
PHYSICAL REVIEW B 15 NOVEMBER 1999-IVOLUME 60, NUMBER 19
Electronic transport properties of Sierpinski lattices
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We have studied the electronic transport properties of open Sierpinski gasket systems connected to two
electron reservoirs in the presence of a magnetic field. In the framework of a tight-binding model, the systems
are composed of one-dimensional ordered chains. A generalized eigenfunction method, which allows one to
deal with finite systems consisting of a large number of lattice sites~nodes!, is used to calculate the transmis-
sion and reflection coefficients of the studied systems. The numerical results show that there are two kinds of
symmetries of the transmission coefficientT to magnetic fluxF, and there are antiresonant state regions (T
50) and resonant states (T51). It is different from the open ring systems now the electronic energies of
resonant states do not coincide with the eigenenergies of the isolated Sierpinski gasket systems. It is also found
that the transmission behavior of the single exit systems is much more complicated than that of two exit
systems.@S0163-1829~99!03640-1#
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I. INTRODUCTION

In the past decade, rapid progress has been made in
area of mesoscopic physics. Quantum transport in me
copic systems has been extensively studied both experim
tally and theoretically.1–19 For mesoscopic systems at ve
low temperatures, the scattering due to phonons, which
dephasing scattering, is significantly suppressed and
phase-coherence length of electrons becomes large comp
to the system dimension. The scattering in the systems
then be modeled as phase-coherent elastic scatterings.
thermore, if we consider the electron as a free particle,
idealized sample becomes an electron waveguide, which
sumes that the electron transport through the system is
fectly ballistic. In recent years, there have been many wo
devoted to the study of the electronic properties of mes
copic systems within the framework of the wavegui
theory9–14 and the tight-binding model.7,8,15–19Along these
lines, the theoretical work to date has focused largely on
problems related to an isolated ring, or to open ring syste
connected via leads to electronic reservoirs together wi
magnetic fluxF through the rings. For an isolated ring, th
persistent current has been the focus of attention.3–6 The idea
is based on the possibility that the electron wave funct
may extend coherently over the whole circumference of
ring, and elastic scatterings, finite temperature, and weak
elastic scatterings do not destroy the coherence. As for
open ring systems, the important problem is to study
relationship among the transmission coefficientT, incident
electron energyE, and magnetic fluxF through the rings.
The electron reservoirs in the open ring systems act as
source of energy dissipation or irreversibility, and all scatt
ing processes in the leads and rings are assumed to be el
PRB 600163-1829/99/60~19!/13444~9!/$15.00
the
s-
n-

a
he
red
an
ur-
n
s-

er-
s

s-

e
s
a

n
e
n-
he
e

he
-
tic.

Based on the waveguide theory, Xia10 has studied the
Aharonov-Bohm effect in an open ring by calculating t
transmission and reflection amplitudes as functions of
magnetic flux, the arm length, and the wave vector. Sing
Deo and Jayannavar12,13 have studied the quantum transpo
properties of serial stub or ring structures and the band
mation in these geometries. Takai and Ohta14 have published
a series of articles investigating similar problems in the pr
ence of both an electrostatic potential and magnetic flux.

On the other hand, it is well known that the tight-bindin
model is more flexible in theoretical treatments than
waveguide theory as disorder can be introduced readily
the band-structure effects are included.20,21Along these lines,
Entin-Wohlmanet al.7 and Kowal et al.8 have studied the
electronic transport properties of an open single ring. Ald
et al.11 studied the same problems using the Green
function method. Wu and Mahler9 have developed the quan
tum network theory of transport, by which the transmissi
probability for an openA-B type ring with an arbitrary form
factor has been studied in detail. Liu and co-workers ha
investigated the persistent current of an isolated disorde
ring,15 the effects of spin interaction on the persiste
current,16 as well as the electronic transport properties
variant ring systems threaded by magnetic flux.17–19

Fractals and their properties have been studied by ph
cists for many years. Lakhtakiaet al. have studied the con
struction and the analytic properties of the fractal cluste
and they also investigated the diffusion motion of the Pas
Sierpinski gaskets by using combinational algebra.20 For
electronic transmission, the fractal lattices are much m
complicated in structure compared with the ring system
One of the main points of interest has been the fact that th
self-similar objects are found to serve as a nontrivial mo
13 444 ©1999 The American Physical Society
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PRB 60 13 445ELECTRONIC TRANSPORT PROPERTIES OF . . .
for the backbone of transport problems. Fractals, in part
lar deterministic fractals such as the Sierpinski gasket~SG!
fractal, possess some special properties, one of which is s
invariance, and do not have any translational order. The
fact bridge the gap between periodic and disorde
systems.22 Therefore, a detailed study on the electronic pro
erties of fractals would lead to new physical results and
crease our understanding of nonperiodic systems. E
though there is a large volume in the literature concer
with fractal systems, the study of their electronic propert
is not that exhaustive. Along these lines, the energy spect
and localization of electronic states in an isolated Sierpin
gasket lattice ~SGL! have been the subject of man
papers.23–27 Domanyet al.23 studied the energy spectrum o
the isolated SGL by the use of the recursive technique. R
mal and Toulouse24 investigated the same problem in th
presence of a magnetic field. However, in recent years
belief has been that in a highly correlated self-similar frac
system, such as SGL, localized eigenstates can exist.
should be a kind of structure-induced localization, which
different from Anderson localization due to incohere
scattering.21 Therefore, the electronic transport properties
this kind of fractal structure would be an interesting proble
Chakrabarti26 has found that in the absence of magnetic fi
for the isolated SGL, there are extended electron sta
Wang27 has studied the electronic localization of Sierpins
lattices, and claimed that there exist an infinite number
extended states. He has also studied the magnetic-field
fects on the electronic states of the isolated SGL. But to
best of our knowledge, up to now the study on the electro
transport properties of an open SGL has not been repo
yet. The reason would be that to deal with an electro
transmission problem of an open SGL, one would have
solve a united equation set, in which the number of equati
roughly equals the number of the sites included in the SG
Therefore, even for a finite SGL, this is a difficult wor
Fortunately, we have found an effective approach to so
this problem, in which the transmission and reflection am
tudes are treated together with the electronic wave funct
in the sites of the SGL, so that we can deduce a sim
formula to calculate the transmission and reflection coe
cients. We have named this approach the generalized ei
function method~GEM!. By the use of this GEM we have
investigated the electronic transport properties of open S
up to its fourth-generation system containing 123 si
~nodes!, which is shown in Fig. 1. By the way, this GEM i
formally similar to the fast multipole method~FMM!, which

FIG. 1. The fourth-generation Sierpinski gasket lattice, the e
tronic properties of which are studied in the text.
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is commonly used in electromagnetic scattering proble
but we should point out that they are essentially differe
from each other.28 The main purpose of this paper is to in
vestigate the behavior of the transmission coefficientT as the
incident electron energyE and the magnetic fluxF, which
penetrates the elementary triangles of the SGL, are var
Detailed results are given in three-dimensional plots oT
againstE andF, and of which in the two-dimensional cros
sectionsT versusE. It is found that there are two kinds o
symmetries of transmission coefficientT to flux F. The
transmission behavior of single-exit SGL systems is mu
more complicated than that of two-exit systems. We a
found that as the SGL generation increases, the antireso
regions corresponding toT50 in the E-F space progres-
sively increase in both the region number and the reg
area. This means that in these regions the magnetic flux c
pletely blocks out the electronic transport. This is an int
esting quantum phenomenon. On the other hand, we h
also calculated the eigenenergy spectrum of the corresp
ing isolated SGL, and found that in the open SGL case
electron energies of resonant transmission states do no
incide with the eigenenergies of the isolated SGL, which
different from the open ring systems.18

This paper is organized as follows. In Sec. II, we intr
duce the generalized eigenfunction method~GEM! to calcu-
late the transmission and reflection coefficients of an o
SGL. The numerical results and discussion of the electro
transport properties are presented in Sec. III. A brief su
mary is given in Sec. IV.

II. GENERALIZED EIGENFUNCTION METHOD
AND ITS APPLICATION IN OPEN SGL SYSTEMS

For the studied open Sierpinski gasket lattices~SGL!
which are coupled to two reservoirs via ideal leads, we
sume that the leads connected to neighboring sites are c
posed of one-dimensional ordered chains with on-site ene
«n and transfer integralt between nearest-neighboring site
Denoting the incident electron energy byE and the projec-
tion of the Wannier wave function on thenth site bycn , in
the presence of a magnetic fluxF the tight-binding equation
can be written as19

~«n2E!cn5(
n8

tn,n8cn1n8 , ~1!

where the transfer integraltn,n8 equalste6 i2pF/(F0S), the S
53 is the circumference length of the elementary triangle
the SGL, the magnetic phasef52pF/(F0S), the F0
5hc/e is the elementary flux quantum, and the sum ru
over the nearest neighbors of siten. The wave functioncn
can be written as the linear combination18

cn5Aeikn1Be2 ikn, ~2!

wherek is the wave vector,n is the site number, and we tak
the lattice distance to be unity. In the tight-binding mod
the wave vectork is related with the incident electronic en

-
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13 446 PRB 60LIU, HOU, HUI, AND SRITRAKOOL
ergy E by formula E52t cosk. We first consider the first-
generation SGL with a single exit shown in Fig. 2~a!. By the
use of Eq.~1! we obtain the tight-binding equations on th
sites of the SGL as follows:

Ec15te2 ifc21te2 ifc61tc0 ,

FIG. 2. First-generation Sierpinski lattice coupled to two res
voirs via ideal leads. The magnetic phase is equal tof in the direc-
tion of the arrow and2f otherwise.~a! One-exit case.~b! Two-exit
case; both exits are coupled to the same reservoirs via ideal le
v

ly
Ec25teifc11te2 ifc31teifc41te2 ifc6 ,

Ec35teifc21te2 ifc4 ,
~3!

Ec45te2 ifc21teifc31te2tfc51teifc61tc7 ,

Ec55teifc41te2 ifc6 ,

Ec65te2 ifc11teifc21te2 ifc41teifc5 .

On the other hand, for the special sites located in the e
and exit we can write their wave function as19

c0511r ~n50!,

c15eik1re2 ik ~n51!,
~4!

c45t ~n50!,

c75teik ~n51!,

wherer andt are the reflection and transmission amplitud
of reflecting and outgoing wave functions, respectively.
calculate both of them, we have to solve the above un
equation set~3! and ~4!; evidently this is difficult. If we
consider higher-generation SGL, then obtaining an anal
solution seems impossible. To numerically solve this pro
lem, we introduce the following generalized eigenfuncti
method~GEM!. The trick of the GEM is that we treat th
amplitudesr andt the same as the wave functionsc i . In this
way the united equation set~3! and ~4! can be rewritten as
the following (N12)-order matrix equation.N is the number
of sites in the SGL:

-

ds.
3
E

eif
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e2 if

1
0
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eif
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he
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and
this

the
For the sake of simplicity, in the above equation we ha
chosen«n50 andt51.

If we denote the above matrix equation~5! as

MC5C,

then the reflection and transmission amplitudes are simp

r 5~M 21C!N11 , t5~M 21C!N12 , ~6!

and the transmission coefficientT5utu2.
e Here we would like to emphasize two points. First, t
numerical solution of the above formula~6! is very easy to
obtain even with a personal computer. Second, the ab
generalized eigenfunction method is a very powerful a
proach to deal with the electronic transport problems in
tice ~network! systems, no matter how many entries and ex
exist in the studied systems. Even for the quasiperiodic
disordered ones, and for three-dimensional systems,
GEM can also be very efficiently used. For example,
matrix equation of the first-generation SGL withtwo exits
shown in Fig. 2~b! can be easily written as follows:
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which is now an (N13)-order matrix equation. In deducin
the above matrix equation~7! we have used the following
relations held in sites 3 and 5 of Fig. 2~b!:

Ec35teifc21te2 ifc71tt1eik,

Ec55teifc41te2 ifc61tt2eik.

The corresponding reflection and transmission amplitude
reflecting and outgoing wave functions are, respectively,

r 5~M 21C!N11 , t15~M 21C!N12 , t25~M 21C!N13 .
~8!

From the above example we can see that in the same
we can easily extend the GEM to multientries~and exits!
cases. To clarify the name GEM, we should compare
generalized eigenfunction equation~5! with the energy ei-
genvalue matrix equation of anisolatedSGL written in the
following. If we assume the site energyen50 for the whole
system, then the tight-binding equations in the sites and t
corresponding eigenvalue matrix equation are, respectiv

Ec15te2 ifc21te2 ifc6 ,

Ec25teifc11te2 ifc31teifc41te2 ifc6 ,

Ec35teifc21te2 ifc4 ,
~9!

Ec45te2 ifc21teifc31te2tfc51teifc6 ,

Ec55teifc41te2 ifc6 ,

Ec65te2 ifc11teifc21te2 ifc41teifc5 ,

and
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where we can see that the aboveN-order square matrix is the
submatrix of matrixM of the matrix equation~5!, and the
above eigenwave function vector is the subvector of the c
responding vector of matrix equation~5!. That is why we call
the method the generalized eigenfunction method.

III. NUMERICAL RESULTS AND DISCUSSION

The formalism mentioned in Sec. II can be easily imp
mented numerically and the results for both the single- a
two-exit cases are obtained up to fourth-generation o
SGL with site~node! numberN5123. The numerical calcu
lation is easy and quick even with a personal computer.
cause the main characters of the transport properties h
been revealed in the investigation of the first four generat
SGL, it is not necessary to consider the higher-genera
systems. In our calculations, the on-site energies are ch
to been50 and the transfer integralst521.0. To examine
the accuracy of our numerical calculations, we check at
ery intermediate stage of the calculation that the criter
utu21ur u251 for the transmission and reflection coefficien
is satisfied to a tolerance of 10214. This accuracy enables u
to examine with confidence the electronic transport prop
ties of the open SGL.

We consider two basic cases of the open SGL with o
and two exits, of which the first-generation systems

FIG. 3. Transmission coefficientT as a function of magnetic
flux F and incident electron energyE for the first-generation Sier-
pinski lattice with a single exit.
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shown in Fig. 2. By the use of the GEM, we have tota
calculated the first four generation SGL. The numerical
sults are shown in Figs. 3–11, in which the typical thre
dimensional plots of the transmission coefficientT against
the electron energyE and magnetic fluxF are shown in Figs.
3 and 5 for the first-generation SGL, in Figs. 7 and 8 for
second-generation SGL, in Fig. 10 for the third-generat
SGL, and in Fig. 11 for the fourth-generation SGL. For t
sake of clear visualization and because of the symmetr
the transmission spectrum, we plotted only a half and a q
ter of the whole periodic picture in Figs. 10 and 11, resp
tively. To display the detail, we have also plotted some p
tures of the transmission coefficientT versus energyE, i.e.,
the cross sections of three-dimensional plots, for the fi
generation SGL in Fig. 4~single exit! and Fig. 6~two exits!,

FIG. 4. Transmission coefficientT vs electron energyE as cross
sections of Fig. 3. The corresponding flux is marked in the pictu
The two pictures are the same forF/F050.4 and 0.6, but for
F/F050.1 and 0.4 they are ‘‘antisymmetric’’ to energyE ~see
text!.
-
-

e
n
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r-
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-
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and for the second-generation SGL with two exits in Fig.
From the obtained numerical results, we can see so

interesting transport properties, which exist in all studi
SGL cases. First, following the enlargement of the SGL,
transmission coefficientT fluctuates more and more, i.e
there exist more and more peaks, valleys, and more and
ger zero-transmission (T50) regions. This complexity of
the transmission behaviors can be understood as the res
the quantum coherence effect among electrons trave
through the SGL. This is due to the fact that the presenc
a magnetic flux destroys the time-reversal symmetry and
paths going clockwise and anticlockwise over the syste
have different phases. Therefore, when the site number o
systems increases, the variant possibility of quantum co
ence also increases, and the transmission coefficient
function of the electron energyE and magnetic fluxF be-
comes increasingly complicated. For the same reason, f
the figures we can also see that the antiresonant state re
i.e., the region withT50, enlarges following the increase o
the site number. In Figs. 3 and 5 of the first-generation S
there is no such region, but one does appear in Figs. 7 a
of the second-generation SGL and enlarges in the next g
erations. In the fourth generation SGL several such regi
have appeared and their areas have quickly enlarged~see Fig.
11!. This global behavior is clearly displayed in the thre
dimensionalT-E-F plots. To show the sophisticated relatio
ship between the incident electron energy and its transm
sion coefficient, we have plotted theE versusT curves with
F/F050.1, 0.25, 0.4, 0.5, and 0.6, respectively, for the fir
and second-generation SGL, and shown them in Figs. 4
and 9, which compliment very well their corresponding 3
plots.

Second, we have noticed the symmetry of transmiss
behaviors. Because we need to use the eigenvalue m
equation~10! to discuss the parameter symmetry of the tra
port property, we investigate in advance the relationship
tween the resonant electronic states of theopenSGL and the
energy eigenvalues of theisolated SGL. An incident elec-
tronic state with peak-value transmission coefficientT is
called a resonant state. In the open ring systems the e
tronic energies of resonant states are close to the eigene
gies of the corresponding isolated ring systems.18 An inter-

s.

FIG. 5. Transmission coefficientT as a function of magnetic
flux F and incident electron energyE for first-generation Sierpinsk
lattice with two exits.
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PRB 60 13 449ELECTRONIC TRANSPORT PROPERTIES OF . . .
esting question is whether or not there exists the same
of relationship in the SGL systems. Figure 12 shows
energy eigenvalue spectra of the isolated Sierpinski lat
for the first, second, and fourth generations, which are
tained by calculating Eq.~10!. Comparing Fig. 12 with Figs
3, 5, 7, 8, and 11, which show theT-F-E behaviors, we can
see that in both the single- and two-exit cases, there is
definite correspondence between the electron energy o
resonant states of the open SGL and the eigenenergy o
isolated SGL. This means that the transport properties of
fractal systems are more complicated than those of the
systems13–14 and ring systems.18 A plausible explanation for
this phenomenon should be that the structure of the fra
systems is much more complicated than that of the ring s
tems, which leads to many more possibilities of variant

FIG. 6. Transmission coefficientT vs electron energyE as cross
sections of Fig. 5. The corresponding flux is marked in the pictu
Long- and short-dashed lines are the transmission coefficient
exits 7 and 8, respectively. Solid lines are the sum of them.
plots show the same symmetry as the single-exit case~see text!.
d
e
e
-

o
he
he
e

ab

al
s-
-

flection and transmission, so that quantum coherence eff
have a much greater chance to influence the transport p
erties and finally destroy the correspondence of the two ki
of energies that exist in the open ring systems.

On the other hand, from the energy spectra shown in F
12 we have noticed that there are two kinds of symmetr
First, the energy spectrum is symmetric toF/F050.5, i.e.,
for fluxesF/F0 and 12F/F0 two energy bands are exactl
the same. Second, to theF/F050.25 ~or 0.75! the energy
spectrum is ‘‘antisymmetric,’’ i.e., there is a corresponden
betweenE(F/F0) and 2E(0.52F/F0) for F/F0<0.25.
This symmetrization of the energy spectrum could be und
stood from the eigenequation~10! of the first-generation
SGL. We have obtained the polynomial expression satis
by eigenenergiesE:

222cos 6f16E cos 3f256E3 cos 3f2480E41512E6

50, ~11!

from which we can see that the symmetry of the eigenene
spectrum depends on the symmetry of cos 3f, wheres.
of
e

FIG. 7. Transmission coefficientT as a function of magnetic
flux F and incident electron energyE for second-generation Sier
pinski lattice with single exit.

FIG. 8. Transmission coefficientT as a function of magnetic
flux F and incident electron energyE for second-generation Sier
pinski lattice with two exits.
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13 450 PRB 60LIU, HOU, HUI, AND SRITRAKOOL
f52pF/3F0 so that cos 3f5cos 2pF/F0. This is why
there areF/F050.5 andF/F050.25 (0.75) kinds of sym-
metries, because they are merely the symmetries of cosf.
Here we can also see that the energy spectrum is period
flux with periodF/F051.

For the same reason, the transmission coefficientT also
posseses these two kinds of symmetries. In the th
dimensional plots Figs. 3, 5, 7, and 8, we can find that th
is a symmetric plane (F/F050.5,E) and two symmetric
centers~F/F050.25,E50! and ~F/F050.75,E50!. The
symmetric centers are most clearly displayed in Fig. 8, wh
is a three-dimensional plot for the second-generation S
with two exits. If we compare the generalized eigenequat
~5! with the eigenenergy equation~10!, we can see that in the

FIG. 9. Transmission coefficientT vs electron energyE as cross
sections of Fig. 8. The corresponding flux is marked in the pictu
Long- and short-dashed lines are the transmission coefficient
exits 7 and 8, respectively. Solid lines are the sum of them.
plots show the same symmetry as the first-generation case~see
text!.
in

e-
re

h
L
n

matrix M of Eq. ~5! the matrix elements related with fluxF
are exactly the same as those of the eigenenergy equ
~10!. Therefore, they have the same dependence on the
F. For a better view, in Figs. 4 and 6 we show someT-E
cross sections of the three-dimensionalT-F-E plots, which
show that the pictures ofF/F050.4 and 0.6 are exactly th
same, and those ofF/F050.4 and 0.1 are ‘‘antisymmetric,’’
i.e., T(F/F0 ,E)5T(0.52F/F0 ,2E). Therefore, the
transmission coefficientT is symmetric for 6E in the
F/F050.25 case. This point is clearly shown in the tw
dimensional plots Figs. 4 and 6. These similarities also or
nate from the same relationship to fluxF for both of the
matrix equations~5! and ~10!.

Another interesting phenomenon displayed in the figu
is that the single-exit SGL shows more complicated tra
mission behavior than the two-exit systems, i.e., in
former the transmission spectrum contains more peaks,
leys, and bigger fluctuation. An intuitive explanation for th
phenomenon could be that from Fig. 2~b! we can see that the
two exits in the open SGL are symmetric, both of whi
directly connect with the entry site by a straight lead, whi
serves as a direct ‘‘transport channel.’’ This means that
the two-exit systems the multiscattering effect and
quantum-coherent effect of structure are weaker compa
with the single-exit systems.

s.
of
e

FIG. 10. Transmission coefficientT as a function of magnetic
flux F and incident electron energyE for third-generation Sierpin-
ski lattice. For the sake of clear visualization only a half-period
flux F is shown.~a! Single-exit case.~b! Two-exit case.
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In Figs. 6 and 9 we show the total and individual tran
mission coefficientsT, T1 , T2 for the first- and second
generation SGL with two exits. We can see the variation
the transmission coefficientsT1 and T2 with the change of
the magnetic fluxF. Due to the modulation of the magnet
field, theT1 and T2 behaviors are different except in som
special cases, such asF/F050 and 0.5. Generally they pe
riodically exchange the ‘‘position’’ following the variance o
the flux F. This behavior comes from the fact that the tw
exits are symmetric in the structure of the SGL, therefore
the modulation of the magnetic field theT1 and T2 have a
phase difference.

IV. BRIEF SUMMARY

We have introduced the generalized eigenfunction met
~GEM!, which is a very efficient and powerful approach
studying the electronic transport problems of aperiodic s
tems. By the use of the GEM we have studied the trans
properties of open Sierpinski gasket lattices~SGL! coupled
to two electron reservoirs via ideal leads. We have inve
gated the electronic transport properties of an open SGL
to its fourth-generation systems containing site numbeN
5123. The main purpose of this paper is to investigate
behavior of the transmission coefficientT as the incident
electron energyE and the magnetic fluxF, which penetrates

FIG. 11. Transmission coefficientT as a function of magnetic
flux F and incident electron energyE for fourth-generation Sierpin-
ski lattice. For the sake of clear visualization only a quarter o
period in fluxF is shown.~a! Single-exit case.~b! Two-exit case.
-
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the elementary triangles of the SGL, are varied. The deta
numerical results are given in three-dimensional plots
transmission coefficientT against electron energyE and flux
F, and in which the two-dimensional cross sections areT
versusE. It is found that following the enlargement of th
SGL, the transmission coefficientT fluctuates more and
more, there are more and more resonant peaks, l
transmission valleys, and more and bigger antiresonant s
(T50) regions. In the transmission behaviors there are
kinds of symmetries to fluxF. In the three-dimensiona
T-E-F plots, the transmission coefficientT has a symmetric
plane (F/F050.5,E) and two symmetric certers: (F/F0
50.25,E50) and (F/F050.75,E50). The numerical re-
sults show also that the transmission behavior of single-
SGL systems is much more complicated than that of the
exit systems, because in the former there are direct ‘‘tra
port channels.’’ It is different from the open ring system
now the electronic energies of the resonant states do
coincide with the eigenenergies of the isolated Sierpin
gasket systems. It means that the transport properties o
fractal systems are more complicated than those of the

a

FIG. 12. Energy spectrum of isolated Sierpinski lattice as
function of magnetic fluxF. From upper to bottom, they corre
spond to the first-, second-, and fourth-generation Shierpinski
tices, respectively. Readers should notice the symmetries of
spectrum toF/F050.5 and 0.25.
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systems13,14 and ring systems.18 The above results increas
our understanding of the transport properties of fractal s
tems. In the present paper, as an example, we only discu
the SG, which is a simple fractal gasket derived from t
Pascal triangle modulo 2, but it is well known that oth
strictly self-similar gaskets can be derived from Pascal
angle modulon whenn is prime, and even for a nonprimen
there also exists self-similarity in the asymptotic sense.29,30

For these fractal structures, determining what kind of univ
sal property there is in the electronic transport proble
would be a very interesting problem, and worth studying.
ys-
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