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Correlation functions for a two-dimensional electron system with bosonic interactions
and a square Fermi surface
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We calculate zero-temperature correlation functions for a model of two-dimensional interacting electrons
with short-range interactions and a square Fermi surface. The model was arrived at by mapping electronic
states near a square Fermi surface with Hubbard-like interactions onto one-dimensional quantum chains,
retaining terms that can be written in terms of bosonic density operators. Interactions between orthogonal
chains, corresponding to orthogonal faces of the square Fermi surface, are neglected. The correlation functions
become sums of Luttinger-type correlation functions due to the bosonic model. However, the correlation
function exponents differ in form from those of the Luttinger model. As a consequence, the simple scaling
relations found to exist between the Luttinger model exponents, do not carry over to the leading exponents of
our model. We find that for repulsive effective interactions, charge-density wave/spin-density wave instabilities
are dominant. We do not considerd-wave instabilities here.@S0163-1829~99!00343-4#
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I. INTRODUCTION
In recent years, research in theoretical condensed m

physics has focused intensely on the possible breakdow
Landau’s Fermi-liquid theory in strongly correlated electr
systems with spatial dimension larger than one. This
been motivated by Anderson’s observation1 that the normal
state of the high-Tc superconductors has characterist
which seem irreconcilable with the predictions of Fermi li
uid theory.2 It is well known that one-dimensional~1D! sys-
tems of strongly correlated electrons with gapless excitati
belong to the so-called Luttinger liquid universality class3,4

but an analogous rigorous theoretical foundation for n
Fermi-liquid physics in two-dimensional~2D! systems is still
lacking.

A number of authors have treated the 2D interacting e
tron gas with a circular Fermi surface using bosonizat
and/or renormalization-group techniques.5–7 Resummations
of perturbation theory have also been carried out,8 including
the case of a square Fermi surface within the parq
approximation.9 It is invariably found that the Luttinger
liquid fixed point is unstable in more than one spatial dime
sion. The underlying physics is that, due to the restric
kinematics on the Fermi surface in one spatial dimens
forward scattering is singular. In higher dimensions, sm
angle scattering appears to avoid such a singularity, un
the interactions are very long ranged.10 On the other hand
for a nested or nearly nested Fermi surface such as is
served in the high-Tc cuprates,11 the phase space for smal
angle scattering is suppressed. Under such circumstanc
appears that a breakdown of Fermi-liquid theory may be f
sible even with regular interactions.12 It should be noted tha
approaches based on, for instance, resummation of pertu
tion series, such as the parquet approximation of Ref. 9,
expected to be reliable for not-too-strong correlations. Alt
natively, one could consider a regime of interaction para
eters where correlation effects give rise to qualitatively p
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nomena that should be incorporated even in a zeroth o
approximation to the problem. This would then compleme
for instance, the work of Ref. 9.

Recently, a 2D system of electrons on a square lat
with nearest-neighbor hopping and Hubbard-like interactio
was considered, when the Fermi surface is a square e
away from half filling.12 The necessary requirement for th
to be a valid starting point is that the interactions of t
underlying lattice model must be strong enough. This
proach, therefore, does not have a free-fermion limit;
zeroth order Hamiltonian of the problem is rather that of fr
bosons. In Ref. 12, the problem was mapped onto two se
one-dimensional chains, one set for each axis of the sq
Fermi surface. The kinetic energy and the interaction w
separated into terms that could be written in terms of boso
density operators for the chains, and terms of nonboso
form. The bosonic Hamiltonian was then diagonalized,
suming no interactions between orthogonal chains, and
single-particle Green’s function was evaluated, with a res
ing Luttinger-liquid form. The nonbosonic terms in th
Hubbard-like interactions were classified as relevant or ir
evant with respect to the solution of the bosonic Ham
tonian. Discarding irrelevant operators, the Hamiltonian fo
particular case of sufficiently strong repulsive interactio
was solved, treating the relevant operators as perturbat
on the bosonic solution.

The N-component one-dimensional electron gas has v
recently been treated using bosonization,13 obtaining the op-
erator dimensions for a number of nonbosonic terms t
could appear in the Hamiltonian.14 One particular realization
of such a system is theN-chain Hubbard model. Given th
fact that we neglect interactions between orthogonal cha
in our model, the system we effectively study has much
common with that of Ref. 13. However, our work differs
one important respect, namely that we consider correla
13 361 ©1999 The American Physical Society
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13 362 PRB 60J. O. FJÆRESTAD, A. SUDBO” , AND A. LUTHER
functions of fermion operators that are nonlocal in chain
dices.

The minimal microscopic model appropriate for the d
scription of high-Tc superconductivity is not yet agree
upon. Much work has been done for Hubbard-like mode
also for the square Fermi surface case.15–19Recently, claims
were however made that nonexistence ofdx22y2-wave super-
conductivity in the 2D Hubbard model had been rigorou
proved at any finite temperature, and under certain circu
stances even at zero temperature.20 If that were to be true, the
single-band Hubbard model is not likely to be a fruitful m
croscopic starting point for explaining the phenomenology
the high-Tc cuprates, where there is now broad consensus
a dominantdx22y2-component of the order parameter. In th
situation, the examination of the properties of various hy
thetical effective theories may give useful information abo
what directions one should take in solving this exceedin
difficult problem.

In this paper, we investigate the ground-state propertie
the bosonic Hamiltonian in more detail, through the calcu
tion and analysis of explicit expressions for various grou
state correlation functions, which enables us to identify
dominant divergent susceptibilities. We calculate the co
lation functions for 2kF charge-density wave~CDW!, 2kF
spin-density wave~SDW!, s-wave singlet~SS!, and triplet
~TS! superconductivity fluctuations. The similarities to th
results obtained for the Luttinger model are:~i! the separate
terms making up the correlation functions have Lutting
model form, due to the bosonic form of our model,~ii ! there
is a degeneracy between CDW and SDW fluctuations,
between SS and TS fluctuations,~iii ! for effective repulsive
interactions, the CDW/SDW instabilities are domina
However, because the expressions for our correlation fu
tion exponentsdiffer in form from those of the Luttinger
model, the simple scaling relations valid for the exponents
the Luttinger model do not hold for our model.

This paper is organized as follows. In Sec. II, we descr
the fundamentals of the model under consideration. In S
III, various ground state correlation functions for the mod
are calculated, and their exponents are discussed. Sectio
summarizes the obtained results.

II. THE MODEL

In this section, we give an introduction to the model und
consideration, and establish the notation that will be use
the rest of the paper. For a more detailed discussion we r
the reader to Ref. 12.

A. The kinetic energy. Mapping to chains

We consider a 2D electron system on a square lattice w
lattice constanta and N lattice points in each direction~al-
though we will not indicate it explicitly, the thermodynam
limit N→` will always be implied at the end of our calcu
lations!. The kinetic-energy operator is

Hkin52t (
^ i j &s

cis
† cjs , ~1!

wherecis
† andcis are creation and annihilation operators f

an electron with spins at site i. The sums overi and j are
-
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restricted to nearest neighbors, wheret is the hopping matrix
element. We introduce coordinates (x,y) in real space and
(kx ,ky) in reciprocal space, where the coordinate axes
rotated145° with respect to the primitive vectors connec
ing nearest-neighbor sites. The kinetic-energy operator
then be written

Hkin524t(
kWs

cos~kxa/A2!cos~kya/A2!ckWs
†

ckWs , ~2!

where thekW summation is over the first Brillouin zone. For
half-filled band, the Fermi surface is a square, with fac
defined bykx or ky equal to6kF wherekF[p/A2a, giving
a vanishing Fermi energy.

Since we are interested in the low-energy physics,
kinetic energy is linearized in the direction perpendicular
each of the four faces of the square Fermi surface. Cons
the two parallel faces defined bykx5akF , 2kF<ky<kF ,
wherea561. These faces will from now on be referred
as the ‘‘1 ’’ and ‘‘ 2 ’’ faces, respectively. The linearize
kinetic energy dispersion near facea is

Ekin,a~kW !5vF~ky!~akx2kF!, ~3!

wherevF(ky)52A2ta cos(kya/A2). This form is reminiscent
of the dispersion for the Luttinger model, except that in o
case, the dispersion is only valid within a finite regio
(2kF<ky<kF), and the Fermi velocityvF(ky) depends on
the momentum parallel to the face, vanishing on the edge
the face. We also define the field operator for excitatio
near facea as

cas~x,y!5
1

N (
kx ,ky

eikxx1 ikyycas~kx!, ~4!

where the summation overky is between2kF andkF , and
the summation overkx should be cut off forakx!kF . Simi-
lar considerations and definitions can be made for the
other faces of the square Fermi surface.

We now consider a two-point function like
^c†(x,y,t)c(0,0,0)&, where the average is taken with re
spect to the ground state of the kinetic-energy operator.
total field operator is written as a sum of the four face-fie
operators of the type given in Eq.~4!, making the two-point
function above a sum of four terms, one from each face. T
contribution from facea will be ^ca

†(x,y,t)ca(0,0,0)&. It
can be shown that the result for this correlator is exac
reproduced by the following mapping of the field operato

cas~x,y!→Ap

kF
(

l 850

2N21

g~ l 2 l 8!ca l 8s~x! ~5!

with the resulting mapping of the unperturbed Hamiltonia

Hkin,a→(
s

(
l ,l 8

t l ,l 8E
0

L

dxca ls
† ~x!S a

i

]

]x
2kFDca l 8s~x!,

~6!

where

t l ,l 85
1

2N (
ny52N/2

N/221

vF~ky!eipy( l 2 l 8). ~7!
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Here, the integer l 5A2y/aP@0,2N21#, ky52pny /
A2Na, py[pny /N, so thatkyy5pyl . Furthermore,

g~ l !5
1

2N (
ny52N/2

N/221

eipyl5
~2 i ! l

2N

12~21! l

12eip l /N
~8!

satisfying ( l 1
g( l 2 l 1)g( l 12 l 8)5g( l 2 l 8). Letting N→`

for fixed l, we obtain

g~ l !5
a

A2
E

2kF

kF dky

2p
eikyy5

1

2
d l ,01

sin@p l /2#

p l
~12d l ,0!.

~9!

The operatorsca ls(x) describe right-moving (a51) and
left-moving (a521) electrons living on fictitious one
dimensional chains~labeled byl ) of lengthL5Na. In terms
of operators creating electrons with definite momenta, th
chain-field operators are given by

ca ls~x!5
1

AL
(
kx

eikxxca ls~kx!, ~10!

where the normalization indicates thatx is now taken to be a
continuous variable. The discrete wave vectors are given
kx52pnx /L, with integernx . Note that sinceg( l 2 l 8) is
generally nonzero forlÞ l 8, the mapping~5! is nonlocal.

We take the noninteracting system at half filling with li
earized dispersion as our unperturbed problem. Pertu
tions, in the form of interactions or operators taking the s
tem away from half filling, can in principle be treated with
the framework of many-body perturbation theory, whe
their effect is expressed in terms of integrals over tim
ordered multiple-point correlation functions. Using Wick
theorem, such correlation functions can be expressed as
of products of two-point functions. Since the latter are c
rectly reproduced by the mapping~5! @with Eq. ~6! govern-
ing the dynamics#, the entire perturbation series will be co
rectly generated. This, together with the fact that standard
bosonization can be applied to the chains, is what makes
mapping useful.

Electron creation and annihilation operators belonging
different faces and/or chains anticommute, by definitio
Thus the associated density operatorsra ls(nx)
5(k

x8
:ca ls

† (kx81kx)ca ls(kx8): (:•••: means normal-ordering!

commute. For the ‘‘1/2 ’’ faces this is expressed by th
commutator

@ra ls~nx!,ra8 l 8s8~2nx8!#52anxda,a8d l ,l 8ds,s8dnx ,n
x8
.

~11!

This is simply the result for the usual single-chain case g
eralized to the case of many chains, the only effect of
generalization being the introduction of the factord l ,l 8 . The
Fourier transformed operators

ras~nW !5 (
l 50

2N21

ra ls~nx!e
2 ipyl , ~12!

wherenW 5(nx ,ny), then obey the commutation relations
se

y

a-
-

-

ms
-

D
he

o
.

-
e

@ras~nW !,ra8s8~2nW 8!#522Nanxdaa8dss8dnW ,nW 8 . ~13!

It was shown in Ref. 12 that in the presence of interactio
the terms with l 8Þ l in Eq. ~6! are irrelevant in the
renormalization-group sense. Therefore we only keep the
agonal part, which we define asHkin,a

d . This will be a sum of
independent chains. Bosonization is performed for e
chain, giving

Hkin,a
d 5

pv0

2NL (
nW ,s

:ras~nW !ras~2nW !:, ~14!

wherev0[t l l 52A2ta/p, and the sum overny is between
2N and N21 ~this will be the summation range forny in
the rest of the article as well!.

Completely analogous considerations can be made for
two faces withky56kF , the only difference being that th
associated chains will then lie along they direction, taken to
be continuous, while thex direction is kept discrete. Boso
density operators for perpendicular faces commute.

B. Interactions. Solution of the bosonic Hamiltonian

The form of the interactions that are included in t
bosonic Hamiltonian can be extracted from the Hubb
model interaction, given byU( ini↑ni↓ , whereU is the on-
site repulsion andnis is the number operator at sitei with
spins. Writing the field operator as a sum of the field oper
tors for the four faces of the square Fermi surface, the H
bard interaction will contain terms that couple perpendicu
faces and terms that only couple parallel faces. The form
terms are not included in the bosonic Hamiltonian, wh
from the latter terms, which for the ‘‘1/2 ’’ faces can be
written

US p

kF
D 2

(
x,y

(
a1a2
a3a4

(
l 1l 2
l 3l 4

g~ l 2 l 1!g~ l 2 l 2!g~ l 2 l 3!g~ l 2 l 4!

3:ca1l 1↑
† ~x!ca2l 2↑~x!ca3l 3↓

† ~x!ca4l 4↓~x!:, ~15!

we retain the bosonic contributions, which have the form
density-density interactions, obtained when (a1 ,l 1)
5(a2 ,l 2) and (a3 ,l 3)5(a4 ,l 4). ~Note that since perpen
dicular faces are decoupled in the bosonic Hamiltonian, i
from now on sufficient to focus on one of the two sets
parallel faces, and we choose the ‘‘1/2 ’’ faces.! The
bosonic contributions can be written

Ua

NL (
aa8

(
nW

f 2~ny!:ra↑~nW !ra8↓~2nW !:, ~16!

where f (ny)5(12unyu/N)/2 is the Fourier transform o
g2( l ). Introducing charge (n5r) and spin (n5s) operators
as (hr51, hs521)

A2na~nW !5ra↑~nW !1hnra↓~nW !, ~17!

with commutation relations (n,n85r,s)

@na~nW !,na8
8 ~2nW 8!#522Nanxdnn8daa8dnW ,nW 8 , ~18!
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the most general interaction of form~16! can be written on
bosonized form as follows:

HB[
a

2NL (
n5r,s

(
aa8

(
nW

3 f 2~ny!hnUaa8
(n)

~nx!:na~nW !na8~2nW !: ~19!

where we have allowed for different coupling functio
Uaa8

(n) (nx) for the different scattering processes. Hence, t
bosonic interaction is a bit more general than that extrac
directly from the Hubbard model. In analogy with the 1
case, a cutoff on the momentum transfer in thex direction
will be needed in order to get a well-defined solution; th
makes the couplingsnx dependent. Symmetry consideratio
dictate that there can be at most four different coupling fu
tions: U11

(r) , U12
(r) , U11

(s) , andU12
(s) .

The kinetic energyH0[(aHkin,a
d can also be written in

terms of charge and spin operators,

H05
pv0

2NL (
n5r,s

(
a

(
nW

:na~nW !na~2nW !:. ~20!
he

c
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The HamiltonianH01HB , which shows spin-charge separ
tion, will be referred to as the bosonic Hamiltonian. It m
be diagonalized separately in the spin and charge sec
using the canonical transformation exp((nSn)(H0
1HB)exp(2(nSn)[HD , where

Sn5
1

2N (
nW

jn~nW !

nx
n1~nW !n2~2nW !, ~21!

and jn(nW ) is chosen so that the off-diagonal terms in t
transformed HamiltonianHD vanish. This gives

HD5
p

2NL (
n

(
a

(
nW

vn~nW !:na~nW !na~2nW !:, ~22!

where the parametersjn(nW ) and the renormalized velocitie

vn(nW ) are given by
exp@2jn~nW !#5A11ahn@U11
(n) ~nx!1U12

(n) ~nx!# f 2~ny!/pv0

11ahn@U11
(n) ~nx!2U12

(n) ~nx!# f 2~ny!/pv0

, ~23!

vn~nW !

v0
5A~11ahnU11

(n) ~nx! f 2~ny!/pv0!22~ahnU12
(n) ~nx! f 2~ny!/pv0!2. ~24!
s
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Terms in the microscopic Hamiltonian that are not of t
type included inHD will, if they are irrelevant, only lead to
modifications in the numerical values of the coupling fun
tions, leaving the structure of the low-energy theory un
fected. In this case, it is these ‘‘effective’’ function value
that should enter in the formulas above. As already poin
out below Eq.~13!, the nondiagonal terms~i.e., lÞ l 8) in the
kinetic energy~6! are irrelevant perturbations with respect
HD .12 We emphasize that for the case of the 2D repuls
Hubbard model, Umklapp scattering, which is of nonboso
form, is a relevant interaction.12 The general philosophy o
the approach presented here, is to viewHD as a zero-order
Hamiltonian for a perturbation treatment of the relevant n
bosonic interactions generated by the underlying mic
scopic lattice Hamiltonian~which may be different from the
Hubbard model!.

From the high-Tc point of view, the interesting case i
doping away from half filling. In Ref. 12, it was shown th
for sufficiently strong interactions, the only effect of the o
erator causing deviations from half filling was to shift th
value of the Fermi wave vector, not changing the squ
shape of the Fermi surface. In the remainder of the paper
will assume that we are in this strong-interaction regime w
a square Fermi surface.
-
-

d

e
c

-
-

e
e

h

III. CORRELATION FUNCTIONS

We now turn to the calculation of correlation function
for various fluctuations of interest in the ground stateu& of
the bosonic HamiltonianH01HB . The dominant instability
is identified by the correlation function with the slowe
space-time decay, thus having a generalized susceptib
with the strongest divergence asT→0.

A. Definitions of correlation functions. Calculation of their y
dependence

The generic form of the correlation functions we consid
is

R.~rW,t !52 i ^uO~rW,t !O†~0,0!u&, ~25!

whereO(rW,t) is the operator for the fluctuation under co
sideration. We will consider the following fluctuations: 2kF
charge-density wave~CDW!, 2kF spin-density wave~SDW!,
s-wave singlet superconductivity~SS!, and triplet supercon-
ductivity ~TS!. The SDW operator has 3 spatial componen
and the TS operator has 3 components corresponding to
total spin in thez direction. Assuming spin-rotation invari
ance, the 3 associated correlation functions should be eq
although the expressions will be formally different due to t
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abelian bosonization used here.4 The definitions of the opera
tors O are simple generalizations of the corresponding
definitions:21,4

OCDW~rW !5(
s

c1,s
† ~rW !c2,s~rW !, ~26!

OSDW,x~rW !5(
s

c1,s
† ~rW !c2,2s~rW !, ~27!

OSDW,z~rW !5(
s

s c1,s
† ~rW !c2,s~rW !, ~28!

OSS~rW !5
1

A2
(

s
c1,s

† ~rW !c2,2s
† ~rW !, ~29!

OTS,11~rW !5c1,↑
† ~rW !c2,↑

† ~rW !. ~30!

We have included the definitions of two of the compone
of the SDW operator, since the equality of the associa
correlation functions will give a condition for determinin
the parameterjs(nW ).

Introducing the mapping~5!, and observing that the
bosonic Hamiltonian conserves the number of electrons w
a given spin on a given face and a given chain, it is clear
each nonzero term in the correlation functions has the fo
~discarding prefactors!

Fb,s1s2
~ l 12 l 2 ,x,t !

[^uc1,l 1 ,s1

† ~x,t !c2,l 2 ,s2

b ~x,t !

3c2,l 2 ,s2

2b ~0,0!c1,l 1 ,s1
~0,0!u&, ~31!

whereb511 (21) indicates an annihilation~creation! op-
erator. Here we have anticipated thatF is a function only of
the product of the spins, and of the separation between
chains. In terms ofF, the correlation functions are given b

RCDW
. ~rW,t !} (

l 150

2N21

(
l 250

2N21

Hl~ l 1 ,l 2!F11~ l 12 l 2 ,x,t !,

~32!

RSDW,x
. ~rW,t !} (

l 150

2N21

(
l 250

2N21

Hl~ l 1 ,l 2!F12~ l 12 l 2 ,x,t !,

~33!

RSDW,z
. ~rW,t !} (

l 150

2N21

(
l 250

2N21

Hl~ l 1 ,l 2!F11~ l 12 l 2 ,x,t !,

~34!

RSS
. ~rW,t !} (

l 150

2N21

(
l 250

2N21

Hl~ l 1 ,l 2!F22~ l 12 l 2 ,x,t !, ~35!
s
d

th
at
m

he

RTS,11
. ~rW,t !} (

l 150

2N21

(
l 250

2N21

Hl~ l 1 ,l 2!F21~ l 12 l 2 ,x,t !,

~36!

whereHl( l 1 ,l 2)[g(2 l 1)g( l 2 l 1)g(2 l 2)g( l 2 l 2). It is seen
already at this point that in this model, the CDW and SD
correlation functions are equal.

In Eqs.~32!–~36! we first sum over all terms with a fixed
value ofl 0[ l 12 l 2, and then sum over the appropriate valu
of l 0. Using Hl( l 1 ,l 2)5Hl( l 2 ,l 1) and F( l 0 ,x,t)5F
(2 l 0 ,x,t) ~the latter property is established in the next su
section! we obtain

R~rW,t !}K~ l ,0!F~0,x,t !12 (
l 051

2N21

K~ l ,l 0!F~ l 0 ,x,t !,

~37!

where we have defined

K~ l ,l 0!5 (
l 15 l 0

2N21

Hl~ l 1 ,l 12 l 0!. ~38!

For l 0>1 it is convenient to writeK( l ,l 0)5K1( l ,l 0)
2K2( l ,l 0), where

K1~ l ,l 0!5 (
l 150

2N21

Hl~ l 1 ,l 12 l 0!, ~39!

K2~ l ,l 0!5 (
l 150

l 021

Hl~ l 1 ,l 12 l 0!. ~40!

In the calculation ofK1 , the summation overl 1 must be
done before theN→` limit is taken. This is because th
expressions~9! are derived by assuming thatl is fixed, and
therefore finite, so thatl /N→0 asN→`. They are, there-
fore, not correct whenl is of orderN, and such values ofl 1
are indeed included in the sum inK1 .

The calculations ofK1 andK2 are rather lengthy, so we
only give the final results (d̄ l ,l 8[12d l ,l 8):

K1~ l ,l 0!5d l ,0d l 0,0

1

12
1d l ,0d̄ l 0,0

1

2p2l 0
2

1d l 0,0d̄ l ,0

1

2p2l 2

1 d̄ l ,0d l ,l 0

~21! l 11

4p2l 2
, ~41!
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K2~ l ,l 0!5Fsin~p l 0/2!

2p l 0
G2

d l ,01
cos2~p l /2!cos2~p l 0/2!

p4
H d̄ l ,0d̄ l ,l 0

F cS 11 l

2 D2cS 11 l 0

2 D1cS 1

2D
l 0~ l 1 l 0!~ l 2 l 0!

2
1

2l l 0

S cS 11 l 1 l 0

2 D
l 1 l 0

1

cS 11 l 2 l 0

2 D
l 2 l 0

D G1d l ,0F 2S cS 11 l 0

2 D2cS 1

2D D
l 0
3

1

c8S 12 l 0

2 D2c8S 11 l 0

2 D
4l 0

2
G1d l ,l 0

F p2l

2
1cS 1

2D2cS 122l

2 D2 lc8S 12 l

2 D
4l 3

G J . ~42!
w
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to
s

w

p-
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er
Here, c(z) is the digamma function, defined asc(z)
5G8(z)/G(z), where G(z) is the gamma function.22 For
large arguments,c(z); ln(z), which in this context must be
regarded as a constant, since it does not contribute a po
law behavior with nonzero exponent. The asymptotic beh
ior of K( l ,l 0) is therefore to leading order given b
K( l ,l 0)}1/l 2.

B. The x and t dependence of the correlation functions

The explicit calculation ofF is performed by bosonization
of the chain field operators,23,3 writing

ca ls~x,t !5
1

A2pe
Ua ls

† e2awa ls(x,t)1 iakFx, ~43!

wheree is a short-distance cutoff, which should be sent
zero at the end of all calculations. In principle, the pha
field w contains both finite modes (nxÞ0) and zero modes
(nx50, corresponding to number operators!, but the zero
modes may be neglected in the thermodynamic limit.4 Fur-
thermore, it is easily seen that the ladder operatorsU do not
give rise to any minus signs in the expectation values
consider, because there is no need to reorder theU ’s before
eliminating them usingUa lsUa ls

† 5Ua ls
† Ua ls51, and they

can therefore be neglected. The phase field iswa ls(x,t)
5(nwa ls

n (x,t), where we have defined

wa ls
n ~x,t !5

kns

2A2N
(

nW

e2eukxu/2

nx
na~nW ,t !e2 ikxx2 ipyl ,

~44!

wherekrs51, kss5s with s51 (21) for spin up~down!.
The time dependence is given by na(nW ,t)
5ei (H01HB)tna(nW )e2 i (H01HB)t. From na

†(nW )5na(2nW ), we
obtainwa ls

† (x,t)52wa ls(x,t). This gives

Fb,s1s2
~ l 12 l 2 ,x,t !5~2pe!22 exp@2 ikFx~11b!#

3 )
n5r,s

exp@Eb,s1s2

n ~ l 12 l 2 ,x,t !#,

~45!
er-
v-

e

e

exp@Eb,s1s2

n ~ l 12 l 2 ,x,t !#

5^uew1 l 1s1

n (x,t)ebw2 l 2s2

n (x,t)e2bw2 l 2s2

n (0,0)e2w1 l 1s1

n (0,0)u&.

~46!

Next, we perform the canonical transformation with the o
erator ~21!. Its effect on the spin and charge operators
given by

eSnna~nW ,t !e2Sn5 (
l561

hn
al~nW !nl~nW !eilkxvn(nW )t, ~47!

where

hn
a,a~nW !5coshjn~nW !, hn

a,2a~nW !52sinhjn~nW !. ~48!

The canonical transformation will mix the operators for t
‘‘ 1 ’’ and ‘‘ 2 ’’ faces in the phase fields:

eSnwa ls
n ~x,t !e2Sn5 (

l561
w̃a ls

nl ~x,t !, ~49!

where

w̃a ls
nl ~x,t !5

kns

2A2N

3(
nW

e2eukxu/2

nx
hn

al~nW !nl~nW !eilkxvn(nW )t2 ikxx2 ipyl .

~50!

This gives

exp@Eb,s1s2

n ~ l 12 l 2 ,x,t !#

5 )
l561

^Guew̃
1 l 1s1

nl (x,t)ebw̃
2 l 2s2

nl (x,t)e2bw̃
2 l 2s2

nl (0,0)

3e2w̃
1 l 1s1

nl (0,0)uG&, ~51!

whereuG&[exp((nSn)u& is the ground state ofHD .
The calculation of the expectation value is done by w

ing the w̃a ls
nl fields as a sum of two contributions, one ov

positivenx and one over negativenx . One of the contribu-
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tions will contain creation operators, the other will conta
annihilation operators. By using the relations

eAeB5eA1Be[A,B]/2, ~52!

eAeB5eBeAe[A,B] , ~53!

we can move the exponentials containing creation opera
to the left and the exponentials containing annihilation o
erators to the right. In doing so, we will generate a string
c-numbers due to the reordering of the exponentials wh
we can take outside the expectation value brackets. Since
annihilation operators acting to the right and the creat
operators acting to the left annihilate the ground state,
expectation value of the operators which are left inside
expectation value brackets is just 1.

First, the phase fields are split into the two different co
tributions,

w̃a ls
nl ~x,t !5w̃a ls

nl ,1
~x,t !1w̃a ls

nl ,2
~x,t !, ~54!

where the superscripts1 and2 denote creation and annih
lation, respectively, and

w̃a ls
nl ,6

~x,t !56
lkns

2A2N
(

nW
8

e2ekx/2

nx
hn

al~nW !nl~6lnW !

3e6[ ikxvn(nW )t2 ilkxx2 ilpyl ] , ~55!

where we also used the evenness ofjn(nW ), and where the
prime after the summation sign indicates that only posit
nx should be summed over. Then, we use Eq.~52! to write
each exponential in Eq.~51! as a product of exponentials o
creation and annihilation parts of the phase field. For t
and further calculations, we will need the commutator

@w̃a ls
nl ,1

~x,t !,w̃
a8 l 8s8

nl ,2
~x8,t8!#

5
knskns8

4N (
nW

8
e2ekx

nx
hn

al~nW !hn
a8l~nW !

3eikxvn(nW )(t2t8)2 il[kx(x2x8)1py( l 2 l 8)] . ~56!

Using Eq.~52! on all exponentials in Eq.~51! we generate
the factor exp@Cn# where

Cn52
1

2N (
nW

8
e2ekx

nx
cosh 2jn~nW !, ~57!

where we also usedkns
2 51. Using Eq.~53! to move all an-

nihilation operators to the right in Eq.~51!, we generate the
factor exp@Db,s1s2

nl (l12l2,x,t)#, where

Db,s1s2

nl ~ l 12 l 2 ,x,t !

5
1

4N (
nW

8
e2ekx

nx
@bkns1

kns2
sinh 2jn~nW !

3~12e2 ikxvn(nW )t1 ilkxx!cospy~ l 12 l 2!

1cosh 2jn~nW !e2 ikxvn(nW )t1 ilkxx#. ~58!

The total exponent is
rs
-
f
h

the
n
e
e

-

e

,

Eb,s1s2

n ~ l 12 l 2 ,x,t !

5Cn1 (
l561

Db,s1s2

nl ~ l 12 l 2 ,x,t !

52
1

pE0

p

dpyE
0

`

dkx@cosh 2jn~nW !

2bkns1
kns2

sinh 2jn~nW !cospy~ l 12 l 2!#

3
e2ekx

kx
~12e2 ikxvn(nW )tcoskxx!. ~59!

A momentum transfer cutoff must be imposed on the int
actions. For fixedny , the treatment is as for the 1D case.
the equation above, we express the integral as a sum
noninteracting and an interacting part, by writing@•••#51
1(@•••#21). In both parts, we then multiply the integran
by @e2Ln(ny)kx1(12e2Ln(ny)kx)# to obtain two terms for
each of the two parts.@For simplicity, we take the cutoff
function Ln(ny) to be the same for both parts; since t
noninteracting part is independent ofb, s1s2 and l 12 l 2,
this implies that the cutoff function be independent of the
variables.# In the first term, the main contributions will com

from kx!1/Ln(ny), where we can replacejn(nW )→jn(nx

50,ny)[jn(ny) and vn(nW )→vn(nx50,ny)[vn(ny). In the
second term, which can be neglected for the interacting p
the main contributions come fromkx@1/Ln(ny), so we can
replacevn(nW )→v0 there. This gives

Eb,s1s2

n ~ l 12 l 2 ,x,t !

52
1

2
lnF ~e1 iv0t !21x2

e2 G
2

1

2pE0

p

dpyH lnF †Ln~ny!1 ivn~ny!t‡21x2

†Ln~ny!1 iv0t‡21x2 G
1Ab,s1s2

n ~ny ,l 12 l 2!

3 lnF †Ln~ny!1 ivn~ny!t‡21x2

Ln
2~ny!

G J , ~60!

where we have defined

Ab,s1s2

n ~ny ,l 12 l 2!5211cosh 2jn~ny!

2bkns1
kns2

sinh 2jn~ny!

3cospy~ l 12 l 2!. ~61!

Introducingny-averaged velocitiesv̄n and cutoffsL̄n , and
adding and subtracting terms in the integrand, we may w
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)
n5r,s

exp@Eb,s1s2

n ~ l 12 l 2,x,t !#5
e2

~e1 iv0t !21x2 )
n5r,s

F ~L̄n1 iv0t !21x2

~L̄n1 i v̄nt !21x2G 1/2F L̄n
2

~L̄n1 i v̄nt !21x2G db,s1s2

n
~ l 12 l 2!

3expF2
1

2pE0

p

dpyH lnS F †Ln~ny!1 ivn~ny!t] 21x2

@Ln„ny…1 iv0t#21x2 G Y F „L̄n1 i v̄nt…21x2

„L̄n1 iv0t…21x2G D
1Ab,s1s2

n ~ny,l 12 l 2!lnS F @Ln~ny…1 ivn~ny!t#21x2

Ln
2~ny!

G Y F ~L̄n1 i v̄nt !21x2

L̄n
2 G D J G , ~62!
n
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where we have defined the charge and spin exponents

db,s1s2

n ~ l 12 l 2!5
1

2pE0

p

dpy Ab,s1s2

n ~ny ,l 12 l 2!. ~63!

Summing up the results so far, the correlation functio
~32!–~36! are given by Eqs.~37!–~42!, ~45!, and~61!–~63!.

C. Correlation function exponents

From Eqs.~33! and~34! we see that the correlation func
tions for thex andz components of the SDW operator diffe
only in the sign ofs1s2. Assuming spin-rotation invarianc
of the underlying model, these correlation functions must
identical. From Eq.~61! it is seen that this is obtained
js(ny)50, which gives Ab,s1s2

s (ny ,l 0)5db,s1s2

s ( l 0)50.

Consequently, the correlation functions become indepen
of s1s2, and thes1s2 subscript may therefore be omitte
from now on. The spin-rotation invariance also has the eff
of making the SS and TS correlation functions identical.
for the 1D case,24,25 a more sophisticated~renormalization-
group! treatment is needed to lift the degeneracy betw
CDW and SDW fluctuations, and between SS and TS fl
tuations.

For t50 it is seen that the factor exp@•••# on the rhs in
Eq. ~62! is unity for n5s, and forn5r its leading behavior
for x→` is independent ofx. Thus, the exponent of th
leading x dependence of Eq.~62! is 22@11db

r ( l 0)#. For
asymptotic values oft the analysis is not so straightforwar
since both the square roots and the factors exp@•••# will de-
pend onx and t to leading order. However, as long as a
velocities involved are nonzero~which we assume to be th
case!, it seems reasonable to neglect this additional dep
dence, so that the following leading-order asymptotic
proximation may be used:

Fb~ l 0 ,x,t !}
e2 ikFx(11b)

~e1 iv0t !21x2 F L̄r
2

~L̄r1 i v̄rt !21x2G db
r ( l 0)

.

~64!

We see thatFb( l 0 ,x,t) has a form that resembles that of th
correlation functions of the 1D Luttinger model. Howeve
the exponentsdb

r ( l 0) depend on the chain differencel 0, and
in general have a rather different form than the Lutting
model exponents. The exceptions are the exponents for
equal-chain termsl 050. We have, in our notation,26
s

e

nt

ct
s

n
-

n-
-

-
he

CDW/SDW: db511
r 52

1

2
~12e22jr! ~1D!,

db511
r ~ l 050!52

1

2pE0

p

dpy~12e22jr(ny)! ~2D!

SS/TS: db521
r 52

1

2
~12e12jr! ~1D!,

db521
r ~ l 050!52

1

2pE0

p

dpy~12e12jr(ny)! ~2D!

~65!

It is seen that the form of these exponents is very simila
the 1D and 2D case, the only difference being the averag
over py in the 2D expressions. If this had been the set
exponents that determined the leading behavior of our co
lation functions, then the analogy to the Luttinger mod
would have been very strong indeed. However, things are
quite that simple. Each correlation function is given as a s
over contributions from differentl 0. Since for all l 0 ,
K( l ,l 0)}1/l 2 for asymptotically largel, the asymptotic be-
havior of the various contributions differ only in theirx-t
dependence. Thus, for a given correlation function~i.e., a
given value ofb) the leading asymptotic behavior come
from the value ofl 0 that gives the smallestdb

r ( l 0), i.e., we
must minimize

2
b

2pE0

p

dpy sinh 2jr~ny!cospyl 0 ~66!

with respect to the integerl 0. Assuming repulsive effective
interactions@i.e., jr(ny).0#, it is indeed true thatd1

r( l 0) is
minimal for the term withl 050, which therefore gives the
slowest decay in the CDW/SDW correlation functions. Ho
ever, for d21

r ( l 0) the term l 050 actually gives thelargest
exponent; the minimum exponent for the SS/TS correlat
functions comes from some nonzerol 0, and is therefore not
of the form in Eq.~65!. Consequently, the relation betwee
the leading exponents for the CDW/SDW and SS/TS co
lation functions is not as for the 1D Luttinger model, whe
these exponents are related through simple scaling relati
Sinced1

r(0),d21
r ( l 0), regardless ofl 0, we conclude that the

CDW/SDW fluctuations are dominant. This is the same c
clusion as for the Luttinger model for repulsive interaction
although the detailed nature of the leading exponents is
ferent.
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Throughout this paper we have assumed that we are in
region of parameter space where the square shape o
Fermi surface is stable with respect to doping away from h
filling. This requires, when spin-rotation invariance is i
voked, that12

1

pE0

p

sinh2jr~ny!~12cospyl 0!.2, for all l 0Þ0

~67!

@sincel 051 then minimizes the expression on the lhs of E
~67!, an equivalent requirement is that this expression be.2
for l 051#. Let us define U5U11

(r) (0)a/4pv0 and g
5U12

(r) (0)/U11
(r) (0). Having repulsive interactions require

U>0, g>0. Furthermore, Eqs.~23! and ~24! are well de-
fined and real only wheng,111/U. In order to have Eq.
~67! satisfied, there is a lower bound ong, which is easily
found by assumingg,1, and noting that for fixed
g, sinh2 jr(ny) is maximal whenU→`, giving

sinh2 jr~ny!'
1

2 F 1

A12g2
21G . ~68!

The condition~67! then requiresg.gmin52A6/5'0.9798.
There is also ag-dependent lower bound onU. The lowest
such bound is found numerically to occur at the parame
space boundary, forU'376, corresponding tog5111/U
'1.00266. Asg is decreased from this value towardsgmin ,
the lower bound onU is found numerically to increase to
wards infinity. A lower boundU'376 corresponds to
U11

(r) (0)a/pv0'1500, an extremely high value. We do n
know how large the bare couplings must be in order to ren
malize to such high effective values. It may be that inclus
of scattering between orthogonal faces could reduce the
fective values needed, but that is not clear. In the region
parameter space where Eq.~67! is satisfied, we find thatl 0

52 minimizesd21
r ( l 0) if g,1 @the expression~66! is then

negative#, andl 05` minimizesd21
r ( l 0) if g.1 @Eq. ~66! is

then 0#. We do not have any physical explanation for w
these particular values ofl 0 minimize the SS/TS exponent i
each particular case.

IV. SUMMARY AND CONCLUDING DISCUSSION

We have evaluated various ground-state correlation fu
tions for a 2D bosonic Hamiltonian with spin-charge sepa
tion, introduced in Ref. 12. The model was arrived at
mapping the problem of 2D electrons on a square lattice w
nearest-neighbor hopping and Hubbard-like interactions o
square Fermi surface onto two orthogonal sets of 1D cha
In the presence of interactions, it was shown in Ref. 12 t
-
l-
he
the
lf

.

r

r-
n
f-
f

c-
-

h
a
s.
t

single-particle hopping between parallel chains was irr
evant; furthermore, for sufficiently strong interactions, t
square shape of the Fermi surface was preserved even
from half filling. The bosonic Hamiltonian resulted from ne
glecting interactions between orthogonal chains and para
chain interactions of nonbosonic form.

In the mapping used, the physical 2D field operator
written as a sum of field operators on the 1D chains. It is
2D field operators that enter in the definitions of the corre
tion functions. As a consequence, the resulting correla
function is a sum of many terms, each of which takes
form of a Luttinger-model correlation function in the tim
direction and the spatial direction parallel to the chains. T
chain indices enter in the prefactors and in the exponent
the Luttinger-model correlation functions. In order to find t
leading behavior of the correlation function for large tim
and distances, one must identify the term with the smal
decay exponent by minimizing the exponent with respec
the chain separation. The leading exponents were foun
differ in form from the Luttinger model exponents due to t
2D nature of the problem. Specifically, the simple scali
relations valid for the Luttinger-model exponents were n
valid for our model.

The fluctuations we considered were 2kF charge-density
wave and spin-density wave,s-wave singlet superconductiv
ity, and triplet superconductivity. The condition of spin
rotation invariance fixed the spin part of the correlation fun
tions, making only the charge part non-trivial. The CDW a
SDW correlation functions turned out to be degenerate,
so did the SS and TS correlation functions. As for the L
tinger model, the CDW/SDW fluctuations were dominant f
effective repulsive interactions.

One may ask whether our conclusion concerning the
sence of divergent superconducting fluctuations for repuls
interactions holds for pairing inany symmetry channel. In
view of the Kohn-Luttinger effect,27 one would expect to see
T50 superconductivity in some, albeit possibly very hig
angular momentum channel. It may be that possible su
conductivity is either hiding in higher spin-triplet channe
or in higher singlet-channels, not considered in this pap
SinceOSS(rW) is a local object, it does not contain adx22y2

component, and consequently our results do not rule out
possibility of a superconductive instability in this channel
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