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Orbital polarons in the metal-insulator transition of manganites
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The metal-insulator transition in manganites is strongly influenced by the concentration of holes present in
the system. Based upon an orbitally degenerate Mott-Hubbard model, we analyze two possible localization
scenarios to account for this doping dependence: First, we rule out that the transition is initiated by a disorder-
order crossover in the orbital sector, showing that its effect on charge itineracy is only small. Second, we
introduce the idea of orbital polarons originating from a strong polarization of orbitals in the vicinity of holes.
Considering this direct coupling between charge and orbital degrees of freedom in addition to lattice effects we
are able to explain well the phase diagram of manganites for low and intermediate hole concentrations.
[S0163-182009)12543-9

[. INTRODUCTION spite the fact that ferromagnetism is fully sustained remains
an open problem which we address in this paper.

The doping dependence of the properties of manganese The effective coupling constaitin Eq. (1) has originally
oxides poses some of the most interesting open problems iseen introduced for non-interacting electrons. The itinerant
the physics of these compounds. First to be noticed is the, electrons in manganites, on the other hand, are subject to
peculiar asymmetry of the phase diagram that is most prostrong on-site repulsions, which necessitates to accommodate
nounced in the charge sector: Regions of high-0.5) and  the definition ofA. According to numerical studi€sthe ba-
low (x<0.5) concentration of holes are characterized bysic physics underlying Eq) remains valid even in corre-
such contrasting phenomena as charge ordering and metaligted systems: As in the free-electron case, the metal-
ity, respectively. In the latter region — which we wish to insulator transition is controlled by the competition between
focus on — the metallic state can be turned into an insulatinghe polaron binding energy and the kinetic energy of charge
one by raising the temperature above the Curie temperatuksarriers. Nevertheless, correlation effects might renormalize
Tc. Introducing the notion of double exchange which assothese two relevant energy scales, presumably introducing a
ciates the relative orientation of localized Mgy spins with  doping dependence. In fact, the Gutzwiller bandwidth of cor-
the mobility of itinerantey electrons, early work has identi- related electrons scales with the concentration of doped
fied this transition to be controlled by the loss of ferromag-holes; one could therefore be inclined to Egt,«xt, where
netic order inherent to the metallic stat€.lt is believed that  t denotes the hopping amplitude. But this approach reaches
lattice effects are also of crucial importance in this transitiontoo short: The Gutzwiller picture describes only the average
Within the lattice-polaron double-exchange pictfifethe  kinetic energy of the system. In contrast, the relevant quan-
crossover from metallic to insulating behavior is controlledtity for localizing the holes doped into a Mott-Hubbard sys-
by the ratio of polaron binding enerdy, to the kinetic en- tem is the characteristic energy scale of charge fluctuations,
ergy E, of charge carriers: which remainsxt.2 Pictorially this quantity corresponds to
the kinetic energy of a single hole. We, thus, conclude that a
more thorough treatment of correlation effects is needed in

A= ——. (1) order to explain the peculiar doping dependence of the

Ein metal-insulator transition in manganites.
In this paper, we analyze two mechanisms that could

When forming a bound state with the lattice, charge carriersirive the localization of charge carriers at small hole concen-
loose part of their kinetic energy. Hence, polarons are stabl&ations x. First, we explore the possibility of the metal-
only if this loss in energy is more than compensated by thénsulator transition to be controlled by a disorder-order
gain in binding energy, i.e., ik>1. In a double-exchange crossover in theg-orbital sector. The idea is the following:
system, this critical coupling strength may be reached byOrbital fluctuations are induced by the motion of holes and
raising the temperature — the double-exchange mechanishience possess an energy scald. At largex, orbitals fluc-
then acts to reduce the kinetic energy and hence to increaseate strongly and intersite orbital correlations are weak. As
\. Spin disorder and spin-polaron effects further enhance ththe concentration of holes is reduced, fluctuations slow down
carrier localization abov&..® The doping dependence of until a critical value ofx has been reached — promoted by
the metal-insulator transition, however, is not fully capturedJahn-Teller and superexchange coupling, an orbital-lattice-
in this picture. Namely the complete breakdown of metalicityordered state now evolves. We analyze the extent to which
at hole concentrations below;~0.15-0.2 that occurs de- this transition in the orbital-lattice sector affects the itineracy
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of holes. Finding almost similar values for the kinetic energyorbital @ only under the condition that the site is empty. The
of doped holes in orbitally ordered and disordered states wérst term in Eq.(2) describes the inter-site transfer of con-
are lead to conclude that the development of orbital-latticestrainede, electrons. The transfer amplitude depends upon
order is not sufficient to trigger the localization process.the orientation of orbitals at a given bond as is reflected by
Next, we turn to analyze a second scenario of the metalthe transfer matrices
insulator transition for which we introduce the concept of

14 = ﬁ/4) 1 0

el ]

orbital polarons. Similar to spin polarons in correlated spin p
systems, orbital polarons are a natural consequence of strong ey =t _ J3la 34 0 0
electron correlations and the double degeneracy of on-site -

levels — in manganites the latter follows from the degen'a representation with respect to the orbital basg{|322
eracy ofeg orbitals. We argue that holes polarize the orbital 2y |x2—y2)} has been chosen here. Due to its nondiago-
state ofey electrons on neighboring sites: A splitting of or- na| structure, orbital quantum numbers are not conserved by
bital levels is evoked by a displacement of oxygen ions angqamiltonian (2) — inter-site transfer processes induce fluc-
also by the Coulomb force exerted by the positively chargequations in the orbital sector. The second term in E).
holes. Being comparable in magnitude to the kinetic energaccounts for processes involving the virtual occupation of
of holes, the orbital-hole binding energy can be large enoughites by twoe, electrons. This superexchange mechanism
for holes and surrounding orbitals to form a bound state. Th@stablishes an intersite coupling between orbital pseudospins
important point is that the stability of these orbital polaronsgf gyerall strength)=zt?/U, whereU is the on-site repul-

competes not only against the kinetic energy of holes bugjon petween spin-parallel, electrons. The pseudospin op-
also against the fluctuation ratext of orbitals: The faster grators are

the latter fluctuate, the less favorable it is to form a bound

state in which orbitals have to give up part of their fluctua- 7Y=—1(o%x\35%), r=}0% 3

tion energy. Combining this orbital-polaron picture with that

of conventional lattice polarons we are able to explain wellwith Pauli matricesrX’? acting on the orbital subspace. Jahn-
the phase diagram of manganites at low and intermediat@eller phonons mediate an additional interaction between or-

doping levels. bital pseudospins, which is of the exact same form as the
superexchange term. The numerical valud bés to be cho-
Il. ORBITAL DISORDER-ORDER TRANSITION sen such as to comprise both effects. We finally note that

) _ ) ) deviations from the ferromagnetic ground state underlying
In this section, we analyze the impact of a disorder-ordef amiltonian (2) are treated within conventional double-

transition in the orbital-lattice sector onto the itineracy Ofexchange theord 31 The transfer amplitudethen depends
holes. Our motivation is that a sudden freezing out of orbitaly, the normalized magnetization via*

fluctuations below a critical doping concentration could sig-
nificantly impede the motion of holes, hence initiating the _ t (1L
metal-insulator transition. By comparing the bandwidth of t=to(CoS0/2)=to (1 +m)/2, @
holes both in orbitally ordered and disordered states, we arghere t, denotes the hopping amplitude between spin-
able to refute this idea: The orbital sector is shown to haveyarallel Mn sites and is the angle between nearest-neighbor
only little influence onto the charge mobility in manganites. spins.

To observe the strongly correlated naturesgfelectrons,

A. Disordered state it is convenient to introduce separate particles for charge and
orbital degrees of freedof?.The metallic phase of mangan-
ites can be well described within an orbital-liquid picture that
accounts for orbital fluctuations by employing a slave-boson
representation of electron operatofs?

We begin by investigating the bandwidth of holes in a
strongly fluctuating, orbitally disordered state. Our starting
point is thet-J model of double-degeneratg, electrons
which, via Hund’s coupling, interact ferromagnetically with
an array of localize®=3/2 core spins. The model accounts 1
for the presence of strong on-site repulsions that forbids

more than one, electron to occupy the same Mn site as pere orhital pseudospin is carried by fermionic orbitéps

well as for the dquble degeneracyq{levels. At low tem- 4 charge by bosonic holors. Introducing mean-field
peratures and intermediate doping levels, the do“ble'arameters(zt*E ta,8<f_T f. )andxz(b-’%-) wherex is
exchange mechanism induces a parallel alignment of spinﬁ,1 oy e 1B L

. " ) ) e concentration of holes ang~ 3, the two types of qua-
Treating deviations from this ferromagnetic ground state_. : oz yp q
. S siparticles can be decoupled:
only on a mean-field level as is discussed below, the core

spins can be discarded and the spin indiceg électrons 2yJ
may be dropped; the-J Hamiltonian then becomg$’ Hom=— | X+ z_t) (% ot fip+H.c), (5
1] %
apon 2]
Ho=— 2 (t2Pc] cjp+H.c)+ ~ > A,
(i) (D Hy= —;4(2_) (b{b;+H.c). (6)
i

with z=6. Nearest-neighbor bonds along spatial directions
ye{x,y,z} are denoted byij),. We use constrained opera- Diagonalizing the above expressions in the momentum rep-
torscf,=cl,(1—n;), which create am, electron at sité in  resentation one obtains
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, singularity in the static orbital susceptibilitoso™ o) = o-
HO'b:% AT thzzk wbibi, Employing a random-phase approximation, tk?e Ia?tter can be
expressed as
with index v=* and dispersion functions
(")
1+JQ<0'X0'X>%/2'

with vertex functionJ,= J(cosg,+cosg,—cosq,)/3 and the
1 shorthand notatior(0™0™)q=(040™ o) ,—o. Bare orbital
wk=6xt[1— §60(k)} susceptibilities . . .)° are evaluated using orbiton propaga-
tors associated with the mean-field Hamilton{& Numeri-
where eo(K)=CytCy+Cy, €1(K)=(CytCy)/2—C,, €x(K) cally solying for the pqle in Eq(ll), we find the following
_ \/§(cx—cy)/2 with ¢ = cosk,. The essence of this slaved- expression for the critical doping concentration
particle mean-field treatment is that orbital and charge fluc-

(0% o= (11)

) 2xJ
& = | xtr %)[—eouor VW + &),

tuations are assigned different energy scales. This is reflected Xerit™ i (12)
by the bandwidths of orbiton and holon quasiparticles, re- 4t
spectively:

which is valid for x.;<<0.5. At concentrations below this
critical value an orbitally ordered state is to be expected.
With J=0.13 eV as estimated from the structural phase tran-
sition observed in LaMn@ at T=780 K (Ref. 14 and t
W= 6t. tS) =0.36 eV (Ref. 10 we obtain a critical doping concentra-
. g0 . o :
The former quantityW,, sets the energy scale of orbital tion of Xerit= 9/9. _Thls re_sult indicates that thg meta_lllc state
. . . of manganites is indeed instable towards orbital-lattice order-
fluctuations — the terms proportional td and J describe . . :
: . . ing at doping concentrations that are not too far from those at
fluctuations induced by the motion of holes and by the cou- = ) . .
. . . - which the system is observed to become insulating.
pling between pseudospins, respectively. The latter quantity
Wy, finally defines the itineracy of holes in the orbital-liquid
state. The variation of the holon bandwidth with the onset of C. Ordered state
orbital order is in the focus of our interest in the remainder of ~ Up to this point, we have studied the bandwidth of holes
this section. in an orbitally disordered state and the instability of the sys-
tem towards orbital-lattice order. In the following, we ana-
B. Instability toward orbital order lyze to which extent the itineracy of holes is affected by this
The ab f orbital and ch f . _disorder-order transition in the orbital sector. Namely, we are
e above treatment of orbital and charge fluctuations i$yerested in the bandwidth of holes moving through an or-

that is far f instability t d bital order. | Iebitally ordered state; this quantity is then compared to our
atls far from any nstability towards orbital order. In rea previous result of Eq(8) for an orbital liquid. Foremost, an

systems EUCh instabilities do e(;qs;t: Jahn-Telz_IIertE)htt\)I:ons an|‘iinportant difference between models with orbital pseudospin
superexchange processes mediate a coupling between Orbétﬁd conventional spin is to be noticed here: In the latter

als on ne_|ghbor|ngI sites, Wh'c.h mtrodluces a bias tc)Ward§ystems, spin is conserved when electrons hop between sites.
orbital-lattice ordering. Competing against the energy scal%’his implies that hole motion is constrained in a staggered

of orbital fluctuationsxxt, order in the orbital sector is ex- spin background. In contrast, the transfer Hamiltor{@nof
pected to evolve below a critical doping concentratiQfi-  he orbital model is nondiagonal in orbital pseudospin — an

We investigate this instability of the orbital-liquid state by orbital basis in which all three transfer matricg'ég toB
. - - - - L) y 1
introducing the intersite coupling term andt2? are of diagonal structure does not exist. This allows

Wopp= 6Xt+J, 7)

23 holes to move coherently even within an antiferro-type or-
Hy=—— >, Ti®7j® elQy, (9)  bital arrangemeriisee Fig. 1a)]. For this reason only a mod-
Z (), erate suppression of the hole bandwidth is to be expected in

the presence of orbital order. We calculate the bandwidth for
the specific type of orbital order introduced in E@.0).
Starting from the transfer part of Hamiltonid®) and keep-

ing only the hopping matrix elements that allow for a coher-
ent movement of hole@.e., projecting out all orbitals that do
not comply with the ordered stateve obtain

with z=6 andr, = (sin®o+cos@d?)/2 acting on the orbital
subspace. We note that E) is a simplification of the
superexchange coupling term in Hamiltonig@) — internal
frustration makes the latter difficult to handle. For= /2
and Q= (m,m,0), the pseudospin interaction in E®) fa-
vors a staggered-type orbital orientation
W= 4t (13)
10)" =(1327=r?) = [x*~y?)/\2 (10 _ o _ .

This result indicates a reduction of the holon bandwidth by
within x-y planes repeating itself along tlzedirection; this ~30% as compared to the disordered sfaee Eq.(8)].
closely resembles the type of order observed experimentallWhile not being dramatic, a quenching of the bandwidth by
in LaMnO;.1* The breakdown of the orbitally disordered one third should nevertheless be sufficient to induce the lo-
state, i.e., the development of orbital order, is signaled by &alization process, e.g., via the formation of lattice polarons.
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State 1 State 2 FIG. 2. Born approximation of the holon selfenergy: The double
line denotes the “dressed” holon propagator with self-energy con-
tributions, the dashed line represents the “orbital-wave” Green’s
(b) % o % %N\,% () function.
J

v\tT;T/v describes the coherent motion of holes within a band of

width W= 4t. The second term describes the interaction of

FIG. 1. Coherenta) and incoherentb) hole motion in antifer-  holes with excitations of the orbital background. The dynam-
rotype orbital order. Incoherent processes involve the creation of ajts of the latter is controlled by the inter-site coupling Hamil-
orbital excitation of energy. tonian (9), which in the momentum representation becomes

However, it is important to note that EGL3) accounts solely
for the coherent motion of holes; incoherent processes in-
volving the creation and subsequent absorption of orbital ex-
citations are neglectefsee Fig. 1b)]. Only if the ordered Hamiltonian (15) describes dispersionless, nonpropagating
state is robust, i.e., if it costs a large amount of energy for a®rbital excitations of energy. The local nature of orbital
electron to occupy an orbital that does not comply with theexcitations follows from the absence of frustration effects in
long-range orbital alignment, these incoherent processes b#he intersite orbital coupling terr®).
come negligible. This limit does not apply to manganites The interaction of holes with orbital degrees of freedom
where the orbital excitation energy &<t only. Before a changes the character of the hole motion: Scattering on or-
conclusion about the role of orbital order in the metal-bital excitations leads to a suppression of the coherent qua-
insulator transition can be drawn, these incoherent processé#article weight and a simultaneous widening of the holon
have to be investigated in more detail. band. In analogy to studies of spin systefh¥ we analyze

In the following, we study the influence of incoherent these effects by employing a self-consistent Born approxima-
processes onto the motion of holes, employing an “orbitaftion for the selfenergy of holes — within this method all
wave” approximation: Starting from the assumption thathon-crossing diagrams of the self energy are summed up to
long-range orbital order has developed and that fluctuation&finite order while crossing diagrams are neglected. Re-
around this ordered state are weak, we use a slave-fermidiricting ourselves to the case of a single hole moving at the

HJ=J2k Bl By (15)

representation of the electron operators in the transfer Hamifottom of the band, we obtain the following expression for

tonian(2):

the holon selfenergysee Fig. 2

S(iw)=t22 y3G(iw—J,p). (16)
p

Within this picture, the orbital pseudospin is assigned to _ _ _ _
bosonic orbitons and charge to fermionic holons. The latticeThe Matsubara frequencies are defined Bs=i(2n
is then divided into two sublattices that are ascribed different- 1)@ T, whereT denotes temperature anchn integer num-

preferred pseudospin directiofpsee Eq(10)]
1=(1322=r?)+|x*~y?)/\2,

1=(822=r%) = =yH)N2,

on sublatticeA,

on sublatticeB.

In analogy to conventional spin-wave theory, excitations
around this ground state can be treated by employing the

following mapping of orbiton operators;, onto “orbital-
wave” operatorss;
1, sublatticeA, Bi, sublattice A,

i = Bi, sublattice B, biy = 1,

sublattice B.

In the momentum representation the transfer Hamiltof2an
then becomes

He= 2 ofifich 2 Dot e pB-plfificrp. (19

Here, w,=—t(C,+cy—2¢,)/2 and y=t[(2— 3)c,+ (2
+ \/§)cy+ 2¢,]/2 with ¢, =cosk,,. The first term in Eq(14)

ber.

Our first aim is to study the loss of coherency in the hole
motion. This can be done by employing a dominant-pole
approximation"> We split the holon propagator in E(L6)
into its coherent and incoherent parts,

. Ay
G(iw,k)=- =

lw— wy

+G"(iw,k), (17

where a, denotes the quasiparticle weight amg the not-
yet-known renormalized holon dispersion. Keeping only the
coherent part and usingu=[1—(d/dw)3'(w)]"* with

3 (w)=Rg2(io— w+i0")], the following recursion rela-
tion for the quasiparticle weight is obtained

-1
a

. 2 P

ag=| 1+t Ep, Yo~ = ;

(wg— wp—J)2 (18

with g=(0,0,7) at the bottom of the band. Equati¢t8) can
Ee approximately solved by expanding the integrand around

g, which yields
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FIG. 4. Polarization og, levels on sites next to a hole: Phonons
0 1 1 1 1 1

and Coulomb |nteract|on induce a splitting of enerdgy=AP"
J=0 +Ach,

0 - : : =2|wqp =4t. The orbital state is static here and excitations
S22 A 0/ ¢ 1 2 3 are completely suppressed. At finite valuesldf, the total
® spectral weight is divided into coherent and incoherent parts.
FIG. 3. Spectral function of a hole moving at the bottom of the The latter is separated from the quasiparticle peak by the
band. Different values al/t are used: The spectrum is completely orbital excitation energy. Processes in which the hole cre-
incoherent forJ=0, having a lower bound ab,,=—3t. With ates more than one orbital excitation are reflected by a suc-
increasing values ad/t, spectral weight is shifted from the inco- cession of peaks in the incoherent spectrum. Fert/3,
herent part of the spectrum to a coherent quasiparticle ggak which is realistic to manganites, the quasiparticle peak ac-
noted by a vertical ling In the limit J/t—c, the quasiparticle peak counts for~65% of the spectral weight and the width of the

is at wgp=—2t and has accumulated all spectral weight. holon band is
1 12 Wh|%5.7t. (21)
1- —2(—) ,  for J>t,
- 272\ J (19 Comparing the above number with our previous redul
a - 1/4 =6t for the orbital-liquid state, we find a reduction of about

W(—) , for J<t. 5%. We, therefore, conclude that a disorder-order crossover
t in the orbital sector has only a secondary effect on the kinetic
In the limit J/t— o=, orbitals become static and coherent holeenergy of charge carriers, ruling it out as a possible driving
motion with ag=1 is recovered. In the opposite limit mechanism to initiate the metal-insulator transition in man-
—0, the holon quasiparticle weight is completely lost, indi- 9anites.
cating strong scattering of holes on orbital fluctuations.

Next, we turn to study the renormalization of the holon Ill. ORBITAL POLARONS
bandwidth. InsertingG(iw,k)=[io—w,—(iw)]"! into ) . )
Eq. (16) leads to a recursion relation for the holon selfen- N the preceeding section, we have considered charge car-

ergy: riers to interact with the orbital sector via the transfer part of
Hamiltonian (2). While this coupling was shown to be re-

2 sponsible for a shift of spectral weight from the coherent to

S (iw)=t22, d (20)  the incoherent part of the holon spectrum, the effect onto the

p lo—wp=J-ai(io—J)’ full bandwidth was found to be only small. In the following,

we point out that in an orbitally degenerate Mott-Hubbard

system there also exists a direct coupling between holes and

orbitals stemming from a polarization eg orbitals in the
neighborhood of a hole. This coupling is strong enough for
holes to form a bound state with the surrounding orbitals at
low-doping concentrations. Based upon this picture we show
that a strong reduction of the bandwidth comes into effect as
orbital-hole bound states begin to form.

The factora=(z— 1)/z partially accounts for the constraint
that forbids more than one orbital excitation per site — the
hole may therefore not return to a previously visited site®
unless to reabsorb an excitation. We solve &) numeri-
cally and determine the spectral functiorpg(w)

=—1UmrImG(io—w+i0",q)] at the bottom of the band.
The result is shown in Fig. 3. Different values &ft are
used. In the limitJ/t—0, the spectrum is completely inco-
herent and extends down to,,,=—3t corresponding to a L )
holon bandwidth 0fV,= 2| @y =6t In this limit the hole A. Polarization of orbitals

creates its own disorder and effectively moves within an The cubic symmetry of perovskite manganites is locally
orbital-liquid state characterized by strong orbital fluctua-broken in the vicinity of holes which results in a lifting of the
tions. In the opposite cas#t— o, all spectral weight accu- ey degeneracy on sites adjacent to a hslee Fig. 4 Here,
mulates in a quasiparticle peétenoted by a vertical lineat ~ we discuss two mechanisms that are foremost responsible for
wgp=—2t, which corresponds to a bandwidth o},  this level splitting:(1) a displacement of oxygen ions that
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move towards the empty site; af@) the local splitting ofe,
states which is induced by the Coulomb force between
“positive” hole and negative electrons. The magnitude of
the degeneracy liftings = AP+ A" is estimated as follows:
The former phonon contributioAP" originates in the cou-
pling of holes to the lattice breathing mod@, and of e,
electrons to two Jahn-Teller mod€s and Q4

K
Hel-ph:_Zi 9:Q1inM+ 92Q, 0+ g3Qzi07+ EQiz ,
(22

wheren!" denotes the number operator for holes and the Pauli

matriceso’’ act on the orbital subspace. The coupling con- FIG. 5. Orbital polaron in the strong-coupling limit: S,
stants arey; andg,~g; andK is the lattice spring constant. states point towards a central hole.

Hamiltonian(22) mediates an interaction between empty and

occupied sites. The effective Hamiltonian describing thistual excursions ok, electrons onto the empty site. Thus,
coupling is obtained by integrating Eq22) over oxygen besides minimizing the interaction energy of Hamiltonian

displacement®,=(Q4;,Q,i ,Q3;). For a given bond along (25), it also allows to lower the kinetic energy. We note that

the z direction this yieldsH?= — 2 APM{o? with these virtual hopping processes locally enhance the magnetic
! moments of core ana, spins via the double-exchange
APM=g,0,72/(3K)~ (g, /9,)Er. (23)  mechanism, providing a large effective spin of the orbital

] o polaron. This naturally explains the development of ferro-
A lower _boundh for this quantity is given by the Jahn-Teller magnetic clusters experimentally observed at temperatures
energy, i.e. AP"=E;r~0.2 eV, assuming that coupling to ahoveT..2! We finally note that the idea of local double-

the breathing mode is at least as strong as coupling to thgychange in the vicinity of a Mt hole site was discussed
Jahn-Teller modes. Next, we estimate the contribution to thgy de Gennes in his seminal pager.

eg-level splitting that follows from the Coulomb interaction
between a positively charged hole and gelectron on a

neighboring site. The magnituds” of this splitting is as- B. Binding energy

sessed by taking into account the covalence of Mraid O In conventional lattice-polaron theory, the binding energy
2p orbitals, which gives is a function of the coupling constagtand the stiffness of
the lattice which is controlled by the spring const&ntThe
. 3 o1 energy gain stemming from the interaction between charge
A%~ 27 Ruin—mn- (24) carriers and the lattice competes against the deformation en-

ergy of the crystal. In the case of orbital polarons, the under-
The covalency factoy=t,4/Ay4 can be obtained from the lying picture is very similar. Here, the coupling constant is
transfer amplitude and the charge gap between Mn and @iven by the orbital-charge interaction enerfyy while the
sites,t,q~1.8 eV andA ,4~4.5 eV® Together with a lattice  energy scalN,,=6xt+J is a measure of the “stiffness”
spacing ofRy,_wn=23.9 A this leads taA°"~0.4 eV. Intotal  of the orbital sector. These two guantities are expected to
the polarization ok, levels on sites next to a hole yields an determine the binding energy of the orbital polaron:
energy splittingA~0.6 eV. Being comparable in magnitude

to the transfer amplitudée this number strongly indicates a ngb= (A, Wop). (26)
direct coupling of charge and orbital degrees of freedom to
be of importance in manganites. The role ofW2"™ can be illustrated as followsee Fig. &: In

The splitting ofe, levels effects all six sites surrounding a an orbital-liquid state, orbitals have to give up part of their
hole. From the above Hamiltonian for a bond along the fluctuation energy in order to form a bound state with a hole.
axis, analogous expressions foandy directions are derived As a consequence, polarons are stable only if orbital fluctua-
by a rotation in orbital isospin space. The complete Hamil-tions are weak. Furthermore, polarons have a frustrating ef-
tonian for the cubic system is then fect on intersite orbital correlations. The local orientation of

-]

2
3

Hch—orb: _A<> nithy, (25) (EL)

1] y
with orbital pseudospin operators given by Eg). Hamil-
tonian (25) promotes the formation of orbital polarons. For
low enough hole concentrations these consist of a bound
state between a central hole and the surroundipgrbitals o
pointing towards the hole as is shown in Fig. 5. Recent ex-

perimental data on the atomic pair-distribution function in  FIG. 6. (a) Orbital fluctuations with an energy scatext and(b)
La, _,CaMnO; seem to strongly support our picttf®This intersite correlations<J compete against the orbital-hole binding
configuration of orbitals also yields a large amplitude of vir- energyA.
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orbitals favored by Hamiltoniarf25) does in general not J/A

comply with the orientation that would minimize the Jahn- 1 2 3 4 5

Teller and superexchange coupling between orbitals on 3 . . - -

nearest- and next-nearest-neighbor sites of the hole. Thus, in

order to form a bound state orbitals have to give up part of

their intersite correlation energyas well. The fact that the

polaron binding energy is controlled by the orbital energy 2r 1

scaleW,,,=6xt+J has direct implications for the phase dia- <

gram of manganites: Due to the doping dependend&/(f, g\

orbital polarons are stable only at low-hole concentrations i’ \

where fluctuations are weak. The tendency of the system to Tr RN T i

form polarons is therefore most pronounced in the lower part =

of the phase diagram. I i \\\\\\\\
To derive an expression for the polaron binding energy,

the following approach is used: First, we consider a static 1 2 3 4 5 8

hole placed in an ordered state without fluctuations. We then W, /A

calculate the reduction of the total energy due to the interac-

tion Hamiltonian(25). All approximations made in the fol- FIG. 7. Polaron binding enerdsg™: The solid curve is a plot of

lowing aim at discarding terms reminiscent of a specific typeEq. (28) for the orbitally ordered state as a function di{upper

of orbital order, while preserving the most general structuredxis), the dashed curve corresponds to &84) for the orbital-liquid

of the orbital-hole binding energy. We focus on a single sitestate and is plotted as a function \f,, (lower axis.

located next to the hole in thedirection. The orbital con-

figuration at this site is determined by the coupling to therecovered only for the weak-coupling limit in which orbital

hole described by Eq25) as well as by the orientation of distortions around the hole are small.

neighboring orbitals which couple via superexchange and Next, we consider a static hole placed in a strongly fluc-

Jahn-Teller effect; the latter interaction is determined bytuating orbital-liquid state. Hamiltoniaf25) imposes a split-

Hamiltonian(9). Treating all orbitals except the one explic- ting of ey levels on the sites next to the hole. The orbiton

ity considered here on a mean-field level, the following quasiparticles of Sec. Il scatter on these local potentials,

Hamiltonian is obtained for the selected site which may lead to the formation of an orbiton-hole bound
state. To calculate the polaron stabilization energy we again
=—(AT5 +J7-5) (27 consider a single site next to the hole in thdirection. The

local potential imposed by the close-by hole is of the form
Here, 7 = (sin®¢*+cos®d?)/2 fixes the orbital orientation,
which would minimize the interaction energy with the orbital , ,
background — for the type of order used in E40), e.g., Hs=—A7s, (29
®==*x/2. In general, this orientation does not coincide
with the |3z%—r?) configuration favored by the orbital po- where 7?=%0?. We calculate the effect of successive scat-
laron, which is described by the first term in brackets. The[ering of orbitons on the above potential employing a
state actually chosen by the system then depends on the ratjomatrix formalism; interference between different scattering
of A andJ as well as on the angl®. We determine the centers is neglected here. The correction to the orbiton
energy of this state and, since we are not interested in an@reen’s function that seizes the effect of Hamilton{a#) is
specific type of order, average over the an@le Finally,  given by
subtracting theA — 0 limit and multiplying with the number
of bonds connecting the hole to its surrounding, the follow- ) o . . o .
ing expression for the polaron binding energy is obtained: ~ 9Com(i @;R,R)=Go(iw;R, )T 5(iw)Gopiw; 6,R),

(30)
E0P=3[ JAZ+J%-1]. (28)
with the scattering matrix

In the limit JJA— <, the orbital state is very stiff and cannot

be polarized by the hole; the binding energy then vanishes as

3A?/(2J). On the other hand, the polarization is complete in T i) = — A2

the limit JJA—0, yielding a maximum valu&S™=3A for oliw)= 1-0?AGY (iw)/2’
the binding energy. A plot oE2™ is shown in Fig. 7(upper
curve. We note that the functional form of E8) differs
from the conventional lattice-polaron case whekd"
=g?/(2K). This is due to the fact that there exists an upper
limit of the orbital polarization in which the orbitals around a
hole have been fully reoriented to point towards the empty™ ~ ¢ T+fraf R’B> and are controlled by the mean-field
site (see Fig. 5 technically the existence of this upper bound Ham||ton|an (5). The on-site Green’s function iI69(i w)

is reflected by the hard-core nature of the Pauli operators irF 3 T G2(iw; 8,6)]. Integrating over lattice sites, E6B0)
Eq. (27). The familiar form of the binding energyA?/Jis  becomes

Here, Ggrb(iw'R R") denotes the orbiton propagator of the
system in the absence of the scatterlng potential. The ele-
ments of this 22 matrix are given b)[Gorb(lw R,R")]%#
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were assumed to be occupied. Since at finite doping the
probability of a site being occupied is only {), we
renormalize Eq(35) by this average occupation factor. This

( 1 1 ) kind of mean-field approximation neglects dynamical inter-

4

. A a 0 .
6G(iw)=—— %G (lw)

action effects between polarons. We expect that a more thor-
ough treatment of the overlap of polarons will further en-
(31  hance the doping dependence of the binding energy.

. o1 . . To summarizeEZ™ in Eq. (35) represents the energy to be
méhtofjoébrglecrog;y_ozfztﬁlrgjgtgggvavhli?:’r?)ig.ingzce:eghk?;?ﬁe I;‘(:atgained by polarizing the orbital background around a static

i . . ~“"hole. This number depends on the orbital energy s¢élg
tering potential can now be obtained from E§1) by em =6xt+J, i.e., on orbital fluctuations and inter-site orbital

ploying correlations which both tend to suppress the polaron binding
“ energy.W,,, is to be considered as the counterpart of the
SE= 2f dw (o—pu)dp(w), (32 lattice stiffnesK in conventional polaron theory. The impor-
o tant difference is thaiV,,, explicitly depends ox which has
where 8p(w)=—(1/7)Im[6G(iw— w+i07)] denotes the important consequences for the phase diagram of mangan-
scattering contribution to the density of states. The orbitorites: Orbital polarons can form only at low-doping concen-
chemical potential is set ta=0 in the following. We evalu- trations where orbital fluctuations are weak and the binding

ate Eq.(32) by approximating the on-site Green’s function energy is consequently large.

1-AG%w)2 1+AG%iw)/2

by
_ C. Polaron bandwidth
Giw)~— 1 In fw_w‘"blz}_ (33 The orbitally degenerate Mott-Hubbard system is instable
Worp [T+ Wopy/2 towards the formation of orbital-hole bound states at low-

This expression yields a constant density of states for th80ping concentrations. In this small-polaron regime, holes
translationally invariant system which resembles the resul@ré pinned by the binding potential and can move only if
that can be obtained numerically from the mean-field Hamilbeing thermally activated. At low temperatures these pro-
tonian (5). Approximately solving the integral in Eq32)  C€SSes can be neglected,; coherenf[ charge motion is then. pos-
and multiplying the result with the number of nearest neigh-Sible solely due to quantum tunneling. Since the polaron is a
bors of the hole, we finally arrive at the following expressionCoOmposite object consisting of a hole and several orbitals,

for the polaron binding energy: the amplitude of these tunneling processes is expected to be
small as is indeed shown in this section.
yin2 Here, we restrict ourselves to polarons moving in an or-
Ep®=3A| y(cthy—1)+ 5 5| (34)  nbitally ordered state. Our analysis is based upon the follow-
y“+(7l2) ing idea: By allowing a hole to polarize the surrounding

with y=W,,/A. Equation(34) describes the polaron stabi- orbitals, the system reduces its ground state energg By
lization energy in a strongly fluctuating orbital-liquid state. A This energy is mostly lost if the hole hops to another site
plot of this function is shown in Fig. Tlower curvg. The  since the orbital sector cannot immediately adopt to the new
binding energy reaches its maximuﬁgsz 3A if orbital position — orbital fluctuations are slow compared to those of
fluctuations are weak, while it vanishes as 3 1A%\, in  holes. After a short time the system returns to the ground
the opposite limit where fluctuations are strong. state, most likely by transferring the hole back to its original
In the last two paragraphs, we have calculated the polarolpcation. But there is also a small probability for the hole to
binding energy in an orbitally ordered as well as in ankeep its new position while the orbital sector adapts to the
orbital-liquid state. Although very different approaches wererelocation. This is possible due to the nonorthogonality of
used to describe these complementary cases, the expressi(ﬁﬁ)@figurations in which orbitals point towards the old and the
obtained closely coincide: As can be seen in Fig. 7, the twdew location of the hole, respectively. The polaron tunneling
functions are almost indistinguishable if one identifle;n ~ amplitude is then given by the transfer amplitudef holes
Eq. (28) with »W,,;, in Eq. (34), wherer~0.72 is a numeri- Multiplied by the overlap between states with orbitals point-
cal fitting factor. Motivated by the observation that,, ing towards the old and new position of the hole, respec-
=6xt+J reduces tal in the limit of strong orbital correla- tively. This overlap is calculated as follows: We use Hamil-
tions J>xt, we discard the fitting factor in the following by tonian (27) to determine the orientation of a single orbital
setting v=1. We believe these two cases to be smoothlyext to the hole — all other orbitals are treated on a mean-
connected as should come out in a more elaborate treatmelig!d level. As the hole hops, this orbital has to change its
of the problem. Based upon these considerations, we corf/ientation from pointing towards the hole to being aligned
clude that Eq(28) can be used to model the polaron binding With the background. The projection between these two
energy of both the fluctuating and the static orbital state ~ States Is

1/2
EYP=3(1- [ VAT Wiy~ Worl, (35 p= 5|1+ s (30
2 2
whereW,,,= 6xt+J in former andW,,,= J in the latter case. V2 AT

We finally note that in deriving expressiof®8) and(34) for ~ An average over the angl® specifying the type of orbital
the binding energy, all six sites surrounding the static holeorder in Eq.(27) has been performed here. Other orbitals
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1 . - - - the hole to hop. We note that the expression in B89) is
similar to the result obtained in conventional lattice-polaron
theory wheree™ 7=exp(- El w,). Here,ER"'=g?/(2K) de-
notes the polaron binding energy ang the phonon fre-
quency; the latter corresponds tA{+J%)Y2 in our orbital-
polaron theory.

Equation(39) has been derived for a static, nonfluctuating
orbital state. Following the discussion in deriving the polaron
binding energy, we generalize the result to account for or-
bital fluctuations as well. This is done by replacing the inter-
site correlation energy by the more general orbital energy
scaleW,,,=6xt+J. Hence, we obtain

e—Tl

0 al L 1 L 1 L 1 L L
1 2 3 4 5

J/A porb
FIG. 8. Ratio of polaron and holon bandwid¢h 7. The solid e "=expg — \/AZDW ' (41)
line is based on the exponential form in E§9), the dashed line + Wor
represents E(37). The polaron bandwidth shrinks which decreas- \yhere the polaron binding enerdﬁgrb is now given by Eq.
ing values of)/A associated with an enhanced orbital polarizability. (35). We note that the band-narrowing effect described by

Eq. (41 k ith i ting for the fact that
undergo the reversed process: Originally being aligned mer(i)it(al ]2“\]’55&?::5\7:9'pdt?]glg%’l;gzoﬂ)nr:r;% or the fact tha

the background, they turn towards the hole as the latter hops To summarize, the development of orbital polarons leads
onto a neighboring site. In total there arez2(1)~ 2z orbit- (& '

Is that h . Th a6 b he initial 0 a sharp reduction of the bandwidth. In this regime the
als that have to reorient. The overiap between the initial anQhita|-hole bound state can move only as an entity via
the final state is then given by=p<?, yielding

quantum-tunneling processes. Since the polaron extends over
z several lattice sites, the transfer amplitude is exponentially

p:i 1+; . (377 small. The bandwidth reduction is controlled by the ratio
22 VAZ+7? EC™I[ A%+ W?2,]Y2, which is a measure of the orbital distor-
We rewrite Eq.(37) as tions around a hole. Strong orbital fluctuations and inter-site
' orbital correlations weaken the polaron effect by suppressing
A2+ 32— 3]? these distortions.
2VAT+) IV. METAL-INSULATOR TRANSITION
_ 3\/A2+JZ—J 38 As was shown in the preceeding section, the formation of
~exn -~ JAZ+ 32 | (38) orbital-hole bound states leads to an exponential suppression

of the bandwidth, which makes the system prone to localiza-
where the exponential form becomes exact for large coordition. In a double-exchange system, this crossover from a
nation number that has been sette6. The denominator in  free-carrier to a small-polaron picture can be initiated either
the exponent is identified as the orbital binding energy giverby a reduction of the doping concentration or by an increase
by Eq.(28). Hence, we finally arrive at the following com- in temperature; the former acts via an enhancement of the
pact expression foP=e™ " polaron binding energy, the latter by constricting the motion
orb of holes v_ia the doubl_e—exchange mechani§m. In this section,

e"’zex;{ - Ep we combine our orbital-polaron picture with the theory of

N

conventional lattice polarons to develop a scheme of the
metal-insulator transition in manganites.
A plot of this function is shown in Fig. 8. The physical  The transition from a free-carrier to a small-polaron pic-
significance ofe™ 7 is that it relates the holon to the polaron tyre is governed by the dimensionless coupling constant
bandwidth: Ao=E2/Dy,, where EQ® is the polaron binding energy
_ _ given by Eq.(35) andDy =W, /2=3t is the half-bandwidth
Woor=Wrie " (40" 5f holes. The lattice breathing mode of
. g mode of EQ2) adds an
As the system becomes critical towards the formation ofdditional contribution ,,=EB"Dy, with EJ"=g%/(2K),
orbital-hole bound states, polarons replace holes as chargehich further promotes the formation of polarons. The cou-
carriers. Our result shows that this transition is accompaniegling constant thus becomes
by an exponential suppression of the bandwidth. Strictly
speaking the translationally invariant system remains a ngb+Egh
metal; in reality, however, the small bandwidth makes po- A= D—m (42
larons susceptible to localization, e.g., by trapping in the
random potential of impurities. The suppression of the bandThe critical value that separates free-carrier and small-
width is most pronounced if the polaron binding energy ispolaron regimes ia =1. ForA>1 small polarons have fully
large: The orbitals around the hole are then strongly disdeveloped and the bandwidth is reduced by an exponential
torted, which necessitates a significant reorientation to allowactor

. (39
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1 1
_Z_SCt Z_Sy
denotes the Brillouin function. The average magnetic mo-

ment per site varies with doping: The momeBts=3/2 and
s=1/2 of core andey spins combine on average as

T T 28+1'_{28+1

BsY)= 55 5V

™"

S=3+1(1-x). (47)

Finally, the Curie temperatufE in Eq. (46) is controlled by
the strengthl of ferromagnetic exchange bonds via

' ' vz
W,/ Te= S(S+1)Jer- (48)

FIG. 9. Crossover from the free carrier to the small-polaronsThe fitting parameter compensates for an overestimation of
regime. AtA<1 polarons are unstable and the bare holon bandT: in the mean-field treatment. Double-exchange as well as
width is recovered. Ah>1 orbital polarons form, leading to an superexchange processes are responsible for establishing the
exponential suppression of the bandwidth. To avoid an abrupt droperromagnetic links between sites. The magnitude of this
of the bandwidth at=1, Eq. (44) is used to connect the two coupling in the limit of large Hund’s coupling 1%

regimes.
1 2x%t5
Egrb Egh Jeﬁ=p x(1—x)xte 7+ (1—x)? ){J 0 (49
e 7T=exp —y Tt || (43 S
VAT+WG,,

The first term in squared brackets of E49) stems from the

with y=1. We note that interference effects between orbitafconerent motion of holes/polarons and represents the con-
and lattice coupling are neglected in Ed3). ForA<1 the vgnnonal double-exchange contribution T . The factor

free-carrier picture is recovered and holes move in a band d ” accounts for the rescaling of the coherent bandwidth as
width W,,=6t. This implies y=0 in Eq. (43), yielding the small-polaron regime is entered. The second term is due

e~ 7=1. To simulate the crossover between the two regimest,o superexchange processes. It describes the high-energy vir-

we phenomenologically employ the function tual hopping ofey electrons, which is insensitive to a po-
laronic reduction of the bandwidth. It is also noticed that
IN[A(1+ B)] superex_change in an orbitally degenerate system is of fe_rro-
———= "7 for A>1, magnetic nature because of the large Hund's coupling
Y= A2 (44 present in manganité$?*?* Superexchange hence domi-
0 for A<1, nates the ferromagnetic interaction in the small-polaron re-
gime.

with B=[1—1/\?]"2 This function has been proposed for =~ The system of equations presented above controls the
strongly coupled electron-phonon systef®se, e.g., Ref. 22  electronic and magnetic behavior of manganites at low- and
and avoids an unphysical sudden drop of the bandwidth aisitermediate-doping levels. A critical coupling=1 leading
A=1 is reached. The crossover hence obtainedefof is  to the formation of polarons can be reached either by lower-
depicted in Fig. 9. ing the doping concentration or by increasing the tempera-
Up to this point we have mainly focused on the role of theture — the former enhancdsgrb, the latter quenche¥/,.
orbital energy scal®V,,;, in the formation of small polarons. The equations are interrelated and have to be solved recur-
We now turn to analyze in more detail the effect of tempera-sively. As a result of this self consistency, the breakdown of
ture. The latter controls the bandwidi,, via the double- the metallic bandwidth ah=1 is expected to be rather
exchange mechanism: At low temperatures all spins are fessharp: With the evolution of small polarons, the coherent
romagnetically aligned and the transfer amplitude reaches itsand width shrinks, thereby weakening the magnetic ex-
maximum. With increasing temperature the ferromagnetichange links. Double exchange then drives the system even
moment weakens, constricting the motion of charge carrierdarther towards the strong-coupling limit.
Specifically, the transfer amplitude changes with the normal-

ized magnetizatiom as V. COMPARISON WITH EXPERIMENT

t=to\(1+md)/2. (45) To illustrate the interplay between the system of equations
presented in the preceeding section, we numerically extract
The magnetization depends on temperature via the selfrom them theT-x phase diagram. While it is obvious that
consistent equation T=T¢ is a suitable criterion to separate the low-temperature
ferromagnetic from the high-temperature paramagnetic state,
3S T¢ more care has to be taken to distinguish between metallic
T1+s T (46 and insulating behavior. Our theory describes the reduction
of the bandwidth, which follows from the formation of small
where polarons. However, strictly speaking, the system remains

m=Bg(am), with «
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Hole Concentration FIG. 11. Variation of the normalized magnetizatiorwith tem-

perature. At low-hole concentratiorfapper curvg, the system is

FIG. 10. Magnetic and electronic phase diagram obtained withirclose to a transition to the small-polaron regim- a smalincrease
the present theory. Dashed and dot-dashed lines represent magnetigemperature then already sufficiently impedes the hole motion for
and electronic transitions, respectively, the simultaneous transitiopolarons to form, resulting in a sharp drop of the magnetization. At
in both channels is denoted by a solid line. The phases are: pargarge x (lower curve, the conventional double-exchange picture is
magnetic insulatofPl), paramagnetic metalPM), ferromagnetic  recovered.
metal (FM), and ferromagnetic insulatgFl).

other hand, at larger hole concentrations the polaron binding

metallic even in the strong-coupling limit since polarons canenergy is comparably small. Thus, a significant suppression
still move by tunneling. It is, therefore, necessary to define &f the bandwidth via double exchange is needed before po-
critical value of the bandwidth beyond which additional ef- laron formation can set in. The magnetization curve now
fects such as pinning to impurities are implicitly assumed toclosely resembles the one predicted by double-exchange
set in and finally turn the system into an insulator. The spetheory.
cific criterion used here is only of marginal importance, as Clearly beyond the grasp of conventional double-
feedback effects discussed above induce a quick collapse gkchange theory lies the emergence of ferromagnetism in the
the bandwidth once a critical coupling=1 is reached. For insulating phase at low doping. Mostly responsible for this
simplicity, we defineh<1 to be a metal and>1 to be an  are superexchange processes which mediate a ferromagnetic
insulator. interaction even in the insulating phase. Ferromagnetism is

The following parameters are chosen for calculating thefurther promoted by the existence of orbital polarons: Charge
phase diagram: The orbital polarization energy is seAto fluctuations inside the polaron provide a strong local ferro-
=0.55 eV, yielding a binding energy comparable to themagnetic coupling between sites close to a hole, hence es-
phononic oneER"=0.45 eV; the phonon frequency is,  tablishing ferromagnetic clusters seen in experiniért
=0.05 eV, the interaction between orbitdls 0.13 eV, the sufficiently large hole densities these clusters start to interact,
bare transfer amplitudg=0.36 eV1®andU=4.0 eV. The thereby forming a ferromagnetic state.
fitting parameterr=0.55 (Ref. 25 is adjusted to reproduce As was discussed above, orbital fluctuations are predomi-
the values ofl - observed for La_,S,MnO;.2° The resultis  nantly induced by the motion of holes. The loss of charge
shown in Fig. 10. mobility in the insulating phase should therefore trigger

Our most important observation is that the doping depenstatic orbital order. An orbitally ordered state has in fact been
dence of orbital polarons makes the system more insulatingxperimentally detected in the insulating regions of
at low and more metallic at high doping levels. Convincingly Lag gsSto 1MnO5.2® However, in general such an ordered
this is seen in the complete absence of metalicityxat state is expected to have orbital and Jahn-Teller glass fea-
<0.15 and the appearance of a metallic phase afgvat tures due to the presence of quenched orbital polarons,
x>0.4. The region 0.18x<0.4 in which colossal magne- thereby reducing the uniform component of Jahn-Teller dis-
toresistance is experimentally observed is characterized bytartions. Finally, it is worth to notice that the phase diagram
simultaneous magnetic and electronic transition from a ferin this theory is highly sensitive to the transfer amplituge
romagnetic metal to a paramagnetic insul&fofhe role of  as this parameter enters in the polaron binding energy.
polarons in this transition is most pronounced at low-hole
concentrations. ThI.S can be seen from the beha_wor of the VI. CONCLUSION
magnetization a3 is approached from beloysee Fig. 1%
At low x, the polaron binding energy is large and the system In summary, we have shown that a spontaneous develop-
is close to localization. A small reduction of the bandwidth ment of orbital-lattice order is in general insufficient to trig-
via double exchange is then sufficient to trigger the forma-ger the localization process in manganites. Rather an addi-
tion of polarons, resulting in a sudden collapse of the magtional mechanism was identified: Orbital polarons were
netic moment. Such a sharp drop signals the presence ofillustrated to represent an intrinsic feature of an orbitally de-
localization mechanism beyond double exchange and is ingenerate Mott-Hubbard system and to play an important role
deed seen experimentallgee, e.g., Refs. 27—p90n the in the physics of manganites. The binding energy of these
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orbital-hole bound states depends on the rate of orbital flucdoping levels where the theory presented here converges
tuations and hence on the concentration of doped holes: Paonto a lattice-polaron double-exchange picture. Accounting
larons can form at low doping levels where orbitals fluctuatefor both orbital and lattice effects we are finally able to re-

only weakly but they become unstable at higher levels. of

produce well the important aspects of the phase diagram of

This scheme naturally introduces the hole concentration amanganites. In general it can be concluded that a direct cou-
an additional variable into the localization process. Mostpling between holes and surrounding orbitals is of crucial
striking in this respect is the complete breakdown of metalimportance for the physics of manganites; its implications
icity observed below a critical hole concentration despite theextend clearly beyond the metallic phase alone and can be
fact that the system remains ferromagnetically ordered. Oexpected to play an important role throughout the whole
the other hand, orbital polarons become negligible at largephase diagram.
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