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Antiferromagnetism of the half-filled Anderson lattice in one dimension
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The ground-state properties of the symmetric periodic Anderson model in one dimension and at half filling
have been studied using the local mean-field~LMF! method. We have calculated the ground-state energy, the
local f and conduction moment, the effective hybridization, the double occupancy, and the projectedf and
conduction density of states. The LMF results are in good agreement with Monte Carlo results and with
second-order perturbation theory in the fluctuations results, under the extreme conditions of the one dimen-
sionality. Thef- andc-projected density of states show that there is a smooth change in the partial density of
states with increasingU, from those of an uncorrelated, hybridized system to those expected for a strongly
correlated system, in which the conduction band and thef states are decoupled.@S0163-1829~99!08443-X#
t
he
s
n

re
o

y
g
s

y-
io
o-

a

a
al-

l

up
of
t

,

ie

d
ne

in
ne-
nt

up
p,
.
s of
alf-

s to
ture
an-
tem

the

rent
il-
our
en-

nd
ith
r
od

uts
ee

lf-
has
h to
e-
e of
all
I. INTRODUCTION

In recent years there has been considerable interest in
behavior of heavy fermion systems from both t
experimental1 and theoretical2 points of view. These system
usually contain light rare-earth or actinide elements a
show a variety of unusual properties. At high temperatu
they behave as metals with weakly interacting magnetic m
ments. As the temperature is lowered, heavy-fermion s
tems exhibit different kinds of ground states: antiferroma
netic, superconducting, spin-density waves, charge-den
waves, and Kondo state.3 Recently, another class of heav
fermion systems has emerged, the heavy-ferm
semiconductors.4 The wide variety of ground states is ass
ciated with the partial delocalization of the 4f or 5f elec-
trons and the cooperative hybridization of thef-electron ions
with the non-f-band electrons.

The periodic Anderson model~PAM! is thought to de-
scribe the general behavior of heavy-fermions systems,
thus has been an object of great theoretical interest.5–13 The
two-band PAM is a simplified parametric description of
conduction band interacting with a periodic lattice of loc
ized electron states. There is hybridization between the
calized and the extended band and there is a local~on-site!
electron-electron interaction between electrons that occ
the spatially compactf states on the same site. A variety
approximate and perturbative techniques, such as
Gutzwiller variational approach,5 the slave boson technique6

and the large-orbital-degeneracy 1/N expansion7 have been
applied to the periodic Anderson model. Numerical stud
of finite PAM chains at half-filling~when the number of
electrons is twice the number of sites! employing Lanczos
diagonalization techniques for four-site chains,8,9 and Monte
Carlo simulations,10,11 for 16-site systems have provide
physical insight into the ground-state properties. Stei
PRB 600163-1829/99/60~19!/13355~6!/$15.00
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et al. have applied the second-order perturbation theory
the fluctuations around the mean-field result to the o
dimensional PAM at half-filling and found good agreeme
with the Monte Carlo results.12 More recently, Guerrero and
Yu13 have used the density-matrix-renormalization-gro
~DMRG! method14 to calculate the charge gap, the spin ga
and the quasiparticle gap for lattices as large as 24 sites

In this paper we investigate the ground-state propertie
the one-dimensional symmetric nondegenarate PAM at h
filling in the local mean-field~LMF! approximation. Al-
though fluctuation effects are expected to yield correction
the mean-field results, we expect that the qualitative na
of the mean-field state to be maintained and that the me
field treatment can reveal the basic properties of the sys
throughout the entire parameter space~including band filling
and temperature! in contrast to other approaches, such as
Gutzwiller approximation,5 the large orbital 1/N expansion,7

and various perturbative approaches, each making a diffe
set of approximations, and thereby limiting their applicab
ity to small regions of the parameter space. The results of
calculations for the ground-state properties, i.e., the total
ergy, thef-magnetic moment, the effective hybridization, a
the f- andc-projected density of states will be compared w
those of Monte Carlo~MC! and DMRG calculations unde
the extreme conditions of the one dimensionality. The go
agreement of our results with MC and DMRG results p
the LMF approximation on a firmer basis in two and thr
dimensions, where only a few results are available15 and
other approaches may be limited~for example, there is asign
problem in the Monte Carlo calculations away from ha
filling !. Even though our approach is not an exact one, it
the advantage that the method becomes simple enoug
generalize its application to the calculation of finit
temperature properties, it can be generalized to the cas
higher-dimensional lattices, and it allows for the study of
13 355 ©1999 The American Physical Society



c
M
in

-
ur
n
tio

e
th

e
F
rb
e

r

fo

f
on
e
e-

e
p
n

le
s

ly
r-

ti
i

lit

s

ex-
d

-

-

.
ng

of
ious

13 356 PRB 60PAPATRIANTAFILLOU, KIOUSSIS, AND PARK
regions in the parameter space.
The paper is organized as follows. In Sec. II we introdu

the one-dimensional Anderson lattice and introduce the L
technique involving the functional integral approach with
the static approximation.16–18 We will discuss how the elec
tronic and magnetic behavior of a given magnetic struct
can be determined self-consistently by means of a Gree
functions approach which uses a renormalized perturba
expansion for the self-energy.19 In Sec. III we present and
discuss our results for the ground-state properties, nam
the ground-state energy, the effective hybridization,
double occupancy, the averagef andc local moment, and the
conduction- andf-projected local density of states for th
symmetric PAM at half-filling. We compare also the LM
results with the Monte Carlo and the second-order pertu
tion theory in the fluctuations mean-field results. We pres
our conclusions in Sec. IV.

II. THE MODEL

The Hamiltonian for the one-dimensional periodic Ande
son Hamiltonian is

H52t(
is

~cis
† ci 11s1H.c.!1Ec(

is
nis

c 1Ef(
is

nis
f

1U(
i

ni↑
f ni↓

f 1V(
is

~ f is
† cis1H.c.!. ~1!

Here,t is the nearest-neighbor hopping matrix element
the conduction electrons,cis

† (cis) and f is
† ( f is) create~an-

nihilate! Wannier electrons inc- and f-like orbitals on sitei
with spins, respectively,Ef andEc are the energy levels o
the bare localizedf state and the center of the conducti
band, respectively,U is the on-site Coulomb repulsion of th
f electrons,V is the on-site hybridization matrix element b
tween the localf orbitals and the conduction band, andnis

c

[cis
† cis and ni ,s

f [ f is
† f is are the number operators for th

two bands, respectively. In this paper we use a sim
nearest-neighbor tight-binding model for the conductio
band dispersion,ek522t cosk; we choose our energy sca
so that the center of this unhybridized conduction band i
zero (Ec50). We also assume no directf-f hopping and
purely on-site hybridization.

We employ the static approximation introduced origina
by Hubbard16 in the study of his model, and developed fu
ther by Lacour-Gayet and Cyrot17 and Economouet al.,18

properly extended for the Anderson Hamiltonian. The sta
approximation is a Hartree-Fock-type local mean-field one
which the many-body term in Eq.~1! is approximated as

Uni↑
f ni↓

f .e i↑
f ni↑

f 1e i↓
f ni↓

f 2~1/U !e i↑
f e i↓

f , ~2!

wheree i↑
f ,e i↓

f are the local effective potentials of thef-state
energy levels. Consequently, the original Hamiltonian sp
into two interdepending subsystems for the spin↑ and spin↓
electrons, described by the one-electron HamiltonianHs of
the form:

Hs5H0,s1(
i

e i ,s
f ni ,s

f , ~3!
e
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where

H0,s52t(
i

~cis
† ci 11s1H.c.!1Ec(

i
nis

c 1Ef(
i

nis
f

1V(
i

~ f is
† cis1H.c.!. ~4!

The many-body problem posed by Eq.~1! is thus reduced to
a self-consistency problem for the local potentialse i ,↑

f ,e i ,↓
f

through the relations

e i ,↑
f 5U^ni ,↓

f &, ~5!

e i ,↓
f 5U^ni ,↑

f &, ~6!

where the average number off electrons with spins at sitei
is

^ni ,s
f &5EEF

r i ,s
f ~E!dE. ~7!

Here,r i ,s
f (E) is the localf partial density of states of spins,

andEF is the Fermi energy.
The conduction~c!- andf-projected local density of state

r i ,s
c (E) andr i ,s

f (E) are evaluated from

r i ,s
c ~E!52~1/p!Im^c,i uĜs~E!uc,i &, ~8!

r i ,s
f ~E!52~1/p!Im^ f ,i uĜs~E!u f ,i &, ~9!

whereu f ,i &, uc,i & are thef band andc band Wannier states
on sitei, respectively, and the Green’s functions,Ĝs(E), is

Ĝs~E!5~E2Ĥs!21. ~10!

The diagonal matrix elements of theĜs(E)’s can be cal-
culated using the Anderson’s renomalized perturbation
pantion~RPE! method,19 which in the case of the two-ban
one-dimensional PAM are given in terms of 232 matrices
accounting for thef and c bands. The diagonal matrix ele
ments are given by

Gii ,s5U~E2Ec22Tii ,s!

2V
2V

~E2Ef2e i ,s
f !U

21

, ~11!

where the scattering matrixT i ,s is calculated from the recur
rence relation

T i 61,s5t~E2e i,s2T i ,s!21t. ~12!

Here,T i ,s , e i,s , t, andE are 232 matrices given by

T i ,s5S Tii ,s

0
0
0D , e i,s5S Ec

V
V

Ef1ei ,s
f D ,

t5S t
0

0
0D , E5S E

0
0
ED . ~13!

The self-consistency scheme in Eqs.~5! and ~6! involves
the calculation of thec and f partial density of states in Eqs
~8! and ~9!, which in turn requires an assumption pertaini
to the form of the spatial homogeneity of the ground state
the system. In other words, an assumption about the var
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forms of periodicity in the values of the local potentia
$e i↑

f ,e i↓
f %, appropriate for the ground states of the PAM a

the magnetic ordering~or absence of it! that corresponds to
it.

The two most simple magnetically ordered states are~i! a
spatially homogeneous~ferromagnetic! state, i.e., e i ,s

f

5es(s5↑ or↓) for all lattice sitesi. In this case, the recur
rence relation turns into an equation forTii ,s5Ts of the
form

Ts5
t2~E2Ef2es!

~E2Ef2es!~E2Ec2Ts!2V2 , ~14!

which gives complex values forTs for energiesE within the
bands of the system and a corresponding imaginary par
Ĝii ,s(E).

~ii ! An antiferromagnetic state consisting of two interpe
etrating sublattices1 and 2, with local effective potentials
es

f 5es
1 or es

f 5es
2 , depending if sitei occupies the$6%

sublattice, respectively, ands5↑ or ↓. Note that due to sym-
metry, e↑

15e↓
2 ande↓

15e↑
2 . The antiferromagnetic state i

found to be energetically favored at half-filling. In this cas
the recurrence relation yields the following system of eq
tions for Tii ,s5Ts

1 andTii ,s5Ts
2 corresponding to the two

sublattices:

Ts
15t2@E2Ec2Ts

22V2~E2Ef2es
2!21#21, ~15!

Ts
25t2@E2Ec2Ts

12V2~E2Ef2es
1!21#21, ~16!

which gives complex values forTs
1 and Ts

2 for energies
within the bands of the system and corresponding imagin
part for Ĝs,i i (E). The self-consistency scheme will the
yield values for thees

1 ,es
2 for spins5↑ or ↓, which in turn

determines fully the antiferromagnetic state of the system
For each magnetically ordered state the self-consiste

iterative scheme proceeds as follows. One starts with p
sible initial values for the local potentialse↑

f ,e↓
f , and calcu-

lates the Fermi energy for a given value of the number
electrons per site~band filling!, n, from

n5EEF
r~E!dE, ~17!

where the total density of states is

r~E!5(
s

@rs
f ~E!1rs

c ~E!#. ~18!

Here, rs
f (E) and rs

c (E) are thef and c partial density of
states calculated from Eqs.~8! and ~9!, respectively. The
average number off electrons withs5↑ or ↓ is determined
from Eq.~7!, and new values for thee↑

f ,e↓
f are obtained from

Eqs.~5! and~6!. This procedure is repeated until it converg
to the self-consistent values of$e↑

f ,e↓
f %. The ground-state

energy of a given magnetically ordered configuration is

EG5EEF
Er~E!dE2~1/U !e↑

f e↓
f . ~19!
or

-

,
-

ry

cy
u-

f

At half-filling ( N52) we find that the antiferromagneti
state is the ground state of the system. The total magn
momentm i on sitei is

m i5m i
f1m i

c , ~20!

where thef andc contributions to the local moment are

m i
f5m0~^ni ,↑

f &2^ni ,↓
f &!, ~21!

m i
c5m0~^ni ,↑

c &2^ni ,↓
c &!, ~22!

respectively, andm0 is the Bohr magneton constant.

III. RESULTS AND DISCUSSION

Even though in this work we present numerical results
the symmetric one-dimensional two-band PAM at ha
filling, the LMF approach presented above can be used
arbitrary band filling, and thus it allows the study of the~U,
V, Ef! versusn phase diagram for the one-dimensional PAM
The symmetric case corresponds toEf52U/2. Although we
have examined a range of different parameters, most of
results presented in this paper have been obtained withV/t
50.375 andek522t cos(k) with t50.5, in order to be able
to directly compare them with existing Monte Car
results,10 results using the second-order perturbation the
in the fluctuations around the mean-field12 and DMRG@~Ref.
13!# results. All energies are in units of 2t.

In Fig. 1 we show the LMF results for the normalize
ground-state energy,E(U)/E(0), of the antiferromagnetic
PAM ~solid line! as a function of the Coulomb interactionU.
Also shown in Fig. 1 are the Monte Carlo results.10 Note that
the MC results are also in excellent agreement with those
Steineret al.12 and the DMRG results.13 The excellent agree
ment of the LMF results with previous calculations in th
entireU range indicates that the MF approach yields accur
energetics. The LMF results smoothly crosses over from
small-U expansion limit regime to the large-U limit where a
small-V expansion is valid. Asymptotically, one obtains a
energy of2U/2, which is the contribution to the energy o
the atomic level atEf .

FIG. 1. Normalized ground-state energyE(U)/E(O) plotted
versusU for the antiferromagnetic structure of the symmetric on
dimensional PAM. The solid line is the results of the LMF metho
and the closed circles are the Monte Carlo results~Ref. 10!. Here,
t50.5 andV50.375.
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As a further corroboration of the validity of our approac
we compare our results for the square of the localf moment,

^mf
2&5^~n↑

f 2n↓
f !2&5122^n↑

f n↓
f &, ~23!

with Monte Carlo results.10 In the LMF approach, charge an
spin fluctuations are ignored, and^nf↑nf↓&5^nf↑&^nf↓&. The
square of the LMFf moment,̂ mf

2&, is plotted versusU/2t in
Fig. 2 and compared with the Monte Carlo results~left and
lower scale!. For U50, ^nf↑&5^nf↓&5 1

2 , and^mf
2&5 1

2 . For
large U, the double occupancy is reduced by the Coulo
repulsion and̂ mf

2& approaches unity, implying that the in
stantaneous occupation of the spin-up orbital is strongly c
related with that of the spin-down orbital. The agreem
between the MF and the Monte Carlo results is very good
U/2t>1 (t50.5). Note, that as expected, for smallU values
U/2t<0.6 the LMF approach gives a paramagnetic solut
and the^mf

2&51/2 is constant. Here,Uc is the critical value
of the Coulomb interaction for the onset of long-range an
ferromagnetic order, which decreases asV decreases. Both
the LMF approach and the approach based on second-o
perturbation theory in the fluctuations around the mean-fi
result12 understimatê mf

2& in the intermediate-coupling re
gime. A measure of the effect of correlations is the num
of double occupiedf sitesD5^n↑

f n↓
f &. In the MF approach

D5^n↑
f &^n↓

f &. Also shown in Fig. 2 is the number of doub
occupied sites as a function ofU, for two different values of
hybridization V/2t50.375 and 0.1~right and upper scale!.
As expected, the double occupancy decreases with increa
U, indicating the increase in localization of thef electrons
(D50.25 for the uncorrelated case ofU50!. For V/2t
50.375 and for small values ofU (U,Uc50.6) the system
is in the paramagnetic phase and the double occupanc
constant~0.25!. As the hybridization decreases the doub
occupancy decreases and hence the localf moment increases

FIG. 2. On-site square of thef magnetic moment,̂mf
2&, as a

function of U for the antiferromagnetic Anderson model~left and
lower scale!. The solid lines are the results of the LMF method, a
the closed circles are the Monte Carlo results~Ref. 10!. Here, t
50.5 and V50.375. Also shown is the double occupancyD
5^n↑

f n↓
f & for the antiferromagnetic state as a function ofU/2t, for

V/2t50.1 and 0.375~right and upper scale!.
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For V/2t50.1 the critical value ofU for the antiferromag-
netic to paramagnetic transition decreases, andD decreases
more rapidly withU.

In the presence ofU, the effective hybridization is re-
duced as a result of the Coulomb correlations. Blankenbe
et al. examined10 a normalized effective hybridization, de
fined by ^ f is

† cis1cis
† f is&/^ f is

† cis1cis
† f is&0 , where ^ f is

† cis

1cis
† f is&0 is the hybridization whenU50. This effective

hybridization is a measure of thec-f charge fluctuations and
can be directly obtained from the ground-state energyE0 by
the Feynman-Hellman relation

^ f is
† cis1cis

† f is&5 1
2 qE0 /qV. ~24!

The LMF results~solid line! for the normalized effective
hybridization is plotted versusU in Fig. 3 and compared to
the Monte Carlo results~closed circles!. The effective hy-
bridization decreases asU increases resulting in the forma
tion of local moments on thef orbitals. The LMF results are
in good agreement with those of the Monte Carlo calcu
tions, being consistently underestimated by about 10%
20%.

The local f momentm f and the conduction-electron mo
mentmc are plotted versusU for V50.375 and 0.1 in Figs.
4~a! and 4~b!, respectively. ForU,Uc , the localf moment
m f vanishes~paramagnetic state! andm f→1 for largeU. The
induced conduction-electron momentmc is small~;0.1! and
is aligned antiferromagnetically with the localf moment. As
the hybridization decreases the localf moment approaches it
saturation value at a smallerU value, due to the enhanceme
of the Ruderman-Kittel-Kasuya-Yosida~RKKY ! exchange
interaction„J5(kW@V2/(ek2Ef)#…, which is responsible for
the long-range antiferromagnetic ordering.

In Figs. 5~a! and 5~b! we plot thec- andf-projected LMF
density of states, respectively, for the antiferromagnetic s
for different values ofU/2t of 0, 2, and 4. Note, the differen
energy scale for thec- and f-projected density of states. Fo
U50, the upper and lower bands of the paramagnetic qu
particle density of states are separated by the indirect ga

Eg52@~ t21V2!1/22t#. ~25!

FIG. 3. Hybridization matrix elementV(U)5^ f is
† cis1cis

† f is&
normalized to itsU50 value, V(0), as afunction of U for the
antiferromagnetic state for the same parameters as in Fig. 1.
solid line is the results of the LMF method and the closed circ
are the Monte Carlo results.
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For the symmetric case studied here, the baref energy scales
with U(Ef52U/2) so that all the symmetric case resu
presented as a function ofU are for systems with differen
values ofEf as well. For smallU, we expect the interacting
lattice system to exhibit characteristics similar to this non
teracting limit. For the symmetric half-filled case consider
in this work the Fermi energy is located in the middle of t
gap (e50), and the system is an antiferromagnetic insula

FIG. 4. ~a! The local f moment m f and ~b! the conduction-
electron momentmc for the antiferromagnetic state versusU/2t, for
V/2t50.1 and 0.375.

FIG. 5. ~a! The conduction- and~b! the f-projected local density
of states for the antiferromagnetic state forU/2t50, 2, and 4. Here,
t50.5 andV/2t50.375. The chemical potential is located ate50.
hy

W

D

-
d

r.

One major set of roots is the nearly dispersionless and
dominantlyf type of roots near theEf56U/2. These corre-
spond to the atomic satellites of thef 1→ f 2 and f 1→ f 0 ex-
citations. Another major set of roots have predominantlyc
character and a dispersion very close to2cos(k), the disper-
sion of the mean-field bands. An examination of thef- andc-
projected density of states with increasingU shows that there
is a smooth change in the partial density of states from th
of an uncorrelated, hybridized system to those expected f
strongly correlated system, in which the conduction band
the f states are decoupled, in agreement with the result
Steineret al.12 This decoupling of thef states from the con-
duction band can be measured more quantitatively by a
duction in the effective hybridization between thef and c
states, in Fig. 3.

IV. CONCLUSIONS

In this paper we have studied the ground-state proper
of the one-dimensional symmetric (Ef52U/2) periodic
Anderson model at half-filling using the local mean-field a
proach. We find that at half-filling the ground state is an
ferromagnetic. The results for the total energy, the on-
square of thef-magnetic moment, and the effective hybri
ization are in good agreement with Monte Carlo results10 and
results using the second-order perturbation theory in
fluctuations.12 As expected with any mean-field treatmen
we find a critical value ofU below which the state is para
magnetic. Thef- andc-projected density of states show th
there is a smooth change in the partial density of states w
increasingU, from those of an uncorrelated, hybridized sy
tem to those expected for a strongly correlated system
which the conduction band and thef states are decoupled.

Eventhough the LMF approach is not an exact one, it
the advantage that the method becomes simple enoug
generalize its application to the calculation of finit
temperature properties, it can be generalized to the cas
higher-dimensional lattices, where only a few results
available, and it allows for the study of all regions in th
parameter space. Future calculations will be aimed at stu
ing the ground-state properties of the one-dimensional P
when varying the poistion of thef-level Ef and the band
filling, thus constructing the phase diagram.
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