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Spherical random-bond–random-field model of relaxor ferroelectrics

R. Pirc and R. Blinc
Jožef Stefan Institute, P.O. Box 3000, 1001 Ljubljana, Slovenia

~Received 10 June 1999!

A model of relaxor ferroelectrics based on the interacting polar clusters picture has been formulated. The
electric dipole moment of a nanosized polar domain is allowed a large number of discrete orientations and its
length is assumed to fluctuate in a broad interval. Introducing a set of quasicontinuous order parameter fields
and imposing a global spherical constraint, the spherical random-bond–random-field~SRBRF! model is writ-
ten down and its static properties are investigated. It is found that for weak random fields the scaled third-order
nonlinear susceptibilitya35x3 /x1

4 shows a nearly divergent behavior in the spherical glass phase, but there is
no such anomaly in a random-field frustrated ferroelectric state. The probability distribution of local cluster
polarization is calculated and its relation to the quadrupole perturbed NMR line shape of93Nb in PMN is
discussed. The fact that the observed line shape is Gaussian at all temperatures provides strong support to the
SRBRF model.@S0163-1829~99!06943-X#
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I. INTRODUCTION

Since the discovery of relaxor ferroelectrics more than
years ago,1 a number of concepts have been introduced
account for their unusual physical behavior: diffuse ph
transition,1 superparaelectric2 and dipolar glass models,3

random-field frustrated ferroelectric,4,5 and reorienting polar
clusters.6,7 In a recent experimental study8 based on the
quadrupole perturbed NMR and nonlinear dielectric respo
techniques it has been suggested that the observed beh
in lead niobium manganate~PMN! could be well described
within the framework of the spherical random-bond
random-field~SRBRF! model. This brings relaxors close t
the category of dipolar glasses; however, there are impor
differences between these two classes of systems. In par
lar, the 93Nb NMR line shape and the associated probabi
distribution of local polarization in PMN was shown to r
main Gaussian at all temperatures. This is incompatible w
the assumption of a fixed-length order parameter field ty
cally made in dipolar glasses. Rather, in a relaxor the or
parameter field is described as a continuous vector field
variable length, which is associated with the dipole mom
of reorientable polar clusters, and is subject to a glo
spherical constraint on the square of the total polarizat
Thus a relaxor corresponds to a new type of dipolar gla
namely, the spherical vector glass.

The purpose of the present paper is to derive the b
ideas of the SRBRF model in a concise way and calculate
predicted temperature and electric-field dependencies
some crucial physical properties, such as the nonlinear
electric response and the probability distribution of local p
larization, which is related to the inhomogeneous NMR li
shape. The SRBRF model may be regarded as the sim
generic model of relaxor ferroelectrics of the PMN typ
Since the random interactions—or bonds—between p
clusters are by assumption infinitely ranged with a Gauss
distribution, and local random fields are similarly Gauss
and uncorrelated, this will lead to a mean-field-type the
analogous to the case of spin9,10 and dipolar11 glasses.

In Sec. II we adopt a semimicroscopic description o
PRB 600163-1829/99/60~19!/13470~9!/$15.00
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typical relaxor based on the interacting polar clusters pict
and write down the model Hamiltonian. In Sec. III w
present the solution of the SRBRF model obtained by
replica method and derive the basic equations for the g
order parameter and polarization. The predictions for
nonlinear susceptibility are given in Sec. IV, and in Sec.
the probability distribution of local polarization and the lin
shape of the quadrupole perturbed NMR are explicitly d
rived. Section VI contains the conclusions.

II. INTERACTING POLAR CLUSTERS

We will consider PbMg1/3Nb2/3O3 ~PMN! as a represen
tative relaxor ferroelectric system. On the mesoscopic le
PMN is a structurally inhomogeneous material consisting
Nb-rich regions or polar clusters embedded in a quasireg
array of chemically ordered 1:1 regions12 or chemical clus-
ters. The polar clusters have typically the size of a few
nometers and are reorientable, and are thus responsibl
the observed dielectric behavior.3,6,7 In contrast, the chemica
clusters are essentially static and act as sources of ran
electric fields. Each polar clusterCi consists of a number o
pseudocubic unit cells containing either Nb or Mg ions. He
i 51,2, . . . ,N andN denotes the total number of polar clu
ters. IfuW k( i l ) is the displacement of thekth ion in thel th cell
in Ci from its ideal perovskite cubic position andek( i l ) its
charge, then the dipole moment of the cell is

mW ~ i l !5(
k

ek~ i l !uW k~ i l !. ~1!

X-ray and neutron scattering studies of PMN reveal that e
ion in the unit cell can occupy a large number of equivale
off-center equilibrium positions.13–15 In single-crystal PMN
the positions of the Pb ions were found to be uniform
distributed over a spherical layer.16 It has been argued17 that
the dominant contribution tomW ( i l ) is due to the displace
ments of the Nb51 and Pb21 ions, so that Eq.~1! can be
simplified to
13 470 ©1999 The American Physical Society
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mW ~ i l !5
3

2
e0@uW Nb ~ i l !2uW Pb~ i l !#1•••, ~2!

wheree0 is the unit charge and the dots represent the con
butions of the remaining terms. Since Mg and Pb ions h
the same charge, the contribution of a Mg-type cell is mu
smaller and only Nb-type cells are relevant. Letni represent
the number of Nb cells in clusterCi . The dipole moment of
Ci can then be written as

MW i5(
l

mW ~ i l !>nimW 0~ i !, ~3!

assuming that the dipole momentmW ( i l ) is the same for each
Nb cell in Ci , and can thus be replaced bymW 0( i )
5(3/2)e0@uW Nb ( i )2uW Pb( i )#.

Let us now introduce a dimensionless order param
field, which is proportional toMW i and thus scales with th
number of Nb ionsni

SW i5S 3

@n2#av
D 1/2

MW i

m0~ i !
. ~4!

Here @n2#av5(1/N)( ini
2 . It is easily verified that the orde

parameter field then satisfies the closure relation

(
i

~SW i !
253N. ~5!

The model Hamiltonian of a system of interacting po
clusters is formally written as

H52
1

2 (
i j

Ji j SW i•SW j2(
i

hW i•SW i2g(
i

EW i•SW i . ~6!

Here Ji j are random interactions or bonds andhW i random
local electric fields. Following the theories of spin9,10 and
dipolar11 glasses we will assume that the random bonds
infinitely ranged with a Gaussian probability distributio
characterized by the cumulant averages
i-
e
h

er

r

re

@Ji j #av
c 5J0 /N, @~Ji j !

2#av
c 5J2/N. ~7!

The random fields similarly obey an independent Gauss
distribution such that

@him#av
c 50, @himhj n#av

c 5Dd i j dmn ; ~m5x,y,z!. ~8!

In the last term of Eq.~6!, EW is an applied external field
andg5(4p/3e)(e12)ge f f(@n2#av/3)1/2m0, wherege f f rep-
resents an effective local field factor and we assume that
length of the dipole moment of a Nb cell is the same in
clusters, i.e.,m0( i ).m0.

It should be noted again that the order parameter fieldSW i
is a discrete vector restricted to a large but finite numbe
equilibrium orientations. Its magnitude scales with the clu
ter sizeni , implying thatuSW i u can vary over a large interval
Since the distribution of the number of polarized cellsni in a
cluster is not known, an exact evaluation of the free ene
of model ~6! is far from trivial. We will therefore deal here
with a simplified model, assuming that each component oSW i
fluctuates continuously over the entire space,

2`,Sim,1`; ~9!

however, condition~5! should be strictly satisfied. This the
leads to a spherical vector model, which is referred to as
spherical random-bond–random-field~SRBRF! model.

III. EQUILIBRIUM PROPERTIES OF THE SRBRF MODEL

The spherical model of a uniaxial spin glass has be
solved a long time ago by Kosterlitz et al.18 using the repre-
sentation of eigenstates of the random matrixJi j . The same
method is, in principle, applicable to the SRBRF mod
however, as shown in Ref. 18 one can also apply the rep
method. This method has several advantages in the pre
case and will be adopted here. Introducing the familiar r
lica indicesa51,2, . . . ,n and a Lagrange multiplierz to
enforce the spherical condition~5!, we can formally write
down the expression for the free energyF:
lica
a-
ss.
bF5 lim
n→0

1

n H E
2`

1`F)
ima

dSim
a G E

c2 i`

c1 i` dz

2p i
expF2z(

a
S (

im
~Sim

a !223ND G
3expFb(

a
S 1

2 (
i j m

Ji j Sim
a Sj m

a 1(
im

himSim
a 1g(

im
EmSim

a D G21J . ~10!

As usual,b51/kT and we will setk51.
In the next step, the random averages overJi j andhim are performed, to be followed by the usual manipulations of rep

theory. This procedure is standard and parallels the theory of spin glasses.9,10 Therefore, the intermediate steps in the deriv
tion will not be reproduced here. In analogy to the uniaxial case18 the replica symmetric solution is exact in a spherical gla
The immediate objective is to calculate the order parameters such as the polarization

Pm5
1

N (
i

^Sim&, ~11!

and the dipolar glass order parameter, written here in its Cartesian components,



t
that the
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qm5
1

N (
i

^Sim&2, ~12!

as functions of the electric fieldEW and temperature. For an arbitrary direction ofEW this is a nontrivial problem, which canno
be solved analytically. In order to analyze the basic equilibrium properties of the model we will, therefore, assume
electric field is parallel to the@111# direction. In this case, including the choiceE[uEW u50, the Cartesian components arem

independent by symmetry, i.e.,Pm5P andqm5q. Introducing an infinitesimal generating fieldlW a parallel toEW we obtain the
following expression for the free energy per clusterf [F/N:

b f 52
3

2
bJ0P21

3

4
b2J2q21 lim

n→0

1

nH E2`

1`F)
m

dxm

A2p
expS 2

1

2
xm

2 D G E
2`

1`

)
ma

dSm
a exp$2z@~Sm

a !221#%

3expFb~J0P1gE1xmAJ2q1D1lm
a !Sm

a2
1

2
b2J2q~Sm

a !2G21J . ~13!
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This expression will be used later to evaluate random a
ages of the typêSm1

a1Sm2

a2
•••Smr

ar &. In the limit lW a→0 we find

2
2

3
b f 5bJ0P22

1

2
b2J2q222z1 ln~2z1b2J2q!

2
b2

2

J2q1D1~J0P1gE!2

2z1b2J2q
. ~14!

Finally, the equilibrium values ofP, q, and z are obtained
from the saddle-point condition] f /]P5] f /]q5] f /]z50
after some rearranging:

P5b~12q!~J0P1gE!, ~15a!

q5b2~12q!2~J2q1D!1P2, ~15b!

2z1b2J2q51/~12q!. ~15c!

It should again be stressed that Eqs.~14! and ~15! were
obtained for a special field direction of the fieldEW i@111#.
Formally, Eqs.~15! also apply in the case of an isotrop
relaxor system. The effects of cubic anisotropy could,
principle, be studied after one has solved the SRBRF mo
for a general direction of the field.

In the following we will first discuss the case withou
external fields, i.e.,E50 butDÞ0. Equations~15! then have
two sets of solutions:~a! P50, qÞ0, corresponding to a
phase without long-range order, to be referred to as
spherical glass~SG! phase; and~b! PÞ0, qÞ0, i.e., the
long-range order or ferroelectric~FE! phase. The FE phas
can only exist ifJ0.J0c , where the critical value is given b
J0c5AJ21D. AssumingPÞ0, Eq. ~15a! yields

q512T/J0 . ~16!

Inserting into Eq.~15b! one finds that the spontaneous pola
ization is determined by the equation

P25@12~J/J0!2#~12T/J0!2D/T2. ~17!

The critical temperatureTc is obtained from the condition
P250, i.e.,
r-

el

e

-

Tc5J0S 12
D

J0
22J2D u~J0 /J21!, ~18!

where u(x) is the unit step function. Obviously,P50 for
T.Tc .

At T→0 the polarization is given by

P2~0!512~J21D!/J0
2 . ~19!

This implies that a critical valueDc5J0
22J2 exists such that

for D.Dc there can be no long-range order at any tempe
ture. The value ofq at the critical temperature is simpl
q(Tc)5D/Dc .

For J0,J0c there is no long-range order and the gla
order parameter is determined by the equation

q5b2~12q!2~J2q1D!. ~20!

The solutionsq(T) for various values of the random fiel
strengthD are shown in Fig. 1.

It should be noted that since the replica symmetric so
tion is exact in the SRBRF model,q is equal to the Edwards
Anderson order parameterqEA .

The phase diagram of the SRBRF model, compared w
the spin glass caseD50, is shown as an inset in Fig. 1. A
already noted for the case of a uniaxial spherical spin gla18

without long-range order (J050), there is no phase trans
tion in the presence of an external field; the same is true
the present model with nonzero random fields (DÞ0). In
terms of a replica theory, there is no replica symmetry bre
ing and no Almeida-Thouless line9,10 in the SRBRF model.
Thus, in general, forDÞ0 and J0,J0c there is no sharp
freezing transition into into a low-temperature spherical gl
state within the static SRBRF model.

IV. NONLINEAR DIELECTRIC RESPONSE

In a system with average cubic symmetry the phenome
logical relation between the applied electric fieldEm (m
51,2,3) and polarizationPm can be written, assuming sma
amplitudes, as a power series

P15x1E12x122E1~E2
21E3

2!2x111E1
31•••. ~21!
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The inverse relation is formally

E15a1P11a122P1~P2
21P3

2!1a111P1
31•••. ~22!

Here and in the following we redefine the fieldsEm by ab-
sorbing into them the local field factorg, which is formally
accomplished by settingg51 in Eqs.~15!.

Comparing the above two relations yields

a151/x1 ; a1225x122/x1
4 ; a1115x111/x1

4 . ~23!

Here x1 is the linear susceptibility andx122, x111, etc. the
third-order nonlinear susceptibilities. For a fieldEW i@111# and
P15P25P35P Eqs.~21! and ~22! simplify to

P5x1E2x3E31•••, ~24a!

E5a1P1a3P31•••, ~24b!

wherex352x1221x111 and

a35x3 /x1
4 . ~25!

The same relations formally hold for an isotropic system
Experimentally,x3 can be determined, for example, b

measuring the third-harmonic nonlinear response to an o
lating external field in zero-bias field. The scaled nonline
responsea3 is obtained from Eq.~25! provided one has also
determined the linear responsex1 in zero bias.

If a nonzero-bias fieldE is applied, one measures th
modified field-dependent linear and third-harmonic nonlin
responses, which will be denoted byx1(E) and x3(E), re-
spectively. The field-dependent scaled third-order nonlin
response is then defined as

FIG. 1. Temperature dependence of the SG order parameterq in
the SG phase (J050) for various values of the random-fiel
strengthD. Top to bottom:D/J251.0,0.5,0.1,0.01,0. Inset: Phas
diagram of the SRBRF model in zero-bias field. Solid line: Ph
boundary between the ferroelectric~FE! and spherical glass~SG!
phase for random-field strengthD/J250.1. Dotted line: Spherica
spin glass (D50).17
il-
r

r

ar

a3~E!5x3~E!/x1
4 , ~26!

wherex1[x1(0). Obviously,a35a3(0).
Alternatively, in some experiments a different definitio

of the scaled nonlinear response is being used, namely,5

â3~E!5
x1~0!2x1~E!

3E2x1~0!4 . ~27!

Using Eqs.~24! one can show that in the case without lon
range order limE→0â35a3; however, in general,â3(E) will
differ from a3(E). It should be noted that the relation~27! is
not applicable in the FE phase.

We can now calculate the nonlinear responsex3(E) from
the solution of Eq.~15a!, i.e.,

x3~E!52
1

6

]3P

]E3 , ~28!

where x3 in Eqs. ~24a! and ~25! corresponds tox3(0)
5 limE→0x3(E).

The linear susceptibilityx1(E) is obtained as the deriva
tive of the solutionP(E,T) of Eq. ~15a!,

x1~E!5
b~12q!

12bJ0~12q!1D~E,P!
, ~29!

where D(E,P)[2bP(J0P1E)/@112b2(J2q1D)(12q)
2b2J2(12q)2#. In the SG phase (J0,J0c) with E50 one
has D50, but for EÞ0 or in the FE phase atT,Tc it
follows thatDÞ0.

One can easily calculatex1(E) from Eqs.~15! and ~29!.
In the FE phase,x1[x1(0) is found to diverge atT5Tc ,
whereTc is given by Eq.~18!. In the SG phase, however,x1
is nonsingular.

In experiments,x1 is typically measured at some finit
frequencyv. Thus a comparison with the predictions of
static theory is not straightforward in view of the strong fr
quency dispersion observed in relaxor ferroelectrics. Spe
techniques such as the frequency-temperature plots19 have
been used to extract the ‘‘static’’ freezing temperatureTf
from the apparent divergence of the longest relaxation tim
Clearly, the results of a static theory are applicable only
the temperature region where frequency dispersion is ne
gible, namely, at sufficiently high temperatures. A dynam
version of the SRBRF model has not yet been worked o
The dynamics of a uniaxial spherical spin glass in rand
fields has been studied in Ref. 20.

The frequency dispersion also plays a role in the tempe
ture dependence of the third-order nonlinear susceptib
x3. As already suggested for dipolar glasses21 the scaled
nonlinear responsea3 is a suitable quantity to be compare
with the static theory. In principle, by measuringa3(T) one
can discriminate between the FE and SG behavior more
ily than on the basis ofx1 or x3 alone. The phenomenologi
cal theory predicts that in the FE phasex3 diverges as
;uT2Tcu23ḡ22b̄, so thata3 should behave as

a3
FE;uT2Tcu ḡ22b̄, ~30!

where in generalḡ22b̄.0 for a cubic system,22 and ḡ

52b̄ in the mean-field approximation. Thus in a random

e
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field frustrated ferroelectrica3
FE should not diverge atTc ,

but should fall off to a constant value or zero atTc . In
contrast, for a dipolar glass~DG! one expects a divergen
behavior,

a3
DG;uT2Tcu2g3, ~31!

where the mean-field value of the exponent isg351.
These results can now be matched with the prediction

the SRBRF model. By calculating successively the deri
tives of P(E) and q(E) from Eqs.~15!, we find from Eq.
~28! in the limit E→0 and forP50:

x35
bx1

2~J0x111!

@12b2J2~12q!~123q22D/J2!#@12bJ0~12q!#
.

~32!

Herex15x1(0) is given by Eq.~29!. The last result is ap-
plicable in the SG phase at all temperatures and in the
phase (J0.J0c) for T.Tc .

The scaled nonlinear susceptibilitya35x3 /x1
4 is thus

given by

a35
T

~12q!2@12b2J2~12q!~123q22D/J2!#
. ~33!

Notice that this expression is independent of the value ofJ0.
We now investigate the behavior ofa3 anda3(E) in two

characteristic cases, i.e., the SG phase whereJ@J0, and the
FE phase withJ!J0 corresponding to a random-field frus
trated ferroelectric.

A. Spherical glass phase

Here we will setJ050. In Fig. 2, a3 as a function of
temperature is plotted for various values of the random fi
strengthD. If D50, corresponding to a spherical vector sp
glass,a3 diverges atTf5J according toa3;uT2Tf u21. For
DÞ0 the denominator in Eq.~33! never vanishes and th
divergence ofa3 does not occur; however, forD/J2!1, a3
shows a sharp peak nearTf . At D/J2*0.1 the peak starts to
broaden and completely disappears at larger values ofD/J2.

In experiments,a3 can be determined in the region abo
the expected value ofTf , where the dispersion is weak an
one is essentially observing the high-temperature tail
a3(T). This behavior mimics a diverginga3; however, only
a fit to Eq.~33! may reveal the true nature of the singular
and yield the parameters of the model.8 The narrow peak
occurring nearT'J is unlikely to be observed in practice i
view of the dynamic effects which become dominant close
Tf .

In the presence of a bias field (EÞ0) we consider the
temperature dependence ofa3(E) as defined by Eq.~26!.
Figure 3 showsa3 at E50 compared witha3(E) for various
values of the fieldE at fixed random-field strengthD/J2

50.01. With increasing field strength the peak ina3(T)
gradually disappears. This effect is similar to that occurr
in a3 when the value ofD is increased. Thus in an exper
ment under a bias field5 one can miss the nearly diverge
behavior observed under the zero field conditions. It is
trivial to predict the magnitude of the effects of a bias fie
of
-

E

d

f

o

g

t
,

FIG. 2. Scaled third-order nonlinear responsea35x3 /x1
4 in the

SG phase (J050) as a function of temperature, plotted for vario
values of the random-field strengthD. Top to bottom: D/J2

50,0.001,0.01,0.1.

FIG. 3. Temperature and field dependence of the nonlinear
sponsea3(E) in the SG phase (J050) and for fixed value of
D/J250.01. Top to bottom:E/J50,0.01,0.1,0.2,0.5.
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since the relevant energy shift will depend on the unkno
local field parameterg in Eq. ~15a!.

B. Ferroelectric in random fields

This corresponds to the caseJ!J0 and we will setJ50
without much loss of generality. We can distinguish betwe
the paraelectric~PE! phase T.Tc and the FE phaseT
<Tc , where from Eq.~18! we find Tc5J0(12D/J0

2). For
T.Tc , Eq. ~15b! yields

q.5
1

2b2D
~112b2D2A114b2D!. ~34!

The linear susceptibilityx1 is given by Eq.~29! with D50,
and one can easily check that it diverges as;(T2Tc)

21.
The nonlinear susceptibilityx3 diverges as;(T2Tc)

24;
however, the scaled nonlinear responsea3 is given by

a3.5
T

~12q!2@112b2D~12q!#
~35!

and remains finite atT→Tc .
For T<Tc one has from Eq.~15b!

P2512T/J02D/J0
2 , ~36!

whereasq,(T) is given by the solution of Eq.~16!. The
scaled nonlinear responsea3, can be calculated numericall
after deriving a set of the appropriate field derivatives
P(E,T). The result fora3 with D/J0

250.01 at temperature
both above and belowTc is shown in Fig. 4. Also shown is
the nonlinear responsea3(E) at T.Tc and various values o

FIG. 4. Temperature and field dependence of the nonlinear
sponse in the FE phase (J50) and fixedD/J0

250.01. Top to bot-
tom: E/J050,0.01,0.1,0.2,0.5.
n

n

f

the external fieldE. Obviously, a3 remains finite asT
→Tc , but makes a jump atTc in accordance with mean-field
theory.

In contrast to the SG case,a3 in a random-field frustrated
ferroelectric does not show any anomalous peak even a
smallest values ofD. Thus by determining the scaled nonlin
ear responsea3 without a bias field one can readily decid
whether the system under investigation behaves as a sp
cal glass or a ferroelectric. In PMN,a3(T) was determined
in the temperature range 220 K&T&320 K and found to
increase sharply on approaching the lower end of this in
val. A fit to the SRBRF model8 yielded the model parameter
J5220 K andD/J25231024. The value ofJ was found to
agree reasonably well with the Vogel-Fulcher temperat
T05215 K characterizing the temperature dependence
the longest relaxation time, which was obtained by mean
the frequency-temperature plots.19

V. PROBABILITY DISTRIBUTION
OF LOCAL POLARIZATION

The local polarization of a clusterCi is defined aspW i

5^SW i&, where^•••& is the thermal average. The probabili
distribution of local polarization is formally written as

W~pW !5
1

N (
i

d~pW 2pW i !. ~37!

This quantity is useful in describing NMR and related e
periments in dipolar and quadrupolar glasses.23,25,24 It is
trivial to show that the first moment ofW(pW ) is just the total
polarizationPW of the system, and the diagonal part of th
second moment gives the glass order parameterq.

To evaluateW(pW ) for the SRBRF model we consider th
caseJ050. First we introduce, as usual, the Fourier tran
form of thed function in Eq.~37!, i.e.,

W~pW !5E
2`

1` d3k

~2p!3 exp~2 ikW•pW !@exp~ ikW•^SW &!#av .

~38!

Next, we expand the last exponential into a power series
in order to evaluate the random averages assign each c
ponentSim a different replica index. The random average c
then be expressed in terms of the appropriate derivative
the generating fieldlm

a in Eq. ~13!. Since all replicas are
independent, the averages of different Cartesian compon
Sim

a will decouple. This then implies

W~pW !5w~px!w~py!w~pz!, ~39!

where

w~pm!5@d~pm2^Sm&!#av . ~40!

The last expression can again be rewritten as

w~pm!5E
2`

1`dkm

2p
exp~2 ikmpm!

3(
r 50

`
~ ikm!r

r !
@^Sm

a1&^Sm
a2&•••^Sm

ar&#av , ~41!
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where the limitn→0 is understood. The averages^Sm
a& are

all equal and evaluating them with the aid of Eq.~13! we find
for the random average in Eq.~41!:

@•••#av5E
2`

1` dxm

A2p
expS 2

1

2
xm

2 D S xm

bAJ2q1D

2z1b2J2q
D r

.

~42!

After performing the summation in Eq.~41!, carrying out the
remaining Gaussian integration, and using Eqs.~15c! and
~15b!, we obtain the result

w~pm!5~2pq!21/2expS 2
pm

2

2qD . ~43!

Equation~39! then yields

W~pW !5~2pq!23/2expS 2
pW 2

2q
D . ~44!

This result shows thatW(pW ) for the SRBRF model is Gauss
ian at all temperatures and its width is determined by
spherical glass order parameterq. In contrast,W(p) of an
Ising dipolar glass is characterized by a single-peak form
high temperatures, which changes to a double-peak struc
at low temperatures.23 Similarly, in a quadrupolar glass th
low-temperature shape ofW(pW ) consists of two or three
peaks, depending on the symmetry considered.24

Equation~43! can readily be extended to the case of no
zero polarizationP occurring either forJ0.J0c andT,Tc or
with nonzero-bias fieldEW i@111#, i.e.,

w~pm!5@2p~q2P2!#21/2expF2
~pm2P!2

2~q2P2!
G . ~45!

The complete probability distribution of local polarizatio
W(pW ) is then given by Eq.~39!.

A. Application to the NMR line shape

A convenient way of measuring the probability distrib
tion of local polarization is by means of the quadrupole p
tubed NMR. As an example we consider the93Nb (I 59/2)
nucleus in PMN having a nonzero electric quadrupole m
ment, which couples to the local electric field gradient~EFG!
tensor.8 Relaxors exhibit giant electrostriction in the regio
of the relaxor transition, i.e., anomalously large deformatio
of the lattice in an electric field, indicating the long-ran
nature of interactions on a microscopic level. Therefore,
will assume that the EFG tensor at a given Nb site is
function of the displacementsuW k( i l ) of every ion in the clus-
ter. These displacements are in turn related to the clu
dipole momentMW i via Eqs. ~1!–~3!, as we assume perfec
long-range order within a cluster. From this it follows that
Nb nuclei have the same quadrupole shift, which depend
MW i and hence on the order parameter fieldSW i . In the fast
motion limit the observed quadrupole shift depends on
time average ofSW i , which is equal to the local polarizatio
e

at
re

-

-

-

s

e
a

er

l
on

e

pW i5^SW i&. The quadrupole perturbed NMR resonance f
quency of 93Nb in the l th cell in Ci can thus be expande
into a power series

n i l 5n (0)1n i l
(1)1aW •pW i1pW i•b•pW i1•••, ~46!

wheren (0) is the unperturbed resonance frequency andn i l
(1)

represents the static shift due to the distortion of the c
from its high symmetry~cubic! perovskite structure. The co
efficientsaW andb depend on the orientation of the magne
field BW .

The inhomogeneous NMR line shape is given in terms
the frequency distribution function

f ~n!5
1

N (
i

1

ni
(

l
d~n2n i l !. ~47!

The site averages can be replaced by an average ove
probability distribution ofn i l

(1) and the distribution of local

polarizationW(pW ). Assuming that the cluster average ofn i l
(1)

is the same for all clusters, i.e., (1/ni)( ln i l
(1)5n (1) and ab-

sorbing it inton0[n (0)1n (1) we have

f ~n!5E d3pW~pW !d~n2n02aW •pW 2pW •b•pW !. ~48!

The integral can be evaluated analytically in two spec
cases. Thelinear case corresponds to the orientation of t
magnetic fieldBW i@111# for which uaW u@ibi . Neglecting the
last term in thed function we can write

f ~n!5E dk

2p
exp@2 ik~n2n0!#E d3p~2pq!23/2

3expS 2
pW 2

2q
1 ikaW •pW D . ~49!

Evaluating the triple Gaussian integral and the Fourier tra
form we find the result

f ~n!5~2pqa2!21/2expF ~n2n0!2

2qa2 G . ~50!

This shows that the line shape is Gaussian at all temperat
and its width depends on the glass order parameterq and the
coupling coefficienta5uaW u. The second moment off (n) is
proportional to the glass order parameter, i.e.,

M25E dn f ~n!~n2n0!25a2q. ~51!

Thus by measuring the line shapef (n) and its second mo-
ment in the linear case, one can directly obtain the proba
ity distribution of local polarizationW(pW ) and the tempera-
ture dependence of the glass order parameterq(T).

The bilinear case is characterized byuaW u!ibi and there-
fore the linear term in thed function of Eq.~48! is negli-
gible. This occurs, for example, whenBW i@100# and we may
assume that
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b5b0S 1 0 0

0 0 0

0 0 0
D , ~52!

leading to

f ~n!5E dpx~2pq!21/2expS 2
px

2

2qD d~n2n02b0px
2!.

~53!

For b0.0 we thus find

f ~n!5u~n2n0!@2pqb0~n2n0!#21/2expS 2
n2n0

2b0q D .

~54!

For b0,0, f (n) is simply mirrored aroundn5n0.
In contrast to the linear case, the line shapef (n) is now

strongly asymmetric and diverges whenn→n0. The glass
order parameter is related to the first moment off (n), i.e.,

M15E dn f ~n!~n2n0!5b0q. ~55!

Experiments in PMN withBW i@100# ~Ref. 26! have con-
firmed the predicted asymmetric form~54!. In general, the
NMR line shape in PMN can be decomposed into a narr
temperature-dependent Gaussian component and a b
T-independent Gaussian background.8,26 Both components
turn out to be inhomogeneously broadened. The narrow
refers to the central12 and →21

2 transition and can be wel
described by the above theory. The broad Gaussian b
ground is due to unresolved satellite transitions~Ref. 26!.
The ratio of the intensities of the two components was fou
to be temperature independent throughout the investig
temperature interval.8

It should be noted that the time scale of a NMR expe
ment is essentially determined by the inverse of the ma
mum linewidth, which is in PMN typically of the orde
texp;1025 s, while in dielectric experiments one can,
principle, extrapolate the data to quasistatic values. Du
the strong frequency dispersion observed in relaxors at
temperatures, the model parameters deduced from the N
data have to be regarded in the context of their time-sc
dependence, and cannot be directly compared with the va
obtained from dielectric measurements in a different te
perature range. Again, these discrepancies could be reso
only within the framework of a dynamic model

VI. CONCLUSIONS

We have presented a simple semimicroscopic mode
relaxor ferroelectrics based on the vector spherical rand
bond–random-field~SRBRF! model of dipolar glasses. Th
relevant degrees of freedom are associated with the di
moments of the reorientable polar clusters, which are emb
ded in a quasiregular array of chemically 1:1 ordered
gions. The static SRBRF is exactly solvable by the repl
method and predicts the existence of two phases, namely
spherical glass~SG! phase without long-range order and t
long-range ordered polarized ferroelectric~FE! phase. In
case of nonzero random fields there is no phase trans
w
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within the SG phase; however, one can show that for w
random fields the scaled third-order nonlinear susceptib
a35x3 /x1

4 shows a sharp peak near a temperatureTf , which
corresponds to the freezing temperature of the spherical s
glass model without random fields. Thus in experiments o
should be able to observe a quasidivergent behavior ofa3 on
the high-temperature side of the peak, where the freque
dispersion is weak. This has indeed been found in PM
~Ref. 19! and PLZT ceramics,27 supporting the assumptio
that these systems can be described as a special kind o
polar glass, namely, the spherical glass. If a bias electric fi
is applied, the behavior changes dramatically and the p
disappears at relatively weak-bias fields. In the FE pha
which corresponds to a random-field frustrated ferroelect
there is no peak in the scaled nonlinear response both
nonzero-bias field or without bias.

As an application of the theory the quadrupole perturb
NMR line shape of93Nb has been considered. The frequen
shift can be expressed in terms of the EFG tensor com
nents at the Nb site, which are expanded into a power se
with respect to the order parameter field. For special ori
tations of the magnetic field, the frequency shift can be eit
a linear or bilinear function of the time average of the ord

parameter fieldSW i or equivalently the local cluster polariza
tion pW i . In the linear case, the NMR line shapef (n) is sim-
ply related to the probability distribution of local polarizatio
W(pW ). It turns out that a special feature of the SRBRF mo
is the fact thatW(pW )—and hencef (n)—is Gaussian at all
temperatures. Its second moment is proportional to the g
order parameterq. Thus by measuringf (n) one can simply
determine the probability distribution of local polarizatio
and the temperature dependence of the glass order param
from which the values of the model parameters can be
tracted. In the bilinear case, the NMR line shape is an as
metric function of frequency, which diverges at the unp
turbed resonance frequency, and the glass order parame
given by its first moment. The observed NMR line shape
both the linear and bilinear regime lends strong suppor
the SRBRF model, since models other than spherical can
reproduce a Gaussian form off (n) at all temperatures.

As already noted the above model is completely static
dynamic theory is clearly needed to describe the freque
dispersion observed in real systems both in the linear
nonlinear susceptibilitiesx1 and x3, respectively. The
present static SRBRF model could possibly be extende
include dynamic effects by introducing Langevin-type equ
tions of motion.20 It should also be mentioned that a dynam
theory based on a random-site–random-field model has b
proposed by Vugmeister and Rabitz,6,7 which provides good
agreement with the experimental results on the frequen
dependent and zero-field-cooled linear permittivity. The
lation between the Vugmeister-Rabitz dynamic model a
the dynamic extension of our SRBRF model will be d
cussed in full detail in a forthcoming publication.
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22Here, ḡ and b̄ are the susceptibility and polarization expone

respectively. See H. E. Stanley,Introduction to Phase Transi-
tions and Critical Phenomena~Clarendon Press, Oxford, 1971!.
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24B. Tadić, R. Pirc, and R. Blinc, Phys. Rev. B55, 816 ~1997!.
25B. Zalar, R. Blinc, W. Albert, and J. Petersson, Phys. Rev. B56,

R5709~1997!.
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