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There is considerable experimental evidence that the materi@if¥; has a narrow conduction band.
Assuming this band to bd, we show thatd—f interactions, hybridization plus Coulomb interaction, can
stabilize a two-electron localized state with mix@@ndf characters below the edge of the conduction band.

The state is in a singlet spin configuration, and botha#d 5 electrons of the Ce atom may enter this level.

A nonmagnetic insulating ground state is formed when every Ce site is populated by this two-electron localized
state. At finite temperatures one electron is readily excited into the conduction band to provide conductivity,
leaving the other in a one-electron local level to produce magnetic moment. The conduction electrons are
scattered off the Coulomb potential of the local electron, and at the same time, screen the potential in a
temperature-dependent manner. The combined effects explain the unusual temperature dependence of the
resistivity and the Hall mobility. The model describes the inelastic neutron scattering cross section, and
predicts an unusual neutron magnetic form factor. A large and temperature-dependent dielectric constant is
predicted [S0163-182699)09843-4

I. INTRODUCTION 12 and 20 meV, then falls off steadly to zero around 65 meV
(=780 K). Above 100 K the gap structure gradually disap-

The compound G@i,Pt; is the most thoroughly studied Ppears. No unusual magnetic scatt_ering is seen at large scat-
member of a class of solids commonly known as “Kondot€ring angles because the scattering intensity has the same
insulators.”*2 The following is a summary of its basic prop- €nergy dependence asf3I314Pt3. In sur?mail%, t}?e, datrz]a S‘IJp'
erties. The electrical resistivity rises with decreasing temPO't @1 energy gap of approximately . In the low-

; . momentum region of the Brillouin zone. The size of the gap
perature, by three orders of magnitude in a good sampl

) fs in good agreement with the value estimated from anoma-
between room and low temperatufesThe data establish lous thermal expansion by Kwet al®

that the material is an insulator, but a plot ofplrversus The origin of the gap has been attributed by Fislal,* to
temperature does not yield a clear thermal activation behavthe hybridization gap, i.e., the gap in the band structure of a
ior. Also, there is no evidence of Thtemperature depen- periodic spin fluctuation system in the low-temperature co-
dence nor hint of low-temperature saturation characteristic ofierent staté'!2 There is an inconsistency in this picture,
Kondo impurities. The Hall mobility is negative, which in- however, because Kwet al. pointed out that the hybridiza-
dicates electron conduction. The data exhibit a sharp antion gap is anindirect gap, i.e., the gap between the upper
Samp|e_dependent peak around 16 Khe magnetic suscep- band at the Zong center and the lower band at the zone
tibility follows a Curie-Weiss law above approximately 150 boundary. The direct gap at the band-crossing point is ex-

K. It peaks at 80 K, then falls to a low-temperature limiting Pectéd to be much larger. Accordingly, they predicted that

value of approximately one-half of the peak value after aihe gap could be seen by neutron magnetic scattering at large

sample dependent, low-temperature Curie tail is subtrdctedScattering angleSThe experiment of Severingt al. made it

The ratio of peak to low-temperature values of the Suscepti(_:lear that the magnetic gap is identical to the thermodynamic

bility is too high compared with what is predicted for Kondo gap, and is not an indirect g&ﬁ_.Thus, the hybridization gap
impurities. The specific heaty is low and sample picture and the associated spin fluctuation theory are in con-

. flict with experimental findings.
5
dependent?® The authors concluded thatvanishes for the The best developed theory along this vein was proposed

pure material. Although the full electronic contributéon to the by Duan et al’® They studied the Coulomb attraction be-
specific heat curve has not been measured, Kwel.” have  yeenf holes and conduction electrons and suggested that
deduced a semiquantitative result from the thermal expanne |ow-temperature phase is an excitonic insulator state. The
sion data and the Gn.eisen parameter. Their curve has thecondensate ha$.wave Symmetry, and Coup”ng of the exci-
shape of a Schottky anomaly peaked at 50 K, and the entropns to the lattice deformation leads to a ferroelastic
under the curve is roughlRIn6 per mole. The position of transition’*° The authors were able to fit the temperature
the peak is consistent with an energy gap in the electronidependence of the magnetic susceptibility above 120 K, and
excitation spectrum of approximately 100-160 K. to explain the observed correlation between the susceptibility
Inelastic neutron scattering on a powdered single-crystahnd the lattice expansiohA phase transition is predicted
sample of CgBi,Pt; has provided evidence of an energy gapsuch that the elastic constant makes a jump and the phonons
in the electronic spectrum at small scattering angfeat 2 show anomalous behavior at the transition. On the negative
K the magnetic scattering intensity vanishes for energy transside, the theory predicts an indirect gap of 44 K, in disagree-
fers smaller than 12 meV=<140 K), rises sharply between ment with neutron scattering experiments. There is no sign

0163-1829/99/6(19)/1342910)/$15.00 PRB 60 13429 ©1999 The American Physical Society



13430 S.H. LIU PRB 60

of a phase transition, ferroelectric or otherwise, in thermody- Il. THEORY
namic or transport data up to 350 K. Also, the calculated

susceptibility does not fit the experimental data at low ®M3ion 11 A shows that a one-electron local state can be stabi-

peratures, and the discrepancy is beyond what can be attribz o in the narrow band system. This state is relevant to the
uted to impurity effect. , , . first excited state, but is mathematically much simpler com-

Two independent experiments have given evidenceareq with the two-electron local state, which is the building
that the material has a narrow conduction band. Reyep|ock of the ground state. Derivation of the two-electron lo-
et al* demonstrated that, in order to fit their nuclear-spinca state follows in Sec. Il B. Section Il C investigates the
relaxation data, they need to model the electronic structurgonduction band states. Section Il D summarizes our findings
of this material by a conduction band whose width isand works out the consequences of this theory.

1200 K, and a valence band of width 100 K, separated by

an energy gap of 190 K. In addition, the inelastic

neutron scattering at low temperatures measures the A. The one-electron local state

excitation of an electron from the valence band to the The following Hamiltonian summarizes all interactions
conduction band. The width of the conduction bandthat are relevant in the systemi€kg=1)

deduced from the data is around 600"K.A third set

of experiments, the doping experiments reported by Canfield

et al. shed further light on the existence and the character

The bulk of the theory is developed in this Section. Sec-

of the narrow band.In these experiments one replaces H:E ekCE C|20+2 eff}r(rfj(r_i_i
Ce partially by La in CgBi,Pt;. It was found that La ko 7 io VN
acts like a donor even though it has one fewer electron o
than Ce, and La doping causegsto increase while leaving X > (Vif! ci e RitH.c)+ U
. . . 4 jo¥Ko
the gap almost unchanged. This behavior hints thatdthe Kjo
electron in Ce is tied down by thfeelectron in a correlated
pair which is broken up on La sites because there if no X2 I f L+ Uge> cficac) o
i j

electron. That the gap remain unaffected reflects the

local nature of the correlated—f pair. Thed electron on

La goes into the conduction band to provided electron +Uqr2 C}UC,‘U(E f;rgrfjaf—l). (1)
conduction and specific heat. The y values for various 7 o’

amounts of doping, ranging from 20 to 150 mJ/mofe K

indicates that the width of the conduction band is a fewywhere

hundred K, in agreement with nuclear-spin relaxation and

neutron scattering experiments. The fact thatd.electrons

readily enter the narrow band may be regarded as indication 1 o

that the band is derived from @k It should be noted that the Clo=—m > cip e Ri 2)
occurance of narrow conduction band is not uniquef to N«

electron systems. The material Li¥, has specific heat

y=420 mJ/mol ¥, which is of heavy fermion scale, but has The first term on the right-hand-side of Ed) is the energy

no f electron in its chemical componertfs. of the conduction band with € e,<W, W being the band

While most workers in this field regard the narrow con-\yigih. There is one & electron for each Ce atom. The sec-
duction band as the leading challenge, we feel that it may bgnq term is the energy of the localizétevels. For simplic-

profitable to explore a new avenue. We propose to take thﬁyy we consider only a Kramers doublet bfevels. TheV
narrow conduction band as given and explore its consegerm represents thé—f hybridization interactionN is the
quences. In this paper, we use the well-known periodiGyumber of Ce sites in the sample. The last three terms rep-
Anderson model to show that, when the width of the conducresent various Coulomb interactions. The term involvihg

tion band is less than the strength of the hybridization potendenotes the Coulomb repulsion between fvabectrons with

tial, the d—f hybridization problem has a novel solution. opposite spins on the same site. It is so strong that it prevents
The solution consists of a local spin-compensated twothef level from more than singly occupied. Thg;q term is
electron state at every Ce site below the conduction-banthe Coulomb interaction between two electrons in the con-
edge. Both 4 and & electrons of the Ce atom fall into the duction band. This may be important because the band is
local state to create a nonmagnetic insulating ground stat@arrow. TheUgy; term represents the attractive Coulomb in-
At finite temperatures some singlet pairs break up, sendingﬁraction between ahhole and a conduction electron on the
one electron into the conduction band and the other electrof@me site. It has been invoked by Falicov and coworkers to
into an unpaired one-electron local state. We will demon-£xplain thea to y phase transition of C&;'" and by the
strate that this model describes the observed properties of tigesent author for the crossover from coherent to incoherent
system. As ways to verify the model assumptions, we havétates in heavy fermion materidfs.

predicted an anomalous neutron scattering form factor and a In the first step of our discussion, we consider thef

large and temperature sensitive dielectric constant, both camybridization problem at the site situatedrRjtin the ground

be readily checked experimentally. state. The effective Hamiltonian is
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The solution of the integral equation foy;, Eq. (9), re-
quires knowledge of thé dependence of the hybridization
potential V.

While many authors consider the momentum dependence
of hybridization potential unimportant, Duaet al. argued
that V¢ should be an odd function &, and this property
leads to interesting physical consequencds.this paper we
will investigate the nature of the solution by considering a
more generaV/; which has an even part and an odd patk,in
i.e. Vi=Vo+V;k, wherek=k/|k|. To simplify the algebra

The wave function of the local one-electron state is assumefye treat bothV, andV; as independent dt. The solution

to be

(4)

- Lo KR
¢jg—afjo+z bkao.el 1
k

which satisfies the Schdinger equation [ ¢;,,H;]

=w19¢;,. For the left-hand side of the equation we need to

work out the commutators

1 -
[fjoij]szfjo+_NZ Vici, @ Ri+Ugf o f1_ f
k

o'}, o

+Udf§; ¢y Ciorfio (5)

and

ik-R;

1
[CIZ()' ’ Hj] =€kt \/_NVE fj(re7

Ugd
+_Cjo'c

JN

U .
+ —“’\:c,-(,( > f;,fg,—l) e kR,

T —ik-R
Cj'_o.e

ji—o !

6
N (6)

for b has the formbg=by(k)+b;(k)k, whereb,,b; are
both even irk. Putting into Eq.(9) and separating even and
odd parts ink, we obtain the following coupled equations:

({(boYVE +(by V)V
bol o) =2 °Ef_<wll> 2 +(bo)Ugr, (10
and
bo)VE + (b )VE)V
b1(€k—w1)=(< 0Vg +(b)V1) L 11

€t Wy

In the above equatior{ho)=N"1bo(k), and similarly for
(by). The equations are closed by dividing both sidescpy
— w; and summing ovek. In general we expedtl 4;>|V/,
so we find from the above equations thgtb,. Onceb, is
ignored, the equation fab,; becomes quite simple:

5

1
€ Wy | €~ Wy

1
N > +Udf]. (12

In the narrow band limit we approximate

1 1 1
R RCES

Kk €k~ W1

The effects of the Coulomb interaction terms are calculated _ _
according to the occupation of each configuration in the triawhere(e)=[D(€)ede, andD(e) is the density of states of

wave function. For instance, the term, which has ond

the conduction band per Ce atom per spin. Thens solved

electron, theJ; andU 4; terms are inoperative. On the other from a quadratic equation whose lower root is

hand, theU 4; is important in theby terms in the wave func-

tion, whileU 44 is inconsequential. Putting the results into the

Schralinger equation and equating like terms, we obtain

1
aler— o)t > bvi =0, (7)
k

and

k_

Ugs
bi(€— w1)— — 2, bp+a 0. (8)
k\ €k 1 N |Z’ k \/N

We solve fora from Eg.(7) and substitute the result into Eq.

(8) to obtain

ViV

1
bi(ex—w1) =15 2 bi
k/

+Udf]- 9)

€~ Wy

w1=3(€e+(€)—Ugr)— 3V(er—(€) + Ugp) 2+ 4V2.
(13

There is strong mixing ofl andf wave function if| e; — ()
+Ugt|=V,, and only the even part of; is effective.

The wave function of the one-electron local state is found
to be

d)]—U:aij—ijg, (14)
where
2 -1
2= ° (15

and b?=1—a?. The quantitiesa®,b?> measure thd and d
content of the local level respectively.
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B. Two-electron local state 1
We now investigate the two-electron local state with the 2 P = 2 TP —— 2(€)— wy
pair in spin-singlet configuration. The algebra is substantially
parallel to the one-electron problem, only more complicated. ZVS
We choose the following trial wave function for the two- X1 2Ugs=Ugat m :
electron state:

(20

The energyw, of the two-electron level is solved from a

) quadratic equation whose lower root is

= ap(fjicio+cpfj_)e R
k 1

wo=7(€r+3(€)+Uga—2Uqr)

+ 2 B G G € TRy, (16)
kk’

which satisfies the Schdinger equatior ®; ,H;]=wq®;.
In the wave function in Eq(16) the configuration with dou-
bly occupiedf level is explicitly left out on account of the
large Coulomb repulsiol; . The evaluation of the commu-
tator in the Schrdinger equation involves tedious algebra.
Among the resulting terms we discard all doubly occugied
terms for the same reason that they are not included in the =a[fj cj_+c¢.fj_1-Bcj.cj—, (22)
trial wave function. The Coulomb interaction effects are cal-
culated according to the occupation of each configuration‘."’herecirr was defined in Eq(2),
For instance, they; terms, which have oné electron, the
Ugys term is inoperative. Also, th& 4 term has no effect a= Vo
because there is no more than ahelectron. On the other Vier+(€)— wg)?>+2V3
hand, bothU4¢ andU 44 are important inBgg, terms in the

. . 2 .
wave function. In this manner, we obtain the following equa- .and®=1-2a?. The occupation of thélevel is 20, while
tions for the coefficients: the occupation of the localized level is 2(1- «¢). Under

suitable conductions to be discussed later, the ground state is
a lattice of occupied two-electron states with no electron in
(17)  the conduction band.

1 2 2
—5V(er—(e)—Uaat2Ua)®+8Vg. (2D

The d—f hybridization effect is important provided thi
—(€)=Ugat+2Uge =2V,

The wave function of the two-electron state can be calcu-
lated from the equations of its coefficients. We find

(23

*
K’
ag( €+ €y) +E Bk'k\/——aﬁwo-

C. The conduction band
Ugg

Vi Vi . . .
ag——+ ap—+ Bii (et €) + —— The nature of the now-empty conduction band is also im-
VN VN N portant to our discussion. We go back to the full Hamiltonian
Ugs H in Eq. (1) and study the commutators
X2 B 2 (Bikrt Biok) = Biwwo.  (18)
K" K" * Udd + B
. . [CIZUIH]:GKCIEU_’_VEfIzo'_’__ Z CjO'Cj —a—Cj,—O'e
We solve foray from Eg. (17), substitute the result into Eq. IN 9 ’

(18), and sum ovek,k’ to obtain

ik-R;

U -
. K —a 2 cw(E f}o,fjg,—l)e—'kﬂi, (24)
dd
2 Biw=2 E Brir
EIZI lzlz/ Ek+ Eyr — k” and
Ugs
+ T Q‘H—"_ e ! ff 7'<), ,.
N % (Bkk Bk k) [fkovH] €¢ kO’+Vka0' \/— 2 f]o’ j,—o J -o© k Ri
1 VIZ/VEH U
— A S df kR
- N %; IBk kEf"’ €x— Wq \/_ 'Cj(r/fj(re k RJ' (25)
](r
1 2 V;ZVEH Next, we replace the electron occupation operators by their
+ N < Brrr + € — wo (19 ground-state expectation values to obtain
This is the eigenvalue equation for the energy [Cko HI=[ ekt Ugd(1—a®) = UgiB?) ] i+ Vi fiy,
In the narrow band limit botle, and e, can be replaced (26)

by the average band energy). Just like the one-electron 5.4

case, we find that only the even part \6f participates in

hybridization when the Coulomb interactiokk;y and U g [fie HI=[€+ Usra®+2Ug(1— @®)]f o+ ViCio -
are present. Accordingly, we repla®¥g by V, to obtain (27)
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SinceUy; is overwhelmingly large, the renormalizédevel — and f(e)=[el¢"#/T+1]"1. Equations(31) and (32) solve
is high so that hybridization witld becomes impossible. The for both N; and . The internal energy of the system is
band remaingl, with renormalized band energy solved from

0

wk:Ek+ €ph, (28)
where e,=U (1 a?) — Ug;B2. The band is simply shifted The elgctronlc_: contrll_)utlon to the specific heat is calculated
- - from differenting the internal energy.
from the original position by, . : e . .
) . The magnetic susceptibility consists of three contribu-
The wave functions of the renormalized band mUSttions At zero temperature the only nonzero contribution is a
change in order to satisfy the Schinger equation with the . P y

added potential. We represent the operators of the new stat an Vieck or orbital term involving V|_rtual tranS|_t|ons be'
Ween the ground state and the continuum of first excited

by ¢k, , and for our purpose we only need to note that theysiatest?

ared states. We also argue that they are orthogonal to the

local states for the following reason. In the impurity model , [WD(e)[1-n;—f(e)]de
where there is only one Ce site, the scattering states are va:4ﬂwf Ate '
orthogonal to the bound state. We expect the orthogonality to 0

hold in the impurity lattice model as long as the local pairwherep,, is effective magnetic moment for the Van Vleck
wave functions on different sites do not overlap, as obtainedysceptibility. In Appendix B, we show that,,=b(a

in the narrow band limit. + B) g, Whereug is the Bohr magneton. At elevated tem-

In the first excited state a two-electron state is broken Uq)eratures two more terms emerge. As the conduction band is
into a one-electron state plus one electron in the band. If wgopulated, a Pauli term appears

denote the excited site by then from Eq.(27) we find a
local scattering potential for the band electron resulting from 2 Mé w

the change of local population Xp= . D(e)f(e)[1—f(e)]de. (35

(34

- 2 2 2 2
Veour=Uga(b™=1+a%) +Ugs(a”—2a%), 29 The singly occupied sites now contribute to a Curie suscep-

which is located at the sitg This added potential has no tibility

effect on the band energy, but scatters the band electrons and )
contributes to resistivity at finite temperatures. Other conse- My
guences of the model will be discussed next. Xe= 77

: (36)

where u. is the effective magnetic moment of the Curie
susceptibility. In Appendix B, we deduce that.=a?u
The insulating state exists if the two-electron state is+b?u,, whereu; is the magnetic moment of tHeelectron.
stable against spontaneous decay into a one-electron state Transport properties for this material are subtle. Simple
and a band state. This requires theory of electron conduction gives the resistivify
=m/ne’r, wherem is the carrier masse is the electron
A=w;+ e,— wy>0. (30 chargen is the carriers density, andis the scattering time.
The quantityA plays the role of the energy gap. The model We showed earlier that the carrier dengitys equal to the
has too large a parameter space to make a precise mappingdsinsity of singly occupied sitas;, which is the number of
the stability region practical. In Appendix A we show that a scatterers. If the scattering mechanism is magnetic in origin,
neighborhood in the space exists such that a semiconduct@s is commonly assumed, the scattering cross section would
with an energy gap of the right order of magnitude is stablebe independent of the kinetic energy of the carriers so that
From here om\ will be treated as a fitting parameter. the productnr is temperature independent. This type of
The energy difference between the ground state and th&eory is incapable of explaining the observed strong tem-
first excited state spans a continuum frdno A + W, where ~ perature dependence of the resistivity. We will show that a
W is the width of the conduction band. It would take muchmodel based on Coulomb scattering gives the complex
higher energy to empty out the one-electron state, so we ned@mperature-dependent scattering cross section that explains
only to include singly and doubly occupied sites in solvingboth the resistivity and the Hall mobility.

D. Physical properties of the model

the statistical mechanical problem. Lt be the number of Each singly occupied site is a scattering site in an other-
excited sites, then wise periodic potential. The potential originates from the
V¢ou term in Eqg.(29), but in a semiconductor we must con-
Ny 1 sider screening of the Coulomb interaction by electrons in
n1= N e DT . (32) the conduction band. For a parabolic band the inverse scat-

_ _ _ tering time for a screened Coulomb scatteré? is
where u is the Fermi energy and is the temperature. The

number of electrons in the conduction band must be equal to 1 N¢ (1 72dz
the number of excited sites, so ﬁ“ E—sléf0 (ZZ+\2h2/8me)?’ (37)
n,= ZJWD(e)f(e)de (32) whereN, is the density of Coulomb scatteps,is the inverse
0 ’ screening length, and a number of fundamental parameters
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are lumped into the proportionality constant. In our theory, 10
N.=N;+n4, whereN; is the density of impurities. The in- = 1
verse screening length is a function of the conduction band g 8
occupatioR* 5 6l ]
=)
) 4e? (W § a4l 1
\?= D(e)f(a[1-f(e)lde,  (38) 3
QOT 0 g 2 [
2] .
where ) is the crystal volume per Ce atom. The expres- 0 L
sions for transport coefficients are more complex due to the 0 10 20 30 40 50 60 70
energy dependence aof?> We can write the resistivity as Energy Transfer (meV)
p= E (e) (39) FIG. 1. The energy gap and band density of states as determined
ne’ (er)’ by fitting the low temperature inelastic neutron scattering data of
Severinget al. (Refs. 7,8.
where
w , 2mug
<O(6)>=f0 O(e)D(e)f(e)[1—1f(e)]de, X"(0w)=—= > (e[l f(ep)]wd(w).
k
and the Hall mobility The ¢ function is broadened by the electron life-time, so the
) final expression for the Pauli contribution to the dynamical
_e (e1%) (40) susceptibility is
#H me (er)’ r
" wle
wherec is the speed of light. Although we will use a more Xp(w)=)(pm, (43
e

general band structure later, we can already deduce some
qualitative results from the formulas above. The productwhere y, was given in Eq(35) andT', is the inverse life-
n(7) vanishes at low temperatures becaistnds to zero, time of the band electrons. Finally, the Curie contribution is
causing the resistivity to diverge. On the other hagg),
itself diverges if N;=0, but vanishes whemN;>0. This n,oN wl's
causes the Hall mobility to rise below 100 K but bends over Xe(@)=Xe w?+ T’
around 10 K for a real sample. How the theory fits the actual ) ) ] )
data will be discussed in the next Section. The scattering/Nere xc was given in Eq.(36) and I's is the inverse of
between quasiparticles, another manifestatiorUgf, also Spln:dlfoSIOH time. The static susceptibility is related to
contributes to the resistivity. This contribution has the samex”(Q,®) by the Kramers-Kronig relation
temperature dependence as g, contribution, because .
the density of scatterers is the same as the density of carriers _ E = x"(0w) d

. . : . X= w. (45)
and the Coulomb interaction between pairs of conduction T)w
electrons is screened the same way as in 2.and (38).

The inelastic neutron scattering cross secﬁiﬁ@,w) is
related to the imaginary part of the dynamical susceptibflity:

(44)

It is straightforward to verify that the results in Eqg.2),
(43) and(44) satisfy Eq.(45). This completes the formal part
of the theory. In the next section, we compare the theoretical

= results with experiments.
. x"(Q,w)
S(Q ) —— . (41)
1-e Ill. COMPARISON WITH EXPERIMENTS
For small scattering angles we take the liQit-0. There The zero-temperature limit of”(0,w) is the Van Vleck

are three contributions to the neutron scattering crossterm in Eq.(42)
section, in exact correspondence with the three terms in the
static susceptibilty. The Van Vleck term comes from real XCV(O,w)=47T,u\2,VD(w—A).

transition between the ground state and the first excited stateﬁ“JS bothA andD(e) can be extracted from the low tem
’ € -

X (0w)=4mul D(o—A)[1-n,—f(w—A)]. (42)  Pperature ir)elasFic neutron scattering Qata as shown in' Fig. 1.
We have idealized the shape Df(e) in order to simplify
The Pauli term measures intraband excitations in the condugater calculations. The parameters to be used Are
tion band. The general expression for the dynamical suscep=180 K and
tibility of an electron gas is

2
f(e)—f(eirg) D(e)zv—v(l—v—i,), (40
€10~ €~ (0+id)’

X(Q.0)=2u33
for 0<e<W and D(e)=0 otherwise, W=600 K. Our

where 5=07. Taking the imaginary part and lettin@—0  choice ofA agrees with that deduced by Reydst ourwis
yields only one-half as large.
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5 ; T " " ; T 10 T ;
8 > Theory ~ . —— Calculated C(T)
» 4r Exp ] < gt i 1
% ¢ Neutron (z) === 1.27*%10° (T)
o 5 >
r"'o 2 4}
< 8
~ 1L ] 2
= —~
R e 2r,0  TTeeeall

0 ) . . . Qo

0 50 100 150 200 250 300 350 0 - .
0 150 200 250
T (K) 0 50 10

FIG. 2. The calculated temperature dependence of the magnetic ) -~ )
susceptibility(open circlé compared with experimental datsolid FIG. 4. The calculated electronic specific hegolid curvg
curve taken from Ref. 4 and data deduced from neutron scatteringompared with that deduced from anomalous thermal expansion
(solid circles (Refs. 7 and 8 The additional fitting parameters are (dashed curveusing the Graeisen relatior(Ref. 6.
a,=0.81p;=0.580=0.308=0.91. The vertical scale is not a fit-
ting parameter. position agree with experiment. The entropy under the curve

is close toR In 6, but the number does not originate from the

These parameters are used to calculate the static suscdp€Vel degeneracy. n
tibility according to Eqs.(34)—(36), and the result is com- In caIcuIaUng'transp(')rt cogfflaents We_encounter one
pared with experiments in Fig. 2. Two more parameters arg'0'e parameter in the dimensionless quantity
needed, namelya=0.81 and «=0.30. The paramagnetic - 5
moment 1.4%g is used foru. The solid circles are data \“h =AﬂJWD(E),8f(e)[1—f(E)]de
deduced from neutron scattering through the Kramers- 8me € Jo ’

Kronig transformatior. The overall agreement between

theory and experiment is satisfactory, considering the factvhere A gathers together a number of material parameters.
that the vertical scale is not a fitting parameter. Notice thaive estimate from the electron density and bandwidth that
«?=0.09 is in the neighborhood of model parameters wheré\=1, and the result foA=1 is shown in Fig. 5. The calcu-
the insulating ground state is stable, as discussed in Appeiated curves with 0.5A<2 are virtually indistinguishable.
dix A. The set of fitting parameters is not unique. A betterSelected data points from Ref. 3 are plotted for comparison.
way to pin downa and « is through the neutron magnetic The discrepancy at low temperatures is most likely a result
form factor measurement discussed below. of the numerous approximations involved in calculating the

The neutron magnetic form factor measures separately th€oulomb scattering cross-section and screening length, Egs.
f and conduction electron contributions to the susceptibility(37) and (38), and we have not been able to improve the
The principle of the measurement is discussed in Appendiagreement by varying the factéx:

B. We plot in Fig. 3 the two contributiongsy, which is the As discussed previously, the temperature dependence of
weight of the conduction-electron form factor, age, the  the resistivity comes from the inverse screening lengtitt
weight of thef electron form factor. This experiment will is therefore not feasible to determine the gap from the resis-
help toward refining the model parameters. tivity data.

In Fig. 4, we compare the calculated specific heat with the In Fig. 6, we compare the calculated Hall mobility with
result deduced by Kweét al® Both the peak value and its the experiment. The added parameter for this calculation is
the impurity concentration, which is chosen &k=2.2
X 10”4 per Ce atom. Again, the agreement is satisfactory.

3
= 10*
E i
E {
g H
o 1000 3
2 H
= o 3
e g K
= , 100 |
0 e }
0 50 100 150 200 250 300 350
TK
(K) 10 ‘ , J
FIG. 3. Thed andf components of the magnetic susceptibility, 0 50 100 150 200

which determine the neutron magnetic form factor. See text and
Appendix B. Thed component denotes the contribution of the
conduction-band electrons. The form factor would help determine FIG. 5. The calculated electrical resistivity cur(@lid curve
the fitting parameter with certainty. compared with selected data points taken from Ref. 3.

T (K)
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FIG. 6. The calculated Hall mobilitysolid curveé compared FIG. 8. The predicted polarizability of the material, showing an

with data taken from Ref. 3. The density of impurities is measurec@nomalous increase at low temperatures.
in units of per Ce atom. . . . .

P bands. In this case, the range of scattering angle in which the
magnetic gap appears would reveal the degree of impurity

Next, we compare the model prediction for inelastic neu--nd dispersion

tron scattering cross section with the measured reéﬁ_we The polarizability of a semiconductor is inversely propor-
encounter two more parametefg andl's, and there is not 55| 14 the square of the energy g&prhe material under
enough data to determuje them separately. We, thereforﬁiscussion has a small gap, so we expect a large polarizabil-
choosel’e=1's=1I" and write ity or dielectric constant. The formula for the static dielectric
constante, is derived by a slight extension of the discussion

1 , ol in Ref. 23
S(O,w)“m XW(O,w)JF(XpJFXc)m : .

2
I) f(T), (48

wherexy, (0,0) is in Eq.(42). Aside from the vertical scale, wheref(T) is a dimensionless function of temperature given
the only fitting parameter iE, which we choose to be 54 K. py

For reasons not entirely clear, the predicted scattering inten-

sity in the gap region at high temperatures is somewhat low o (W1l-n—f(e)

as shown in Fig. 7. Also, the local state model predicts that f(T=4 fo (A+e)2 D(e)de, (49)
the magnetic gap remains the same for all scattering angles.

In reality the one- or two-electron impurity states may formand o, is the plasma frequency given by

wi=4mn.e?/m*.

10
T=2K In the last formulan, is the density of free electrons, one per
st s s ] Ce atom, andan* is the effective mass. We estimate the ratio
_ - 2l w,zj/AZ: 10° from various material parameters. The plot of
% CN at f(T) as a function of temperature, Fig. 8, shows that the
§ 10 dielectric constant has a rather large value of 60 at room
2 ! . T =50K ] temperature but rises to 300 at low temperatures. This is
3 e e another prediction of our theory which can be readily
S S * e checked experimentally.
2 10 [ = We have not tried to fit the temperature dependence of the
2 <L spin-lattice relaxation rate because the phenomenological
5 b A, T=100K band model of Reyest al, which is very close to ours, gives
) [ T, an adequate account of the datalso of interest is the ob-
;:3 T TR served correlation of lattice parameter with magnetic suscep-
3 wp tibility explained by Duaret al!® The authors showed that
. T 150K one needs to. couple the lattice wlth the magnenc system in
5L el - ] order to obtain this effect. Our Fig. 4, which compares the
—=, e . calculated specific heat versus that deduced from anomalous
L . RO thermal expansion, may be regarded as an alternative way to
0 derstand the rapid expansion of the lattice with tempera-
0 10 20 30 40 50 60 un b b P

ture in the 50-100 K region.
Energy transfer (meV)

. . . i IV. DISCUSSION
FIG. 7. The calculated inelastic neutron scattering cross section

at four different temperatures compared with data from Refs. 7 and As was pointed out in the Introduction, most workers in
8. The same vertical scale is applied to all theoretical curves. this field regard the understanding of the narrow conduction
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band as the main challenge. It is not the intention of this APPENDIX B: MAGNETIC SUSCEPTIBILITIES
paper to contradict this common wisdom. Instead, we pro- AND FORM FACTORS

pose to skip over this difficult step, accept the narrow band
as given, and proceed to explore the consequences. The pa
off is considerable, because we can account for most of th
observed properties of gRi,Pt. In addition, we suggest
neutron scattering as a way to probe this narrow band. In thi
paper, we assume this band todeSince the wave-function
characteristic of this band enter the neutron magnetic form [{O|M|m)|?

factor, the low-temperature data would provide a crucial va:z% " En—Eo (B1)
check of this model. If the narrow band igla- f hybridized
band, as is commonly believed, the neutron form factor . . .
would show a superpoysition of both characters at low temyvhereM Is the total magnetic moment operator anglis the

peratures. It is our hope that this paper would provide theNeray of the eigenstatgn). In the present problerO)

_Consider a system whose ground stfd¢ is nonmag-
etic. An applied magnetic field can induce a paramagnetic
response by mixing the ground state with magnetic excited
states, resulting in a Van Vieck susceptibitity

ape e\ — gt AT ;
needed impetus to carried out this experiment ogBL@t, = @jlvag and |m)=|ko)=¢j,c; _ |vag, where|vag is
and otherf electron semiconductors. the vacuum state. Thug,,—E,=A +€,. The operatoM

=2;M;, whereM; is the magnetic moment of thgh Ce
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M= pe(Ff = F1 )+ pa(d] djs —dfdj),
(B2)

1 ~
APPENDIX A: STABILITY djo:Cja+ \/_N Z Cko - (B3
OF THE SEMICONDUCTING STATE k

It is difficult to map out the region of parameter spacewe find <O|Mj|IZi>=ie“'z"iiMW/\/N, where u,,=b(«

where the semiconducting state is stable because the multi- 5y , . Thef electron makes no contribution. The energy

dimensional nature of the space. We have only succeeded §enominator equala + €,. Therefore, Eq(B1) now reads
finding a neighborhood in the parameter space where the

energy gapA has the right order of magnitude. The neigh-

borhood itself tell us a considerable amount of the underly- :ZM\ZN E 1 (B4)
ing physics. Xw™TN o Atec
We introduce two variables andy such that
_ _ : At finite temperatures we insert the appropriate thermal fac-
+Ugs= 2V, sinhx, Al . . X
R UAR o SINAx (A1) tors to obtain the final formula in E¢34).
and The effective magnetic moment in the Curie susceptibility
term is
ef_<6>+2Udf_Udd:2\/§VO Sinhy. (AZ)
Both variables quantify the degree of hybridization of the we={®is|Mj|}; ;) == (a%us+b%ug). (B5)
local states. Then, we can write
1 This result is used in E(36).
a?=(1—tanhy), (A3) The neutron magnetic form factor measures the Fourier
4 transform of the magnetic moment density of a periodic
which puts 6< a?<0.5, and solid. In a paramagnetic solid the moment is induced by a
uniform field, and the neutron magnetic form factor is de-
A=—(e)—Voe ¥+ 2Voe Y+ (Ugq— 4V, sinhx)a?. fined by
(Ad)
The hybridization potentiaV/y=0.1 eV and the Coulomb é Zin TM(G.HYM(0.0)\dt B6
potentialUyq=1 eV. The average band ener@) is scaled X(©) 7oc< (G.HM(0.0)dt, (86

by the bandwidthW. For a regulad band withW=1 eV,
the semiconducting state described in this work cannot b

stable becausd <0. For a narrow band material such as . . .
) . . ) . Heisenberg operator of the Fourier transform of the magnetic
CeBi, Pty with W=0.1 eV, the semiconducting state with a gop 9

small gap A=0.01 eV can be stable ik=0 and a? moment densityM (r). If we define the tight-binding wave

~0.1 (y=0.7). In this neighborhood both one- and two- functions of thef and conduction electrons b.yxf(F) and
electron states are well hybridized. $4(r), respectively, then we write

fihere G is a reciprocal lattice vector andi(G,t) is the
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- R where
M(G)=2 [ui(F].fj+~f]-f-)FH(S)
- bZMB
+up(dl dj,—dl_d)Fy(G)],  (BY) Xa= X T XpT = = Xe, (B10)
where
and
Ff<é>=f F (NS () dlr, (B8) ,
apug
- 2 . Xi= Xc- (B11
and a similar result foF 4(G). The final result shows that Me

x(G)=F4(G)xq+F(G)xi, (B9)

The componentgy and y; are plotted in Fig. 3.
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