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Orbital polarons in the metal-insulator transition of manganites
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The metal-insulator transition in manganites is strongly influenced by the concentration of holes present in
the system. Based upon an orbitally degenerate Mott-Hubbard model, we analyze two possible localization
scenarios to account for this doping dependence: First, we rule out that the transition is initiated by a disorder-
order crossover in the orbital sector, showing that its effect on charge itineracy is only small. Second, we
introduce the idea of orbital polarons originating from a strong polarization of orbitals in the vicinity of holes.
Considering this direct coupling between charge and orbital degrees of freedom in addition to lattice effects we
are able to explain well the phase diagram of manganites for low and intermediate hole concentrations.
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I. INTRODUCTION

The doping dependence of the properties of mangan
oxides poses some of the most interesting open problem
the physics of these compounds. First to be noticed is
peculiar asymmetry of the phase diagram that is most p
nounced in the charge sector: Regions of high (x.0.5) and
low (x,0.5) concentration of holes are characterized
such contrasting phenomena as charge ordering and me
ity, respectively. In the latter region — which we wish
focus on — the metallic state can be turned into an insula
one by raising the temperature above the Curie tempera
TC . Introducing the notion of double exchange which as
ciates the relative orientation of localized Mnt2g spins with
the mobility of itineranteg electrons, early work has ident
fied this transition to be controlled by the loss of ferroma
netic order inherent to the metallic state.1–3 It is believed that
lattice effects are also of crucial importance in this transiti
Within the lattice-polaron double-exchange picture,4,5 the
crossover from metallic to insulating behavior is controll
by the ratio of polaron binding energyEb to the kinetic en-
ergy Ekin of charge carriers:

l5
Eb

Ekin
. ~1!

When forming a bound state with the lattice, charge carr
loose part of their kinetic energy. Hence, polarons are sta
only if this loss in energy is more than compensated by
gain in binding energy, i.e., ifl.1. In a double-exchange
system, this critical coupling strength may be reached
raising the temperature — the double-exchange mechan
then acts to reduce the kinetic energy and hence to incr
l. Spin disorder and spin-polaron effects further enhance
carrier localization aboveTC .6 The doping dependence o
the metal-insulator transition, however, is not fully captur
in this picture. Namely the complete breakdown of metalic
at hole concentrations belowxcrit'0.15-0.2 that occurs de
PRB 600163-1829/99/60~19!/13458~12!/$15.00
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spite the fact that ferromagnetism is fully sustained rema
an open problem which we address in this paper.

The effective coupling constantl in Eq. ~1! has originally
been introduced for non-interacting electrons. The itiner
eg electrons in manganites, on the other hand, are subje
strong on-site repulsions, which necessitates to accommo
the definition ofl. According to numerical studies,7 the ba-
sic physics underlying Eq.~1! remains valid even in corre
lated systems: As in the free-electron case, the me
insulator transition is controlled by the competition betwe
the polaron binding energy and the kinetic energy of cha
carriers. Nevertheless, correlation effects might renorma
these two relevant energy scales, presumably introducin
doping dependence. In fact, the Gutzwiller bandwidth of c
related electrons scales with the concentration of do
holes; one could therefore be inclined to setEkin}xt, where
t denotes the hopping amplitude. But this approach reac
too short: The Gutzwiller picture describes only the avera
kinetic energy of the system. In contrast, the relevant qu
tity for localizing the holes doped into a Mott-Hubbard sy
tem is the characteristic energy scale of charge fluctuatio
which remains}t.8 Pictorially this quantity corresponds t
the kinetic energy of a single hole. We, thus, conclude tha
more thorough treatment of correlation effects is needed
order to explain the peculiar doping dependence of
metal-insulator transition in manganites.

In this paper, we analyze two mechanisms that co
drive the localization of charge carriers at small hole conc
trations x. First, we explore the possibility of the meta
insulator transition to be controlled by a disorder-ord
crossover in theeg-orbital sector. The idea is the following
Orbital fluctuations are induced by the motion of holes a
hence possess an energy scale}xt. At largex, orbitals fluc-
tuate strongly and intersite orbital correlations are weak.
the concentration of holes is reduced, fluctuations slow do
until a critical value ofx has been reached — promoted b
Jahn-Teller and superexchange coupling, an orbital-latt
ordered state now evolves. We analyze the extent to wh
this transition in the orbital-lattice sector affects the itinera
13 458 ©1999 The American Physical Society
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PRB 60 13 459ORBITAL POLARONS IN THE METAL-INSULATOR . . .
of holes. Finding almost similar values for the kinetic ener
of doped holes in orbitally ordered and disordered states
are lead to conclude that the development of orbital-lat
order is not sufficient to trigger the localization proce
Next, we turn to analyze a second scenario of the me
insulator transition for which we introduce the concept
orbital polarons. Similar to spin polarons in correlated s
systems, orbital polarons are a natural consequence of st
electron correlations and the double degeneracy of on
levels — in manganites the latter follows from the dege
eracy ofeg orbitals. We argue that holes polarize the orbi
state ofeg electrons on neighboring sites: A splitting of o
bital levels is evoked by a displacement of oxygen ions a
also by the Coulomb force exerted by the positively charg
holes. Being comparable in magnitude to the kinetic ene
of holes, the orbital-hole binding energy can be large eno
for holes and surrounding orbitals to form a bound state. T
important point is that the stability of these orbital polaro
competes not only against the kinetic energy of holes
also against the fluctuation rate}xt of orbitals: The faster
the latter fluctuate, the less favorable it is to form a bou
state in which orbitals have to give up part of their fluctu
tion energy. Combining this orbital-polaron picture with th
of conventional lattice polarons we are able to explain w
the phase diagram of manganites at low and intermed
doping levels.

II. ORBITAL DISORDER-ORDER TRANSITION

In this section, we analyze the impact of a disorder-or
transition in the orbital-lattice sector onto the itineracy
holes. Our motivation is that a sudden freezing out of orb
fluctuations below a critical doping concentration could s
nificantly impede the motion of holes, hence initiating t
metal-insulator transition. By comparing the bandwidth
holes both in orbitally ordered and disordered states, we
able to refute this idea: The orbital sector is shown to h
only little influence onto the charge mobility in manganite

A. Disordered state

We begin by investigating the bandwidth of holes in
strongly fluctuating, orbitally disordered state. Our start
point is the t-J model of double-degenerateeg electrons
which, via Hund’s coupling, interact ferromagnetically wi
an array of localizedS53/2 core spins. The model accoun
for the presence of strong on-site repulsions that forb
more than oneeg electron to occupy the same Mn site
well as for the double degeneracy ofeg levels. At low tem-
peratures and intermediate doping levels, the dou
exchange mechanism induces a parallel alignment of sp
Treating deviations from this ferromagnetic ground st
only on a mean-field level as is discussed below, the c
spins can be discarded and the spin indices ofeg electrons
may be dropped; thet-J Hamiltonian then becomes9,10

HtJ52 (
^ i j &g

~ tg
abĉia

† ĉ j b1H.c.!1
2J

z (
^ i j &g

t i
gt j

g , ~2!

with z56. Nearest-neighbor bonds along spatial directio
gP$x,y,z% are denoted bŷi j &g . We use constrained opera
tors ĉia

† 5cia
† (12ni), which create aneg electron at sitei in
y
e

e
.
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orbital a only under the condition that the site is empty. T
first term in Eq.~2! describes the inter-site transfer of co
strainedeg electrons. The transfer amplitude depends up
the orientation of orbitals at a given bond as is reflected
the transfer matrices

tx/y
ab5tS 1/4 7A3/4

7A3/4 3/4
D , tz

ab5tS 1 0

0 0D ;

a representation with respect to the orbital basisaP$u3z2

2r 2&,ux22y2&% has been chosen here. Due to its nondia
nal structure, orbital quantum numbers are not conserved
Hamiltonian ~2! – inter-site transfer processes induce flu
tuations in the orbital sector. The second term in Eq.~2!
accounts for processes involving the virtual occupation
sites by twoeg electrons. This superexchange mechani
establishes an intersite coupling between orbital pseudos
of overall strengthJ5zt2/U, whereU is the on-site repul-
sion between spin-paralleleg electrons. The pseudospin op
erators are

t i
x/y52 1

4 ~sz6A3sx!, t i
z5 1

2 sz, ~3!

with Pauli matricess i
x/z acting on the orbital subspace. Jah

Teller phonons mediate an additional interaction between
bital pseudospins, which is of the exact same form as
superexchange term. The numerical value ofJ has to be cho-
sen such as to comprise both effects. We finally note t
deviations from the ferromagnetic ground state underly
Hamiltonian ~2! are treated within conventional double
exchange theory.1–3,11The transfer amplitudet then depends
on the normalized magnetizationm via4

t5t0^cosu/2&'t0A~11m2!/2, ~4!

where t0 denotes the hopping amplitude between sp
parallel Mn sites andu is the angle between nearest-neighb
spins.

To observe the strongly correlated nature ofeg electrons,
it is convenient to introduce separate particles for charge
orbital degrees of freedom.12 The metallic phase of mangan
ites can be well described within an orbital-liquid picture th
accounts for orbital fluctuations by employing a slave-bos
representation of electron operators:10,13

cia
† 5 f ia

† bi .

Here, orbital pseudospin is carried by fermionic orbitonsf ia
and charge by bosonic holonsbi . Introducing mean-field
parametersx5t21(abtg

ab^ f ia
† f ib& andx5^bi

†bj&, wherex is
the concentration of holes andx' 1

2 , the two types of qua-
siparticles can be decoupled:

Horb52S x1
2xJ

zt D (
^ i j &g

tg
ab~ f ia

† f j b1H.c.!, ~5!

Hhl52xt(̂
i j &

~bi
†bj1H.c.!. ~6!

Diagonalizing the above expressions in the momentum r
resentation one obtains
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13 460 PRB 60R. KILIAN AND G. KHALIULLIN
Horb5(
kn

jk
n f kn

† f kn , Hhl5(
k

vkbk
†bk ,

with index n56 and dispersion functions

jk
65S xt1

2xJ

z D @2e0~k!6Ae1
2~k!1e2

2~k!#,

vk56xtF12
1

3
e0~k!G ,

where e0(k)5cx1cy1cz , e1(k)5(cx1cy)/22cz , e2(k)
5A3(cx2cy)/2 with cg5coskg . The essence of this slaved
particle mean-field treatment is that orbital and charge fl
tuations are assigned different energy scales. This is refle
by the bandwidths of orbiton and holon quasiparticles,
spectively:

Worb56xt1J, ~7!

Whl56t. ~8!

The former quantityWorb sets the energy scale of orbit
fluctuations — the terms proportional toxt and J describe
fluctuations induced by the motion of holes and by the c
pling between pseudospins, respectively. The latter quan
Whl finally defines the itineracy of holes in the orbital-liqu
state. The variation of the holon bandwidth with the onse
orbital order is in the focus of our interest in the remainder
this section.

B. Instability toward orbital order

The above treatment of orbital and charge fluctuation
based upon the notion of a strongly fluctuating orbital st
that is far from any instability towards orbital order. In re
systems such instabilities do exist: Jahn-Teller phonons
superexchange processes mediate a coupling between
als on neighboring sites, which introduces a bias towa
orbital-lattice ordering. Competing against the energy sc
of orbital fluctuations}xt, order in the orbital sector is ex
pected to evolve below a critical doping concentrationxcrit .
We investigate this instability of the orbital-liquid state b
introducing the intersite coupling term

HJ52
2J

z (
^ i j &g

t i
Qt j

Q eiQg, ~9!

with z56 andt i5(sinQsi
x1cosQsi

z)/2 acting on the orbital
subspace. We note that Eq.~9! is a simplification of the
superexchange coupling term in Hamiltonian~2! — internal
frustration makes the latter difficult to handle. ForQ5p/2
and Q5(p,p,0), the pseudospin interaction in Eq.~9! fa-
vors a staggered-type orbital orientation

uQ&65~ u3z22r 2&6ux22y2&)/A2 ~10!

within x-y planes repeating itself along thez direction; this
closely resembles the type of order observed experimen
in LaMnO3.14 The breakdown of the orbitally disordere
state, i.e., the development of orbital order, is signaled b
-
ed
-

-
ty

f
f

is
e

nd
bit-
s

le

lly

a

singularity in the static orbital susceptibilitŷsQ
x s2Q

x &v50.
Employing a random-phase approximation, the latter can
expressed as

^sxsx&Q5
^sxsx&Q

0

11JQ^sxsx&Q
0 /2

, ~11!

with vertex functionJq5J(cosqx1cosqy2cosqz)/3 and the
shorthand notation̂ sxsx&Q5^sQ

x s2Q
x &v50. Bare orbital

susceptibilitieŝ . . . &0 are evaluated using orbiton propag
tors associated with the mean-field Hamiltonian~5!. Numeri-
cally solving for the pole in Eq.~11!, we find the following
expression for the critical doping concentration

xcrit'
J

4t
, ~12!

which is valid for xcrit!0.5. At concentrations below thi
critical value an orbitally ordered state is to be expect
With J50.13 eV as estimated from the structural phase tr
sition observed in LaMnO3 at T5780 K ~Ref. 14! and t
50.36 eV ~Ref. 10! we obtain a critical doping concentra
tion of xcrit59%. This result indicates that the metallic sta
of manganites is indeed instable towards orbital-lattice ord
ing at doping concentrations that are not too far from thos
which the system is observed to become insulating.

C. Ordered state

Up to this point, we have studied the bandwidth of ho
in an orbitally disordered state and the instability of the s
tem towards orbital-lattice order. In the following, we an
lyze to which extent the itineracy of holes is affected by th
disorder-order transition in the orbital sector. Namely, we
interested in the bandwidth of holes moving through an
bitally ordered state; this quantity is then compared to
previous result of Eq.~8! for an orbital liquid. Foremost, an
important difference between models with orbital pseudos
and conventional spin is to be noticed here: In the la
systems, spin is conserved when electrons hop between
This implies that hole motion is constrained in a stagge
spin background. In contrast, the transfer Hamiltonian~2! of
the orbital model is nondiagonal in orbital pseudospin —
orbital basis in which all three transfer matricestx

ab , ty
ab ,

and tz
ab are of diagonal structure does not exist. This allo

holes to move coherently even within an antiferro-type
bital arrangement@see Fig. 1~a!#. For this reason only a mod
erate suppression of the hole bandwidth is to be expecte
the presence of orbital order. We calculate the bandwidth
the specific type of orbital order introduced in Eq.~10!.
Starting from the transfer part of Hamiltonian~2! and keep-
ing only the hopping matrix elements that allow for a coh
ent movement of holes~i.e., projecting out all orbitals that do
not comply with the ordered state! we obtain

Whl
coh54t. ~13!

This result indicates a reduction of the holon bandwidth
'30% as compared to the disordered state@see Eq.~8!#.
While not being dramatic, a quenching of the bandwidth
one third should nevertheless be sufficient to induce the
calization process, e.g., via the formation of lattice polaro
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PRB 60 13 461ORBITAL POLARONS IN THE METAL-INSULATOR . . .
However, it is important to note that Eq.~13! accounts solely
for the coherent motion of holes; incoherent processes
volving the creation and subsequent absorption of orbital
citations are neglected@see Fig. 1~b!#. Only if the ordered
state is robust, i.e., if it costs a large amount of energy for
electron to occupy an orbital that does not comply with
long-range orbital alignment, these incoherent processes
come negligible. This limit does not apply to manganit
where the orbital excitation energy isJ,t only. Before a
conclusion about the role of orbital order in the met
insulator transition can be drawn, these incoherent proce
have to be investigated in more detail.

In the following, we study the influence of incohere
processes onto the motion of holes, employing an ‘‘orb
wave’’ approximation: Starting from the assumption th
long-range orbital order has developed and that fluctuat
around this ordered state are weak, we use a slave-ferm
representation of the electron operators in the transfer Ha
tonian ~2!:

cia
† 5bia

† f i .

Within this picture, the orbital pseudospin is assigned
bosonic orbitons and charge to fermionic holons. The lat
is then divided into two sublattices that are ascribed differ
preferred pseudospin directions@see Eq.~10!#

↑[~ u3z22r 2&1ux22y2&)/A2, on sublatticeA,

↓[~ u3z22r 2&2ux22y2&)/A2, on sublatticeB.

In analogy to conventional spin-wave theory, excitatio
around this ground state can be treated by employing
following mapping of orbiton operatorsbia onto ‘‘orbital-
wave’’ operatorsb i

bi↑5H 1, sublatticeA,

b i , sublattice B,
bi↓5H b i , sublattice A,

1, sublatticeB.

In the momentum representation the transfer Hamiltonian~2!
then becomes

Ht5(
k

vkf k
†f k1(

kp
@gkbp

†1gk1pb2p# f k
†f k1p . ~14!

Here, vk52t(cx1cy22cz)/2 and gk5t@(22A3)cx1(2
1A3)cy12cz#/2 with cg5coskg . The first term in Eq.~14!

FIG. 1. Coherent~a! and incoherent~b! hole motion in antifer-
rotype orbital order. Incoherent processes involve the creation o
orbital excitation of energyJ.
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describes the coherent motion of holes within a band
width Whl

coh54t. The second term describes the interaction
holes with excitations of the orbital background. The dyna
ics of the latter is controlled by the inter-site coupling Ham
tonian ~9!, which in the momentum representation becom

HJ5J(
k

bk
†bk . ~15!

Hamiltonian ~15! describes dispersionless, nonpropagat
orbital excitations of energyJ. The local nature of orbital
excitations follows from the absence of frustration effects
the intersite orbital coupling term~9!.

The interaction of holes with orbital degrees of freedo
changes the character of the hole motion: Scattering on
bital excitations leads to a suppression of the coherent q
siparticle weight and a simultaneous widening of the ho
band. In analogy to studies of spin systems,15,16 we analyze
these effects by employing a self-consistent Born approxim
tion for the selfenergy of holes — within this method a
non-crossing diagrams of the self energy are summed u
infinite order while crossing diagrams are neglected. R
stricting ourselves to the case of a single hole moving at
bottom of the band, we obtain the following expression
the holon selfenergy~see Fig. 2!:

S~ iv!5t2(
p

gp
2G~ iv2J,p!. ~16!

The Matsubara frequencies are defined asiv5 i (2n
11)pT, whereT denotes temperature andn an integer num-
ber.

Our first aim is to study the loss of coherency in the ho
motion. This can be done by employing a dominant-p
approximation:15 We split the holon propagator in Eq.~16!
into its coherent and incoherent parts,

G~ iv,k!5
ak

iv2ṽk

1Ginc~ iv,k!, ~17!

whereak denotes the quasiparticle weight andṽk the not-
yet-known renormalized holon dispersion. Keeping only t
coherent part and usingak5@12(]/]v)S8(v)#21 with
S8(v)5Re@S( iv→v1 i01)#, the following recursion rela-
tion for the quasiparticle weight is obtained

aq̄5F11t2(
p

gp
2 ap

~ṽ q̄2ṽp2J!2G21

, ~18!

with q̄5(0,0,p) at the bottom of the band. Equation~18! can
be approximately solved by expanding the integrand aro
q̄, which yields

n

FIG. 2. Born approximation of the holon selfenergy: The dou
line denotes the ‘‘dressed’’ holon propagator with self-energy c
tributions, the dashed line represents the ‘‘orbital-wave’’ Gree
function.
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aq̄55 12
1

A2p2 S t

JD 1/2

, for J@t,

A4 2p2S J

t D
1/4

, for J!t.

~19!

In the limit J/t→`, orbitals become static and coherent ho
motion with aq̄51 is recovered. In the opposite limitJ/t
→0, the holon quasiparticle weight is completely lost, in
cating strong scattering of holes on orbital fluctuations.

Next, we turn to study the renormalization of the hol
bandwidth. InsertingG( iv,k)5@ iv2vk2S( iv)#21 into
Eq. ~16! leads to a recursion relation for the holon selfe
ergy:

S~ iv!5t2(
p

gp
2

iv2vp2J2aS~ iv2J!
. ~20!

The factora5(z21)/z partially accounts for the constrain
that forbids more than one orbital excitation per site —
hole may therefore not return to a previously visited s
unless to reabsorb an excitation. We solve Eq.~20! numeri-
cally and determine the spectral functionr q̄(v)
521/p Im@G( iv→v1 i01,q̄)# at the bottom of the band
The result is shown in Fig. 3. Different values ofJ/t are
used. In the limitJ/t→0, the spectrum is completely inco
herent and extends down tovmin523t corresponding to a
holon bandwidth ofWhl52uvminu56t.17 In this limit the hole
creates its own disorder and effectively moves within
orbital-liquid state characterized by strong orbital fluctu
tions. In the opposite caseJ/t→`, all spectral weight accu
mulates in a quasiparticle peak~denoted by a vertical line! at
vQP522t, which corresponds to a bandwidth ofWhl

FIG. 3. Spectral function of a hole moving at the bottom of t
band. Different values ofJ/t are used: The spectrum is complete
incoherent forJ50, having a lower bound atvmin523t. With
increasing values ofJ/t, spectral weight is shifted from the inco
herent part of the spectrum to a coherent quasiparticle peak~de-
noted by a vertical line!. In the limit J/t→`, the quasiparticle peak
is at vQP522t and has accumulated all spectral weight.
-

e

n
-

52uvQPu54t. The orbital state is static here and excitatio
are completely suppressed. At finite values ofJ/t, the total
spectral weight is divided into coherent and incoherent pa
The latter is separated from the quasiparticle peak by
orbital excitation energyJ. Processes in which the hole cre
ates more than one orbital excitation are reflected by a s
cession of peaks in the incoherent spectrum. ForJ5t/3,
which is realistic to manganites, the quasiparticle peak
counts for'65% of the spectral weight and the width of th
holon band is

Whl'5.7t. ~21!

Comparing the above number with our previous resultWhl
56t for the orbital-liquid state, we find a reduction of abo
5%. We, therefore, conclude that a disorder-order crosso
in the orbital sector has only a secondary effect on the kin
energy of charge carriers, ruling it out as a possible driv
mechanism to initiate the metal-insulator transition in ma
ganites.

III. ORBITAL POLARONS

In the preceeding section, we have considered charge
riers to interact with the orbital sector via the transfer part
Hamiltonian ~2!. While this coupling was shown to be re
sponsible for a shift of spectral weight from the coherent
the incoherent part of the holon spectrum, the effect onto
full bandwidth was found to be only small. In the following
we point out that in an orbitally degenerate Mott-Hubba
system there also exists a direct coupling between holes
orbitals stemming from a polarization ofeg orbitals in the
neighborhood of a hole. This coupling is strong enough
holes to form a bound state with the surrounding orbitals
low-doping concentrations. Based upon this picture we sh
that a strong reduction of the bandwidth comes into effec
orbital-hole bound states begin to form.

A. Polarization of orbitals

The cubic symmetry of perovskite manganites is loca
broken in the vicinity of holes which results in a lifting of th
eg degeneracy on sites adjacent to a hole~see Fig. 4!. Here,
we discuss two mechanisms that are foremost responsibl
this level splitting:~1! a displacement of oxygen ions tha

FIG. 4. Polarization ofeg levels on sites next to a hole: Phonon
and Coulomb interaction induce a splitting of energyD5Dph

1Dch.
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PRB 60 13 463ORBITAL POLARONS IN THE METAL-INSULATOR . . .
move towards the empty site; and~2! the local splitting ofeg
states which is induced by the Coulomb force betwe
‘‘positive’’ hole and negative electrons. The magnitude
the degeneracy liftingD5Dph1Dch is estimated as follows
The former phonon contributionDph originates in the cou-
pling of holes to the lattice breathing modeQ1 and of eg
electrons to two Jahn-Teller modesQ2 andQ3

Hel-ph52(
i

S g1Q1ini
h1g2Q2is i

x1g3Q3is i
z1

K

2
Qi

2D ,

~22!

whereni
h denotes the number operator for holes and the P

matricess i
x/z act on the orbital subspace. The coupling co

stants areg1 andg2'g3 andK is the lattice spring constan
Hamiltonian~22! mediates an interaction between empty a
occupied sites. The effective Hamiltonian describing t
coupling is obtained by integrating Eq.~22! over oxygen
displacementsQi5(Q1i ,Q2i ,Q3i). For a given bond along
the z direction this yieldsHz52 1

2 Dphni
hs j

z with

Dph5g1g2A2/~3K !'~g1 /g2!EJT. ~23!

A lower bound for this quantity is given by the Jahn-Tell
energy, i.e.,Dph>EJT'0.2 eV,18 assuming that coupling to
the breathing mode is at least as strong as coupling to
Jahn-Teller modes. Next, we estimate the contribution to
eg-level splitting that follows from the Coulomb interactio
between a positively charged hole and aneg electron on a
neighboring site. The magnitudeDch of this splitting is as-
sessed by taking into account the covalence of Mn 3d and O
2p orbitals, which gives

Dch'
3

4
g2RMn–Mn

21 . ~24!

The covalency factorg5tpd /Dpd can be obtained from the
transfer amplitude and the charge gap between Mn an
sites,tpd'1.8 eV andDpd'4.5 eV.19 Together with a lattice
spacing ofRMn–Mn53.9 Å this leads toDch'0.4 eV. In total
the polarization ofeg levels on sites next to a hole yields a
energy splittingD'0.6 eV. Being comparable in magnitud
to the transfer amplitudet this number strongly indicates
direct coupling of charge and orbital degrees of freedom
be of importance in manganites.

The splitting ofeg levels effects all six sites surrounding
hole. From the above Hamiltonian for a bond along thez
axis, analogous expressions forx andy directions are derived
by a rotation in orbital isospin space. The complete Ham
tonian for the cubic system is then

Hch-orb52D (
^ i j &g

ni
ht j

g , ~25!

with orbital pseudospin operators given by Eq.~3!. Hamil-
tonian ~25! promotes the formation of orbital polarons. F
low enough hole concentrations these consist of a bo
state between a central hole and the surroundingeg orbitals
pointing towards the hole as is shown in Fig. 5. Recent
perimental data on the atomic pair-distribution function
La12xCaxMnO3 seem to strongly support our picture.20 This
configuration of orbitals also yields a large amplitude of v
n
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tual excursions ofeg electrons onto the empty site. Thu
besides minimizing the interaction energy of Hamiltoni
~25!, it also allows to lower the kinetic energy. We note th
these virtual hopping processes locally enhance the magn
moments of core andeg spins via the double-exchang
mechanism, providing a large effective spin of the orbi
polaron. This naturally explains the development of fer
magnetic clusters experimentally observed at temperat
aboveTC .21 We finally note that the idea of local double
exchange in the vicinity of a Mn41 hole site was discusse
by de Gennes in his seminal paper.3

B. Binding energy

In conventional lattice-polaron theory, the binding ener
is a function of the coupling constantg and the stiffness of
the lattice which is controlled by the spring constantK: The
energy gain stemming from the interaction between cha
carriers and the lattice competes against the deformation
ergy of the crystal. In the case of orbital polarons, the und
lying picture is very similar. Here, the coupling constant
given by the orbital-charge interaction energyD, while the
energy scaleWorb56xt1J is a measure of the ‘‘stiffness’
of the orbital sector. These two quantities are expected
determine the binding energy of the orbital polaron:

Eb
orb5 f ~D,Worb!. ~26!

The role ofWb
orb can be illustrated as follows~see Fig. 6!: In

an orbital-liquid state, orbitals have to give up part of th
fluctuation energy in order to form a bound state with a ho
As a consequence, polarons are stable only if orbital fluct
tions are weak. Furthermore, polarons have a frustrating
fect on intersite orbital correlations. The local orientation

FIG. 5. Orbital polaron in the strong-coupling limit: Sixeg

states point towards a central hole.

FIG. 6. ~a! Orbital fluctuations with an energy scale}xt and~b!
intersite correlations}J compete against the orbital-hole bindin
energyD.
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13 464 PRB 60R. KILIAN AND G. KHALIULLIN
orbitals favored by Hamiltonian~25! does in general no
comply with the orientation that would minimize the Jah
Teller and superexchange coupling between orbitals
nearest- and next-nearest-neighbor sites of the hole. Thu
order to form a bound state orbitals have to give up par
their intersite correlation energyJ as well. The fact that the
polaron binding energy is controlled by the orbital ener
scaleWorb56xt1J has direct implications for the phase di
gram of manganites: Due to the doping dependence ofWorb,
orbital polarons are stable only at low-hole concentratio
where fluctuations are weak. The tendency of the system
form polarons is therefore most pronounced in the lower p
of the phase diagram.

To derive an expression for the polaron binding ener
the following approach is used: First, we consider a sta
hole placed in an ordered state without fluctuations. We t
calculate the reduction of the total energy due to the inte
tion Hamiltonian~25!. All approximations made in the fol
lowing aim at discarding terms reminiscent of a specific ty
of orbital order, while preserving the most general struct
of the orbital-hole binding energy. We focus on a single s
located next to the hole in thez direction. The orbital con-
figuration at this site is determined by the coupling to t
hole described by Eq.~25! as well as by the orientation o
neighboring orbitals which couple via superexchange
Jahn-Teller effect; the latter interaction is determined
Hamiltonian~9!. Treating all orbitals except the one expli
itly considered here on a mean-field level, the followi
Hamiltonian is obtained for the selected site

Hd
z52~Dtd

z1Jtd
Q!. ~27!

Here,t i
Q5(sinQsi

x1cosQsi
z)/2 fixes the orbital orientation

which would minimize the interaction energy with the orbit
background — for the type of order used in Eq.~10!, e.g.,
Q56p/2. In general, this orientation does not coinci
with the u3z22r 2& configuration favored by the orbital po
laron, which is described by the first term in brackets. T
state actually chosen by the system then depends on the
of D and J as well as on the angleQ. We determine the
energy of this state and, since we are not interested in
specific type of order, average over the angleQ. Finally,
subtracting theD→0 limit and multiplying with the number
of bonds connecting the hole to its surrounding, the follo
ing expression for the polaron binding energy is obtained

Eb
orb53@AD21J22J#. ~28!

In the limit J/D→`, the orbital state is very stiff and canno
be polarized by the hole; the binding energy then vanishe
3D2/(2J). On the other hand, the polarization is complete
the limit J/D→0, yielding a maximum valueEb

orb53D for
the binding energy. A plot ofEb

orb is shown in Fig. 7~upper
curve!. We note that the functional form of Eq.~28! differs
from the conventional lattice-polaron case whereEb

ph

5g2/(2K). This is due to the fact that there exists an upp
limit of the orbital polarization in which the orbitals around
hole have been fully reoriented to point towards the em
site~see Fig. 5!; technically the existence of this upper bou
is reflected by the hard-core nature of the Pauli operator
Eq. ~27!. The familiar form of the binding energy}D2/J is
n
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recovered only for the weak-coupling limit in which orbita
distortions around the hole are small.

Next, we consider a static hole placed in a strongly flu
tuating orbital-liquid state. Hamiltonian~25! imposes a split-
ting of eg levels on the sites next to the hole. The orbit
quasiparticles of Sec. II scatter on these local potenti
which may lead to the formation of an orbiton-hole bou
state. To calculate the polaron stabilization energy we ag
consider a single site next to the hole in thez direction. The
local potential imposed by the close-by hole is of the form

Hd
z52Dtd

z , ~29!

wheret i
z5 1

2 s i
z . We calculate the effect of successive sc

tering of orbitons on the above potential employing
T-matrix formalism; interference between different scatter
centers is neglected here. The correction to the orb
Green’s function that seizes the effect of Hamiltonian~29! is
given by

dGorb~ iv;R,R!5Gorb
0 ~ iv;R,d!Td~ iv!Gorb

0 ~ iv;d,R!,
~30!

with the scattering matrix

Td~ iv!52
szD/2

12szDGorb
0 ~ iv!/2

.

Here, Gorb
0 ( iv;R,R8) denotes the orbiton propagator of th

system in the absence of the scattering potential. The
ments of this 232 matrix are given by@Gorb

0 ( iv;R,R8)#ab

52^Tt f Ra f R8b
† & iv

0 and are controlled by the mean-fie
Hamiltonian ~5!. The on-site Green’s function isGorb

0 ( iv)
5 1

2 Tr@Gorb
0 ( iv;d,d)#. Integrating over lattice sites, Eq.~30!

becomes

FIG. 7. Polaron binding energyEb
orb: The solid curve is a plot of

Eq. ~28! for the orbitally ordered state as a function ofJ ~upper
axis!, the dashed curve corresponds to Eq.~34! for the orbital-liquid
state and is plotted as a function ofWorb ~lower axis!.
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dG~ iv!52
D

4 F ]

] iv
G0~ iv!G

3S 1

12DG0~ iv!/2
2

1

11DG0~ iv!/2
D ,

~31!

with dGorb( iv)5 1
2 (RTr@dGorb( iv;R,R)#. The change in

the total energy of the system which is induced by the s
tering potential can now be obtained from Eq.~31! by em-
ploying

dE52E
2`

m

dw ~v2m!dr~v!, ~32!

where dr(v)52(1/p)Im@dG( iv→v1 i01)# denotes the
scattering contribution to the density of states. The orbi
chemical potential is set tom50 in the following. We evalu-
ate Eq.~32! by approximating the on-site Green’s functio
by

G0~ iv!'2
1

Worb
lnF iv2Worb/2

iv1Worb/2
G . ~33!

This expression yields a constant density of states for
translationally invariant system which resembles the re
that can be obtained numerically from the mean-field Ham
tonian ~5!. Approximately solving the integral in Eq.~32!
and multiplying the result with the number of nearest neig
bors of the hole, we finally arrive at the following expressi
for the polaron binding energy:

Eb
orb53DF y~cthy21!1

y ln 2

y21~p/2!2G , ~34!

with y5Worb/D. Equation~34! describes the polaron stab
lization energy in a strongly fluctuating orbital-liquid state.
plot of this function is shown in Fig. 7~lower curve!. The
binding energy reaches its maximumEb

orb53D if orbital
fluctuations are weak, while it vanishes as 3 ln 2(D2/Worb) in
the opposite limit where fluctuations are strong.

In the last two paragraphs, we have calculated the pola
binding energy in an orbitally ordered as well as in
orbital-liquid state. Although very different approaches we
used to describe these complementary cases, the expres
obtained closely coincide: As can be seen in Fig. 7, the
functions are almost indistinguishable if one identifiesJ in
Eq. ~28! with nWorb in Eq. ~34!, wheren'0.72 is a numeri-
cal fitting factor. Motivated by the observation thatWorb
56xt1J reduces toJ in the limit of strong orbital correla-
tions J@xt, we discard the fitting factor in the following b
setting n51. We believe these two cases to be smoot
connected as should come out in a more elaborate treat
of the problem. Based upon these considerations, we
clude that Eq.~28! can be used to model the polaron bindi
energy of both the fluctuating and the static orbital state

Eb
orb53~12x!@AD21Worb

2 2Worb#, ~35!

whereWorb56xt1J in former andWorb5J in the latter case.
We finally note that in deriving expressions~28! and~34! for
the binding energy, all six sites surrounding the static h
t-

n

e
lt
l-

-

n

e
ions
o

y
ent
n-

e

were assumed to be occupied. Since at finite doping
probability of a site being occupied is only (12x), we
renormalize Eq.~35! by this average occupation factor. Th
kind of mean-field approximation neglects dynamical int
action effects between polarons. We expect that a more t
ough treatment of the overlap of polarons will further e
hance the doping dependence of the binding energy.

To summarize,Eb
orb in Eq. ~35! represents the energy to b

gained by polarizing the orbital background around a sta
hole. This number depends on the orbital energy scaleWorb
56xt1J, i.e., on orbital fluctuations and inter-site orbit
correlations which both tend to suppress the polaron bind
energy.Worb is to be considered as the counterpart of t
lattice stiffnessK in conventional polaron theory. The impo
tant difference is thatWorb explicitly depends onx which has
important consequences for the phase diagram of man
ites: Orbital polarons can form only at low-doping conce
trations where orbital fluctuations are weak and the bind
energy is consequently large.

C. Polaron bandwidth

The orbitally degenerate Mott-Hubbard system is insta
towards the formation of orbital-hole bound states at lo
doping concentrations. In this small-polaron regime, ho
are pinned by the binding potential and can move only
being thermally activated. At low temperatures these p
cesses can be neglected; coherent charge motion is then
sible solely due to quantum tunneling. Since the polaron
composite object consisting of a hole and several orbit
the amplitude of these tunneling processes is expected t
small as is indeed shown in this section.

Here, we restrict ourselves to polarons moving in an
bitally ordered state. Our analysis is based upon the follo
ing idea: By allowing a hole to polarize the surroundin
orbitals, the system reduces its ground state energy byEb

orb.
This energy is mostly lost if the hole hops to another s
since the orbital sector cannot immediately adopt to the n
position — orbital fluctuations are slow compared to those
holes. After a short time the system returns to the grou
state, most likely by transferring the hole back to its origin
location. But there is also a small probability for the hole
keep its new position while the orbital sector adapts to
relocation. This is possible due to the nonorthogonality
configurations in which orbitals point towards the old and t
new location of the hole, respectively. The polaron tunnel
amplitude is then given by the transfer amplitudet of holes
multiplied by the overlap between states with orbitals poi
ing towards the old and new position of the hole, resp
tively. This overlap is calculated as follows: We use Ham
tonian ~27! to determine the orientation of a single orbit
next to the hole — all other orbitals are treated on a me
field level. As the hole hops, this orbital has to change
orientation from pointing towards the hole to being align
with the background. The projection between these t
states is

p5
1

A2
F11

J

AD21J2G 1/2

. ~36!

An average over the angleQ specifying the type of orbital
order in Eq.~27! has been performed here. Other orbita
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13 466 PRB 60R. KILIAN AND G. KHALIULLIN
undergo the reversed process: Originally being aligned w
the background, they turn towards the hole as the latter h
onto a neighboring site. In total there are 2(z21)'2z orbit-
als that have to reorient. The overlap between the initial
the final state is then given byP5p2z, yielding

P5
1

2z F11
J

AD21J2G z

. ~37!

We rewrite Eq.~37! as

P5F12
AD21J22J

2AD21J2 G z

'expF23
AD21J22J

AD21J2 G , ~38!

where the exponential form becomes exact for large coo
nation number that has been set toz56. The denominator in
the exponent is identified as the orbital binding energy giv
by Eq. ~28!. Hence, we finally arrive at the following com
pact expression forP[e2h:

e2h5expF2
Eb

orb

AD21J2G . ~39!

A plot of this function is shown in Fig. 8. The physica
significance ofe2h is that it relates the holon to the polaro
bandwidth:

Wpol5Whle
2h. ~40!

As the system becomes critical towards the formation
orbital-hole bound states, polarons replace holes as ch
carriers. Our result shows that this transition is accompan
by an exponential suppression of the bandwidth. Stric
speaking the translationally invariant system remains
metal; in reality, however, the small bandwidth makes p
larons susceptible to localization, e.g., by trapping in
random potential of impurities. The suppression of the ba
width is most pronounced if the polaron binding energy
large: The orbitals around the hole are then strongly d
torted, which necessitates a significant reorientation to al

FIG. 8. Ratio of polaron and holon bandwidthe2h. The solid
line is based on the exponential form in Eq.~39!, the dashed line
represents Eq.~37!. The polaron bandwidth shrinks which decrea
ing values ofJ/D associated with an enhanced orbital polarizabili
h
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the hole to hop. We note that the expression in Eq.~39! is
similar to the result obtained in conventional lattice-polar
theory wheree2h5exp(2Eb

ph/v0). Here,Eb
ph5g2/(2K) de-

notes the polaron binding energy andv0 the phonon fre-
quency; the latter corresponds to (D21J2)1/2 in our orbital-
polaron theory.

Equation~39! has been derived for a static, nonfluctuati
orbital state. Following the discussion in deriving the polar
binding energy, we generalize the result to account for
bital fluctuations as well. This is done by replacing the int
site correlation energyJ by the more general orbital energ
scaleWorb56xt1J. Hence, we obtain

e2h5expF2
Eb

orb

AD21Worb
2 G , ~41!

where the polaron binding energyEb
orb is now given by Eq.

~35!. We note that the band-narrowing effect described
Eq. ~41! weakens with doping, accounting for the fact th
orbital fluctuations help the polaron to hop.

To summarize, the development of orbital polarons lea
to a sharp reduction of the bandwidth. In this regime t
orbital-hole bound state can move only as an entity
quantum-tunneling processes. Since the polaron extends
several lattice sites, the transfer amplitude is exponenti
small. The bandwidth reduction is controlled by the ra
Eb

orb/@D21Worb
2 #1/2, which is a measure of the orbital disto

tions around a hole. Strong orbital fluctuations and inter-s
orbital correlations weaken the polaron effect by suppress
these distortions.

IV. METAL-INSULATOR TRANSITION

As was shown in the preceeding section, the formation
orbital-hole bound states leads to an exponential suppres
of the bandwidth, which makes the system prone to locali
tion. In a double-exchange system, this crossover from
free-carrier to a small-polaron picture can be initiated eit
by a reduction of the doping concentration or by an incre
in temperature; the former acts via an enhancement of
polaron binding energy, the latter by constricting the moti
of holes via the double-exchange mechanism. In this sect
we combine our orbital-polaron picture with the theory
conventional lattice polarons to develop a scheme of
metal-insulator transition in manganites.

The transition from a free-carrier to a small-polaron p
ture is governed by the dimensionless coupling cons
lorb5Eb

orb/Dhl , where Eb
orb is the polaron binding energy

given by Eq.~35! andDhl5Whl/253t is the half-bandwidth
of holes. The lattice breathing mode of Eq.~22! adds an
additional contributionlph5Eb

ph/Dhl with Eb
ph5g1

2/(2K),
which further promotes the formation of polarons. The co
pling constant thus becomes

l5
Eb

orb1Eb
ph

Dhl
. ~42!

The critical value that separates free-carrier and sm
polaron regimes isl51. Forl@1 small polarons have fully
developed and the bandwidth is reduced by an expone
factor

.
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e2h5expF2gS Eb
orb

AD21Worb
2

1
Eb

ph

v0
D G , ~43!

with g51. We note that interference effects between orb
and lattice coupling are neglected in Eq.~43!. For l,1 the
free-carrier picture is recovered and holes move in a ban
width Whl56t. This implies g50 in Eq. ~43!, yielding
e2h51. To simulate the crossover between the two regim
we phenomenologically employ the function

g5H b2
ln@l~11b!#

l2
for l.1,

0 for l,1,

~44!

with b5@121/l2#1/2. This function has been proposed f
strongly coupled electron-phonon systems~see, e.g., Ref. 22!
and avoids an unphysical sudden drop of the bandwidth
l51 is reached. The crossover hence obtained fore2h is
depicted in Fig. 9.

Up to this point we have mainly focused on the role of t
orbital energy scaleWorb in the formation of small polarons
We now turn to analyze in more detail the effect of tempe
ture. The latter controls the bandwidthWhl via the double-
exchange mechanism: At low temperatures all spins are
romagnetically aligned and the transfer amplitude reache
maximum. With increasing temperature the ferromagne
moment weakens, constricting the motion of charge carri
Specifically, the transfer amplitude changes with the norm
ized magnetizationm as

t5t0A~11m2!/2. ~45!

The magnetization depends on temperature via the s
consistent equation

m5BS~am!, with a5
3S

11S

TC

T
, ~46!

where

FIG. 9. Crossover from the free carrier to the small-polaro
regime. At l,1 polarons are unstable and the bare holon ba
width is recovered. Atl.1 orbital polarons form, leading to a
exponential suppression of the bandwidth. To avoid an abrupt d
of the bandwidth atl51, Eq. ~44! is used to connect the two
regimes.
l
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BS~y!5
2S11

2S
cthF2S11

2S
yG2

1

2S
cthF 1

2S
yG

denotes the Brillouin function. The average magnetic m
ment per site varies with doping: The momentsSc53/2 and
s51/2 of core andeg spins combine on average as

S5 3
2 1 1

2 ~12x!. ~47!

Finally, the Curie temperatureTC in Eq. ~46! is controlled by
the strengthJeff of ferromagnetic exchange bonds via

TC5
nz

3
S~S11!Jeff . ~48!

The fitting parametern compensates for an overestimation
TC in the mean-field treatment. Double-exchange as wel
superexchange processes are responsible for establishin
ferromagnetic links between sites. The magnitude of t
coupling in the limit of large Hund’s coupling is13

Jeff5
1

2S2 Fx~12x!xte2h1~12x!2
2x2t0

2

U G . ~49!

The first term in squared brackets of Eq.~49! stems from the
coherent motion of holes/polarons and represents the
ventional double-exchange contribution toTC . The factor
e2h accounts for the rescaling of the coherent bandwidth
the small-polaron regime is entered. The second term is
to superexchange processes. It describes the high-energ
tual hopping ofeg electrons, which is insensitive to a po
laronic reduction of the bandwidth. It is also noticed th
superexchange in an orbitally degenerate system is of fe
magnetic nature because of the large Hund’s coup
present in manganites.13,23,24 Superexchange hence dom
nates the ferromagnetic interaction in the small-polaron
gime.

The system of equations presented above controls
electronic and magnetic behavior of manganites at low-
intermediate-doping levels. A critical couplingl51 leading
to the formation of polarons can be reached either by low
ing the doping concentration or by increasing the tempe
ture — the former enhancesEb

orb, the latter quenchesWhl .
The equations are interrelated and have to be solved re
sively. As a result of this self consistency, the breakdown
the metallic bandwidth atl51 is expected to be rathe
sharp: With the evolution of small polarons, the cohere
band width shrinks, thereby weakening the magnetic
change links. Double exchange then drives the system e
farther towards the strong-coupling limit.

V. COMPARISON WITH EXPERIMENT

To illustrate the interplay between the system of equati
presented in the preceeding section, we numerically ext
from them theT-x phase diagram. While it is obvious tha
T5TC is a suitable criterion to separate the low-temperat
ferromagnetic from the high-temperature paramagnetic st
more care has to be taken to distinguish between met
and insulating behavior. Our theory describes the reduc
of the bandwidth, which follows from the formation of sma
polarons. However, strictly speaking, the system rema

s
-
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13 468 PRB 60R. KILIAN AND G. KHALIULLIN
metallic even in the strong-coupling limit since polarons c
still move by tunneling. It is, therefore, necessary to defin
critical value of the bandwidth beyond which additional e
fects such as pinning to impurities are implicitly assumed
set in and finally turn the system into an insulator. The s
cific criterion used here is only of marginal importance,
feedback effects discussed above induce a quick collaps
the bandwidth once a critical couplingl51 is reached. For
simplicity, we definel,1 to be a metal andl.1 to be an
insulator.

The following parameters are chosen for calculating
phase diagram: The orbital polarization energy is set toD
50.55 eV, yielding a binding energy comparable to t
phononic oneEb

ph50.45 eV; the phonon frequency isv0

50.05 eV, the interaction between orbitalsJ50.13 eV, the
bare transfer amplitudet050.36 eV,10 andU54.0 eV. The
fitting parametern50.55 ~Ref. 25! is adjusted to reproduc
the values ofTC observed for La12xSrxMnO3.26 The result is
shown in Fig. 10.

Our most important observation is that the doping dep
dence of orbital polarons makes the system more insula
at low and more metallic at high doping levels. Convincing
this is seen in the complete absence of metalicity ax
,0.15 and the appearance of a metallic phase aboveTC at
x.0.4. The region 0.15,x,0.4 in which colossal magne
toresistance is experimentally observed is characterized
simultaneous magnetic and electronic transition from a
romagnetic metal to a paramagnetic insulator.27 The role of
polarons in this transition is most pronounced at low-h
concentrations. This can be seen from the behavior of
magnetization asTC is approached from below~see Fig. 11!:
At low x, the polaron binding energy is large and the syst
is close to localization. A small reduction of the bandwid
via double exchange is then sufficient to trigger the form
tion of polarons, resulting in a sudden collapse of the m
netic moment. Such a sharp drop signals the presence
localization mechanism beyond double exchange and is
deed seen experimentally~see, e.g., Refs. 27–29!. On the

FIG. 10. Magnetic and electronic phase diagram obtained wi
the present theory. Dashed and dot-dashed lines represent ma
and electronic transitions, respectively, the simultaneous trans
in both channels is denoted by a solid line. The phases are: p
magnetic insulator~PI!, paramagnetic metal~PM!, ferromagnetic
metal ~FM!, and ferromagnetic insulator~FI!.
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other hand, at larger hole concentrations the polaron bind
energy is comparably small. Thus, a significant suppress
of the bandwidth via double exchange is needed before
laron formation can set in. The magnetization curve n
closely resembles the one predicted by double-excha
theory.

Clearly beyond the grasp of conventional doub
exchange theory lies the emergence of ferromagnetism in
insulating phase at low doping. Mostly responsible for th
are superexchange processes which mediate a ferromag
interaction even in the insulating phase. Ferromagnetism
further promoted by the existence of orbital polarons: Cha
fluctuations inside the polaron provide a strong local fer
magnetic coupling between sites close to a hole, hence
tablishing ferromagnetic clusters seen in experiment.21 At
sufficiently large hole densities these clusters start to inter
thereby forming a ferromagnetic state.

As was discussed above, orbital fluctuations are predo
nantly induced by the motion of holes. The loss of char
mobility in the insulating phase should therefore trigg
static orbital order. An orbitally ordered state has in fact be
experimentally detected in the insulating regions
La0.88Sr0.12MnO3.23 However, in general such an ordere
state is expected to have orbital and Jahn-Teller glass
tures due to the presence of quenched orbital polaro
thereby reducing the uniform component of Jahn-Teller d
tortions. Finally, it is worth to notice that the phase diagra
in this theory is highly sensitive to the transfer amplitudet0
as this parameter enters in the polaron binding energy.

VI. CONCLUSION

In summary, we have shown that a spontaneous deve
ment of orbital-lattice order is in general insufficient to tri
ger the localization process in manganites. Rather an a
tional mechanism was identified: Orbital polarons we
illustrated to represent an intrinsic feature of an orbitally d
generate Mott-Hubbard system and to play an important
in the physics of manganites. The binding energy of th

in
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ra-

FIG. 11. Variation of the normalized magnetizationm with tem-
perature. At low-hole concentrations~upper curve!, the system is
close to a transition to the small-polaron regime — a smallincrease
in temperature then already sufficiently impedes the hole motion
polarons to form, resulting in a sharp drop of the magnetization
largex ~lower curve!, the conventional double-exchange picture
recovered.
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orbital-hole bound states depends on the rate of orbital fl
tuations and hence on the concentration of doped holes:
larons can form at low doping levels where orbitals fluctu
only weakly but they become unstable at higher levels ox.
This scheme naturally introduces the hole concentration
an additional variable into the localization process. M
striking in this respect is the complete breakdown of me
icity observed below a critical hole concentration despite
fact that the system remains ferromagnetically ordered.
the other hand, orbital polarons become negligible at lar
.
.
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doping levels where the theory presented here conve
onto a lattice-polaron double-exchange picture. Account
for both orbital and lattice effects we are finally able to r
produce well the important aspects of the phase diagram
manganites. In general it can be concluded that a direct c
pling between holes and surrounding orbitals is of cruc
importance for the physics of manganites; its implicatio
extend clearly beyond the metallic phase alone and can
expected to play an important role throughout the wh
phase diagram.
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