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Theory of the correlated-electron semiconductor Ce3Bi4Pt3
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There is considerable experimental evidence that the material Ce3Bi4Pt3 has a narrow conduction band.
Assuming this band to bed, we show thatd2 f interactions, hybridization plus Coulomb interaction, can
stabilize a two-electron localized state with mixedd and f characters below the edge of the conduction band.
The state is in a singlet spin configuration, and both 4f and 5d electrons of the Ce atom may enter this level.
A nonmagnetic insulating ground state is formed when every Ce site is populated by this two-electron localized
state. At finite temperatures one electron is readily excited into the conduction band to provide conductivity,
leaving the other in a one-electron local level to produce magnetic moment. The conduction electrons are
scattered off the Coulomb potential of the local electron, and at the same time, screen the potential in a
temperature-dependent manner. The combined effects explain the unusual temperature dependence of the
resistivity and the Hall mobility. The model describes the inelastic neutron scattering cross section, and
predicts an unusual neutron magnetic form factor. A large and temperature-dependent dielectric constant is
predicted.@S0163-1829~99!09843-4#
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I. INTRODUCTION

The compound Ce3Bi4Pt3 is the most thoroughly studie
member of a class of solids commonly known as ‘‘Kon
insulators.’’1,2 The following is a summary of its basic prop
erties. The electrical resistivity rises with decreasing te
perature, by three orders of magnitude in a good sam
between room and low temperatures.2,3 The data establish
that the material is an insulator, but a plot of lnr versus
temperature does not yield a clear thermal activation beh
ior. Also, there is no evidence of lnT temperature depen
dence nor hint of low-temperature saturation characteristi
Kondo impurities. The Hall mobility is negative, which in
dicates electron conduction. The data exhibit a sharp
sample-dependent peak around 10 K.3 The magnetic suscep
tibility follows a Curie-Weiss law above approximately 15
K. It peaks at 80 K, then falls to a low-temperature limitin
value of approximately one-half of the peak value afte
sample dependent, low-temperature Curie tail is subtract4

The ratio of peak to low-temperature values of the susce
bility is too high compared with what is predicted for Kond
impurities. The specific heatg is low and sample
dependent.3,5 The authors concluded thatg vanishes for the
pure material. Although the full electronic contribution to th
specific heat curve has not been measured, Kweiet al.6 have
deduced a semiquantitative result from the thermal exp
sion data and the Gru¨neisen parameter. Their curve has t
shape of a Schottky anomaly peaked at 50 K, and the ent
under the curve is roughlyR ln 6 per mole. The position o
the peak is consistent with an energy gap in the electro
excitation spectrum of approximately 100-160 K.

Inelastic neutron scattering on a powdered single-cry
sample of Ce3Bi4Pt3 has provided evidence of an energy g
in the electronic spectrum at small scattering angles.7,8 At 2
K the magnetic scattering intensity vanishes for energy tra
fers smaller than 12 meV (.140 K), rises sharply betwee
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12 and 20 meV, then falls off steadly to zero around 65 m
(.780 K). Above 100 K the gap structure gradually disa
pears. No unusual magnetic scattering is seen at large
tering angles because the scattering intensity has the s
energy dependence as La3Bi4Pt3. In summary, the data sup
port an energy gap of approximately 140 K in the low
momentum region of the Brillouin zone. The size of the g
is in good agreement with the value estimated from anom
lous thermal expansion by Kweiet al.6

The origin of the gap has been attributed by Fisket al.,1 to
the hybridization gap, i.e., the gap in the band structure o
periodic spin fluctuation system in the low-temperature
herent state.11,12 There is an inconsistency in this pictur
however, because Kweiet al. pointed out that the hybridiza
tion gap is anindirect gap, i.e., the gap between the upp
band at the zone center and the lower band at the z
boundary. The direct gap at the band-crossing point is
pected to be much larger. Accordingly, they predicted t
the gap could be seen by neutron magnetic scattering at l
scattering angles.6 The experiment of Severinget al. made it
clear that the magnetic gap is identical to the thermodyna
gap, and is not an indirect gap.7,8 Thus, the hybridization gap
picture and the associated spin fluctuation theory are in c
flict with experimental findings.

The best developed theory along this vein was propo
by Duan et al.13 They studied the Coulomb attraction b
tween f holes and conduction electrons and suggested
the low-temperature phase is an excitonic insulator state.
condensate hasp-wave symmetry, and coupling of the exc
tons to the lattice deformation leads to a ferroelas
transition.14,15 The authors were able to fit the temperatu
dependence of the magnetic susceptibility above 120 K,
to explain the observed correlation between the susceptib
and the lattice expansion.3 A phase transition is predicte
such that the elastic constant makes a jump and the pho
show anomalous behavior at the transition. On the nega
side, the theory predicts an indirect gap of 44 K, in disagr
ment with neutron scattering experiments. There is no s
13 429 ©1999 The American Physical Society
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13 430 PRB 60S. H. LIU
of a phase transition, ferroelectric or otherwise, in thermo
namic or transport data up to 350 K. Also, the calcula
susceptibility does not fit the experimental data at low te
peratures, and the discrepancy is beyond what can be a
uted to impurity effect.

Two independent experiments have given evide
that the material has a narrow conduction band. Re
et al.4 demonstrated that, in order to fit their nuclear-sp
relaxation data, they need to model the electronic struc
of this material by a conduction band whose width
1200 K, and a valence band of width 100 K, separated
an energy gap of 190 K. In addition, the inelas
neutron scattering at low temperatures measures
excitation of an electron from the valence band to
conduction band. The width of the conduction ba
deduced from the data is around 600 K.7,8 A third set
of experiments, the doping experiments reported by Canfi
et al. shed further light on the existence and the chara
of the narrow band.9 In these experiments one replac
Ce partially by La in Ce3Bi4Pt3. It was found that La
acts like a donor even though it has one fewer elect
than Ce, and La doping causesg to increase while leaving
the gap almost unchanged. This behavior hints that thd
electron in Ce is tied down by thef electron in a correlated
pair which is broken up on La sites because there is nf
electron. That the gap remain unaffected reflects
local nature of the correlatedd2 f pair. Thed electron on
La goes into the conduction band to provided elect
conduction and specific heatg. The g values for various
amounts of doping, ranging from 20 to 150 mJ/mole K2,
indicates that the width of the conduction band is a f
hundred K, in agreement with nuclear-spin relaxation a
neutron scattering experiments. The fact that Lad electrons
readily enter the narrow band may be regarded as indica
that the band is derived from Ced. It should be noted that the
occurance of narrow conduction band is not unique tf
electron systems. The material LiV2O4 has specific hea
g5420 mJ/mol K2, which is of heavy fermion scale, but ha
no f electron in its chemical components.10

While most workers in this field regard the narrow co
duction band as the leading challenge, we feel that it may
profitable to explore a new avenue. We propose to take
narrow conduction band as given and explore its con
quences. In this paper, we use the well-known perio
Anderson model to show that, when the width of the cond
tion band is less than the strength of the hybridization pot
tial, the d2 f hybridization problem has a novel solutio
The solution consists of a local spin-compensated tw
electron state at every Ce site below the conduction-b
edge. Both 4f and 5d electrons of the Ce atom fall into th
local state to create a nonmagnetic insulating ground s
At finite temperatures some singlet pairs break up, send
one electron into the conduction band and the other elec
into an unpaired one-electron local state. We will demo
strate that this model describes the observed properties o
system. As ways to verify the model assumptions, we h
predicted an anomalous neutron scattering form factor an
large and temperature sensitive dielectric constant, both
be readily checked experimentally.
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II. THEORY

The bulk of the theory is developed in this Section. Se
tion II A shows that a one-electron local state can be sta
lized in the narrow band system. This state is relevant to
first excited state, but is mathematically much simpler co
pared with the two-electron local state, which is the buildi
block of the ground state. Derivation of the two-electron
cal state follows in Sec. II B. Section II C investigates t
conduction band states. Section II D summarizes our findi
and works out the consequences of this theory.

A. The one-electron local state

The following Hamiltonian summarizes all interaction
that are relevant in the system (\5kB51)

H5(
kWs

ekckWs
†

ckWs1(
j s

e f f j s
† f j s1

1

AN

3(
kW , j s

~VkW f j s
† ckWseikW•RW j1H.c.!1U f f

3(
j

f j 1
† f j 1 f j 2

† f j 21Udd(
j

cj 1
† cj 1cj 2

† cj 2

1Ud f(
j s

cj s
† cj sS (

s8
f j s8

† f j s821D , ~1!

where

cj s5
1

AN
(

kW
ckWseikW•RW j . ~2!

The first term on the right-hand-side of Eq.~1! is the energy
of the conduction band with 0<ek<W, W being the band
width. There is one 5d electron for each Ce atom. The se
ond term is the energy of the localizedf levels. For simplic-
ity, we consider only a Kramers doublet off levels. TheV
term represents thed2 f hybridization interaction,N is the
number of Ce sites in the sample. The last three terms
resent various Coulomb interactions. The term involvingU f f
denotes the Coulomb repulsion between twof electrons with
opposite spins on the same site. It is so strong that it prev
the f level from more than singly occupied. TheUdd term is
the Coulomb interaction between two electrons in the c
duction band. This may be important because the ban
narrow. TheUd f term represents the attractive Coulomb i
teraction between anf hole and a conduction electron on th
same site. It has been invoked by Falicov and coworker
explain thea to g phase transition of Ce,16,17 and by the
present author for the crossover from coherent to incohe
states in heavy fermion materials.18

In the first step of our discussion, we consider thed2 f

hybridization problem at the site situated atRW j in the ground
state. The effective Hamiltonian is
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H j5(
kWs

ekckWs
†

ckWs1(
s

e f f j s
† f j s1

1

AN

3 (
kW8,s

~VkW f j s
† ckWseikW•RW j1H.c.!1U f f f j 1

† f j 1 f j 2
† f j 2

1Uddcj 1
† cj 1cj 2

† cj 2

1Ud f(
s

cj s
† cj sS (

s8
f j s8

† f j s821D . ~3!

The wave function of the local one-electron state is assum
to be

f j s5a f j s1(
kW

bkWckWseikW•RW j , ~4!

which satisfies the Schro¨dinger equation @f j s ,H j #
5v1f j s . For the left-hand side of the equation we need
work out the commutators

@ f j s ,H j #5e f f j s1
1

AN
(

kW
VkWckWseikW•RW j1U f f f j s f j ,2s

† f j ,2s

1Ud f(
s8

cj s8
† cj s8 f j s , ~5!

and

@ckWs ,H j #5ekckWs1
1

AN
VkW

* f j se2 ikW•RW j

1
Udd

AN
cj scj ,2s

† cj ,2se2 ikW•RW j

1
Ud f

AN
cj sS (

s8
f s8

† f s821D e2 ikW•RW j . ~6!

The effects of the Coulomb interaction terms are calcula
according to the occupation of each configuration in the t
wave function. For instance, thea term, which has onef
electron, theU f f andUd f terms are inoperative. On the oth
hand, theUd f is important in thebkW terms in the wave func-
tion, whileUdd is inconsequential. Putting the results into t
Schrödinger equation and equating like terms, we obtain

a~e f2v1!1
1

AN
(

kW
bkWVkW

* 50, ~7!

and

bkW~ek2v1!2
Ud f

N (
kW8

bkW81a
VkW

AN
50. ~8!

We solve fora from Eq.~7! and substitute the result into Eq
~8! to obtain

bkW~ek2v1!5
1

N (
kW8

bkW8H VkWVkW8
*

e f2v1
1Ud fJ . ~9!
d

o

d
l

The solution of the integral equation forbkW , Eq. ~9!, re-
quires knowledge of thekW dependence of the hybridizatio
potentialVkW .

While many authors consider the momentum depende
of hybridization potential unimportant, Duanet al. argued
that VkW should be an odd function ofkW , and this property
leads to interesting physical consequences.13 In this paper we
will investigate the nature of the solution by considering
more generalVkW which has an even part and an odd part inkW ,
i.e. VkW5V01V1k̂, where k̂5kW /ukW u. To simplify the algebra
we treat bothV0 and V1 as independent ofkW . The solution
for bkW has the formbkW5b0(kW )1b1(kW ) k̂, where b0 ,b1 are
both even inkW . Putting into Eq.~9! and separating even an
odd parts inkW , we obtain the following coupled equations:

b0~ek2v1!5
~^b0&V0* 1^b1&V1* !V0

e f2v1
1^b0&Ud f , ~10!

and

b1~ek2v1!5
~^b0&V0* 1^b1&V1* !V1

e f2v1
. ~11!

In the above equation,^b0&5N21(kWb0(kW ), and similarly for
^b1&. The equations are closed by dividing both sides byek

2v1 and summing overkW . In general we expectUd f@uVu,
so we find from the above equations thatb0@b1. Onceb1 is
ignored, the equation forv1 becomes quite simple:

15
1

N (
kW

1

ek2v1
H V0

2

e f2v1
1Ud fJ . ~12!

In the narrow band limit we approximate

1

N (
kW

1

ek2v1
5

1

^e&2v1
,

where^e&5*D(e)ede, andD(e) is the density of states o
the conduction band per Ce atom per spin. Thenv1 is solved
from a quadratic equation whose lower root is

v15 1
2 ~e f1^e&2Ud f!2 1

2 A~e f2^e&1Ud f!
214V0

2.
~13!

There is strong mixing ofd and f wave function ifue f2^e&
1Ud fu.V0, and only the even part ofVkW is effective.

The wave function of the one-electron local state is fou
to be

f j s5a f j s2bcj s , ~14!

where

a25H 11
V0

2

~^e&2Ud f2v1!2J 21

, ~15!

and b2512a2. The quantitiesa2,b2 measure thef and d
content of the local level respectively.
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B. Two-electron local state

We now investigate the two-electron local state with t
pair in spin-singlet configuration. The algebra is substantia
parallel to the one-electron problem, only more complicat
We choose the following trial wave function for the two
electron state:

F j5(
kW

akW~ f j 1ckW21ckW1 f j 2!eikW•RW j

1(
kWkW8

bkWkW8ckW1ckW2ei (kW1kW8)•RW j , ~16!

which satisfies the Schro¨dinger equation@F j ,H j #5v0F j .
In the wave function in Eq.~16! the configuration with dou-
bly occupiedf level is explicitly left out on account of the
large Coulomb repulsionU f f . The evaluation of the commu
tator in the Schro¨dinger equation involves tedious algebr
Among the resulting terms we discard all doubly occupief
terms for the same reason that they are not included in
trial wave function. The Coulomb interaction effects are c
culated according to the occupation of each configurat
For instance, theakW terms, which have onef electron, the
Ud f term is inoperative. Also, theUdd term has no effect
because there is no more than oned electron. On the othe
hand, bothUd f and Udd are important inbkWkW8 terms in the
wave function. In this manner, we obtain the following equ
tions for the coefficients:

akW~e f1ek!1(
kW8

bkW8kW
VkW8

*

AN
5akWv0 . ~17!

akW
VkW8
AN

1akW8

VkW

AN
1bkWkW8~ek1ek8!1

Udd

N

3(
kW9

bkWkW92
Ud f

N (
kW9

~bkWkW91bkW9kW8!5bkWkW8v0 . ~18!

We solve forakW from Eq. ~17!, substitute the result into Eq
~18!, and sum overkW ,kW8 to obtain

(
kWkW8

bkWkW85(
kWkW8

1

ek1ek82v0
F2

Udd

N (
kW9

bkWkW9

1
Ud f

N (
kW9

~bkWkW91bkW9kW8!

1
1

N (
kW9

bkW9kW
VkW8VkW9

*

e f1ek2v0

1
1

N (
kW9

bkW9kW8

VkWVkW9
*

e f1ek82v0
G . ~19!

This is the eigenvalue equation for the energyv0.
In the narrow band limit bothek andek8 can be replaced

by the average band energy^e&. Just like the one-electron
case, we find that only the even part ofVkW participates in
hybridization when the Coulomb interactionsUdd and Ud f
are present. Accordingly, we replaceVkW by V0 to obtain
y
.

.

e
-
n.

-

(
kWkW8

bkWkW85(
kWkW8

bkWkW8

1

2^e&2v0

3H 2Ud f2Udd1
2V0

2

e f1^e&2v0
J . ~20!

The energyv0 of the two-electron level is solved from
quadratic equation whose lower root is

v05
1

2
~e f13^e&1Udd22Ud f!

2
1

2
A~e f2^e&2Udd12Ud f!

218V0
2. ~21!

The d2 f hybridization effect is important provided thatue f

2^e&2Udd12Ud fu.A2V0.
The wave function of the two-electron state can be cal

lated from the equations of its coefficients. We find

F j5a@ f j 1cj 21cj 1 f j 2#2bcj 1cj 2 , ~22!

wherecj s was defined in Eq.~2!,

a5
V0

A~e f1^e&2v0!212V0
2

, ~23!

andb25122a2. The occupation of thef level is 2a2, while
the occupation of the localizedd level is 2(12a2). Under
suitable conductions to be discussed later, the ground sta
a lattice of occupied two-electron states with no electron
the conduction band.

C. The conduction band

The nature of the now-empty conduction band is also
portant to our discussion. We go back to the full Hamiltoni
H in Eq. ~1! and study the commutators

@ckWs ,H#5ekckWs1VkW
* f kWs1

Udd

AN
(

j
cj scj ,2s

† cj ,2se2 ikW•RW j

1
Ud f

AN
(
kW8

cj sS (
j s8

f j s8
† f j s821D e2 ikW•RW j , ~24!

and

@ f kWs ,H#5e f f kWs1VkWckWs1
U f f

AN
(

j
f j s f j ,2s

† f j ,2se2 ikW•RW j

1
Ud f

AN
(
j s8

cj s8
† cj s8 f j se2 ikW•Rj . ~25!

Next, we replace the electron occupation operators by t
ground-state expectation values to obtain

@ckWs ,H#5@ek1Udd~12a2!2Ud fb
2!]ckWs1VkW

* f kWs ,
~26!

and

@ f kWs ,H#5@e f1U f fa
212Ud f~12a2!# f kWs1VkWckWs .

~27!
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PRB 60 13 433THEORY OF THE CORRELATED-ELECTRON . . .
SinceU f f is overwhelmingly large, the renormalizedf level
is high so that hybridization withd becomes impossible. Th
band remainsd, with renormalized band energy solved fro
Eq. ~26!:

vk5ek1eb , ~28!

whereeb5Udd(12a2)2Ud fb
2. The band is simply shifted

from the original position byeb .
The wave functions of the renormalized band m

change in order to satisfy the Schro¨dinger equation with the
added potential. We represent the operators of the new s
by c̃kWs , and for our purpose we only need to note that th
are d states. We also argue that they are orthogonal to
local states for the following reason. In the impurity mod
where there is only one Ce site, the scattering states
orthogonal to the bound state. We expect the orthogonalit
hold in the impurity lattice model as long as the local p
wave functions on different sites do not overlap, as obtai
in the narrow band limit.

In the first excited state a two-electron state is broken
into a one-electron state plus one electron in the band. If
denote the excited site byj, then from Eq.~27! we find a
local scattering potential for the band electron resulting fr
the change of local population

Vcoul5Udd~b2211a2!1Ud f~a222a2!, ~29!

which is located at the sitej. This added potential has n
effect on the band energy, but scatters the band electrons
contributes to resistivity at finite temperatures. Other con
quences of the model will be discussed next.

D. Physical properties of the model

The insulating state exists if the two-electron state
stable against spontaneous decay into a one-electron
and a band state. This requires

D5v11eb2v0.0. ~30!

The quantityD plays the role of the energy gap. The mod
has too large a parameter space to make a precise mappi
the stability region practical. In Appendix A we show that
neighborhood in the space exists such that a semicondu
with an energy gap of the right order of magnitude is stab
From here onD will be treated as a fitting parameter.

The energy difference between the ground state and
first excited state spans a continuum fromD to D1W, where
W is the width of the conduction band. It would take mu
higher energy to empty out the one-electron state, so we n
only to include singly and doubly occupied sites in solvi
the statistical mechanical problem. LetN1 be the number of
excited sites, then

n1[
N1

N
5

1

e(m2D)/T11
, ~31!

wherem is the Fermi energy andT is the temperature. The
number of electrons in the conduction band must be equa
the number of excited sites, so

n152E
0

W

D~e! f ~e!de, ~32!
t
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and f (e)5@e(e2m)/T11#21. Equations~31! and ~32! solve
for both N1 andm. The internal energy of the system is

E5v0N1DN112NE
0

W

D~e! f ~e!ede. ~33!

The electronic contribution to the specific heat is calcula
from differenting the internal energyE.

The magnetic susceptibility consists of three contrib
tions. At zero temperature the only nonzero contribution i
Van Vleck or orbital term involving virtual transitions be
tween the ground state and the continuum of first exci
states:19

xvv54mvv
2 E

0

W D~e!@12n12 f ~e!#de

D1e
, ~34!

wheremvv is effective magnetic moment for the Van Vlec
susceptibility. In Appendix B, we show thatmvv5b(a
1b)mB , wheremB is the Bohr magneton. At elevated tem
peratures two more terms emerge. As the conduction ban
populated, a Pauli term appears

xp5
2mB

2

T E
0

W

D~e! f ~e!@12 f ~e!#de. ~35!

The singly occupied sites now contribute to a Curie susc
tibility

xc5
mc

2n1

T
, ~36!

where mc is the effective magnetic moment of the Cur
susceptibility. In Appendix B, we deduce thatmc5a2m f
1b2mB , wherem f is the magnetic moment of thef electron.

Transport properties for this material are subtle. Sim
theory of electron conduction gives the resistivityr
5m/ne2t, where m is the carrier mass,e is the electron
charge,n is the carriers density, andt is the scattering time.
We showed earlier that the carrier densityn is equal to the
density of singly occupied sitesn1, which is the number of
scatterers. If the scattering mechanism is magnetic in ori
as is commonly assumed, the scattering cross section w
be independent of the kinetic energy of the carriers so
the productnt is temperature independent. This type
theory is incapable of explaining the observed strong te
perature dependence of the resistivity. We will show tha
model based on Coulomb scattering gives the comp
temperature-dependent scattering cross section that exp
both the resistivity and the Hall mobility.

Each singly occupied site is a scattering site in an oth
wise periodic potential. The potential originates from t
Vcoul term in Eq.~29!, but in a semiconductor we must con
sider screening of the Coulomb interaction by electrons
the conduction band. For a parabolic band the inverse s
tering time for a screened Coulomb scatterer is20

1

t~e!
}

Nc

e3/2E
0

1 z2dz

~z21l2\2/8me!2 , ~37!

whereNc is the density of Coulomb scatters,l is the inverse
screening length, and a number of fundamental parame
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13 434 PRB 60S. H. LIU
are lumped into the proportionality constant. In our theo
Nc5Ni1n1, whereNi is the density of impurities. The in
verse screening length is a function of the conduction b
occupation21

l25
4pe2

V0T E
0

W

D~e! f ~e!@12 f ~e!#de, ~38!

where V0 is the crystal volume per Ce atom. The expre
sions for transport coefficients are more complex due to
energy dependence oft.22 We can write the resistivity as

r5
mc

ne2

^e&

^et&
, ~39!

where

^O~e!&5E
0

W

O~e!D~e! f ~e!@12 f ~e!#de,

and the Hall mobility

mH5
e

mc

^et2&

^et&
, ~40!

wherec is the speed of light. Although we will use a mo
general band structure later, we can already deduce s
qualitative results from the formulas above. The prod
n^t& vanishes at low temperatures becausel tends to zero,
causing the resistivity to diverge. On the other hand,^t&
itself diverges if Ni50, but vanishes whenNi.0. This
causes the Hall mobility to rise below 100 K but bends o
around 10 K for a real sample. How the theory fits the act
data will be discussed in the next Section. The scatte
between quasiparticles, another manifestation ofUdd , also
contributes to the resistivity. This contribution has the sa
temperature dependence as theVcoul contribution, because
the density of scatterers is the same as the density of car
and the Coulomb interaction between pairs of conduct
electrons is screened the same way as in Eqs.~37! and~38!.

The inelastic neutron scattering cross sectionS(QW ,v) is
related to the imaginary part of the dynamical susceptibilit7

S~QW ,v!}
x9~QW ,v!

12e2v/T
. ~41!

For small scattering angles we take the limitQW →0. There
are three contributions to the neutron scattering cro
section, in exact correspondence with the three terms in
static susceptibilty. The Van Vleck term comes from re
transition between the ground state and the first excited s

xvv9 ~0,v!54pmvv
2 D~v2D!@12n12 f ~v2D!#. ~42!

The Pauli term measures intraband excitations in the con
tion band. The general expression for the dynamical sus
tibility of an electron gas is

x~QW ,v!52mB
2(

k

f ~ekW !2 f ~ekW1QW !

ekW1QW 2ekW2(v1 id)
,

whered501. Taking the imaginary part and lettingQW →0
yields
,

d

-
e

me
t

r
l
g

e

rs
n

s-
he
l
tes

c-
p-

x9~0,v!5
2pmB

2

T (
kW

f ~ekW !@12 f ~ekW !#vd~v!.

Thed function is broadened by the electron life-time, so t
final expression for the Pauli contribution to the dynamic
susceptibility is

xp9~v!5xp

vGe

v21Ge
2 , ~43!

wherexp was given in Eq.~35! and Ge is the inverse life-
time of the band electrons. Finally, the Curie contribution

xc9~v!5xc

vGs

v21Gs
2 , ~44!

where xc was given in Eq.~36! and Gs is the inverse of
spin-diffusion time. The static susceptibility is related
x9(QW ,v) by the Kramers-Kronig relation

x5
1

pE2`

` x9~0,v!

v
dv. ~45!

It is straightforward to verify that the results in Eqs.~42!,
~43! and~44! satisfy Eq.~45!. This completes the formal par
of the theory. In the next section, we compare the theoret
results with experiments.

III. COMPARISON WITH EXPERIMENTS

The zero-temperature limit ofx9(0,v) is the Van Vleck
term in Eq.~42!

xvv9 ~0,v!54pmvv
2 D~v2D!.

Thus, bothD andD(e) can be extracted from the low tem
perature inelastic neutron scattering data as shown in Fig
We have idealized the shape ofD(e) in order to simplify
later calculations. The parameters to be used areD
5180 K and

D~e!5
2

W S 12
e

WD , ~46!

for 0,e,W and D(e)50 otherwise, W5600 K. Our
choice ofD agrees with that deduced by Reyes,4 but ourW is
only one-half as large.

FIG. 1. The energy gap and band density of states as determ
by fitting the low temperature inelastic neutron scattering data
Severinget al. ~Refs. 7,8!.
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These parameters are used to calculate the static su
tibility according to Eqs.~34!–~36!, and the result is com
pared with experiments in Fig. 2. Two more parameters
needed, namelya50.81 anda50.30. The paramagneti
moment 1.46mB is used form f . The solid circles are data
deduced from neutron scattering through the Krame
Kronig transformation.7 The overall agreement betwee
theory and experiment is satisfactory, considering the
that the vertical scale is not a fitting parameter. Notice t
a250.09 is in the neighborhood of model parameters wh
the insulating ground state is stable, as discussed in Ap
dix A. The set of fitting parameters is not unique. A bet
way to pin downa and a is through the neutron magnet
form factor measurement discussed below.

The neutron magnetic form factor measures separately
f and conduction electron contributions to the susceptibil
The principle of the measurement is discussed in Appen
B. We plot in Fig. 3 the two contributions,xd , which is the
weight of the conduction-electron form factor, andx f , the
weight of the f electron form factor. This experiment wi
help toward refining the model parameters.

In Fig. 4, we compare the calculated specific heat with
result deduced by Kweiet al.6 Both the peak value and it

FIG. 2. The calculated temperature dependence of the mag
susceptibility~open circle! compared with experimental data~solid
curve! taken from Ref. 4 and data deduced from neutron scatte
~solid circles! ~Refs. 7 and 8!. The additional fitting parameters ar
a150.81,b150.58,a50.30,b50.91. The vertical scale is not a fit
ting parameter.

FIG. 3. Thed and f components of the magnetic susceptibilit
which determine the neutron magnetic form factor. See text
Appendix B. Thed component denotes the contribution of th
conduction-band electrons. The form factor would help determ
the fitting parameter with certainty.
ep-
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position agree with experiment. The entropy under the cu
is close toR ln 6, but the number does not originate from th
f level degeneracy.

In calculating transport coefficients we encounter o
more parameter in the dimensionless quantity

l2\2

8me
5A

W2

e E
0

W

D~e!b f ~e!@12 f ~e!#de,

whereA gathers together a number of material paramet
We estimate from the electron density and bandwidth t
A.1, and the result forA51 is shown in Fig. 5. The calcu
lated curves with 0.5<A<2 are virtually indistinguishable
Selected data points from Ref. 3 are plotted for comparis
The discrepancy at low temperatures is most likely a re
of the numerous approximations involved in calculating t
Coulomb scattering cross-section and screening length,
~37! and ~38!, and we have not been able to improve t
agreement by varying the factorA.

As discussed previously, the temperature dependenc
the resistivity comes from the inverse screening lengthl. It
is therefore not feasible to determine the gap from the re
tivity data.

In Fig. 6, we compare the calculated Hall mobility wit
the experiment. The added parameter for this calculatio
the impurity concentration, which is chosen asNi52.2
31024 per Ce atom. Again, the agreement is satisfactory

tic

g

d

e

FIG. 4. The calculated electronic specific heat~solid curve!
compared with that deduced from anomalous thermal expan
~dashed curve! using the Gru¨neisen relation~Ref. 6!.

FIG. 5. The calculated electrical resistivity curve~solid curve!
compared with selected data points taken from Ref. 3.
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Next, we compare the model prediction for inelastic ne
tron scattering cross section with the measured results.7,8 We
encounter two more parameters,Ge andGs , and there is not
enough data to determine them separately. We, there
chooseGe5Gs5G and write

S~0,v!}
1

12e2bv Fxvv9 ~0,v!1~xp1xc!
vG

v21G2G ,
~47!

wherexvv9 (0,v) is in Eq.~42!. Aside from the vertical scale
the only fitting parameter isG, which we choose to be 54 K
For reasons not entirely clear, the predicted scattering in
sity in the gap region at high temperatures is somewhat
as shown in Fig. 7. Also, the local state model predicts t
the magnetic gap remains the same for all scattering ang
In reality the one- or two-electron impurity states may fo

FIG. 6. The calculated Hall mobility~solid curve! compared
with data taken from Ref. 3. The density of impurities is measu
in units of per Ce atom.

FIG. 7. The calculated inelastic neutron scattering cross sec
at four different temperatures compared with data from Refs. 7
8. The same vertical scale is applied to all theoretical curves.
-

re,

n-
w
t
s.

bands. In this case, the range of scattering angle in which
magnetic gap appears would reveal the degree of impu
band dispersion.

The polarizability of a semiconductor is inversely propo
tional to the square of the energy gap.23 The material under
discussion has a small gap, so we expect a large polariz
ity or dielectric constant. The formula for the static dielect
constante0 is derived by a slight extension of the discussi
in Ref. 23

e0511S vp

D D 2

f ~T!, ~48!

wheref (T) is a dimensionless function of temperature giv
by

f ~T!5D2E
0

W 12n12 f ~e!

~D1e!2 D~e!de, ~49!

andvp is the plasma frequency given by

vp
254pnee

2/m* .

In the last formulane is the density of free electrons, one p
Ce atom, andm* is the effective mass. We estimate the ra
vp

2/D2.103 from various material parameters. The plot
f (T) as a function of temperature, Fig. 8, shows that
dielectric constant has a rather large value of 60 at ro
temperature but rises to 300 at low temperatures. Thi
another prediction of our theory which can be read
checked experimentally.

We have not tried to fit the temperature dependence of
spin-lattice relaxation rate because the phenomenolog
band model of Reyeset al., which is very close to ours, give
an adequate account of the data.4 Also of interest is the ob-
served correlation of lattice parameter with magnetic susc
tibility explained by Duanet al.13 The authors showed tha
one needs to couple the lattice with the magnetic system
order to obtain this effect. Our Fig. 4, which compares t
calculated specific heat versus that deduced from anoma
thermal expansion, may be regarded as an alternative wa
understand the rapid expansion of the lattice with tempe
ture in the 50–100 K region.

IV. DISCUSSION

As was pointed out in the Introduction, most workers
this field regard the understanding of the narrow conduct

d

n
d

FIG. 8. The predicted polarizability of the material, showing
anomalous increase at low temperatures.
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band as the main challenge. It is not the intention of t
paper to contradict this common wisdom. Instead, we p
pose to skip over this difficult step, accept the narrow ba
as given, and proceed to explore the consequences. The
off is considerable, because we can account for most of
observed properties of Ce3Bi4Pt3. In addition, we sugges
neutron scattering as a way to probe this narrow band. In
paper, we assume this band to bed. Since the wave-function
characteristic of this band enter the neutron magnetic fo
factor, the low-temperature data would provide a cruc
check of this model. If the narrow band is ad2 f hybridized
band, as is commonly believed, the neutron form fac
would show a superposition of both characters at low te
peratures. It is our hope that this paper would provide
needed impetus to carried out this experiment on Ce3Bi4Pt3
and otherf electron semiconductors.
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APPENDIX A: STABILITY
OF THE SEMICONDUCTING STATE

It is difficult to map out the region of parameter spa
where the semiconducting state is stable because the m
dimensional nature of the space. We have only succeede
finding a neighborhood in the parameter space where
energy gapD has the right order of magnitude. The neig
borhood itself tell us a considerable amount of the unde
ing physics.

We introduce two variablesx andy such that

e f2^e&1Ud f52V0 sinhx, ~A1!

and

e f2^e&12Ud f2Udd52A2V0 sinhy. ~A2!

Both variables quantify the degree of hybridization of t
local states. Then, we can write

a25
1

4
~12tanhy!, ~A3!

which puts 0<a2<0.5, and

D52^e&2V0e2x1A2V0e2y1~Udd24V0 sinhx!a2.
~A4!

The hybridization potentialV0.0.1 eV and the Coulomb
potentialUdd.1 eV. The average band energy^e& is scaled
by the bandwidthW. For a regulard band withW.1 eV,
the semiconducting state described in this work cannot
stable becauseD,0. For a narrow band material such
Ce3Bi4Pt3 with W.0.1 eV, the semiconducting state with
small gap D.0.01 eV can be stable ifx.0 and a2

.0.1 (y.0.7). In this neighborhood both one- and tw
electron states are well hybridized.
s
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APPENDIX B: MAGNETIC SUSCEPTIBILITIES
AND FORM FACTORS

Consider a system whose ground stateu0& is nonmag-
netic. An applied magnetic field can induce a paramagn
response by mixing the ground state with magnetic exc
states, resulting in a Van Vleck susceptibility19

xvv52(
m

z^0uM um& z2

Em2E0
, ~B1!

whereM is the total magnetic moment operator andEm is the
energy of the eigenstateum&. In the present problemu0&
5F j

†uvac& and um&[ukWs&5f j s
† ckW ,2s

† uvac&, where uvac& is
the vacuum state. Thus,Em2E05D1ek . The operatorM
5( jM j , whereM j is the magnetic moment of thej th Ce
site

M j5m f~ f j 1
† f j 12 f j 2

† f j 2!1mB~dj 1
† dj 12dj 2

† dj 2!,
~B2!

with the total~local plus band! d electron operator given by

dj s5cj s1
1

AN (
kW

c̃kWs . ~B3!

We find ^0uM j ukW6&56e2 ikW•RW jmvv /AN, where mvv5b(a
1b)mB . The f electron makes no contribution. The ener
denominator equalsD1ek . Therefore, Eq.~B1! now reads

xvv5
2mvv

2

N (
kWs

1

D1ek
. ~B4!

At finite temperatures we insert the appropriate thermal f
tors to obtain the final formula in Eq.~34!.

The effective magnetic moment in the Curie susceptibi
term is

mc5^f j suM j uf j s&56~a2m f1b2mB!. ~B5!

This result is used in Eq.~36!.
The neutron magnetic form factor measures the Fou

transform of the magnetic moment density of a perio
solid. In a paramagnetic solid the moment is induced b
uniform field, and the neutron magnetic form factor is d
fined by

x~GW !5 i E
2`

`

^TM~GW ,t !M ~0,0!&dt, ~B6!

where GW is a reciprocal lattice vector andM (GW ,t) is the
Heisenberg operator of the Fourier transform of the magn
moment densityM (rW). If we define the tight-binding wave
functions of thef and conduction electrons byf f(rW) and
fd(rW), respectively, then we write
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M ~GW !5(
j

@m f~ f j 1
† f j 12 f j 2

† f j 2!F f~GW !

1mB~dj 1
† dj 12dj 2

† dj 2!Fd~GW !#, ~B7!

where

F f~GW !5E f f* ~rW !eiGW •rWf f~rW !d3r , ~B8!

and a similar result forFd(GW ). The final result shows that

x~GW !5Fd~GW !xd1F f~GW !x f , ~B9!
M

, J

an

A

, J
ys

P

P

A

where

xd5xvv1xp1
b2mB

mc
xc , ~B10!

and

x f5
a2m f

mc
xc . ~B11!

The componentsxd andx f are plotted in Fig. 3.
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