parameter P
Equatlons(B)—(9),_together with Fhe Schobinger equation — —ih/m(S|P,|z) is simply Kane’s momentum matrix ele-
(1), form the basis of the zero-field treatment of the elec-yent with m being the free-electron mass. In the six-band

tronic structure in a NGS inversion layer. The equations are,qqel A — =(A) and ©(A) tend to 1 and these expres-
somewhat complicated and their solution necessitates elab@jons take a much simpler form

rate self-consistent computations that are performed numeri-
cally. To solve the self-consistent problem we proceed in the 9(x)—|3[e4/2+E—V(x)]/2|*?, (11)
following way. We first writee{" in the following form:

$A[eg/2+E—V(x)+A/2]
[eg/2+ A+E—V(X)][e4/2+E—V(X)+2A/3]"

d2

ky L (14)
e a1(X) = 5T E o
(W= q(X) A (X) — 10 gql2+E—V(X)
1 =9(X)Ay(X) NG (10)
_ 2_ .2 '
with g(x) being given by By(X)— [E-VOOT =g 2, 1 &
2p2 2 g4/2+E—V(X)
( [eg/2+E-V(X)][eg/2+A+E-V(x)]|V? (15)
g(x)= —
[eg/2+2A/3+E—-V(X)] | 11) In the four-band model the equations are
andA,(x) an unknown function satisfying the equation g(x)—\egl2+E—V(X), (11'")
? [E—V(X)]2—£2/4
d—XzAu(X)+Qu(X)Au(X)—0- (12 B(X)— =2 9 K2 (15"
In Eq. (11) for g(x), e4 andA are, respectively, the energy )
gap between thé&'s andI'g bands on the one hand and the 4(X) V'(x) 14"
1

spin-orbit splitting between thé'; and I'g bands on the _>sg/2+ E-V(X)’
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B. Self-consistent computations At the interface the total wave functiop > vanishes

Consider Eq.(12) for the “reduced wave amplitude” identically in the whole _plane<=0; this requirement im-
A,(X), which is essentially a 1D second-order differential POS€S 0M,(x) the following BC:
equation with two parameteEBandk, and look for solutions
satisfying the proper BC at the interfac¢dppendix A and i %
vanishing atx=+%. Thead hocBC atx=+« is imposed Ay dx|
on physical grounds only because the electrons in the inver- i . )
sion layer are bound to the surface and are not likely tgVhereG(E k) is anE andk-dependent function given by
“stray away” very far from it. In other words, this approxi-

=G(E,k), (18

mation neglects tunnelinf from the conduction band into G(E,k)= e&(0) Ty (A)— EFZ(A)
the valence bands, although tunneling into the gap is par- ' 2 2
tially allowed, and is expected to break down when the for- 1
bidden gape 4 becomes very small as the case is in the NGS n Ete /2)E(A 19
compound Hg_,Cd,Te as the Cd content diminishes axd \/2/3p( s/22(4) (199
approaches zero. No effort will be spent on considering the ) .
effects of tunneling on the electronic structure. and the new functionk';(A) andI";(A) are written as
Let x; be the classical turning point defined KY,(x;)
=0. Then in the classically allowed region defined by Fia)= SN2+ SA(E+ey/2) +(E+eyl2)?
§1>§1, whereQ,,(x) >0, the semiclassical solution of E{.2) 1 (E+eg/2+ %A)(E+sg/2+A)(E+sg/2) '
'S (19b
A 8¢ s( + 203
oC J—
u(X) 30 cog 7+ 3 [Juad) Iy(A)= ————— (190
A+3(E+eyl2)
a
+cos< 3 n)J_1,3(§)], (16)  with the already defined functioB(A) to be evaluated at
=0.

where the “phase”{(x) is given by §=f§1‘/Qu(X')dX’. In the six-band model the expressions §(A) and

and 7 is a real constant. In the classically forbidden region,I' 2(A) are obtained by taking the limit —c while in the

defined byx=x, and whereQ,(x) <0, the solution is given four-band model one must satto 0 in the expressions for
by’ I'1(A) andI',(A) and replaceé® by P’ =3/2P. In Eq. (193

for G(E,k), eis the proton charge ang(0) is the electric-
8|¢| field strength right at the interface. Although the right-hand
Au(X) o \| =172
7| Qu
o
#2004 7| K12

msin( 7)1 y5([¢]) side of Eq.(18) involves the electric field at the interface
only, the spectrum depends on the self-consistent potential in
the whole inversion layer because bathand¢ depend on it
there, too.

For a given potentiaV(x), the use of the semiclassical
with £(x) given by {= [ V[Qu(x")[dX". In both cases the expression for,(x), given by Eq.(17'), in Eq. (18) com-
“phase” {(x) is E andk dependent since bot@,(x) andx, bined with Egs.(199—(190 results in a highly nonlinear
are. In Eq.(16) for A (x), J. 1,3 are Bessel functions of the eigenvalue equation fdE where the wave vectd enters as
first kind of order+1/3, similarly in Eq.(16') K3 andl,; @ parameter. The values &(k) obtained in this way are
are modified Bessel functions of the same ordefhese approximate, but within a meV or so of the exact value;
functions are distinct from the Airy functions Ai and Bi al- nonetheless, they need to be refined later in order to get the
though they are related to them through well-knownright wave functions which are very energy sensitive; this
expressiond® For an argument real and large the modified approximate subband structure is nevertheless very useful in
Bessel functionsK ,(u) and I,(u) have the asymptotic obtaining the right subband structure for an otherwise very
behavior&® | ,(u)~e"Y(u) andK,(u)~e “Y,(u), where complex numerical problem. The parametegs ¢4, A, and
Y;(u) andY,(u) are regular functions af. Since{(x) isa P are fixed by the choice of the material and taken to be
positive and increasing function of we define the bound those of bulk. The extensive amount of experimental data on
states ofH’ by setting to zero to eliminate the diverging InSb(Ref. 4 led us to choose it for our numerical computa-
term in Eq.(16'). In the classically forbidden regioA,(x)  tions. Moreover, for simplicity we use the six-band model by
takes on the form dropping the split-off bandi.e., we letA—), in this ap-

proximation the bulk effective mass at tliepoint is given
8lyl |\ by %12/2m* =2P?/3e,.
Au(x)>2 7T|Qu|172 Kual[Z]) 17 The self-consistent calculations proceed in the following
] ] ] ] ~way. For a given areal electronic densiy,, we make a first
with a corresponding form in the classically allowed region guess, e.g., triangular potentfafor V(x) to start the com-

putations; this allows us to find the energy spectrum, the

8 . .
Ay(X) /_771%{31/3(04_\]_1/3@)}_ 17) wave funcponéﬁlf%) and|¥(9), the Fermi energ¥;, and
3Qy the depletion layer deptt. The electronic density is then

: (16)
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220 | | | | | FIG. 3. Electric-field-induced splittinge? (k) —E“(k)], as a
o) 2 4 function of the in-plane wave vector; the indices 0, 1, .., denote the
K" (10-2 I&-l) subbands.

FIG. 1. Subband structure of electrons in the inversion layer, ing| data found in the published literature. The comparison
the absence of a magnetic field, with the Fermi endfgiand the  serves as a test of the complex self-consistent calculations
wave vector along the interfadg, ; the indices(u) and (d) are  gnd allows us to make some assessments about the self-
explained in the text. consistent potential to which the electrons in the inversion

evaluated and used in E8) to compute the new potential 'ayer are submitted. _
V(x) which will then be used in the next iteration until self- _Figure 1 shows a typical subband structure calculated

consistency is reached. To make the numerical calculationdith the present theory; very clearly seen is the spin splitting
stable it is useful to use the schenaf*V=v(M ) (v  of the subbands caused by the strong surface electric field. In

—Vv{M 5 where 0<\<1, andV{™ and V(™ are the input Fig. 2 we pIotE‘;'d(k=0) as a function of the areal electron

and output potentials in thenth iteration, respectively. In density Ni,, for the subband index ranging from O to 3.
practice, we start with~0.3 and then increasetoward 1  Also shown in dashes is the Fermi eneigy whose inter-
as self-consistency approaches. For a given potevitia), section with the solid lines labeled byindicates at which
i.e., within a given iteration, we first look for the spectrum density a given subband starts to be populated. For a given
within the semiclassical approximation and then later refinedensityN;,, we define the spin splitting within a given sub-
the results using a bracketing algorithm; the param&ers bandv asAE(k)=E® (k) —EM (k). In Fig. 3 we show this
used aresy=236.8meV for the direct gapn* =0.0139m  spin splittingAE as a function of the in-plane wave vector
for the bulk band-edge mass,= 17.8 for the static dielectric  for N,,,=2.59x 10*2cm™2. Note how the spin splitting di-
constant, angN,—Np|=3x10""cm™ (Ref. 4 for the den-  minishes as the subband index increases; note also how it
sity of the ionized uncompensated impurities. increases wittk and reaches rather large values in the order
of a few tens of meV. In Fig. 4 we display our calculated
subband occupancies, as a function olN;,,. The subband
This section presents the results of our self-consistent
computations and checks them against available experimen-

C. Results and discussion

7~
£
o
L o 3
hd
— 350- g
3 o 2L
0
E B o
5 2
g 250_ g 1 L
L 2
i i 2 )
MZ””@D o n.
150 .
| | i 1 0 1 2 3
2 3 DENSITY (10” cm-2)

1
DENSITY (10°cm?)
FIG. 4. Theoretical subband occupandigslid lineg along with
FIG. 2. Subband energy &i;=0 as a function of areal electron the experimental subband occupancies taken from Ref. 4.
densityN;,, . The indices 0, 1, .., denote the subband and the dashea,,n,,...,n; are, respectively, the occupancies of the zeroth, first,...
curve represents the Fermi energy. and third subbands.
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in a NGS it is just inadequate to compare the zero-field mass
m’_ with finite field CR mass, a practice which has been
widely adopted. This result demonstrates clearly the neces-
sity of including the effects of the magnetic field in the
whole picture.

Il. FINITE FIELD TREATMENT
A. Formulation of the problem

Consider now the problem of the electronic structure in
the presence of a finite magnetic field. For later convenience
we consider two frames of referen¢e,y,z} and{X,Y,Z}

DENSITY (10" cm-2) denoted by(a) and (b), respectively. Frameg) and (b) are
related to one another by the identitiesZ, y=X, z=Y.

FIG. 5. Calculated spin split density-of-stal@OS) massm,,  Frame (a) is convenient for the study of electrons in the
(solid lineg along with the measured CR mas<# taken flom  jpsence of a normal magnetic field and is the one used in
Ref. 4 as a function of the areal electron densify, Sec. Il. On the other hand, because the natural direction for

. . 2 Quantizing angular momentum is the one provided by the
occupancy n, is computed using n,=(1/2m) (k"™ aonetic f : :

0 v v gnetic fieldB, frame(b) is the frame of choice for study-
+k{*)%), wherek{*") andk{"? are defined in Sec. Il A. Also ing the electronic structure in the presence @ field. As
shown on the same figure are experimental data points takefe need arises we will make use of either frame.
from Ref. 4 for three different sets of samples. Itis clear that As in the preceding sections the semiconductor occupies
agreement is excellent over the whole rangeNgf,, i.e.,  the right-hand side and the insulator the left-hand side with
from 0.21x10'*cm™? to about 2.5% 10'*cm™? however,  the magnetic field® being normal to the interface and point-
the experimental data seem to show some structuf®,@&  ing in the positiveZ direction. The eight-band Kane model,
varied, which the present computation does not reproducgyith all the quadratick terms being neglected, is used within
We believe that this structure originates entirely from they,o EMA; moreover, the self-consistent potenti&Z) is
presence of the finite magnetic field present in the SdH ex; ssumed to be independent of the magnetic f&ldn the
periments used to deduce the subband occupancies. We dex A H', the one-particle Hamiltonian of the system, may

Iln((a ? Su(t)dt;are]d dlegtse'g':tf'tit:tﬁ m“?‘?é W'Ith o being equal o\ ritten asH (k) +1V(Z), wherel is the identity operator
0 () or{d), evalu ermi level, as andH (k) is the Kane Hamiltonian with the correspondence

JE (k)| 1 k— —iV+elficA being made. Note that ifl’ both H(k)
mﬁ(,:ﬁzk(pw) (T) . andl are 8<8 matrix operators written on the basis vectors
k=kg'” {|1),...8)} of Appendix A where lowercase letters are, how-

. . ._ever, replaced by uppercase ones because of cubic symmetry.
It is clear thatm* depends on the subband index, the spi ] . . o
vo 9€P P nWe introduce the vector potenti& which we write in the

index, and the electron density,, . In Fig. 5 we display the } :
calculated subband density of state mass together with thleandgu gauge as.—(.BY,0,0), furthermore, ;Ne define the
reation and annihilation operatoes and a' by —s(ky

experimental CR mass as measured in Ref. 4. Three impoF—_ X . ;
tant features should be commented on hétg.All calcu- T Ky)/v2 and —s(kx—iky)/v2, respectively, with the cy-
lated masses occur in doublets, thus reflecting a noticeabfdotron radiuss being given by ¢fi/eB)* The operators.
difference in mass for each bran@hor d) of the spin split anda’ in terms of which we express the operatogiven
subband(2) The subband mass®*,, is very subband depen- above satisfy the commutation relatipa,a’]=1. In addi-
dent, which is a well-known characteristic of NGS and cantion, a'y,=n+21x,.1 and ax,=nx,_1, where x,(Y

be traced back to the nonparabolicity of the 3D band struc—Yy) is the harmonic-oscillator wave function of order
ture. (3) All massesm’, are monotonously increasing func- centered a¥,=s?ky ; in the expression givind,, ky is the
tions ofN;,,. On the other hand, the experimental masses, agave vector along th& direction which is conserved be-
deduced in the same reference, show the following promicause of our choice of gauge.

nent aspectd) there is a set of three different masses, each To alleviate the notation we will drop the subscrigt

of which corresponds to a given subbarid) the masses from ky and denote it simply bk; the new quantum num-
increase steadily aM;,, increases, and3) the mass, espe- bers, in the presence a magnetic field, then becoyre k
cially in the zeroth subband, shows a marked oscillatory beand o with n being the Landau index of the state amdhe
havior superimposed on its steady increase. We now conspin which we quantize along. As beforev denotes the
ment on these important issues. First, the discrepancgubband, note that ranges over the set of integer values
between the calculated density-of-std0S) mass and the {—1,0,1,2,.}, and the convention of Ref. 8 is used, i.e., the
experimental CR mass is rather large; second, the DOS maksndau index of a given state refers to the Landau index of
shows no oscillatory behavior; and third the latter is spinthe first component of its spinor and the component of the
split whereas the experimental CR mass is not. These resulgpinor is taken to be identically zero if the oscillator wave
show that unlike the situation in a wide gap semiconductorfunction /(Y —Y,) for that component involves a negative
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index n’. As for ¢ it can take on one of two values1,
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H,q)vr‘lko': Eq)vnka' (20)

denoted=, andk is limited to the first Brillouin zone.
The eigenstated,,,, of H' satisfies the Schdinger  With L denoting the length of the sample in tKedirection,

equation D, IS written as
ikX
(bvnkazft(Fan’FZXn+1’F3Xn—1’F4Xn’F5Xn+l’FGXn+2’F7Xn’F8Xn+1)v (21)
|

where{F;} for j=1,...,8 areZ-dependent slowly varying en- 0 i iv3 0

velopes functions, which depend on the three indiges, i 0 0 0

and o; because of the presence of the electric field in the R= “iv3 0 0o ol

space-charge layer and also because of the special BEC at 0 0 0 0

=0, solving EQq.(20) is not a trivial task. As it stands Eq.
(20) is a set of eight first-order differential equations which
we solve as follows: First Eq21) for &, is plugged into

P
where y=,(2Jn+1- Jn—n+2)

Schralinger’'s equation, Eq20), which turns into

whereh(™ is an 8x8 matrix operator and,,,(Z) is given

by

Now leth™M=UhMU"' andé=U¢ be the transforms di™
and¢, respectively, by the unitary transformatibingiven by

In Eqg. (24) for U, 0 stands for a nil matrix of appropriate
dimensions(i.e., 2X2, 2X4, or 4X2) andIl; andII, are

given by

with a=1+i.

with

h

(n)

h(n)fvno: Eénos (22

U=

and 5=£( Jn+2—1n). (27)

In Eq. (26) Ho=H\"eH ), the first part o™ describes
the semiclassical effects while the second and third terms
describe the quantum contributions. Note that the Hermitian
4x 4 matrix R, with eigenvalues0,+2}, is constant. The

Eno(Z)="(F,,F,,F3,F4,Fs,Fg,F,Fg). (23)  importance of the quantum corrections are all included

within the coupling constants and y, which both tend to 0

as the magnetic fiel@ vanishes or a® increases towards
infinity. In practice the lowest level&vith small n) are the
only ones of interest and one has to consider the quantum
contributions very seriously because their effect is far from

Im o0 0 being small. Moreover, although both coupling constants
o II, 0. (24) tend to vanish for large, the contribution of the last term is
0 0 I, always dominant.

Let |{,n,) be an eigenstate df, with eigenvaluee,,,, .
Then, becaus@{, is already block diagonal, its eigenstates
|¢ney) can be obtained from the 4-spinors of Sec. Il by mak-
ing the substitutiok— —2(n+1)/s. Forn fixed the states
|{ ey Satisfy the orthogonality relatior{{,ng| ¢, e )
=96,, 0,, , and form, therefore, a convenient basis in terms

H lf-a -—a of which the eigenstatés,,) of h(™ can be expanded as
]__2 a* _ a* 3
a* V3a* V3a* a* |Eyno'>: Z, CV’U’,va| gv'na’>’ (28)
V3a a -« —V3a (25 n
_ * * * _ *
Via @ @ V3a where the complex expansion coefficients are to be deter-
Ta Via  —V3a a mined. Hence, the eigenvalue problem becomes
We writeh™ explicitly as -
(6vn0'_ E)CV(T,VO'+ , 2 <§Vﬂ0’|R<n)|§V’n0”>
MG 0 RO OR v
0 HE)*) +y 0—-R +6 RO (26) XCV/U/Y,,UZO, (29

where we introduced the operat®(™=h" —7,.
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Ref. 4 for comparison. The abscissa represents the areal electron

density in the inversion layer and the dashes are guides for the eye

FIG. 6. Landau ladder in the presence of a finite normal magonly.
netic field; the indices #n o) are explained in the text and the

doublet on the left represents the energy levels within the semiclasgyass that the order in which the levels occur is important
sical approximation as defined in Sec. Ill. because it determines which LL the CR process will involve,
and hence the corresponding effective mass. Based on our
knowledge of the LL we identified the levels involved in the
We solved Eq(29) numerically proceeding in the follow- absorption process of the CR experiments reported in Ref. 4
ing way: For a given densiti;,,, the self-consistent poten- (for details see Ref.)9In the experime#tthe authors use an
tial being that of Sec. Il, we fixn and B. First we find the infrared laser of energyiw=17.6 meV and sweeB to
eigenvaluese,,, and eigenvectors(,..,» of Hy for o  achieve resonance. In our identification of the lines we used
==+ (corresponding tou and d, respectively and »  the following guidelines: First we locate the position of the
=0,..,5, then we construct the matriX¢, n,|R™ Fermi level and look for states above the Fermi level that can
+ €,nol | {1ne) Which we diagonalize numerically. The char- be coupled to states below it, then compute the energy dif-
acter of the resulting states is determined from the values derence between them and compare it to the laser energy. If
the dominant expansion coefficients. Note that convergencée difference is not too great compared to the line broaden-
in the expansion given by E@28) is assured because as ing /7, the transition is considered resonant; otherwise, we
increases the eigenfunctions,,,(Z) oscillate more and look for states which are as close as possible to resonance.
more rapidly and this makes the influence of higher subbandgse is made of the line broadenings: 3.25, 1.625, and 1.3
on the lower onegéthe ones actually populatetkss and less meV for the ground, first, and second subbands, respectively,
effective because the overlap integrals defining the matrixas were reported and used to get the best fit in Ref. 4.
elements ofR(™ become very small. By repeating this pro- For n=0 the cyclotron mass is given bym%,
cedure for another value af at the same magnetic-field =#%w/(E,n y—Eun—1,), With n'=n+3(1+0) and
strengthB we get the whole spectrum. Since our aim is theoc=*1; w=eB/mc being the angular cyclotron frequency
interpretation of CR spectra, we restrict our computationf free electrons.
only to those values dB extracted from CR traces at which  In Fig. 7 the calculated cyclotron mass}, is shown
resonance seems to occur. Our calculations of the Landaagether with the experimental results for comparison. First
ladder cover the rangeN;,,=0.21x10”cm™ to 2.11  we notice that theB=0 massesr(*,) are larger than the
X 10"cm 2 and at each density the computations are perB+0 masses for all values df;,, contrary to what was
formed for a fewB values. Figure 6 shows a typical Landau pelieved!* as it was thought that the “energy associated”
ladder, the doublet structure on the left exhibits the Landawyith B would add on to that due to the surface electric field
levels (LL) in the semiclassical approximatiof.e., give  alone and through nonparobolicity would lead to an increase
€,ns) While those on the right include the quantum correc-of the effective mass. That conjecture is, of course, erroneous
tions already mentioned. The calculation is M, =0.21  since it manifestly overlooks the variation of the Fermi en-
x102cm™2 andB~2.34T; the indices ¥no) identify the  ergy with the magnetic field. The results exhibited in Fig. 7
different LL with Tdenoting the case=—1. It is worth  deserve some discussion; in the second subbar®{ the
noting the intricate structure of this energy spectrum whichcalculated mass i3, in the two cases shown; note how
comes as a consequence of the very small bulk msand  the calculated mass shows a slight decread¢,gsncreases
large g* for InSb. Note, in particular, how LL from higher and thus follows remarkably well the trend of the experimen-
subbands, e.g(10+), are lower in energy than levels from tal mass in contrast to thB=0 theory of Sec. Il which
lower subbands, e.g(p1+) or (00—). It is noteworthy to  predicts a spin-split mass and a steady increase of the latter.

B. Results and discussion
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for electrons in the space-charge layer of a IlI-V NGS
MOSFET. The theory uses the effective-mass approximation
and the multiband Kane Hamiltonian within the Hartree ap-
proximation. The interface between the insulator and the
NGS is taken care of through adequately derived boundary
conditions for the spinor wave function. These BC lead, as
they ought, to a vanishing curréras the potential barrier in
the insulator becomes infinitely high.

The computation of the energy levels proceeded in two
stages. (1) In the first step the magnetic fieH is set to
zero and the self-consistent potentiglx) [or V(Z)] is cal-
culated.(2) In the second step we I&+ 0 and use/(Z) in
the Hamiltonian which we transform using a special rotation
matrix and write in a way which makes the mathematical
structure of theB=0 case of stagél) obvious. This has the
advantage of making the computer codes of $igpiseful in
step(2) as well; physically it also helps see more clearly the
mechanisms which are at work in spin splitting the energy
levels.

To make the theory more widely useful, we discuss it for

three different models: the eight-band model, the six-band

model, and the spinless four-band model and we derive ap-
FIG. 8. Variations ofAEL=Er(B=0)—Eg(B+#0) as a func- propriate BC for all three cases. Our self-consistent compu-

tion of the areal electron density;,,; dashes are guides for the tations are carried out on InSbh within the six-band model. In

eyes. the absence of magnetic fieldB£0) we compute several

physical quantities such as the self-consistent potevi{ig),

the subband structure, the electric-field-induced spin splitting

of the subbands, the subband occupancies, the Fermi energy,

experimental masses. At higher densities we note, howeve&nd the subband density of state mass at the Fermi level. Our

less agreement W'th experiment. Nonetheless,'the trend Rlculated subband occupancies show excellent agreement
well as the superimposed structure of the experimental ma Sith the experimental data of other workers; however, the

?hrg ;?(pr;?rﬁgi?aﬁgg;hsvgarl]%utftiid 2?;2 |sthba:*(‘|).ug£1tlcllt;ser Alculated subband density-of-state mass does not show such
012p 5 ' P 9 A= . a good agreement. We used this result to discredit the use of

Xl. cm * the calcgla_tted Masses r'epresmih andmlo_' B=0 theories inB#0 experimentge.g., CR on NGS. To

which are equal, within our numerical accuracy; at higheryegerine properly the experimental trends of the CR mass in

densities, on the other hand, the calculated masses represfit s inversion layers, one has to include the effects oBthe
a single LL. In the ground subband {0) the calculated field because of the strong nonparabolicity of thg bulk

masses'show a steady inprease with some structure that f onduction band. The calculat&¥ 0 energy levels show a
lows quite well the e>_<per|mental one, 2 doyzblet structure 'Fairly complex spectrum with LL of higher subbands merg-
also present at densities below 1770 cm *. .T.he fit of " ing with levels of lower ones due to the very small mass and
Ref. 4 uses only one mass per subband as a fitting parame e largeg factor. TheB#0 theory is aimed at interpreting

and thus cannot predict multiple masses for each subband. &perimental data; the values Bf at which the computation

is also of interest to note the stronger structure in the groun f the Landau ladder is performed, are taken directly from
subband which mainly comes as a result of the stronger MaGR traces found in Ref. 4 Compa,rison between our calcu-
netic fields required to achieve CR. These strong magnetif(;i Y

. A ; ted cyclotron resonance masses and experiment yields the
flelds prodyce large oscillations of the Fe.rmllenergy .arounqollowing: (i) The B#0 CR masses are brought closer to
its value in the absence of the magnetic field as is very

learl in Fia. 8. Th ilati he experimental ones as compared to tligirO counter-
clearly seen in Fig. o. 1hese oscillations h‘ﬁ_are repro- arts, contrary to what was believéd.(ii) The CR masses
duced in the CR mass through two mechanisms. First, th

o . i how some structure as a function Nf,, which follows
oscillations ofEg determine which of the LL are capable of fov

o . ; quite well the structure observed experimentally and which
contributing to the absorption process through the mterpla)ovas absent from thB=0 density-of-state masses(ii ) The

of the filling factor of the levels, the selection rules, the Paul|Structure in(ii) is attributed to the combination of two fac-

exclusion principle, and the resonance condition. Second, t rs: (a) The dependence of the CR mass on the Landau
nonparabolicity of the bulk band structure further completesand'Spin indices and o, respectively, because of nonpara-

the picture by yielding field and Landau mdex-dependentoolicity, and (b) oscillations of the Fermi energg(B+0)
MAsSEes. with respect toEg(B=0) asN,,, is varied.
The present theory applied to InSb MOSFETS applies
equally well to other systems, e.g., £gHg,Te and other
The present paper developed a self-consistent theory dfl-V NGS. It can also be applied with minor modifications
electronic structure in the presence of strong magnetic field® CdTe/InSb heterojunctions and doped quantum wells.

DENSITY (10%cm™)

In the first subband ¥=1) the calculated masses B&it,,
=0.71x10%2cm 2 and 0.9810'2cm 2 coincide with the

IV. CONCLUSIONS AND SUMMARY
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APPENDIX A |7)=|(x+iy)V3|)+|zT)/V3,

Let s be an eigenfunction of the crystal Hamiltonian at
I's, the conduction-band minimum, and lety, andz be the

spatial part of the eigenfunctions at the andl“s,_the_ top of Now let k,=0 in the Hamiltonian and denote, by k, then
the valence band. Note thatx, y, andz are periodic func- the states {[1),3)[5)[8)) decouple from the states

tions which transform like atomis, x, y andz atomic wave : .
functions under the action of the tetrahedral point group. Le?I|2>>'|4>|i|\?>>,}|7;}r'1d I{‘|T,t> ujlvn’?;vwgﬁﬁ(:;a:?f}o ﬁsvl |§>aS'|T” >sets

1 denote a spin-up state afjda spin-down state with respect

18)=—zL)V3+[(x=iy)IV3T). (A1)

i . . =|5), [IV)=1[8), and [I')=]2), |II')=—|6), |lI")
to thez axis. The basis vectof$),/2),...8) are then given by~ _ 14y, 'and|IV'y=|7). With respect to these o decou-
11)=]is?), pled sets the Hamiltonian reatls =HWaH@ whereH
andH@ are written on the unprimed and primed basis vec-
|2)=|is]), tors, respectively, andl“) is explicitly given by

P( o . P . P a9
£4/2+V(X) —(|——|k) _(_Ia_x_lk) —(—I——Ik)

V2| ox J6 V3 X
Pl .d
5(|5+|k) —&gl2+V(X) 0 0
HW= (A2)
i k 0 —g4/2+V(X) 0
% I&'H €g
P J
S [ B 0 0 —g4l2—A+V
\/3( Iax+|k) &g (X)

andH @ obtains fromH" by substitutingk by —k.
At the interfacex=0, the components of the wave function satisfy the BC,

(0= - 2 60+ 2 e(0)+ = 6i2(0) (A3)
1 2 2 2 3 V3 4

with a corresponding expression for the spin-down case.

APPENDIX B

When the Landau inder= —1, Egs.(28) and(29) cease to be valid and the eigenvalue problem of Sec. Ill becomes

h[¥)=E|¥), (B1)

whereh is a 4x 4 matrix operator given by
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2 P P g
g42+V(Z)  —i \/:pi — | — —
3 9z S V3 dZ
— —i \ﬁpi —&4/2+V(2) 0 0
= 3 dZ (B2)
P/s 0 —&4/2+V(2) 0
P o
i— = 0 0 —&4l2—A+V(Z)
V3 dZ

with the basis vectors being), |5), |6), and|8), respectively, whose expressions are given in Appendix A. Now we write
eikXt
W= W Le2(2)es(Z) p6(Z) ps(2) ], (B3)
and we must find the bound states of E§1) subject to the BC,

iV2¢,(0)=pg(0) —v2¢5(0). (B4)

The solution of Eq(B1) is now easy since it is amenable to the-0 case with very slight modifications in the computer
codes. In solving Eq(B1) within the six-band model, we found it useful to writeashy+h; with

12+V(2Z) P V2 i + ! P
fo s s
ho= vl —&,2+V(2) 0 (B5)
0 | —| — (?_Z + g €g
P
S 0 —egl2+V(2)
|
and Then
P 0O i O .
hy=—| —i 0 0. (B6) (e,~E)C,+ > (¥ |¥'Vyc, =0, (B9
sv3 0 0 0 v'=0
Now let (rL‘I’(VO)>=t[<Pz,V(Z) ¢5.,(2) 06,(2)1€"*/\YL be a  which is now very easy to solve. Note thaj is exactly
solution ofhg| \DY=¢,| 4P} and write|¥) as equal to the semiclassical energy of the state and can be
obtained irom Sec. Il by making the substitutiok
|\I’>=2 CV|\I,E}O)>_ (B7) =—v2/s; hy in this case represents the quantum corrections

to this semiclassical approximation.
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