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A model of relaxor ferroelectrics based on the interacting polar clusters picture has been formulated. The
electric dipole moment of a nanosized polar domain is allowed a large number of discrete orientations and its
length is assumed to fluctuate in a broad interval. Introducing a set of quasicontinuous order parameter fields
and imposing a global spherical constraint, the spherical random-bond—randotSRB&RHE model is writ-
ten down and its static properties are investigated. It is found that for weak random fields the scaled third-order
nonlinear susceptibilitwa=)(3/)(‘11 shows a nearly divergent behavior in the spherical glass phase, but there is
no such anomaly in a random-field frustrated ferroelectric state. The probability distribution of local cluster
polarization is calculated and its relation to the quadrupole perturbed NMR line shapBltoin PMN is
discussed. The fact that the observed line shape is Gaussian at all temperatures provides strong support to the
SRBRF model[S0163-18209)06943-X]

[. INTRODUCTION typical relaxor based on the interacting polar clusters picture
and write down the model Hamiltonian. In Sec. Il we
Since the discovery of relaxor ferroelectrics more than 5@resent the solution of the SRBRF model obtained by the
years agd,a number of concepts have been introduced tgeplica method and derive the basic equations for the glass
account for their unusual physical behavior: diffuse phasé@rder parameter and polarization. The predictions for the
transition! superparaelectricand dipolar glass modefs, nhonlinear susceptibility are given in Sec. IV, and in Sec. V
random-field frustrated ferroelectté,and reorienting polar the probability distribution of local polarization and the line
cluster$” In a recent experimental stutlypased on the shape of the quadrupole perturbed NMR are explicitly de-
quadrupole perturbed NMR and nonlinear dielectric responséved. Section VI contains the conclusions.
techniques it has been suggested that the observed behavior
in_ Ie_ad niobium manganat@MN) could_be well described Il INTERACTING POLAR CLUSTERS
within the framework of the spherical random-bond—
random-field(SRBRP model. This brings relaxors close to ~ We will consider PbMgsNb,,;0; (PMN) as a represen-
the category of dipolar glasses; however, there are importanative relaxor ferroelectric system. On the mesoscopic level
differences between these two classes of systems. In particBMN is a structurally inhomogeneous material consisting of
lar, the ®*Nb NMR line shape and the associated probabilityNb-rich regions or polar clusters embedded in a quasiregular
distribution of local polarization in PMN was shown to re- array of chemically ordered 1:1 regidAor chemical clus-
main Gaussian at all temperatures. This is incompatible wittiers. The polar clusters have typically the size of a few na-
the assumption of a fixed-length order parameter field typinometers and are reorientable, and are thus responsible for
cally made in dipolar glasses. Rather, in a relaxor the ordethe observed dielectric behavid?:’ In contrast, the chemical
parameter field is described as a continuous vector field oflusters are essentially static and act as sources of random
variable length, which is associated with the dipole momenelectric fields. Each polar clust€); consists of a number of
of reorientable polar clusters, and is subject to a globapseudocubic unit cells containing either Nb or Mg ions. Here
spherical constraint on the square of the total polarizationi=1,2, ... N andN denotes the total number of polar clus-

Thus a relaxor corresponds to a new type of dipolar glassers. Ifu,(il) is the displacement of theth ion in thel th cell
namely, the spherical vector glass. in C; from its ideal perovskite cubic position amg(il) its

The purpose of the present paper is to derive the basigharge, then the dipole moment of the cell is
ideas of the SRBRF model in a concise way and calculate the

predicted temperature and electric-field dependencies of
some crucial physical properties, such as the nonlinear di- m(il) =2, e il)uyil). 1)
electric response and the probability distribution of local po- k
larization, which is related to the inhomogeneous NMR line
shape. The SRBRF model may be regarded as the simpleXtray and neutron scattering studies of PMN reveal that each
generic model of relaxor ferroelectrics of the PMN type.ion in the unit cell can occupy a large number of equivalent
Since the random interactions—or bonds—between pola®ff-center equilibrium positions>™*° In single-crystal PMN
clusters are by assumption infinitely ranged with a Gaussiaf€ positions of the Pb ions were found to be uniformly
distribution, and local random fields are similarly Gaussiardistributed over a spherical I:i\yéf’rjt has been arguédthat
and uncorrelated, this will lead to a mean-field-type theorythe dominant contribution ton(il) is due to the displace-
analogous to the case of spiffand dipolat! glasses. ments of the NB" and PB™ ions, so that Eq(1) can be

In Sec. Il we adopt a semimicroscopic description of asimplified to
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c _ 27c _ 12
i) = 2oy (i)~ pp(iD]+-, (@) Hiilay=Jo/Me L) e =N "
The random fields similarly obey an independent Gaussian
wheree, is the unit charge and the dots represent the contridistribution such that
butions of the remaining terms. Since Mg and Pb ions have
the same charge, the contribution of a Mg-type cell is much ~ [hi,]a,=0, [hi,hj,]5,=466,.,; (u=xy,2). (8
smaller and only Nb-type cells are relevant. betepresent

the number of Nb cells in clustéZ; . The dipole moment of In the last term of Eq(6), E is an applied external field
C; can then be written as andg=(4m/3¢)(e+2) yerf([N%]ay/3) My, Whereye¢s rep-
resents an effective local field factor and we assume that the
MFE m(il )Enirﬁo(i), 3 length of the dipole moment of a Nb cell is the same in all

clusters, i.e.mg(i)=m;.
It should be noted again that the order parameter ﬁ?eld
N is a discrete vector restricted to a large but finite humber of
Nb cell in C;, and can thus be replaced byo(i)  equilibrium orientations. Its magnitude scales with the clus-
= (3/2)eo[unp (1) —upp(i)]. ter sizen;, implying that|S;| can vary over a large interval.
Let us now introduce a dimensionless order parametegince the distribution of the number of polarized cellsn a
field, which is proportional td\7|i and thus scales with the cluster is not known, an exact evaluation of the free energy

assuming that the dipole momen(il) is the same for each

number of Nb ions; of model (6) is far from trivial. We will therefore deal here
12 =, with a simplified model, assuming that each componer§ of
2 _ 3 Mi fluctuates continuously over the entire space,
S=| =] = @
[n?],,) Mo(i)

—0<§, <+ 9
Here[n?],,=(1/N)=;n?. It is easily verified that the order N _ o _
parameter field then satisfies the closure relation however, conditior(5) should be strictly satisfied. This then
leads to a spherical vector model, which is referred to as the
spherical random-bond-random-figlRBRF model.

Ei ($)2=3N. (5)

] ) ) ) IIl. EQUILIBRIUM PROPERTIES OF THE SRBRF MODEL
The model Hamiltonian of a system of interacting polar

clusters is formally written as The spherical model of a uniaxial spin glass has been
solved a long time ago by Kosterlitz et&lusing the repre-
1 > = S o > sentation of eigenstates of the random malfjx The same
H:_§ ; ‘]iJSi'Sj_Ei hi'S—gzi Ei-S. (6 method is, in principle, applicable to the SRBRF model;
however, as shown in Ref. 18 one can also apply the replica
Here J;; are random interactions or bonds ahdrandom  method. This method has several advantages in the present
local electric fields. Following the theories of spifi and case and will be adopted here. Introducing the familiar rep-
dipolart! glasses we will assume that the random bonds aréica indicesa=1,2,...n and a Lagrange multipliez to
infinitely ranged with a Gaussian probability distribution enforce the spherical conditiofb), we can formally write
characterized by the cumulant averages down the expression for the free energy

[ e 2 3 o

c—io® 2i a i

o

1 +oo
BF= Iim—{ J
n~>0n -®

1
Xex;{,@z (E% JijSI“MSJ-“MJr% th,“MJrg% E#S"M)

a

—1}. (10)

As usual,B=1/KkT and we will setk=1.

In the next step, the random averages aygandh;, are performed, to be followed by the usual manipulations of replica
theory. This procedure is standard and parallels the theory of spin gfdSsEserefore, the intermediate steps in the deriva-
tion will not be reproduced here. In analogy to the uniaxial tae replica symmetric solution is exact in a spherical glass.
The immediate objective is to calculate the order parameters such as the polarization

1
Pu=y 2 (S, (v

and the dipolar glass order parameter, written here in its Cartesian components,
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1
A= 2 (S (12

as functions of the electric fielfl and temperature. For an arbitrary directiorfofhis is a nontrivial problem, which cannot
be solved analytically. In order to analyze the basic equilibrium properties of the model we will, therefore, assume that the

electric field is parallel to thgl11] direction. In this case, including the choiEe—=|I§| =0, the Cartesian components are

independent by symmetry, i.&2,,=P andq,=d. Introducing an infinitesimal generating field parallel toE we obtain the
following expression for the free energy per cluster 7/N:

I dst exp— (S0 11}

3 3 1| (+= dx 1
f=——-BIoP?+ - B21%9°+ lim - f “exp(——xz)
B 23 0 4,3 q n—>0n[ . 1;[ \/ﬂ 2"

e
1
><ex;{ﬁ(JoPJrgE+xM\/J2q+A+)\Z)SZ— E,BZJZq(Sz)Z —1]. (13)
|
This expression will be used later to evaluate random aver- A
ages of the typéSZiSZi- . -SZV>. In the limit \*—0 we find Te=Jo| 1= 2= 0(Jo/3—1), (18)

2 1 where 0(x) is the unit step function. ObvioushR=0 for
- 3h1 =pBJ,P?— 5,82qu2— 2z+In(2z+ B2J%q) T>T,. o
At T—0 the polarization is given by
B% J2q+A+(JP+gE)?
2 2z+ 2%

(14) P2(0)=1—(J?+A)/J3. (19

. . . g _ 2_ 2 .
Finally, the equilibrium values oP, g, andz are obtained This implies that a critical valug .= Jg— J* exists such that

from the saddle-point conditiodf/9P=df/9q=df/9z=0 for A>ﬁ° thelre can be nr? Iong_—ralnge order at any te_mplera-
after some rearranging: ture. The value ofg at the critical temperature is simply

q(To)=A/A..
P=pB(1-a)(JoP+gE), (153 For Jy<J,. there is no long-range order and the glass
order parameter is determined by the equation
=pA(1-q)*(I%q+A)+P?, 15h)
q :8 ( CI) ( q ) ( ) q=,82(1—q)2(J2q+A). (20)
2z+p%)%q=1/(1-q). (1509 The solutionsq(T) for various values of the random field

, strengthA are shown in Fig. 1.

It should again be stressed that E¢s4) and (15 were It should be noted that since the replica symmetric solu-
obtained for a special field direction of the fiel[111].  tion is exact in the SRBRF mode,is equal to the Edwards-
Formally, Egs.(15) also apply in the case of an isotropic Anderson order parametep .
relaxor system. The effects of cubic anisotropy could, in The phase diagram of the SRBRF model, compared with
principle, be studied after one has solved the SRBRF modehe spin glass cask=0, is shown as an inset in Fig. 1. As
for a general direction of the field. already noted for the case of a uniaxial spherical spin Hflass

In the following we will first discuss the case without without long-range orderJy=0), there is no phase transi-
external fields, i.e =0 butA#0. Equationg15) then have  tion in the presence of an external field; the same is true of
two sets of solutions(a) P=0, q#0, corresponding to a the present model with nonzero random fields#0). In
phase without long-range order, to be referred to as theerms of a replica theory, there is no replica symmetry break-
spherical glasSG) phase; andb) P#0, g+0, i.e., the ing and no Almeida-Thouless lifé°in the SRBRF model.
long-range order or ferroelectri&E) phase. The FE phase Thus, in general, fod #0 andJ,<J,. there is no sharp
can only exist iflo>Jo., where the critical value is given by freezing transition into into a low-temperature spherical glass
Joo=IZ+A. AssumingP+0, Eq. (159 yields state within the static SRBRF model.

q=1-T/Jq. (16) IV. NONLINEAR DIELECTRIC RESPONSE

Inserting into Eq(15b) one finds that the spontaneous polar-

S ) _ In a system with average cubic symmetry the phenomeno-
ization is determined by the equation

logical relation between the applied electric fiefid, (u
P2=[1— (J/39)2](1—T/Jg)— AITZ. an - 1,2,3) and polarizatio®, can be written, assuming small
amplitudes, as a power series
The critical temperaturd, is obtained from the condition S 5
P2=0, i.e., P1=x1E1— X10E1(E5+E5) = x1Ei+- - (2D)
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FIG. 1. Temperature dependence of the SG order paraméter
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as(E)=x3(E)/x1, (26)

where y1= x1(0). Obviously,a;=a3(0).
Alternatively, in some experiments a different definition
of the scaled nonlinear response is being used, namely,

~ x1(0)— x1(E)
" T3E%(0)"

Using Egs.(24) one can show that in the case without long-
range order lim_,a;=as; however, in generaB(E) will
differ from a5(E). It should be noted that the relati¢®?) is
not applicable in the FE phase.

We can now calculate the nonlinear respogs€E) from
the solution of Eq(153, i.e.,

as(E) (27)

£ 14°P -
X3( )__EE’ (28)

where y; in Egs. (248 and (25 corresponds toy;(0)

=lime_ox3(E).
The linear susceptibility,(E) is obtained as the deriva-

the SG phase Jo=0) for various values of the random-field tive of the solutionP(E,T) of Eq. (153,

strengthA. Top to bottom:A/J?=1.0,0.5,0.1,0.01,0. Inset: Phase
diagram of the SRBRF model in zero-bias field. Solid line: Phase

boundary between the ferroelectiEE) and spherical glas€SG)
phase for random-field strengtk/J>=0.1. Dotted line: Spherical
spin glass 4 =0).""

The inverse relation is formally

E1=a1P1+ a122P1(P§+ Pg)'i‘alllpi'f' LR (22)

Here and in the following we redefine the fieldg by ab-
sorbing into them the local field factg; which is formally
accomplished by setting=1 in Egs.(15).
Comparing the above two relations yields
= xu/xi- (29

a;=1lx1; ap= )(122/)(411 ;

Here x, is the linear susceptibility ang;,,, x111, €tc. the

third-order nonlinear susceptibilities. For a fi&f[ 111] and
P,=P,=P;=P Egs.(21) and(22) simplify to

P=x1E—xaE3+- -, (24a
E=a,P+asP3+- -, (24b)

where x3=2x12,+ x111 @nd
a3= xa/x1- (29

The same relations formally hold for an isotropic system.

A1)
(B = T B3(1-q) 1 D(EP)’

where D(E,P)=28P(J,P+E)/[1+2B%(J’q+A)(1—q)
—B23%(1—q)?]. In the SG phaseJp<Jy.) with E=0 one
has D=0, but for E#0 or in the FE phase aT<T, it
follows thatD #0.

One can easily calculatg;(E) from Egs.(15 and(29).

In the FE phasey;=x1(0) is found to diverge aT =T,
whereT, is given by Eq.(18). In the SG phase, howevey;
is nonsingular.

In experiments,y, is typically measured at some finite
frequencyw. Thus a comparison with the predictions of a
static theory is not straightforward in view of the strong fre-
quency dispersion observed in relaxor ferroelectrics. Special
techniques such as the frequency-temperature ‘plbtsve
been used to extract the “static” freezing temperatiise
from the apparent divergence of the longest relaxation time.
Clearly, the results of a static theory are applicable only in
the temperature region where frequency dispersion is negli-
gible, namely, at sufficiently high temperatures. A dynamic
version of the SRBRF model has not yet been worked out.
The dynamics of a uniaxial spherical spin glass in random
fields has been studied in Ref. 20.

The frequency dispersion also plays a role in the tempera-
ture dependence of the third-order nonlinear susceptibility
x3- As already suggested for dipolar glasdethe scaled
nonlinear responsag is a suitable quantity to be compared

(29

Experimentally, ys can be determined, for example, by with the s_,ta_tic theory. In principle, by measuriag(T) one
measuring the third-harmonic nonlinear response to an oscifan discriminate between the FE and SG behavior more eas-
lating external field in zero-bias field. The scaled nonlineadly than on the basis of, or x5 alone. The phenomenologi-
responses is obtained from Eq(25) provided one has also €@l theory predicts that in the FE phagg diverges as

determined the linear responge in zero bias.

If a nonzero-bias fielcE is applied, one measures the
modified field-dependent linear and third-harmonic nonlinear

responses, which will be denoted ky(E) and x3(E), re-

~|T—T,| 3728, so thata; should behave as

abE~|T—T 728, (30)

spectively. The field-dependent scaled third-order nonlineawhere in generaly—2>0 for a cubic systerf’, and y

response is then defined as

=2 in the mean-field approximation. Thus in a random-
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field frustrated ferroelectri@5® should not diverge aT., 15.0 T - -
but should fall off to a constant value or zero Bt. In
contrast, for a dipolar glas€DG) one expects a divergent
behavior,

ag o ~|T—T| ™7, (3D
where the mean-field value of the exponentis=1. /\
1.0 15

These results can now be matched with the predictions of 100 |
the SRBRF model. By calculating successively the deriva-
tives of P(E) andq(E) from Egs.(15), we find from Eq.
(28) in the limit E—0 and forP=0:

a,nJ

B Bxi(Jox1+1)
X3_[1—B232(l—Q)(1—3q—ZA/JZ)][l—BJo(l—Q)(]3'2)

50

Here x1=x1(0) is given by Eq.(29). The last result is ap-
plicable in the SG phase at all temperatures and in the FE
phase {y>Jg.) for T>T,.

The scaled nonlinear susceptibilit;{3=)(3/)(‘11 is thus
given by

T 1
(33 %0 0.5 20

BT (1-q)71- FP(1-q)(1-3q-2A/P)]’ oy

Notice that this expression is independent of the valug,of FIG. 2. Scaled third-order nonlinear respomse= x5/ in the
We now investigate the behavior a andas(E) intwo  SG phaseJ,=0) as a function of temperature, plotted for various

characteristic cases, i.e., the SG phase whgrd,, and the values of the random-field strength. Top to bottom: A/J2

FE phase withJ<J, corresponding to a random-field frus- =0,0.001,0.01,0.1.

trated ferroelectric.

5.0

A. Spherical glass phase

Here we will setJp=0. In Fig. 2,a3 as a function of
temperature is plotted for various values of the random field 49 | .
strengthA. If A=0, corresponding to a spherical vector spin
glass,a; diverges afl=J according toag~|T—T| L. For
A#0 the denominator in Eq33) never vanishes and the 3.0} .
divergence ofa; does not occur; however, fax/J?<1, ag
shows a sharp peak neBy. At A/J?>=0.1 the peak starts to

broaden and completely disappears at larger values/ . 20 r ]

In experimentsa, can be determined in the region above

the expected value df;, where the dispersion is weak and =

one is essentially observing the high-temperature tail of@m 10 - A

as(T). This behavior mimics a divergings; however, only ~ ®

a fit to Eq.(33) may reveal the true nature of the singularity

and vyield the parameters of the mofleThe narrow peak 00 ’

occurring neail ~J is unlikely to be observed in practice in

view of the dynamic effects which become dominant close to |
In the presence of a bias fieldE¢&0) we consider the

temperature dependence af(E) as defined by Eq(26). 2.0 i

Figure 3 shows; at E=0 compared withas(E) for various

values of the fieldE at fixed random-field strength/J?

=0.01. With increasing field strength the peak ag(T) _3.0 ‘

gradually disappears. This effect is similar to that occurring 0.0 1.0 20

in az when the value ofA is increased. Thus in an experi- ™

ment under a bias fieldone can miss the nearly divergent  FIG. 3. Temperature and field dependence of the nonlinear re-

behavior observed under the zero field conditions. It is nokponseay(E) in the SG phase J,=0) and for fixed value of

trivial to predict the magnitude of the effects of a bias field,A/J?=0.01. Top to bottomE/J=0,0.01,0.1,0.2,0.5.
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10.0 ' the external fieldE. Obviously, a; remains finite asT
—T., but makes a jump &k, in accordance with mean-field
theory.

In contrast to the SG casa; in a random-field frustrated
ferroelectric does not show any anomalous peak even at the
smallest values oh. Thus by determining the scaled nonlin-
ear respons@; without a bias field one can readily decide
whether the system under investigation behaves as a spheri-
cal glass or a ferroelectric. In PMNg(T) was determined
in the temperature range 220XT=<320 K and found to
increase sharply on approaching the lower end of this inter-
100 | - val. A fit to the SRBRF modélyielded the model parameters
J=220 K andA/J?=2x10 *. The value of] was found to
agree reasonably well with the Vogel-Fulcher temperature
To=215 K characterizing the temperature dependence of
the longest relaxation time, which was obtained by means of
the frequency-temperature pldts.

00

a,(EVJ,

-20.0 | -

V. PROBABILITY DISTRIBUTION
OF LOCAL POLARIZATION

The local polarization of a cluste€; is defined asﬁi

30,0 . =(S;), where(- - -} is the thermal average. The probability

0.0 ;/-3 20 distribution of local polarization is formally written as
(]

-1 - -
FIG. 4. Temperature and field dependence of the nonlinear re- W(p)=— E S(p—pj). (37
sponse in the FE phasd<£0) and fixedA/JS:0.0l. Top to bot- N 4

tom: £/J,=0,0.01,0.1,0.2,0.5. This quantity is useful in describing NMR and related ex-

rPerlments in dipolar and quadrupolar glass&s:?* It is
trivial to show that the first moment &f/( p) is just the total
polanzatlonP of the system, and the diagonal part of the
second moment gives the glass order paranggter

To evaIuate\N(f)) for the SRBRF model we consider the
caselJy=0. First we introduce, as usual, the Fourier trans-
Torm of the & function in Eq.(37), i.e.,

since the relevant energy shift will depend on the unknow
local field parameteg in Eq. (153.

B. Ferroelectric in random fields

This corresponds to the cadeJ, and we will setJ=0
without much loss of generality. We can distinguish betwee
the paraelectric(PE) phaseT>T, and the FE phas&

<T., where from Eq.(18) we find T,=Jo(1—A/J3). For - +o 3k L. .
T>T,, Eq.(15b) yields W(p)=LC —(Zw)sexp(—lkp)[exp(lk-<5>)]av-
(38
a- ZBZA (1+2B°A—1+4B°A). (34 Next, we expand the last exponential into a power series and

_ - o _ in order to evaluate the random averages assign each com-
The linear susceptibility; is given by Eq.(29) with D=0,  ponentS,, a different replica index. The random average can

and one can easily checl_< t_hat it (_jiverges\e(sT—Tc)*l- then be expressed in terms of the appropriate derivatives of
The nonlinear susceptibility; diverges aS_“(T—Tc)_4; the generating field ¢ in Eq. (13). Since all replicas are
however, the scaled nonlinear respoasés given by independent, the averages of different Cartesian components
T Si,, will decouple. This then implies
az- = 35 -
> (111281 q)] 39 W(B) =W(pw(py W(p,), 39
and remains finite af —T.. where
For T<T, one has from Eq(15b)
W(p,u,):[a(pﬂ_<su>)]av- (40)
P2=1-T/Jo—A/J3, (36)

The last expression can again be rewritten as

whereasq-(T) is given by the solution of Eq(16). The rodk

scaled nonlinear responag. can be calculated numerically w(p )zf —exp(—ik,p,)

after deriving a set of the appropriate field derivatives of . — 27T s

P(E,T). The result forag with A/J5=0.01 at temperatures

both above and belowl. is shown in Fig. 4. Also shown is % 2 ( u [(S“l)<8“2) (S ey, (41)
the nonlinear responsgy(E) at T>T, and various values of =0 m
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where the limitn—0 is understood. The averages)) are  p,=(S;). The quadrupole perturbed NMR resonance fre-
all equal and evaluating them with the aid of @) we find  quency of ®Nb in thelth cell in C; can thus be expanded

for the random average in E¢41): into a power series
e dx, 1, BVIZq+A\ vi=vO+ M+ a-p+p- o+, (46)
["']avzf 2 AT 2%\ M 22
TENem z+p7J%q where v(® is the unperturbed resonance frequency affd

(42) represents the static shift due to the distortion of the cell

After performing the summation in E¢41), carrying out the from its hlgh symmetrycubic) perovskite structure. The co-
remaining Gaussian integration, and using Ed&c and  efficientsa and 8 depend on the orientation of the magnetic

(15b), we obtain the result field B.
The inhomogeneous NMR line shape is given in terms of
p? the frequency distribution function
-1/2 ~
W(p,)=(2mq)”"“exp — 2q)" (43
1 1
Equation(39) then yields f=x 2,“ n 2,: o(v—wy). (47)
) 52 The site averages can be replaced by an average over the
W(p)=(27rq)‘3/2exp( - E) (44)  probability distribution ofv{!) and the distribution of local

polarizationW(p). Assuming that the cluster averageigt

This result shows that/(p) for the SRBRF model is Gauss- 1S the same for all clusters, ie., (== v and ab-

ian at all temperatures and its width is determined by thes0rbing it intovo=w""+1""" we have

spherical glass order parametgrin contrast,W(p) of an

Ising dipolar glass is characterized by a single-peak form at :f 3 = - d= o Gty

high temperatures, which changes to a double-peak structure ) d*pWp)o(v=ro—a-p=p-B-p). (48

at low temperature® Similarly, in a quadrupolar glass the

low-temperature shape oN(p) consists of two or three

peaks, depending on the symmetry considéfed.
Equation(43) can readily be extended to the case of non-

zero polarizatiorP occurring either fodg>Jo. andT<T or

with nonzero-bias fieldE|[111], i.e.,

The integral can be evaluated analytically in two special
cases. Thdinear case corresponds to the orientation of the

magnetic fieldB|[[111] for which |a|>| B]. Neglecting the
last term in thes function we can write

f(v)=f%exq—ik<v—v()>]f dp(2mq) 92

. (p.—P)?
w(p,)=[2m(q—P?)] ”exr{—h . (49 5
q xexp(—ﬁﬂk&-p). (49
The complete probability distribution of local polarization
W(p) is then given by Eq(39). Evaluating the triple Gaussian integral and the Fourier trans-
form we find the result
A. Application to the NMR line shape 2
_ 21=172 gy ] (V7 0)
A convenient way of measuring the probability distribu- f(v)=(2mqa®) "“ex 2qa? (50)

tion of local polarization is by means of the quadrupole per-

tubed NMR. As an example we consider th#\b (1=9/2)  This shows that the line shape is Gaussian at all temperatures
nucleus in PMN having a nonzero electric quadrupole mo-and its width depends on the glass order parantgterd the
ment, which couples to the local electric field gradi€f®G)  coupling coefficienty=|a|. The second moment d{v) is
tensor® Relaxors exhibit giant electrostriction in the region proportional to the glass order parameter, i.e.,

of the relaxor transition, i.e., anomalously large deformations

of the lattice in an electric field, indicating the long-range

nature of interactions on a microscopic level. Therefore, we Mff dvf(v)(v—re)°=a?q. (51)

will assume that the EFG tensor at a given Nb site is a

function of the displacemenﬁs((il) of every ion in the clus- Thus by measuring the line shapér) and its second mo-
ter. These displacements are in turn related to the clustenent in the linear case, one can directly obtain the probabil-
dipole momentM; via Egs.(1)—(3), as we assume perfect ity distribution of local polarizationV(p) and the tempera-
long-range order within a cluster. From this it follows that all ture dependence of the glass order paramgte).

Nb nuclei have the same quadrupole shift, which depends on The bilinear case is characterized ¢§;|<||ﬂ|| and there-

I\7Ii and hence on the order parameter fiéld In the fast fore the linear term in theS function of Eq.(48) is negli-
motion limit the observed quadrupole shift depends on thgjible. This occurs, for example, whéj|[100] and we may
time average of§i , which is equal to the local polarization assume that
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: (52

hi

>
o O -
o O O
o O O

leading to
p2
f(v)= f dpx(zwqufzexp( - 5) S(v—vo— BoPy)-
(53
For By,>0 we thus find

f(v)=6(v—vo)[2mqBo(v— Vo)]_mexr< -

For 8y<0, f(v) is simply mirrored around = v,

In contrast to the linear case, the line shdfpe) is now
strongly asymmetric and diverges when-v,. The glass
order parameter is related to the first moment@f), i.e.,

Ml:jde(V)(V_VO):IBOq- (59

Experiments in PMN withB||[100] (Ref. 26 have con-
firmed the predicted asymmetric fort64). In general, the

NMR line shape in PMN can be decomposed into a narro
temperature-dependent Gaussian component and a bro
T-independent Gaussian backgrodrfi.Both components

SPHERICAL RANDOM-BOND—-RANDOM-FIELD MODEL @ . ..
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within the SG phase; however, one can show that for weak
random fields the scaled third-order nonlinear susceptibility
a3=X3/X‘1‘ shows a sharp peak near a temperalyrewhich
corresponds to the freezing temperature of the spherical spin-
glass model without random fields. Thus in experiments one
should be able to observe a quasidivergent behavier, ain

the high-temperature side of the peak, where the frequency
dispersion is weak. This has indeed been found in PMN
(Ref. 19 and PLZT ceramicé! supporting the assumption
that these systems can be described as a special kind of di-
polar glass, namely, the spherical glass. If a bias electric field
is applied, the behavior changes dramatically and the peak
disappears at relatively weak-bias fields. In the FE phase,
which corresponds to a random-field frustrated ferroelectric,
there is no peak in the scaled nonlinear response both in a
nonzero-bias field or without bias.

As an application of the theory the quadrupole perturbed
NMR line shape of*Nb has been considered. The frequency
shift can be expressed in terms of the EFG tensor compo-
nents at the Nb site, which are expanded into a power series
with respect to the order parameter field. For special orien-
tations of the magnetic field, the frequency shift can be either
a linear or bilinear function of the time average of the order

parameter fielcéi or equivalently the local cluster polariza-

v\;ion p; . In the linear case, the NMR line shapgy) is sim-
BB' related to the probability distribution of local polarization

W(p). It turns out that a special feature of the SRBRF model

turn out to be inhomogeneously broadened. The narrow linés the fact thatw(p)—and hencef (v)—is Gaussian at all
refers to the centraj and ——3 transition and can be well temperatures. Its second moment is proportional to the glass
described by the above theory. The broad Gaussian backrder parameteg. Thus by measuring(») one can simply

ground is due to unresolved satellite transitidifef. 26.

determine the probability distribution of local polarization

The ratio of the intensities of the two components was foundand the temperature dependence of the glass order parameter,
to be temperature independent throughout the investigatefdom which the values of the model parameters can be ex-

temperature interval.

tracted. In the bilinear case, the NMR line shape is an asym-

It should be noted that the time scale of a NMR experi-metric function of frequency, which diverges at the unper-
ment is essentially determined by the inverse of the maxiturbed resonance frequency, and the glass order parameter is
mum linewidth, which is in PMN typically of the order given by its first moment. The observed NMR line shape in
texp™ 10° s, while in dielectric experiments one can, in both the linear and bilinear regime lends strong support to
principle, extrapolate the data to quasistatic values. Due tthe SRBRF model, since models other than spherical cannot
the strong frequency dispersion observed in relaxors at loweproduce a Gaussian form &fv) at all temperatures.
temperatures, the model parameters deduced from the NMR As already noted the above model is completely static. A
data have to be regarded in the context of their time-scaldynamic theory is clearly needed to describe the frequency
dependence, and cannot be directly compared with the valuelispersion observed in real systems both in the linear and
obtained from dielectric measurements in a different temnonlinear susceptibilitiesy; and xs, respectively. The
perature range. Again, these discrepancies could be resolvgdesent static SRBRF model could possibly be extended to

only within the framework of a dynamic model

VI. CONCLUSIONS

include dynamic effects by introducing Langevin-type equa-
tions of motion? It should also be mentioned that a dynamic
theory based on a random-site—random-field model has been
proposed by Vugmeister and Rabitzyhich provides good

We have presented a simple semimicroscopic model oigreement with the experimental results on the frequency-
relaxor ferroelectrics based on the vector spherical randomyependent and zero-field-cooled linear permittivity. The re-
bond-random-fieldSRBRF model of dipolar glasses. The |ation between the Vugmeister-Rabitz dynamic model and

relevant degrees of freedom are associated with the dipolhe dynamic extension of our SRBRF model will be dis-
moments of the reorientable polar clusters, which are embegyssed in full detail in a forthcoming publication.

ded in a quasiregular array of chemically 1:1 ordered re-
gions. The static SRBRF is exactly solvable by the replica

method and predicts the existence of two phases, nhamely, the
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