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Correlation functions for a two-dimensional electron system with bosonic interactions
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We calculate zero-temperature correlation functions for a model of two-dimensional interacting electrons
with short-range interactions and a square Fermi surface. The model was arrived at by mapping electronic
states near a square Fermi surface with Hubbard-like interactions onto one-dimensional quantum chains,
retaining terms that can be written in terms of bosonic density operators. Interactions between orthogonal
chains, corresponding to orthogonal faces of the square Fermi surface, are neglected. The correlation functions
become sums of Luttinger-type correlation functions due to the bosonic model. However, the correlation
function exponents differ in form from those of the Luttinger model. As a consequence, the simple scaling
relations found to exist between the Luttinger model exponents, do not carry over to the leading exponents of
our model. We find that for repulsive effective interactions, charge-density wave/spin-density wave instabilities
are dominant. We do not considéiwave instabilities herd.S0163-18209)00343-4

[. INTRODUCTION nomena that should be incorporated even in a zeroth order

In recent years, research in theoretical condensed mattepproximation to the problem. This would then complement,
physics has focused intensely on the possible breakdown éér instance, the work of Ref. 9.
Landau’s Fermi-liquid theory in strongly correlated electron  Recently, a 2D system of electrons on a square lattice
systems with spatial dimension larger than one. This hagith nearest-neighbor hopping and Hubbard-like interactions
been motivated by Anderson’s observatidhat the normal  was considered, when the Fermi surface is a square even
state of the highF. superconductors has characteristicsaway from half filling'? The necessary requirement for this
which seem irreconcilable with the predictions of Fermi lid- 1o pe 4 valid starting point is that the interactions of the
uid theory- It is well known that one-dimension&lD) sys-  nderlying lattice model must be strong enough. This ap-
tems of strongly correlated electrons with gapless exutaﬂonBroaCh, therefore, does not have a free-fermion limit: the

geiong to thle so-cal!ed Lum?ﬁer I'%u'dl l;n'veés?“ty ?Ia§s, zeroth order Hamiltonian of the problem is rather that of free
ut an anajogous rigorous theoretical founaation 1or NoNy, o, |y Ref, 12, the problem was mapped onto two sets of
Fermi-liquid physics in two-dimension&D) systems is still

lacking one-dimensional chains, one set for each axis of the square
' Fermi surface. The kinetic energy and the interaction were

A number of authors have treated the 2D interacting elec- . . . .
tron gas with a circular Fermi surface using bosonizatiOnseparated into terms that could be written in terms of bosonic

and/or renormalization-group technigue$.Resummations density operators for the chains, and terms of nonbosonic
of perturbation theory have also been carried®dagluding form. The bosonic Hamiltonian was then diagonalized, as-

the case of a square Fermi surface within the parqué;uming no interactions between orthogonal chains, and the
approximatior?, It is invariably found that the Luttinger- Single-particle Green’s function was evaluated, with a result-
liquid fixed point is unstable in more than one spatial dimening Luttinger-liquid form. The nonbosonic terms in the
sion. The underlying physics is that, due to the restricteddubbard-like interactions were classified as relevant or irrel-
kinematics on the Fermi surface in one spatial dimensiongvant with respect to the solution of the bosonic Hamil-
forward scattering is singular. In higher dimensions, smalltonian. Discarding irrelevant operators, the Hamiltonian for a
angle scattering appears to avoid such a singularity, unleggarticular case of sufficiently strong repulsive interactions
the interactions are very long rang€dOn the other hand, was solved, treating the relevant operators as perturbations
for a nested or nearly nested Fermi surface such as is olen the bosonic solution.

served in the high-, cuprates? the phase space for small-  The N-component one-dimensional electron gas has very
angle scattering is suppressed. Under such circumstancesrécently been treated using bosonizatidobtaining the op-
appears that a breakdown of Fermi-liquid theory may be feaerator dimensions for a number of nonbosonic terms that
sible even with regular interaction$lt should be noted that could appear in the Hamiltonidf.One particular realization
approaches based on, for instance, resummation of perturbaf such a system is the-chain Hubbard model. Given the
tion series, such as the parquet approximation of Ref. 9, arfact that we neglect interactions between orthogonal chains
expected to be reliable for not-too-strong correlations. Alterin our model, the system we effectively study has much in
natively, one could consider a regime of interaction parameommon with that of Ref. 13. However, our work differs in
eters where correlation effects give rise to qualitatively phe-one important respect, namely that we consider correlation
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functions of fermion operators that are nonlocal in chain in-restricted to nearest neighbors, where the hopping matrix
dices. element. We introduce coordinates,y) in real space and

The minimal microscopic model appropriate for the de-(k,k,) in reciprocal space, where the coordinate axes are
scription of highT, superconductivity is not yet agreed rotated+45° with respect to the primitive vectors connect-
upon. Much work has been done for Hubbard-like modelsjng nearest-neighbor sites. The kinetic-energy operator can
also for the square Fermi surface ca$e?Recently, claims  then be written
were however made that nonexistencelpf 2-wave super-
conductivity in the 2D Hubbard model had been rigorously o T
proved at any finite temperature, and under certain circum- Hidn 4t% cogka/y2)cogkyal\2)ciCis,  (2)
stances even at zero temperattitd.that were to be true, the .
single-band Hubbard model is not likely to be a fruitful mi- Where thek summation is over the first Brillouin zone. For a
croscopic starting point for explaining the phenomenology ofhalf-filled band, the Fermi surface is a square, with faces
the highT, cuprates, where there is now broad consensus oflefined byk, or k, equal to= ke wherekg=/+/2a, giving
a dominantd,z_2-component of the order parameter. In this & vanishing Fermi energy.
situation, the examination of the properties of various hypo- Since we are interested in the low-energy physics, the
thetical effective theories may give useful information aboutkinetic energy is linearized in the direction perpendicular to
what directions one should take in solving this exceedinglyeach of the four faces of the square Fermi surface. Consider
difficult problem. the two parallel faces defined by =ake, —kgsk <k,

In this paper, we investigate the ground-state properties oherea= = 1. These faces will from now on be referred to
the bosonic Hamiltonian in more detail, through the calcula-as the “+” and " —” faces, respectively. The linearized
tion and analysis of explicit expressions for various groundkinetic energy dispersion near faaeis
state correlation functions, which enables us to identify the .
dominant divergent susceptibilities. We calculate the corre- Ekin,o(K) = Ve(ky) (aky,—Kg), 3

lation functions for X charge-density wavéCDW), 2kg where _ . : .
: ; : : vi(k,) = 2\/2ta coska/\2). This form is reminiscent
spin-density waveSDW), swave singlet(SS, and triplet of the dispersion for the Luttinger model, except that in our

(TS) superconductivity fluctuations. The similarities to the case, the dispersion is only valid within a finite region

results obtained for the Luttinger model afe:the separate (—ke=k,=kg), and the Fermi velocity(k,) depends on

terms making up the correlation functions have Luttlnger-the momentum parallel to the face, vanishing on the edges of

model form, due to the bosonic form of our modéi) t_here the face. We also define the field operator for excitations
is a degeneracy between CDW and SDW fluctuations, an ear facew as

between SS and TS fluctuationdi) for effective repulsive

interactions, the CDW/SDW instabilities are dominant. 1 o

However, because the expressions for our correlation func- Pas(X,y)= N E ek tikye (ky), 4)
tion exponentddiffer in form from those of the Luttinger KKy

model, the simple scaling relations valid for the exponents ofyhere the summation ovd, is between—k andkg, and
the Luttinger model do not hold for our model. the summation ovek, should be cut off forrk,<kg . Simi-

This paper is organized as follows. In Sec. II, we describgar considerations and definitions can be made for the two
the fundamentals of the model under consideration. In Sether faces of the square Fermi surface.

I1l, various ground state correlation functions for the model \wve now consider a two-point function like
are calculated, and their exponents are discussed. Section Y (x y,t)(0,0,0)), where the average is taken with re-

summarizes the obtained results. spect to the ground state of the kinetic-energy operator. The
total field operator is written as a sum of the four face-field
Il. THE MODEL operators of the type given in EG}), making the two-point

. . . . . function above a sum of four terms, one from each face. The
In this section, we give an introduction to the model under - . +
. ) . : . -contribution from facea will be (#,(X,y,t)#,(0,0,0)). It
consideration, and establish the notation that will be used in . ;
n be shown that the result for this correlator is exactly

:Eg ::ztdzfrt::)eé);piré For a more detailed discussion we ref reproduced by the following mapping of the field operator,
p 2N—-1
A. The kinetic energy. Mapping to chains Pas(X,Y)— E Z g(l=1") ¢ (X) 5)
We consider a 2D electron system on a square lattice with ) _ o o
lattice constant and N lattice points in each directiofal- ~ With the resulting mapping of the unperturbed Hamiltonian,
though we will not indicate it explicitly, the thermodynamic .
limit N—co will always be implied at the end of our calcu- Hkin,a—>2 2 t'*"fo dx://LS(x)

a J
T (9_X_kF> arrs(X),

lations. The kinetic-energy operator is s
(6)
Hiin=—t >, CiCis. (1)  where
s N/2—1
wherec), andc;s are creation and annihilation operators for t, "=3N > VF(ky)eipy(pw)_ (7)
' ny=—N/2

an electron with spirs at sitei. The sums over andj are y
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Here, the integer |=+2y/ac[0,2N—1], k,=2mn,/ [puc(N)spure(— AN ]= — 2N, 8, 8ew s . (13)
J2Na, py=ny /N, so thatk,y=p,l. Furthermore, ’

It was shown in Ref. 12 that in the presence of interactions,
N/2—1

, (-i) 1-(-1) the terms withl’#1 in Eq. (6) are irrelevant in the
9l =55 > elry =N TN (8)  renormalization-group sense. Therefore we only keep the di-
ny= N2 1-e agonal part, which we define &k, . This will be a sum of

satisfying 2, g(1—1,)g(l,—1")=g(I—1"). Letting N—o independent chains. Bosonization is performed for each
. .

for fixed |, we obtain chain, giving
™V o N
a (ke dk, . 1 sin wl/2 HE =2 > p ((Mpas(—N):, (14)
g(l):ﬁj F 2_7;/elkyy= §6|,0+ %(l_al'o)_ kin, 2NL ~ Pas Pas

(9 Wherevozt,,=2\/§ta/7r, and the sum oven, is between
) ) ) —N andN—1 (this will be the summation range far, in
The opgratorswa|s(x) describe nght—movmg z(zf 1) and  ihe rest of the article as wall
left-moving (a=—1) electrons living on fictitious one- Completely analogous considerations can be made for the
dimensional chaindlabeled byl) of lengthL =Na. In terms g faces withk,= * k¢, the only difference being that the
of o.per.ators creating electrons with definite momenta, thesgsggciated chains will then lie along thelirection, taken to
chain-field operators are given by be continuous, while th& direction is kept discrete. Boson
density operators for perpendicular faces commute.
— 1 ikyX
Vais(X) JL % & Cats(Ke. (19 B. Interactions. Solution of the bosonic Hamiltonian
The form of the interactions that are included in the
osonic Hamiltonian can be extracted from the Hubbard
odel interaction, given b¥X;n;;n;,, whereU is the on-
site repulsion anah;s is the number operator at sitewith
spins. Writing the field operator as a sum of the field opera-
ors for the four faces of the square Fermi surface, the Hub-
bard interaction will contain terms that couple perpendicular

tem away from half filling, can in principle be treated within faces and terms that onl_y couple parqllel fac_es. The forr_ner
terms are not included in the bosonic Hamiltonian, while

the framework of many-body perturbation theory, where . o1

their effect is expressed in terms of integrals over time-fro.?: the latter terms, which for the +/—" faces can be
ordered multiple-point correlation functions. Using Wick’s written
theorem, such correlation functions can be expressed as sums 2
of products of two-point functions. Since the latter are cor- U(—) (=1)g(1=1)g(I—13)g(1—14)
rectly reproduced by the mappiri§) [with Eq. (6) govern- Ke) %y alEaz g‘z J V9 29 9 !
ing the dynamick the entire perturbation series will be cor- a3y l3la

rectly generated. This, together with the fact that standard 1D gt X oot X X): 15
bosonization can be applied to the chains, is what makes the W1 OVl Wy (a1 (X 9

mapping useful. o __we retain the bosonic contributions, which have the form of
Electron creation and annihilation operators belonging todensity—density interactions, obtained whenay (1)
different faces and/or chains anticommute, by definition. —' .| \"304" () 1.)= (a,.l.). (Note that since plerSen—

Thus the associated density Operatorg,s(ny) dicular faces are decoupled in the bosonic Hamiltonian, it is

where the normalization indicates thais now taken to be a
continuous variable. The discrete wave vectors are given b
k,=2mn,/L, with integern,. Note that sinceg(l—1") is
generally nonzero fok#1', the mapping5) is nonlocal.

We take the noninteracting system at half filling with lin-
earized dispersion as our unperturbed problem. Perturb
tions, in the form of interactions or operators taking the sys

_ AT ’ . (- . H

=2 Cois(Ky K Cars(Ky): (:- - -2 means normal-ordering  from now on sufficient to focus on one of the two sets of
commute. For the *%/—" faces this is expressed by the parallel faces, and we choose thet+f—" faces) The
commutator bosonic contributions can be written

[Pals(nx)apa’l's’( - n;)] == anxaa,a’ 5I,I ' 53,5’ 5nx n

U ->. -
11 N_i E, 2 120y pa(Mpar (—0):, (16)

This is simply the result for the usual single-chain case genwhere f(n,)=(1—|n,|/N)/2 is the Fourier transform of

eralized to the case of many chains, the only effect of they?(|). Introducing chargex=p) and spin ¢= o) operators
generalization being the introduction of the factpy, . The as ,=1, 7,=—1)

Fourier transformed operators
2N-1 V204(N)=par (M) + 7,00 (), (17

Pas(N)= ;o pas(ne P, (120 with commutation relationsi(, v’ = p,o)

wheren=(n,,n), then obey the commutation relations [va(N), v, (=n")]==2Nan8,, Sue Snnr,  (18)
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the most general interaction of ford6) can be written on  The HamiltoniarH,+ Hg, which shows spin-charge separa-

bosonized form as follows: tion, will be referred to as the bosonic Hamiltonian. It may
be diagonalized separately in the spin and charge sectors,
_ . a using the canonical transformation eXp§,)(Hg
He= N1 ,,:zp,g g, % +Hg)exp(—2,S,)=Hp, where

X 2(n) 7,U, (n): vy(M v (—0):  (19)

- - - 1 (N B, B,
vL\J/PSre we have a_tllowed for d|f_ferent coupling funct|ons_ SV:mE & )V+(n)u_(—n), (21)
«o(Ny) for the different scattering processes. Hence, this Ny
bosonic interaction is a bit more general than that extracted
directly from the Hubbard model. In analogy with the 1D -
case, a cutoff on the momentum transfer in thdirection ~ and &,(n) is chosen so that the off-diagonal terms in the
will be needed in order to get a well-defined solution; thistransformed Hamiltoniaii, vanish. This gives
makes the couplings, dependent. Symmetry considerations
dictate t(h)at the(r)e can( b)e at mos(t ;‘our different coupling func-
tions: U, , UYL UYL, andUY . _ T U =
The kinetic energHo=3 H,, , can also be written in Ho=3NL Ey % % ViMive(Mre(=n)i, - (22
terms of charge and spin operators,

n

Ho= ™o E 2 2 :Va(ﬁ) Va(_ﬁ):' (20) wh(ire the paramete@(ﬁ) and the renormalized velocities
2NL 550 %@ 5 v,(n) are given by

- 1+an,[UW (ng+UM (n)1f2(ny)/ mv
eXF[Z§,,(n)]=\/ 7,LUY (g vo(ny)] . y O’ 23)
1+an, UYL (n) -V (n)]fA(ny) v,
v,(n) @) 2 2 ©) 2 2
v = VA+an U Fny)/mvo)*~ (@, UL (n fA(ny) mvo)”. (24
|
Terms in the microscopic Hamiltonian that are not of the [ll. CORRELATION FUNCTIONS

type included inHp will, if they are irrelevant, only lead to
modifications in the numerical values of the coupling func-

tions, Ieaving the stryc.ture of the Iowl—energy theory unaf'the bosonic Hamiltoniatly+ Hg. The dominant instability
fected. In this case, it is these “effective” function values j5 jentified by the correlation function with the slowest
that should enter in the formulas above. As already pointedyace.time decay, thus having a generalized susceptibility
out below Eq(13), the nondiagonal termge.,| #1") inthe  \jth the strongest divergence &s-0.

kinetic energy(6) are irrelevant perturbations with respect to

Hp .** We emphasize that for the case of the 2D repulsive A pefinitions of correlation functions. Calculation of their y
Hubbard model, Umklapp scattering, which is of nhonbosonic dependence

form, is a relevant interactiotf. The general philosophy of
the approach presented here, is to vidy as a zero-order is
Hamiltonian for a perturbation treatment of the relevant non-

We now turn to the calculation of correlation functions
for various fluctuations of interest in the ground stptef

The generic form of the correlation functions we consider

bosonic interactions generated by the underlying micro- R>(F )= —i({lO(F.H)O'(0.0 2
scopic lattice Hamiltoniatiwhich may be different from the i (r,t)==i(|O(r,1)0"(0,01), (29
Hubbard modsl whereO(r,t) is the operator for the fluctuation under con-

From the highT. point of view, the interesting case is sideration. We will consider the following fluctuationsk2
doping away from half filling. In Ref. 12, it was shown that charge-density waveCDW), 2kg spin-density wavéSDW),
for sufficiently strong interactions, the only effect of the op- ss-wave singlet superconductivitysS, and triplet supercon-
erator causing deviations from half filling was to shift the ductivity (TS). The SDW operator has 3 spatial components,
value of the Fermi wave vector, not changing the squarend the TS operator has 3 components corresponding to the
shape of the Fermi surface. In the remainder of the paper, wetal spin in thez direction. Assuming spin-rotation invari-
will assume that we are in this strong-interaction regime withance, the 3 associated correlation functions should be equal,
a square Fermi surface. although the expressions will be formally different due to the
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abelian bosonization used hér&he definitions of the opera- 2N-12N-1
tors O are simple generalizations of the corresponding 1D RTSH(r t)e E Z Hi(11,1)F_ o (I1—15,x,1),
definitions?14 11=0
(36)
Ocow(N) =2 ¥} (N «(1), (26)
P s e s whereH,(11,1,)=g(—1)g(1=1,)g(~1,)g(I—1,). Itis seen

already at this point that in this model, the CDW and SDW
correlation functions are equal.
Ospwx(N =2, Yl (D (1), (27 In Egs.(32)—(36) we first sum over all terms with a fixed
s value oflo=1,—1,, and then sum over the appropriate values
Of |0. USing H|(|1,|2):H|(|2,|1) and F(Io,x,t):F
(—1g,x,t) (the latter property is established in the next sub-

OspwAN) =2 syl (D &), (28 section we obtain
S
- 1 . N 2N-1
Osdr)= 2 2 Ui SN (1), (29) R(F,H)=K(LOF(Ox,H)+2 D K(I,19)F(lg,%,t),
|0:1
(37)
Ors 1(N) =yl (DYl (). (30)
We have included the definitions of two of the componentsvhere we have defined
of the SDW operator, since the equality of the associated
correlation functions will give a condition for determining
the parametet, (n). 2N-1
Introducing the mapping(5), and observing that the K(l,lg)= 2 Hi(l1,1,—1o). (39
bosonic Hamiltonian conserves the number of electrons with 11=lo

a given spin on a given face and a given chain, it is clear that

each nonzero term in the correlation functions has the form

(discarding prefactojs For 1o=1 it is convenient to writeK(l,lg)=K_(I,lg)
—K_(l,lp), where

Fpss,(li—12.%1)

_<|¢+ | Sl(x t) - |2 Sz(x’t) 2N—1
XYh (0,00, 50,0, (31) K+(|,|o):|12=0 Hi(I1.11=1o), (39
whereB=+1 (—1) indicates an annihilatiofcreation op-
erator. Here we have anticipated tffais a function only of lo-1
the product of the spins, and of the separation between the _ _
chains. In terms of, the correlation functions are given by K-(Llo)= 2 Hil1l1=lo) (40
2N—1 2N-1
REow(M D)= 2 2 Hi(l1)F (1=12,x0), In the calculation ofK , , the summation ovel; must be
170 1270 32) done before theN—oo limit is taken. This is because the
expressiong9) are derived by assuming thkts fixed, and
therefore finite, so that/N—0 asN—x. They are, there-
. 2N-12N-1 fore, not correct whehis of orderN, and such values df;
Rspwx(F:1)* |§=:o |2=0 Hi(l1,12)F (1= 12,%,1), are indeed included in the sum k. .
v 33 The calculations oK , andK_ are rather lengthy, so we
only give the final results§ [, =1- 6 /):
2N—-1 2N-1
R;DV\I,z(r!t)oc E z H|(|1,|2)F++(|1_|2,X,t),
13=0 13=0
(34 K1 (l10)= 61 00 oi+5| o) 0L+5| 00055
VeV 12 Yo 2772'?) (o} ’ 2772|2
2N-1 2N-1 (—1)'*1

Redr ) > 2 Hi(lp ) F_(1i=15,%,t), (39) +E,v05,,,0;— (41)
v

1,=0
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(1+| (1+|O N (1
oy |sTe2)] cod(mi2cod(my2) { — < e i e P
o= 57 G - e N N T
1+1+1, 1+1—1, 1+1, 1
N NEC S
T2\ T+, 1, o0 E
([1=1o [ 1+1g l 1 1-2l | (1=
R B2 B 2 R B S e W w
412 Mo 413 '
[
Here, #(z) is the digamma function, defined ag(z) eXF[EE,slsZ(H_'z,X’t)]

=T"'(2)/T'(z), whereI'(z) is the gamma functiof¢ For
large argumentsyj(z) ~In(2), which in this context must be
regarded as a constant, since it does not contribute a power-

law behavior with nonzero exponent. The asymptotic behav- (46)

= < | e‘PIJ}r|lsl(xrt)e/ﬁPz|252(Xrt)e_5‘Pi|252(0vo)e_ ‘Pi|151(0x0)| > .

ior - of K(I'ZI o) is therefore to leading order given DYy Next we perform the canonical transformation with the op-
K(l,1o) 1A% erator (21). Its effect on the spin and charge operators is
given by
B. The x and t dependence of the correlation functions
The explicit calculation of is performed by bosonization eS,(nt)e Sv= N (1) wy (M) &MV (47)
of the chain field operatorS;® writing A==l
where
t 1 UT agqs(X, t)+|ak|:x 43 N N R . R
Varsx) === Ui “3 hee(m)=coshé,(n), h%~ “(7)=—sinh&,(n). (48)

The canonlcal transformation will mix the operators for the
where e is a short-distance cutoff, which should be sent to«  » gng « —» faces in the phase fields:

zero at the end of all calculations. In principle, the phase
field ¢ contains both finite modes{+#0) and zero modes

(n,=0, corresponding to number operatorbut the zero eSols(x,t)e = E sva.s X,t), (49
modes may be neglected in the thermodynamic Iffitir-

thermore, it is easily seen that the ladder operatbdd not  where

give rise to any minus signs in the expectation values we

consider, because there is no need to reordet)tebefore Kys

eliminating them usingU ,sU",.=UT, .U s=1, and they @Z?S(X,I)ZZ\/EN

can therefore be neglected. The phase fieldpjg(X,t)

=3 ,¢ons(X,t), where we have defined g elkd/2

« E hf)‘(ﬁ) V}\(ﬁ)eixkxvy(ﬁ)t—ikxx—ipyl_

—e\kx|/2 . . )
2 Va(n,t)e_'kxx_'py', (50

(Pals( )

2J_N Ny
(44)

wherek,s=1, k,s=swiths=1 (—1) for spin up(down).
The time dependence is given by va(ﬁ,t)
=e/(HotHe)ty, (n)e~'(HotHe)t From »](n)=wv,(—n), we
obtain ¢!, (x,t) = — @ s(X,t). This gives

—ly.x,t)=(2me) 2

Fﬁ,slsz(ll eXF[_ikFX(1+B)]

x 11 extEp s s (l1—12.%.0],

v=p,0

(45

This gives

exd Egyslsz(l 1=, %, 1)]

=11 (Gle:"iﬁ151(“)eﬁz’iﬁzsz(x,t)e—ﬂéiﬁzsz(o,m
A==*1

X e~ 11,500 G), (51)

where|G)=expE,S,)|) is the ground state dfly, .
The calculation of the expectation value is done by writ-

ing theZoZ}s fields as a sum of two contributions, one over
positive n, and one over negative, . One of the contribu-
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tions will contain creation operators, the other will containg

Bss,(l1=12.%1)
annihilation operators. By using the relations Fro1%

AB _ nA+BA[A,B]/2 _ A _
e“e®=e"""e , (52 _CV+)\:il DZ,slsz(H [,,%,t)
e"eB=eBelelABl (53 1 .
we can move the exponentials containing creation operators == ;fo dlf’yfO dkJ[cosh Z,(n)
to the left and the exponentials containing annihilation op-
erators to the right. In doing so, we will generate a string of — Bk ,o K, sinh 2¢ (n)cospy(l1—1,)
c-numbers due to the reordering of the exponentials which Brcvsy s, SN 2, Py(la=l2)]
we can take outside the expectation value brackets. Since the e <k« _ .
annihilation operators acting to the right and the creation X (1—e uMtecosk,x). (59
X

operators acting to the left annihilate the ground state, the
expectation value of the operators which are left inside the
expectation value brackets is just 1. _ A momentum transfer cutoff must be imposed on the inter-
_First, the phase fields are split into the wo different con-,yions For fixech,, the treatment is as for the 1D case. In
tributions, the equation above, we express the integral as a sum of a
~ ~uy, ~ - noninteracting and an interacting part, by writihg - =1
D= T () F N T (X1, 54 . .

CaisD= s WD+ s (X 54 +([---]—1). In both parts, we then multiply the integrand
where the superscripts and — denote creation and annihi- by [e MWkt (1—e 2(WK)] to obtain two terms for
lation, respectively, and each of the two partd.For simplicity, we take the cutoff

function A,(ny) to be the same for both parts; since the

— ek, /2 . . ..
~ Kus , X - - noninteracting part is independent gf s;s, andl;—1,,
A\ _ ak
Pals (X D)= iz\/EN En: Ny hy (v (£n) this implies that the cutoff function be independent of these
) variables] In the first term, the main contributions will come
X g [Nk =IApyl] (55 from ky<1/A,(n,), where we can replacg,(n)— &,(ny

where we also used the evennesstgfn), and where the 0y =&.(ny) andv,(n)—v,(n=0ny)=v,(n,). In the
prime after the summation sign indicates that only positive>cOnd term, which can be neglected for the interacting part,
n, should be summed over. Then, we use @) to write the main cgntnbutlons come froky>1/A ,(ny), so we can
each exponential in Eq51) as a product of exponentials of replacev,(n)—v, there. This gives

creation and annihilation parts of the phase field. For this,

and further calculations, we will need the commutator

EZ,5152(|1—|2,XJ)

U
Loy (x),e0,, (x' 1]

— eky 1 | (et+ivet)?+x?
_KisKvs 0 € DN W - Dl TR
=TaN 2 Tpy R 2 22
¢ @ik (M) (t=t") = iX[ky(x=x") +py(1=1")] (56) 1 fﬂ [A,(ny) +iv,(n)t]2+x2
5= Py )
Using Eq.(52) on all exponentials in Eq51) we generate 2mJo [A,(ny) +ivet]P+x?

the factor ex where v
EﬁV] +A,B,8152(n)”|1_|2)

1 «, e .
C'=—— cosh Z,(n), (57) A (ny)+iv,(n)t]?+x2
2N <, in| L) A% ( )y) ] : (60)
n
where we also used?.=1. Using Eq.(53) to move all an- Y
nihilation operators to the right in E§51), we generate the
factor exiD\ . (I,—1,,xt)], where where we have defined

B51S

DZ;},\slsz(H_'z'X,t) ,
) Aﬁyslsz(ny,ll—lz)=—1+cosh Z,(ny)
1 o/ e ™ . > .
:m 4 n_[IBKvleVSZ sinh 251/(”) _BkvleVsz sinh 2§V(ny)
n X

. - X [,—15). 1
X(1_e—lkxvv(n)t+|)\kXX)COSpy(I1_|2) COSpy( 1 2) (6 )

+ Tye K (Mt+inke) _ - _
coshZ,(nye ] (58) Introducing ny-averaged velocities, and cutoffsA,, and
The total exponent is adding and subtracting terms in the integrand, we may write
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1 €? (A, +ivet)2+x2|M A2 Gpss11712)
exdE% s (I1—15,x,1)]= — 7
v=p,0 F{ Bssp T2 ] (€+iV0t)2+X2V:p,0' (AV+iVVt)2+X2 (AV+iVVt)2+X2
1 (n [A,(ny)+iv,(ny)t]2+x2 (A, +iv,t)2+x2
X ex ——f dpyiIn - —
2mJo [A,(ny)+ivet]?+x? (A, +ivet)>+x?
, [A,(ny)+iv,(ny)t]?+x2 (A, +iv,t)2+x?
+A,B,Slsz(ny1|1_|2)ln< A,Z,(ny) Xlzj y (62)

where we have defined the charge and spin exponents

1(1—6_2511) (1D),

CDW/SDW:  dj_.,=~ 5

1 (=

I )= dp,As<.(ny,l1—1). (63
ﬁs 52( 1™ 2 27Tf Y B,s SN Y 1 2 1 T 7
° dj-.1(10=0)=~— Zfo dp,(1—e 2%(M) (2D)
Summing up the results so far, the correlation functions
(32—(36) are given by Eqs(37)—(42), (45), and (61)—(63). 1
SSITS: df__,=— E(1—e+25p) (1D),
C. Correlation function exponents

From Egs.(33) and(34) we see that the correlation func-
tions for thex andz components of the SDW operator differ
only in the sign ofs;s,. Assuming spin-rotation invariance
of the underlying model, these correlation functions must b

1 T
116=0)= = [ "dp,(1-e"%) (20)
(69

identical. From_Eq.(G_l) it is seen that this is obtained if itwles fge;n;hg}atrézggrrphgfot:lisgiﬁe;%%rgznéseil:gvtehrg ;rg:l:gilnng
€,(ny)=0, which gives Agg o (Ny,lo)=0dgss,(l0)=0. e p, in the 2D expressions. If this had been the set of

Consequently, the correlation fUﬂCthﬂS become lndepende@txponents that determined the leading behavior of our corre-
of s;5,, and thes;s, subscript may therefore be omitted lation functions, then the analogy to the Luttinger model

from now on. The spin-rotation invariance also has the effectvould have been very strong indeed. However, things are not
of making the SS and TS correlation functions identical. Asquite that simple. Each correlation function is given as a sum
for the 1D casé"* a more sophisticatettenormalization- over contributions from differenty. Since for all I,

group treatment is neeqled to lift the degeneracy betweerk (|,1,)1/12 for asymptotically largd, the asymptotic be-
CDW and SDW fluctuations, and between SS and TS fluchavior of the various contributions differ only in theiet

tuations.

Fort=0 it is seen that the factor exp-] on the rhs in
Eq. (62) is unity for v= ¢, and forv=p its leading behavior
for x—o is independent ok. Thus, the exponent of the
leading x dependence of Eq62) is —2[1+dj(lo)]. For
asymptotic values of the analysis is not so stralghtforward,
since both the square roots and the factord expwill de-
pend onx andt to leading order. However, as long as all
velocities involved are nonzer@vhich we assume to be the

dependence. Thus, for a given correlation functioa., a
given value ofB) the leading asymptotic behavior comes
from the value ofl, that gives the smallestj(lo), i.e., we
must minimize

B (™ .
— ﬂjo dp, sinh 2¢,(ny)cospyl, (66)

with respect to the integdyp. Assuming repulsive effective

casg, it seems reasonable to neglect this additional depeninteractiondi.e., £,(ny)>0], it is indeed true thad/(l,) is
dence, so that the following leading-order asymptotic ap-minimal for the term withl,=0, which therefore gives the

proximation may be used:

e~ ikpx(1+5) Ki diz(lo)

A 4\ 2 2
(A, +iv,t)°+x

FB(lo,X,t)OC

(e+ivot)?+x?
(64)

We see thaF 4(lo,X,t) has a form that resembles that of the
correlation functions of the 1D Luttinger model. However
the exponentslj(1o) depend on the chain differentg and

slowest decay in the CDW/SDW correlation functions. How-
ever, ford? ;(Ip) the termly=0 actually gives thdargest
exponent; the minimum exponent for the SS/TS correlation
functions comes from some nonzdgy and is therefore not

of the form in Eq.(65). Consequently, the relation between
the leading exponents for the CDW/SDW and SS/TS corre-
lation functions is not as for the 1D Luttinger model, where
these exponents are related through simple scaling relations.

, Sinced}(0)<d” ,(lo), regardless ofy, we conclude that the

CDWY/SDW fluctuations are dominant. This is the same con-

in general have a rather different form than the Luttinger-clusion as for the Luttinger model for repulsive interactions,
model exponents. The exceptions are the exponents for thathough the detailed nature of the leading exponents is dif-
equal-chain termé;=0. We have, in our notatioff, ferent.
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Throughout this paper we have assumed that we are in th&ngle-particle hopping between parallel chains was irrel-
region of parameter space where the square shape of tewant; furthermore, for sufficiently strong interactions, the
Fermi surface is stable with respect to doping away from halsquare shape of the Fermi surface was preserved even away
filling. This requires, when spin-rotation invariance is in- from half filling. The bosonic Hamiltonian resulted from ne-
voked, that? glecting interactions between orthogonal chains and parallel-

chain interactions of nonbosonic form.
In the mapping used, the physical 2D field operator is
written as a sum of field operators on the 1D chains. It is the
(67) 2D field operators that enter in the definitions of the correla-
tion functions. As a consequence, the resulting correlation
function is a sum of many terms, each of which takes the

1(7
;L sintP€,(ny)(1—cospylg)>2, forall I,#0

[sincel ;=1 then minimizes the expression on the Ihs of Eq.
(67), an equivalent requirement is that this expressiot-ie form of a Luttinger-model correlation function in the time

for (I(;Zl]' (L)et us define U= U,(+p)+(,o)a/4”‘_’0 and ¥ girection and the spatial direction parallel to the chains. The
=U(0)/U¥"(0). Having repulsive interactions requires cnain indices enter in the prefactors and in the exponents of
U=0, y=0. Furthermore, Eqs23) and (24) are well de-  the | uttinger-model correlation functions. In order to find the
fined and real only whery<1+1/U. In order to have Eq. |eading behavior of the correlation function for large times
(67) satisfied, there is a lower bound an which is easily  and distances, one must identify the term with the smallest
found by assumingy<1, and noting that for fixed decay exponent by minimizing the exponent with respect to
y, sintt&(n,) is maximal wherlJ —co, giving the chain separation. The leading exponents were found to
differ in form from the Luttinger model exponents due to the
1 2D nature of the problem. Specifically, the simple scaling
\/1_—72 relations valid for the Luttinger-model exponents were not
N ] valid for our model.
The condition(67) then requiresy> yin=2/6/5~0.9798. The fluctuations we considered werk:2charge-density
There is also ay-dependent lower bound dd. The lowest  wave and spin-density wavewave singlet superconductiv-
such bound is found numerically to occur at the parametejty, and triplet superconductivity. The condition of spin-
space boundary, fod~376, corresponding to=1+1/U  rotation invariance fixed the spin part of the correlation func-
~1.00266. Asy is decreased from this value towarglsi»,  tions, making only the charge part non-trivial. The CDW and
the lower bound orJ is found numerically to increase to- SDW correlation functions turned out to be degenerate, and
wards infinity. A lower boundU~376 corresponds to so did the SS and TS correlation functions. As for the Lut-
U, (0)a/mvo~1500, an extremely high value. We do not tinger model, the CDW/SDW fluctuations were dominant for
know how large the bare couplings must be in order to renoreffective repulsive interactions.
malize to such high effective values. It may be that inclusion One may ask whether our conclusion concerning the ab-
of scattering between orthogonal faces could reduce the egence of divergent superconducting fluctuations for repulsive
fective values needed, but that is not clear. In the region ointeractions holds for pairing imny symmetry channel. In
parameter space where E§7) is satisfied, we find thaty  view of the Kohn-Luttinger effect! one would expect to see
=2 minimizesd” ;(lo) if y<1 [the expressiori66) is then T=0 superconductivity in some, albeit possibly very high,
negativd, andly=c minimizesd” ,(lo) if y>1[Eq.(66)is  angular momentum channel. It may be that possible super-
then §. We do not have any physical explanation for why conductivity is either hiding in higher spin-triplet channels,
these particular values &f minimize the SS/TS exponent in or in higher singlet-channels, not considered in this paper.

—1]. (69)

1
sink? §p(ny)%§

each particular case. Since Og4r) is a local object, it does not containdgz_ 2
component, and consequently our results do not rule out the
IV. SUMMARY AND CONCLUDING DISCUSSION possibility of a superconductive instability in this channel.
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