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The ground-state properties of the symmetric periodic Anderson model in one dimension and at half filling
have been studied using the local mean-figlslF) method. We have calculated the ground-state energy, the
local f and conduction moment, the effective hybridization, the double occupancy, and the préjected
conduction density of states. The LMF results are in good agreement with Monte Carlo results and with
second-order perturbation theory in the fluctuations results, under the extreme conditions of the one dimen-
sionality. Thef- andc-projected density of states show that there is a smooth change in the partial density of
states with increasing, from those of an uncorrelated, hybridized system to those expected for a strongly
correlated system, in which the conduction band and ttates are decouple50163-182@9)08443-X]

[. INTRODUCTION et al. have applied the second-order perturbation theory in
the fluctuations around the mean-field result to the one-

In recent years there has been considerable interest in tlidmensional PAM at half-filling and found good agreement
behavior of heavy fermion systems from both thewith the Monte Carlo results More recently, Guerrero and
experimentdi and theoretic&lpoints of view. These systems Yu®® have used the density-matrix-renormalization-group
usually contain light rare-earth or actinide elements andDMRG) method” to calculate the charge gap, the spin gap,
show a variety of unusual properties. At high temperaturesand the quasiparticle gap for lattices as large as 24 sites.
they behave as metals with weakly interacting magnetic mo- In this paper we investigate the ground-state properties of
ments. As the temperature is lowered, heavy-fermion systhe one-dimensional symmetric nondegenarate PAM at half-
tems exhibit different kinds of ground states: antiferromag-illing in the local mean-field(LMF) approximation. Al-
netic, superconducting, spin-density waves, charge-densityhough fluctuation effects are expected to yield corrections to
waves, and Kondo stafeRecently, another class of heavy- the mean-field results, we expect that the qualitative nature
fermion systems has emerged, the heavy-fermiorof the mean-field state to be maintained and that the mean-
semiconductor8.The wide variety of ground states is asso-field treatment can reveal the basic properties of the system
ciated with the partial delocalization of thef 4or 5f elec-  throughout the entire parameter spéiceluding band filling
trons and the cooperative hybridization of thelectron ions and temperatujan contrast to other approaches, such as the
with the nonf-band electrons. Gutzwiller approximatiort, the large orbital I expansior,

The periodic Anderson modéPAM) is thought to de- and various perturbative approaches, each making a different
scribe the general behavior of heavy-fermions systems, anget of approximations, and thereby limiting their applicabil-
thus has been an object of great theoretical intéféstThe ity to small regions of the parameter space. The results of our
two-band PAM is a simplified parametric description of acalculations for the ground-state properties, i.e., the total en-
conduction band interacting with a periodic lattice of local- ergy, thef-magnetic moment, the effective hybridization, and
ized electron states. There is hybridization between the lothe f- andc-projected density of states will be compared with
calized and the extended band and there is a IGmalsite those of Monte CarldMC) and DMRG calculations under
electron-electron interaction between electrons that occupthe extreme conditions of the one dimensionality. The good
the spatially compadt states on the same site. A variety of agreement of our results with MC and DMRG results puts
approximate and perturbative techniques, such as thine LMF approximation on a firmer basis in two and three
Gutzwiller variational approachthe slave boson technigfie, dimensions, where only a few results are avail&bknd
and the large-orbital-degeneracyNléxpansioh have been other approaches may be limitéfdr example, there is sign
applied to the periodic Anderson model. Numerical studiegproblem in the Monte Carlo calculations away from half-
of finite PAM chains at half-filling(when the number of filling). Even though our approach is not an exact one, it has
electrons is twice the number of sifesmploying Lanczos the advantage that the method becomes simple enough to
diagonalization techniques for four-site chafrfsand Monte  generalize its application to the calculation of finite-
Carlo simulationg®!! for 16-site systems have provided temperature properties, it can be generalized to the case of
physical insight into the ground-state properties. Steinehigher-dimensional lattices, and it allows for the study of all
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regions in the parameter space. where
The paper is organized as follows. In Sec. Il we introduce

the one-dimensional Anderson lattice and introduce the LMF t c f

. X ; . : e Ho,=—t ! Ciy1,TH.C)+E - +E :
technique involving the functional integral approach within O Z (CigCi+1g c) cZ Nie fEi Niy
the static approximatiott~*® We will discuss how the elec-
tronic and magnetic behavior of a given magnetic structure T

4 . +V fi ci,+H.c.). 4

can be determined self-consistently by means of a Green’s- Z (fiaCio ) @
functions approach which uses a renormalized perturbatio .
expansion for the self-enerdy.In Sec. Ill we present and The many-body problem posed by Ed) is thus rgo%ucegl to
discuss our results for the ground-state properties, namel§t Self-consistency problem for the local potentigis ;|
the ground-state energy, the effective hybridization, théhrough the relations

double occupancy, the averagendc local moment, and the g :U<n_f ) )
conduction- andf-projected local density of states for the L1 Lo
symmetric PAM at half-filing. We compare also the LMF fo_ f

& =U(n;,), (6)

results with the Monte Carlo and the second-order perturba-
tion theory in the fluctuations mean-field results. We presentvhere the average number foélectrons with spinr at sitei
our conclusions in Sec. IV. is

E
Il. THE MODEL <”if,o>=J FpifYU(E)dE. @)

The Hamiltonian for the one-dimensional periodic Ander-

son Hamiltonian is Here,pifyg(E) is the localf partial density of states of spin

andEr is the Fermi energy.
The conductior(c)- andf-projected local density of states

H:_t% (C;r"ci”"JrH'C'HEC% nﬁﬁ&% iy p¢ (E) andp! (E) are evaluated from
¢ (E)= —(Um)Im(c,i|G(E)lc,i), 8
FU nfinf V2 (FlociptH.C). 0 Pio(B)= = (UmIm(c,i[Gy(B)lc.i) ®
| ’ Pif,a(E)Z—(1/77)|m(f,i|GU(E)|f,i), 9)

Here,tis the nearest-neighbor hopping matrix element foryhere|f,i), |c,i) are thef band andc band Wannier states

the conduction electronsy, (i) and ff, (fi,) create(an- o, sitei, respectively, and the Green’s functio,(E), is

nihilate) Wannier electrons ir- andf-like orbitals on site

with spin o, respectivelyE; andE,. are the energy levels of & (E)=(E—A )1, (10)

the bare localized state and the center of the conduction 7 7

band, respectivelyl) is the on-site Coulomb repulsion of the The diagonal matrix elements of ti&, (E)’s can be cal-

f electrons)V is the on-site hybridization matrix element be- culated using the Anderson’s renomalized perturbation ex-

tween the locaf orbitals and the conduction band, anfj, pantion(RPE method™® which in the case of the two-band
T ’

_ ot : . L )
=Ci,Ci, andn; ,=f;,f;, are the number operators for the pne-dimensional PAM are given in terms ok2 matrices

two bands, respectively. In this paper we use a simplccounting for thef and c bands. The diagonal matrix ele-
nearest-neighbor tight-binding model for the conduction-ments are given by

band dispersiong,= — 2t cosk; we choose our energy scale

so that the center of this unhybridized conduction band is at (E—E.—2Tji ) -V -1
zero E,=0). We also assume no dire&f hopping and Gii,o= -V (E—Ef—eifg d
purely on-site hybridization. _ _ '

We employ the static approximation introduced originaIyWhere the scattering matrik; . is calculated from the recur-
by Hubbard® in the study of his model, and developed fur- Fence relation
ther by Lacour-Gayet and Cyfdtand Economotet al.,'® _ 1
properly extended for the Anderson Hamiltonian. The static Tiz1o=UE= €= Tip) L. (12
approximation is a Hartree-Fock-type local mean-field one irtHere, T; ,,, €; ,, t, andE are 2<2 matrices given by
which the many-body term in Eql) is approximated as

(11)

T Tis O [ Ec Vv
uniin{| =€ nf;+ € nf — (L)€ €, 2 e\ 0o o) Get\v E+el )
wheree/, /| are the local effective potentials of tiiestate t 0 E 0
energy levels. Consequently, the original Hamiltonian splits t=(0 O)’ =(0 E)' (13
into two interdepending subsystems for the spand spin|
the form: the calculation of the andf partial density of states in Egs.
(8) and (9), which in turn requires an assumption pertaining
Hy=Ho,+ 2 Gif,gnif,g, 3) to the form of the spatial homogeneity of the ground state of
I

the system. In other words, an assumption about the various
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forms of periodicity in the values of the local potentials 0.0
{€, €|}, appropriate for the ground states of the PAM and

the magnetic orderingor absence of jtthat corresponds to

it.

The two most simple magnetically ordered states(gra -1.0
spatially homogeneousferromagnetig state, i.e., eif,(, g
=e,(o=1or]) for all lattice sites. In this case, the recur- %
rence relation turns into an equation fof; ,=T, of the u
form 20
tz(E_ Ef - E(r)
T EE e)EE-T)v2 19 N o
~0.0 05 1.0 1.5 2.0 25

which gives complex values fdr, for energiesE within the izt
lzands of the system and a corresponding imaginary part for £ 1 Normalized ground-state energ(U)/E(O) plotted
Gii +(E). versusU for the antiferromagnetic structure of the symmetric one-

(i) An antiferromagnetic state consisting of two interpen-dimensional PAM. The solid line is the results of the LMF method,
etrating sublattices- and —, with local effective potentials and the closed circles are the Monte Carlo res{isf. 10. Here,
eL= €. or ef,= €., depending if sitei occupies the{x}  t=0.5andV=0.375.
sublattice, respectively, ang=1 or |. Note that due to sym-
metry, el =€ ande/ =e; . The antiferromagnetic state is At half-filling (N=2) we find that the antiferromagnetic
found to be energetically favored at half-filling. In this case,State is the ground state of the system. The total magnetic
the recurrence relation yields the following system of equaiMomentu; on sitel Is
tions for T”,U:T; andT;; ,=T_ corresponding to the two

_ f c
sublattices: M= gt (20)
where thef andc contributions to the local moment are
T, =t[E-E.~T,~VHE-E—¢,) 1% (19 f Co
M= po({ni ) —(ni ), (22)
T,=tE-E.~T,-VAE-Ei—e€;) '1"% (16
‘ f p= po({nf ) =(nf ), (22)

which gives complex values fof, and T, for energies  regpectively, angl, is the Bohr magneton constant.

within the bands of the system and corresponding imaginary

part for G, ;;(E). The self-consistency scheme will then lIl. RESULTS AND DISCUSSION

yield values for thes; ,€, for spine=1 or |, which in turn

determines fully the antiferromagnetic state of the system.  Even though in this work we present numerical results for
For each magnetically ordered state the self-consistencipé symmetric one-dimensional two-band PAM at half-

iterative scheme proceeds as follows. One starts with pladilling, the LMF approach presented above can be used for

sible initial values for the local potentiald e’ , and calcu- ~ @rbitrary band filling, and thus it allows the study of i,

lates the Fermi energy for a given value of the number of¥: Ef) versusn phase diagram for the one-dimensional PAM.

electrons per sitéband filling, n, from The symmetric case corresponddto= — U/2. Although we
have examined a range of different parameters, most of the

Er results presented in this paper have been obtained With
n=J p(E)dE, (17)  =0.375 ande,= — 2t cosk) with t=0.5, in order to be able
to directly compare them with existing Monte Carlo
where the total density of states is results)® results using the second-order perturbation theory

in the fluctuations around the mean-fiéldnd DMRG[(Ref.
13)] results. All energies are in units ot.2
p(E)=>, [pf,(E)+pf,(E)]. (18 In Fig. 1 we show the LMF results for the normalized
v ground-state energ\g(U)/E(0), of the antiferromagnetic
. . PAM (solid line) as a function of the Coulomb interactith
Here, p,(E) and p,(E) are thef and c partial density of  A15 shown in Fig. 1 are the Monte Carlo resufi$\ote that
states calculated from Eq¢8) and (9), respectively. The o \ic results are also in excellent agreement with those of
average number dfelectrons W'th“f: Tfor | is determined  gygineret all? and the DMRG results The excellent agree-
from Eq.(7), and new values for the; , ¢, are obtained from  ment of the LMF results with previous calculations in the
Egs.(5) and(6). This procedure Is repeated until it convergesentirey range indicates that the MF approach yields accurate
to the self-consistent values ¢k; € }. The ground-state energetics. The LMF results smoothly crosses over from the
energy of a given magnetically ordered configuration is  smallU expansion limit regime to the lardg-limit where a
smallV expansion is valid. Asymptotically, one obtains an
energy of—U/2, which is the contribution to the energy of

B f f
EG_f Ep(B)IE-(W)<re, - 19" the atomic level aE;.
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/2t
045 = T oo 50 70 0200 FIG. 3. Hybridization matrix elemen¥(U)=(fI c;,+c/ f;,)
w2t normalized to itsU=0 value,V(0), as afunction of U for the

antiferromagnetic state for the same parameters as in Fig. 1. The
solid line is the results of the LMF method and the closed circles
are the Monte Carlo results.

FIG. 2. On-site square of thtmagnetic moment{m?), as a
function of U for the antiferromagnetic Anderson mod#ft and
lower scal¢. The solid lines are the results of the LMF method, and

the closed circles are the Monte Carlo resRef. 10. Here,t _ " .
—0.5 andV=0.375. Also shown is the double occupanBy For V/2t=0.1 the critical value ol for the antiferromag-

=(n{nT) for the antiferromagnetic state as a functionlt, for ~ Netic to paramagnetic transition decreases, Brdecreases
V/2t=0.1 and 0.37Fright and upper scale more rapidly withU.

In the presence obJ, the effective hybridization is re-
duced as a result of the Coulomb correlations. Blankenbecler
et al. examineéio a normalized effective hybridization de-
f|ned by (f] ci,+cl fiM(f ciotcl fi)o, where(f] ¢,

,Uf,(,>o is the hybridization wherJ=0. This effective

<mf) <(nT i)2> 1— 2<”Tn1> (23 hybridization is a measure of thef charge fluctuations and
can be directly obtained from the ground-state endigyy
the Feynman-Hellman relation
with Monte Carlo result$® In the LMF approach, charge and

spin fluctuations are ignored, and”an (n¢p)(n¢)). The (f] cigtch f,) =2 0Eq/ OV. (24)
square of the LMAF moment(m?), is plotted versus)/2t in 7

Fig. 2 and compared with the Monte Carlo resujIEft and  The LMF results(solid line for the normalized effective
lower scalé. ForU=0, (n;)=(n¢ ) =3, and(mf)=3. For  pybridization is plotted versusl in Fig. 3 and compared to
large U, the double occupancy is reduced by the COUIOmtthe Monte Carlo resultgclosed circles The effective hy-
repulsion and'mf) approaches unity, implying that the in- pridization decreases s increases resulting in the forma-
stantaneous occupation of the spin-up orbital is strongly cortion of local moments on theorbitals. The LMF results are
related with that of the spin-down orbital. The agreementn good agreement with those of the Monte Carlo calcula-
between the MF and the Monte Carlo results is very good fotions, being consistently underestimated by about 10% to
U/2t=1 (t=0.5). Note, that as expected, for smadlvalues  20%.

U/2t<0.6 the LMF approach gives a paramagnetic solution The localf momentu; and the conduction-electron mo-
and the(m?)=1/2 is constant. HerdJ, is the critical value mentu, are plotted versut) for V=0.375 and 0.1 in Figs.

of the Coulomb interaction for the onset of long-range anti-4(a) and 4b), respectively. FotJ<U_, the localf moment
ferromagnetic order, which decreases\aslecreases. Both u; vanishegparamagnetic statendu;— 1 for largeU. The

the LMF approach and the approach based on second-ordigirduced conduction-electron momeug is small(~0.1) and
perturbation theory in the fluctuations around the mean-fields aligned antiferromagnetically with the lodamoment. As
result? understlmate(mf> in the intermediate-coupling re- the hybridization decreases the lo€atoment approaches its
gime. A measure of the effect of correlations is the numbesaturation value at a smallervalue, due to the enhancement
of double occupled sitesD = (nTnQ In the MF approach of the Ruderman-Kittel-Kasuya-YosiddRKKY) exchange
D=(n{)(n). Also shown in Fig. 2 is the number of doubly interaction(J==V?/(ex—E)]), which is responsible for
occupied sites as a function bf for two different values of the long-range antiferromagnetic ordering.

hybridization V/2t=0.375 and 0.1(right and upper scale In Figs. §a) and §b) we plot thec- andf-projected LMF

As expected, the double occupancy decreases with increasifgnsity of states, respectively, for the antiferromagnetic state
U, indicating the increase in localization of thieelectrons for different values otJ/2t of 0, 2, and 4. Note, the different
(D=0.25 for the uncorrelated case &f=0). For V/2t  energy scale for the- andf-projected density of states. For
=0.375 and for small values &f (U<U.=0.6) the system U=0, the upper and lower bands of the paramagnetic quasi-
is in the paramagnetic phase and the double occupancy Rarticle density of states are separated by the indirect gap
constant(0.25. As the hybridization decreases the double

occupancy decreases and hence the lbeaiment increases. Eg=2[(t?+V?3)12-t]. (25)

As a further corroboration of the validity of our approach,
we compare our results for the square of the Idgabment,
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10 One major set of roots is the nearly dispersionless and pre-
0.8 {r- . dominantlyf type of roots near th&;= = U/2. These corre-
, 08 ] spond to the atomic satellites of tfié—f? and f*—f° ex-
¥ oa ] citations. Another major set of roots have predominantly
oz ] c_haracter and a di_spersion very close{.oos.k), the disper-
o'o sion of the mean-field bands. An examination of thandc-

projected density of states with increasidghows that there
is a smooth change in the partial density of states from those
of an uncorrelated, hybridized system to those expected for a
om b | strongly correlated system, in which the conduction band and
the f states are decoupled, in agreement with the results of
030 . . . . Steineret alX? This decoupling of thé states from the con-
00 10 20 et 30 40 50 duction band can be measured more quantitatively by a re-
duction in the effective hybridization between thend c
FIG. 4. (@) The localf momentu, and (b) the conduction- ~States, in Fig. 3.

electron momeng for the antiferromagnetic state verdu#?t, for
V/2t=0.1 and 0.375. IV. CONCLUSIONS

In this paper we have studied the ground-state properties
For the symmetric case studied here, the lhaneergy scales of the one-dimensional symmetricE(=—U/2) periodic
with U(E;=—U/2) so that all the symmetric case results Anderson model at half-filling using the local mean-field ap-
presented as a function &f are for systems with different proach. We find that at half-filling the ground state is anti-
values ofE; as well. For smalU, we expect the interacting ferromagnetic. The results for the total energy, the on-site
lattice system to exhibit characteristics similar to this nonin-square of thd-magnetic moment, and the effective hybrid-
teracting limit. For the symmetric half-filled case consideredization are in good agreement with Monte Carlo resfiasnd
in this work the Fermi energy is located in the middle of theresults using the second-order perturbation theory in the
gap (e=0), and the system is an antiferromagnetic insulatorfluctuations:* As expected with any mean-field treatment,

we find a critical value oJ below which the state is para-

(a) (b) magnetic. Thd- and c-projected density of states show that

4,0 pRdosteon 2.0 080l etscen there is a smooth change in the partial density of states with

30 | . 15} . increasingy, from those of an uncorrelated, hybridized sys-

20| ] 10l ] tem to those expected for a strongly correlated system, in

1ol J ] 05 which the conduction band and tfistates are decoupled.

00 00 Eventhough the LMF approach is not an exact one, it has

40 o : 20 5 the advantage that the method becomes simple enough to

a0l | 15l ] generalize its application to the calculation of finite-
Tool | | 310 ) temperature properties, it can be generalized to the case of
= 10l U ] = o5 | k“] | higher-dimensional lattices, where only a few results are

00 | 0.0' (| | available, and it allows for the study of all regions in the

40 o , . 20 N parameter space. Future calculations will be aimed at study-

30 - l 156 ] ing the ground-state properties of the one-dimensional PAM

a0 | ] 1ol 1 | when varying the poistion of thélevel E; and the band

1ol k“fj \ 05 | filling, thus constructing the phase diagram.
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