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We have studied the electronic transport properties of open Sierpinski gasket systems connected to two
electron reservoirs in the presence of a magnetic field. In the framework of a tight-binding model, the systems
are composed of one-dimensional ordered chains. A generalized eigenfunction method, which allows one to
deal with finite systems consisting of a large number of lattice $itedes, is used to calculate the transmis-
sion and reflection coefficients of the studied systems. The numerical results show that there are two kinds of
symmetries of the transmission coefficiehto magnetic flux®, and there are antiresonant state regiohs (
=0) and resonant state3 €1). It is different from the open ring systems now the electronic energies of
resonant states do not coincide with the eigenenergies of the isolated Sierpinski gasket systems. It is also found
that the transmission behavior of the single exit systems is much more complicated than that of two exit
systems[S0163-182@9)03640-1

[. INTRODUCTION Based on the waveguide theory, Xlahas studied the
Aharonov-Bohm effect in an open ring by calculating the
In the past decade, rapid progress has been made in ti@nsmission and reflection amplitudes as functions of the
area of mesoscopic physics. Quantum transport in mesosaagnetic flux, the arm length, and the wave vector. Singha
copic systems has been extensively studied both experime®eo and Jayannavar® have studied the quantum transport
tally and theoretically ' For mesoscopic systems at very properties of serial stub or ring structures and the band for-
low temperatures, the scattering due to phonons, which is mation in these geometries. Takai and Ghteave published
dephasing scattering, is significantly suppressed and the series of articles investigating similar problems in the pres-
phase-coherence length of electrons becomes large compareace of both an electrostatic potential and magnetic flux.
to the system dimension. The scattering in the systems can On the other hand, it is well known that the tight-binding
then be modeled as phase-coherent elastic scatterings. Funodel is more flexible in theoretical treatments than the
thermore, if we consider the electron as a free particle, awaveguide theory as disorder can be introduced readily and
idealized sample becomes an electron waveguide, which aghe band-structure effects are includ@d*Along these lines,
sumes that the electron transport through the system is peEntin-Wohlmanet al.” and Kowal et al® have studied the
fectly ballistic. In recent years, there have been many workglectronic transport properties of an open single ring. Aldea
devoted to the study of the electronic properties of mesoset al!! studied the same problems using the Green’s-
copic systems within the framework of the waveguidefunction method. Wu and Mahféhave developed the quan-
theory’ 1% and the tight-binding modél®*°-1°Along these  tum network theory of transport, by which the transmission
lines, the theoretical work to date has focused largely on therobability for an operA-B type ring with an arbitrary form
problems related to an isolated ring, or to open ring systemfactor has been studied in detail. Liu and co-workers have
connected via leads to electronic reservoirs together with avestigated the persistent current of an isolated disordered
magnetic flux® through the rings. For an isolated ring, the ring,’® the effects of spin interaction on the persistent
persistent current has been the focus of atterti6ithe idea  current!® as well as the electronic transport properties of
is based on the possibility that the electron wave functiorvariant ring systems threaded by magnetic fi(ix°
may extend coherently over the whole circumference of the Fractals and their properties have been studied by physi-
ring, and elastic scatterings, finite temperature, and weak ireists for many years. Lakhtaket al. have studied the con-
elastic scatterings do not destroy the coherence. As for thstruction and the analytic properties of the fractal clusters,
open ring systems, the important problem is to study theand they also investigated the diffusion motion of the Pascal-
relationship among the transmission coefficidntincident ~ Sierpinski gaskets by using combinational algelSr&or
electron energyE, and magnetic fluxpb through the rings. electronic transmission, the fractal lattices are much more
The electron reservoirs in the open ring systems act as theomplicated in structure compared with the ring systems.
source of energy dissipation or irreversibility, and all scatter-One of the main points of interest has been the fact that these
ing processes in the leads and rings are assumed to be elasBelf-similar objects are found to serve as a nontrivial model
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is commonly used in electromagnetic scattering problems,

VAVAN but we should point out that they are essentially different
A#X%A from each othef® The main purpose of this paper is to in-
AQA AQA vestigate the behavior of the transmission coefficieas the
VANIAN incident electron ener nd the magnetic flub, which
AVXVA&X#A cident electron energf and the magnetic fluxb, c

penetrates the elementary triangles of the SGL, are varied.
Detailed results are given in three-dimensional plotsTof
\V N/ againstE and®, and of which in the two-dimensional cross
sectionsT versusE. It is found that there are two kinds of
symmetries of transmission coefficiefit to flux ®. The
transmission behavior of single-exit SGL systems is much
FIG. 1. The fourth-generation Sierpinski gasket lattice, the elec/NOre complicated than that O,f tV\{O-eXIt systems. We also
tronic properties of which are studied in the text. found that as the SGL generapon increases, the antiresonant
regions corresponding td=0 in the E-® space progres-
sively increase in both the region number and the region
area. This means that in these regions the magnetic flux com-
arP‘I:\eter blocks out the electronic transport. This is an inter-
r(?sting guantum phenomenon. On the other hand, we have
@Iso calculated the eigenenergy spectrum of the correspond-
ing isolated SGL, and found that in the open SGL case the

for the backbone of transport problems. Fractals, in particu
lar deterministic fractals such as the Sierpinski gask&)

fractal, possess some special properties, one of which is sc
invariance, and do not have any translational order. They i
fact bridge the gap between periodic and disordere

systemg? Therefore, a detailed study on the electronic prop- lect . f it o tates d ¢
erties of fractals would lead to new physical results and in-S/ECtron energies of resonant transmission states do not co-
cide with the eigenenergies of the isolated SGL, which is

crease our understanding of nonperiodic systems. Eved'r?ff 0 th . torkE
though there is a large volume in the literature concerne : _?kr]t.en rom the open rmdg sysf e” ) In Sec. Il int
with fractal systems, the study of their electronic properties IS paper IS organized as Toflows. In Sec. 1i, we Intro-

is not that exhaustive. Along these lines, the energy spectrurql,:ceﬂt]hetgener{?"'z_ed e|g§nfuf?ct[[(_)n metmf?EM)tto (;alcu-
and localization of electronic states in an isolated Sierpinska e the transmission and refiection Coetlicients or an open

gasket lattice (SGL) have been the subject of many ¢ GL. Thte nume?_cal results andt déspusg,lon I(I)If tRebe_Iefctronlc
paper52_3—27 Domanyet al2® studied the energy spectrum of ransport properties are presented in Sec. Il rief sum-

the isolated SGL by the use of the recursive technique. Ranfl@"y IS given in Sec. IV.

mal and Toulous? investigated the same problem in the

presence of a magnetic field. However, in recent years the

belief has been that in a highly correlated self-similar fractal Il. GENERALIZED EIGENFUNCTION METHOD

system, such as SGL, localized eigenstates can exist. This AND ITS APPLICATION IN OPEN SGL SYSTEMS

should be a kind of structure-induced localization, which is ) o )

different from Anderson localization due to incoherent For the studied open Sierpinski gasket lattid&GL)
scattering’* Therefore, the electronic transport properties ofwhich are coupled to two reservoirs via ideal leads, we as-
this kind of fractal structure would be an interesting problem.Sume that the leads connected to neighboring sites are com-
Chakrabarf® has found that in the absence of magnetic fieldPosed of one-dimensional ordered chains with on-site energy
for the isolated SGL, there are extended electron state§n @nd transfer integral between nearest-neighboring sites.
Wand” has studied the electronic localization of SierpinskiDenoting the incident electron energy Byand the projec-
lattices, and claimed that there exist an infinite number ofion of the Wannier wave function on threh site by, , in
extended states. He has also studied the magnetic-field ehe presence of a magnetic fldxthe tight-binding equation
fects on the electronic states of the isolated SGL. But to th&an be written as

best of our knowledge, up to now the study on the electronic

transport properties of an open SGL has not been reported

yet. The reason would be that to deal with an electronic (en—E)thn= 2 ton nin » (1)
transmission problem of an open SGL, one would have to n'

solve a united equation set, in which the number of equations

roughly equals the number of the sites included in the SGLwhere the transfer integra), ,» equalste™ 27 (®09 the S
Therefore, even for a finite SGL, this is a difficult work. =3 is the circumference length of the elementary triangle of
Fortunately, we have found an effective approach to solvehe SGL, the magnetic phas¢=27d/(P,S), the d,
this problem, in which the transmission and reflection ampli-=hc/e is the elementary flux quantum, and the sum runs
tudes are treated together with the electronic wave functionsver the nearest neighbors of site The wave functiony,

in the sites of the SGL, so that we can deduce a simpletan be written as the linear combinatidn

formula to calculate the transmission and reflection coeffi-

cients. We have named this approach the generalized eigen- . ,

function method(GEM). By the use of this GEM we have Yn=Aek"+Be kN, 2
investigated the electronic transport properties of open SGL

up to its fourth-generation system containing 123 sitesvherek is the wave vectom is the site number, and we take
(nodes, which is shown in Fig. 1. By the way, this GEM is the lattice distance to be unity. In the tight-binding model,
formally similar to the fast multipole methd@#MM), which  the wave vectok is related with the incident electronic en-
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Elﬂzztei¢lﬂ1+te_i¢lﬂ3+tei¢lﬂ4+te_i¢lﬂ6,
Eys=te'yp+te Py,
. . _ )
Elﬂ4:te_l¢lﬂ2+tel¢¢3+te_t¢¢5+tel¢lﬂ6+t(ﬂ7,
E¢5:tei¢lp4+te_i¢¢6,
Eye=te 'y, +te'y,+te Py, +te' Pys.

On the other hand, for the special sites located in the entry
and exit we can write their wave function'ds

Yo=1+r (n=0),
y1=e*+re ' (n=1),
(4)
ba=1 (n=0),

yr=7e (n=1),

wherer and 7 are the reflection and transmission amplitudes
of reflecting and outgoing wave functions, respectively. To
voirs via ideal leads. The magnetic phase is equal io the direc- calcutl_ate bOtg of tZer:,. We_dhavtle t?h_sol_vedt_?f_e al?ml;e united
tion of the arrow and- ¢ otherwise(a) One-exit case(b) Two-exit equation se3) and (4); evidently this is difficult. If we

case; both exits are coupled to the same reservoirs via ideal Ieadg.onsider higher-.genera_tion SGL, then, obtaining an .analytic
solution seems impossible. To numerically solve this prob-

ergy E by formula E=2t cosk. We first consider the first- lem, we introduce the following generalized eigenfunction
generation SGL with a single exit shown in FigaR By the ~ Method(GEM). The trick of the GEM is that we treat the
use of Eq.(1) we obtain the tight-binding equations on the @mplitudes andrthe same as the wave functiogs. In this

FIG. 2. First-generation Sierpinski lattice coupled to two reser-

sites of the SGL as follows: way the united equation sé€B) and(4) can be rewritten as
_ _ the following (N+ 2)-order matrix equatiorN is the number
Eyg=te "Py,+te Pys+tiy, of sites in the SGL:

[ E e 0 0 0 € 1 071/ -1

e€® E e €¢ 0 e 0 0 Wy 0

0 € E e o0 0 0 0 Vs 0

0 el'?® ¢ E el ¢ 0 ek | y, 0

o 0 o0 € E e o ol|lw| | o ®)
e’ €¢ 0 e’ ¢ E 0 0 Ve 0

1 0 0 0 0 0 -—-e'* 0 r ek
Y 0 0 1 0 0 o -1]\ 0

For the sake of simplicity, in the above equation we have Here we would like to emphasize two points. First, the

chosene,=0 andt=1. numerical solution of the above formu(é) is very easy to
If we denote the above matrix equatith) as obtain even with a personal computer. Second, the above
generalized eigenfunction method is a very powerful ap-
M¥=C, proach to deal with the electronic transport problems in lat-

tice (network systems, no matter how many entries and exits
then the reflection and transmission amplitudes are simply exist in the studied systems. Even for the quasiperiodic and
disordered ones, and for three-dimensional systems, this
r=(M-1c , —(M~1c , 6 GEM can al§o be very.eff|C|entIy gsed. For gxampk_a, the
( Nz m=( InN+2 © matrix equation of the first-generation SGL witwo exits
and the transmission coefficiefit=| 7|2. shown in Fig. 2b) can be easily written as follows:
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[ E e'* 0 0 0 ¢l¢ 1 0 0 I -1
b E e P 0 e 0 0 0 Wy 0
0 ¢ E et 0 0 0 ek 0 s 0
0 b @b E  el? g 0 0 O Wa 0
0 0 0 € E s 0 0 €k s | =] 0 |, 7)
e’ ¢ 0 e’ ¢ E 0 0 0 Ve 0
1 0 0 0 0 0 —-e* 0 o0 r e’k
0 0 1 0 0 0 0 -1 0 T 0
| 0 0 0 0 1 0 0 0 -1\ n 0

which is now an N+ 3)-order matrix equation. In deducing where we can see that the abd\rder square matrix is the

the above matrix equatio(V) we have used the following submatrix of matrixM of the matrix equatior(5), and the

relations held in sites 3 and 5 of Fig(: above eigenwave function vector is the subvector of the cor-
responding vector of matrix equatiés). That is why we call

Egs=te®y,+te 1y, +tr,eX the method the generalized eigenfunction method.

Egs=te ®yytte P gt trek. IIl. NUMERICAL RESULTS AND DISCUSSION

The corresponding reflection and transmission amplitudes of The formalism mentioned in Sec. Il can be easily imple-
reﬂec“ng and Outgo|ng wave functions are, respecnve]y, mented numerlca”y and the results for both the Slngle and
two-exit cases are obtained up to fourth-generation open

_ _ _ SGL with site(node numberN=123. The numerical calcu-
= 1 - 1 - 1
r=(M""C)n+1, 11=(M""C)ysz, 72=(M C)N+?é) lation is easy and quick even with a personal computer. Be-
cause the main characters of the transport properties have

From the above example we can see that in the same wdygen revealed in the investigation of the first four generation
we can easily extend the GEM to multientriend exity ~ SGL, it is not necessary to consider the higher-generation
cases. To clarify the name GEM, we should compare théystems. In our calculations, the on-site energies are chosen
generalized eigenfunction equati¢B) with the energy ei- 0 bee,=0 and the transfer integrats- —1.0. To examine
genvalue matrix equation of asolated SGL written in the ~ the accuracy of our numerical calculations, we check at ev-
following. If we assume the site energy=0 for the whole  €ry intermediate stage of the calculation that the criterion
system, then the tight-binding equations in the sites and thelrr|+|r|>=1 for the transmission and reflection coefficients

corresponding eigenvalue matrix equation are, respectivelyis satisfied to a tolerance of 18'. This accuracy enables us
to examine with confidence the electronic transport proper-

i “ig ties of the open SGL.
Eyi=te “yptte e, We consider two basic cases of the open SGL with one

_ _ _ _ and two exits, of which the first-generation systems are
Eyp=te'?y,+te™Pystte'y,+te Py,

Egs=te'y,+te Py,

) Al
. ) B . “{'{H
Ega=te™ uytteytte s rtel s, 1.0 n, 0{0’0’0“\\“ N\gz‘;ll”
. "M N e :
i —ig L i;(ﬁ\\‘\s»:.:m.«m
Egs=te' Py, +te” Py, mq'\\\\‘,‘:,,,;,;,?//,l/
_ _ _ : oS | w m\\ \\,m:;, ,,l&l;\‘.\‘.ghl\\\\“
Evig=te s +te g, te gty \ %',t@,o\\\.«\“/uf’,;m,}«;’b,,:,,,,,' I
: Hv‘:iz" i
and 0.0 A ‘::%;;; //'l:,,fit,',,,l,,l,,l;,/,'t,/,: '0,9/ MII .
(’\‘\“\ 'f"l il
" E e 0 0 0 g4 4 Y ﬂl 1
: € : , _ 4 0.5 1
e|¢ E e7|¢ e|¢ 0 —i¢ wz Q
0 €4 E e’ o0 0 s s g\e@’
0 et ¢ E e g€?¢ ¥ =0, 0.0 %2
0. 0 0 elfﬁ E e'? s FIG. 3. Transmission coefficierlt as a function of magnetic
e i gl¢ 0 e ¢ E |\ o flux ® and incident electron enerdy for the first-generation Sier-

) (10 pinski lattice with a single exit.
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FIG. 4. Transmission coefficiefitvs electron energ as cross
sections of Fig. 3. The corresponding flux is marked in the pictures:
The two pictures are the same fdr/®,=0.4 and 0.6, but for
®/Py=0.1 and 0.4 they are “antisymmetric” to enerdy (see

text).
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FIG. 5. Transmission coefficiedf as a function of magnetic
flux @ and incident electron enerdyfor first-generation Sierpinski
lattice with two exits.

and for the second-generation SGL with two exits in Fig. 9.
From the obtained numerical results, we can see some
interesting transport properties, which exist in all studied
SGL cases. First, following the enlargement of the SGL, the
transmission coefficienT fluctuates more and more, i.e.,
there exist more and more peaks, valleys, and more and big-
ger zero-transmissionTE0) regions. This complexity of
the transmission behaviors can be understood as the result of
the quantum coherence effect among electrons traveling
through the SGL. This is due to the fact that the presence of
a magnetic flux destroys the time-reversal symmetry and the
paths going clockwise and anticlockwise over the systems
have different phases. Therefore, when the site number of the
systems increases, the variant possibility of quantum coher-
ence also increases, and the transmission coefficient as a
function of the electron energf and magnetic fluxP be-
comes increasingly complicated. For the same reason, from
the figures we can also see that the antiresonant state region,
i.e., the region withl =0, enlarges following the increase of
the site number. In Figs. 3 and 5 of the first-generation SGL
there is no such region, but one does appear in Figs. 7 and 8
of the second-generation SGL and enlarges in the next gen-
erations. In the fourth generation SGL several such regions
have appeared and their areas have quickly enlaigsslFig.
11). This global behavior is clearly displayed in the three-
dimensionall-E-® plots. To show the sophisticated relation-
ship between the incident electron energy and its transmis-

shown in Fig. 2. By the use of the GEM, we have totally sion coefficient, we have plotted theversusT curves with
calculated the first four generation SGL. The numerical re®/®y=0.1, 0.25, 0.4, 0.5, and 0.6, respectively, for the first-
sults are shown in Figs. 3—11, in which the typical three-and second-generation SGL, and shown them in Figs. 4, 6,

dimensional plots of the transmission coeffici@htgainst
the electron energlf and magnetic fluxb are shown in Figs.

and 9, which compliment very well their corresponding 3D
plots.

3 and 5 for the first-generation SGL, in Figs. 7 and 8 for the Second, we have noticed the symmetry of transmission
second-generation SGL, in Fig. 10 for the third-generatiorbehaviors. Because we need to use the eigenvalue matrix
SGL, and in Fig. 11 for the fourth-generation SGL. For theequation(10) to discuss the parameter symmetry of the trans-
sake of clear visualization and because of the symmetry gbort property, we investigate in advance the relationship be-
the transmission spectrum, we plotted only a half and a quaitween the resonant electronic states ofagpenSGL and the

ter of the whole periodic picture in Figs. 10 and 11, respecenergy eigenvalues of thisolated SGL. An incident elec-
tively. To display the detail, we have also plotted some pictronic state with peak-value transmission coeffici@nis

tures of the transmission coefficiefitversus energg, i.e.,

called a resonant state. In the open ring systems the elec-

the cross sections of three-dimensional plots, for the firsttronic energies of resonant states are close to the eigenener-

generation SGL in Fig. 4single exi} and Fig. 6(two exits,

gies of the corresponding isolated ring systéfan inter-
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ﬁ 0.0 f=F=27 AL B FIG. 7. Transmission coefficienf as a function of magnetic
E 1 - FLUX=0.4 flux ® and incident electron enerdy for second-generation Sier-
w 087 7N pinski lattice with single exit.
3 . PN \
3 ] AR \
S 0.4 I AN A flection and transmission, so that quantum coherence effects
2 : ‘.\ /i // \ have a much greater chance to influence the transport prop-
2 0.0 1 -7 S- T erties and finally destroy the correspondence of the two kinds
§‘_= ] ' ' FLUX_O 5 of energies that exist in the open ring systems.
0.8 T On the other hand, from the energy spectra shown in Fig.
| 12 we have noticed that there are two kinds of symmetries.
1 _ First, the energy spectrum is symmetric®dd,=0.5,
0.4 1 A g \\ for fluxes®/d, and 1- &/d, two energy bands are exactly
1 N the same. Second, to thk/®,=0.25 (or 0.75 the energy
1/ S spectrum is “antisymmetric,” i.e., there is a correspondence
0.0 1 ' T O%0.6 betweenE(d/d,) and —E(0.5— ®/d,) for &/dy=<0.25.
0.8 ; \ This symmetrization of the energy spectrum could be under-
1 O P stood from the eigenequatiofl0) of the first-generation
] N ' | SGL. We have obtained the polynomial expression satisfied
0.4 -t Sy \ by eigenenergiek:
4 , I\‘ , \
A N \\
00 b S I\\ —2—c0s 6p+ 6E cos 3p— 56E° cos 3p— 480E*+ 512E°
-2 -1 0 1 2
ENERGY =0, (11

FIG. 6. Transmission coefficieftvs electron energi as cross  f,om which we can see that the symmetry of the eigenenergy

sections of Fig. 5. The corresponding flux is marked in the pictures ectrum depends on the svmmetry of 3vhere
Long- and short-dashed lines are the transmission coefficients ofp P 4 y cps

exits 7 and 8, respectively. Solid lines are the sum of them. The
plots show the same symmetry as the single-exit ¢sse text

esting question is whether or not there exists the same kind

of relationship in the SGL systems. Figure 12 shows the
energy eigenvalue spectra of the isolated Sierpinski lattice 1.0
for the first, second, and fourth generations, which are ob-

tained by calculating Eq10). Comparing Fig. 12 with Figs. T o5
3,5, 7,8, and 11, which show tle®-E behaviors, we can

see that in both the single- and two-exit cases, there is no 0.0
definite correspondence between the electron energy of the

R
‘m;“l‘% "ﬂ:ﬁ"'n:" ol i i ,ml i

i " W ,", lh M.'.‘

,"ﬁ'v V|’| "r

j
i I
4{' ) '5'":'.'""?

"ﬂ«’*’“"\“ﬁh”' i q#.""«'a% |

B

resonant states of the open SGL and the eigenenergy of the 0.5 0
isolated SGL. This means that the transport properties of the &
fractal systems are more complicated than those of the slab Péu* 00X 2 &%

system&*~**and ring system& A plausible explanation for

this phenomenon should be that the structure of the fractal FIG. 8. Transmission coefficierf as a function of magnetic
systems is much more complicated than that of the ring sysftux ® and incident electron enerdy for second-generation Sier-
tems, which leads to many more possibilities of variant re-pinski lattice with two exits.
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FIG. 9. Transmission coefficiefitvs electron energ as cross

sections of Fig. 8. The corresponding flux is marked in the pictures.
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FIG. 10. Transmission coefficiefit as a function of magnetic
flux ® and incident electron enerdy for third-generation Sierpin-
ski lattice. For the sake of clear visualization only a half-period in
flux ® is shown.(a) Single-exit case(b) Two-exit case.

matrix M of Eq. (5) the matrix elements related with fluk
are exactly the same as those of the eigenenergy equation
(10). Therefore, they have the same dependence on the flux
®. For a better view, in Figs. 4 and 6 we show soim&
cross sections of the three-dimensiofia®d-E plots, which

Long- and short-dashed lines are the transmission coefficients Ghow that the pictures 6p/®,=0.4 and O"‘G are exactly_ th,e
exits 7 and 8, respectively. Solid lines are the sum of them. Thé@me, and those di/®,=0.4 and 0.1 are “antisymmetric,

plots show the same symmetry as the first-generation (e
text).

¢=27D/3D, so that cosd=cos 2rd/dy. This is why
there areb/®,=0.5 and®/d,=0.25 (0.75) kinds of sym-

metries, because they are merely the symmetries of ¢i0s 3

ie., T(®/Py,E)=T(0.5~P/Py,—E). Therefore, the
transmission coefficienfT is symmetric for =E in the
®/®,=0.25 case. This point is clearly shown in the two-
dimensional plots Figs. 4 and 6. These similarities also origi-
nate from the same relationship to fldx for both of the
matrix equationg5) and (10).

Another interesting phenomenon displayed in the figures

Here we can also see that the energy spectrum is periodic is that the single-exit SGL shows more complicated trans-

flux with period®/®y=1.
For the same reason, the transmission coefficieatso

mission behavior than the two-exit systems, i.e., in the
former the transmission spectrum contains more peaks, val-

posseses these two kinds of symmetries. In the thredeys, and bigger fluctuation. An intuitive explanation for this
dimensional plots Figs. 3, 5, 7, and 8, we can find that therghenomenon could be that from FigbPwe can see that the

is a symmetric plane®/®,=0.5F) and two symmetric
centers(®/d,=0.25E=0) and (®/P,=0.75E=0). The

two exits in the open SGL are symmetric, both of which
directly connect with the entry site by a straight lead, which

symmetric centers are most clearly displayed in Fig. 8, whictserves as a direct “transport channel.” This means that for

is a three-dimensional plot for the second-generation SGlthe two-exit systems the multiscattering effect and the

with two exits. If we compare the generalized eigenequatiorquantum-coherent effect of structure are weaker compared
(5) with the eigenenergy equati@h0), we can see that in the with the single-exit systems.
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FIG. 11. Transmission coefficiefit as a function of magnetic
flux ® and incident electron enerdyfor fourth-generation Sierpin-
ski lattice. For the sake of clear visualization only a quarter of a
period in flux® is shown.(a) Single-exit case(b) Two-exit case. FLUX

FIG. 12. Energy spectrum of isolated Sierpinski lattice as a
. T function of magnetic fluxd. From upper to bottom, they corre-
In Figs. 6 and 9 we show the total and individual trans'spond to the first-, second-, and fourth-generation Shierpinski lat-

mission. coefficienFsT, LER T,2 for the first- and sepohd- tices, respectively. Readers should notice the symmetries of the
generation SGL with two exits. We can see the variation ofpectrym tob/d,=0.5 and 0.25.

the transmission coefficienis; and T, with the change of

the magnetic fluxb. Due to the modulation of the magnetic

field, the T, and T, behaviors are different except in some ) . .
special cases, such d8®,=0 and 0.5. Generally they pe- the ele_mentary triangles _of the_ SGL, are_varle(_i. The detailed
riodically exchange the “position” following the variance of numerical results are given in three-dimensional plots of
the flux ®. This behavior comes from the fact that the two ransmission coefficient against electron enerdy and flux
exits are symmetric in the structure of the SGL, therefore i, and in which the two-dimensional cross sections &re

the modulation of the magnetic field tig and T, have a versusk. It is found that following the enlargement of the
phase difference. SGL, the transmission coefficient fluctuates more and

more, there are more and more resonant peaks, low-
transmission valleys, and more and bigger antiresonant states
(T=0) regions. In the transmission behaviors there are two
kinds of symmetries to fluxp. In the three-dimensional
We have introduced the generalized eigenfunction method-E-® plots, the transmission coefficieithas a symmetric
(GEM), which is a very efficient and powerful approach to plane @/®,=0.5F) and two symmetric certers: &/ d,
studying the electronic transport problems of aperiodic sys=0.25E=0) and @/®,=0.75E=0). The numerical re-
tems. By the use of the GEM we have studied the transpolults show also that the transmission behavior of single-exit
properties of open Sierpinski gasket lattid&SL) coupled  SGL systems is much more complicated than that of the two
to two electron reservoirs via ideal leads. We have investiexit systems, because in the former there are direct “trans-
gated the electronic transport properties of an open SGL uport channels.” It is different from the open ring systems
to its fourth-generation systems containing site nhumier now the electronic energies of the resonant states do not
=123. The main purpose of this paper is to investigate theoincide with the eigenenergies of the isolated Sierpinski
behavior of the transmission coefficiefitas the incident gasket systems. It means that the transport properties of the
electron energ¥ and the magnetic flu, which penetrates fractal systems are more complicated than those of the slab

IV. BRIEF SUMMARY
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