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Electron transport through a double-quantum-dot structure with intradot
and interdot Coulomb interactions
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Electron transport through a double-quantum-dot structure with intradot and interdot Coulomb interactions is
studied by a Green'’s functiofGF) approach. The conductance is calculated by a Landautik&uformula
for the interacting systems derived using the nonequilibrium Keldysh formalism and the GF’s are solved by the
equation-of-motion method. It is shown that the interdot-coupling dependence of the conductance peak split-
ting matches the recent experimental observations. Also, the breaking of the electron-hole symmetry is nu-
merically demonstrated by the presence of the interdot repulggfi163-1829)01640-9

Advances in nanotechnologies have made it feasible tavith
fabricate quantum-dotQD) structures with electronic con-
finement approaching atomic dimensions. Because the Cou-
lomb repulsion within the dot is important, it is suggestéd
that the tunneling through the QD and the main correlation
effects associated with the QD can be appropriately de-
scribed by the Anderson model. Recently, transport proper- +UAnATnAi+UBnBTnBi+VAB§, NacNeor,  (2)
ties of the double QD structures have received much atten-
tion, both experimentalRf and theoretically=° As a direct
extension of the single-dot system, the double QD structure Hi=TL X (Ch,CaotH.C)+ TR (cl,Cp,+H.C),  (3)
consists of two coupled QD’s, of which each dot is con- 7 7
nected to a lead by a tunnel barrier. The experimentahnd
measurementsdemonstrated that as the interdot coupling
increases, the conductance peaks are split into two peaks B + +
each and the peak splitting increases with the interdot cou- HO_% [£iCiCiotti(CiyCi-1TH.C]
pling. Very recently, Oosterkamet alX° and Blick et al? '
performed experimental measurements on the true tunnel + t
splitting of the double QD and explicitly demonstrated the +j§; [£1CjoCio Tt (CjoCr1otHCI].  (4)
formation of artificial molecular states in the strong interdot '
coupling regime. In the theoretical aspect, the many-bodyHere, Hy is the Hamiltonian of an isolated double QD, in
eigenstates are calculated by direct diagonalization of thehich na, (ng,) is the number operator for electrons with
Hamiltonian for the isolated double QD and the effect of thespin o in dot A (B). The termUana;na; (Ugngng)) in
leads is incorporated through a rate equafib®ecause the Eq. (2) characterizes the effect of Coulomb interaction be-
leads are neglected in calculating the many-body eigenstatéseen two electrons of different spins in dd{B), while the
of the double QD structure, this approach, as noted in Ref. Aast term in Eq.(2) characterizes the effect of interdot Cou-
is valid only when the lead coupling is small enough. lomb interaction. In the double-QD structuk¢, andUg are

In the present paper, we study the transport properties dfpically much larger than the interdot repulsigpg and the
the double QD structure by employing an Anderson-typetransfer integral$T, |, | Tg|, and|Tag|. The HamiltonianH;
model that includes both intradot and interdot Coulomb in-describes the transfers of electrons between the left lead and
teractions. In contrast with previous work8 our approach dot A, and between the right lead and dot B. Equaiién
takes the lead coupling into account and treats the totgjives the Hamiltonian of the left and right leads, whege
Hamiltonian as a whole in calculating the spectral properties=¢, for i=a« (the rightmost site of the left leadand ;
of the double QD system. The conductance is calculated by & ¢, for sitesi=—1,-2,—3,...,while g;=¢ 4 for j= 3 (the
Landauer-Bttiker formula for the interacting systems, which leftmost site of the right leadand &;=¢, for sites j
is derived using the nonequilibrium Keldysh formalism. The=123....
causal Green'’s function&F’s) used in the calculations are  Following Caroli et al.}?> by means of the Keldysh

— T T T
H d— 2 [ EACA(rCArr+ EBCB(rCBrr+ TAB( CA(rCB(r+ HC)]
o

solved by the eq_uation-of-mot'ion method. . formalisnt® for nonequilibrium systems, the total current
The Hamiltonian we study is an Anderson-type model inthrough the double QD can be expressed as the sum of elas-
the tight-binding representation: tic and inelastic contributions. In the linear-response regime,

it can be derived that the total conductance is given by
H=Hq+H+Ho, oY) G=Gert Ginel
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t2
ge|— E f [ }Te(E) t{=ﬁ, el =g +2t, gj'=8j+ti’, (11
i
o2 25(E) with i=I for j=« andi=r for j=p, while ga,(Z) and
Ginet=1r > f dE[ }T“E'(E) (5)  9es(Z) are given by
Here,Ge andG,.¢ involve the elastic and inelastic processes, 9ac(Z)= g(o)(Z)+ gg13(2)+g(2)(2)
f(E) is the Fermi-Dirac distribution, an@®(E) and7"®(E)
are Un @
+ —UQAU(Z) (12)
T(E) =47 TETR|G e, (E)*pao(E)pso(E),
inel 2 7 )7 + Vea L7y +9@) (7
T E)=47T2p 4o (E)[|Glan,(E)|H = IM(Z pp)} I8s(Z) =9g(Z) gB,,( )+ 9Es(2)
+|GABU(E)|2{_Im(EBo’)}]’ (6) 3
y +5— gsA2) |. (13
wherep,,(E) and pg,(E) are the local densities of states z E —Usg
(LDOS'’s) on sitesa and B in the isolated left and right In Eq. (12, o9 (2), i=0,1,2,
leads, and5), 5, (E) andGlyg,(E) are Fourier transforms of N Eq. (12), 9a5(2), 1=0, and 3, are given by
the retarded GF's 1—(n n
(0)(2) < A;> < A;> . (14)
i T Z—E, Z—E,—U,
Gans(h)=— 7 O(){{Cas(t),Can(0)}),
(7) g(l)(z): (1_<nA;>)<nB(r>
A Z—Ea—Vag(1+(ng,))
Ghgo (D)= 9(t) Cao(1),C5,(0) _
AB <{ A . }> <nA(r><nB(r> (15)
Alternatively, the total conductand®) can be rewritten as Z—Ep—Up—Vag(1+(ng;))’
(1=(Nag)){Ney)
8 (2) 7)=
2 f ( ] o(E), ® 9ol 2) Z—Ep—Vag(1+(ng,))
with 7,(E)=T°(E)+7 "(E). Apparently, it is a N (Nag)(Nes) 16
Landauer-Bttiker-type formuld* generalized to the interact- Z—Ep—Up—Vag(1+(ng,))’
ing systems.
The causal GF's given in Ed6) are here solved by the 3) 7 (Nag){Ngy)
equation-of-motion techniqu&:*® Employing a decoupling Oas(Z)= 7 Er—Up—Vag( 11 ()
procedure similar to that for the Hubbard modelye obtain A TATAB Bo
the explicit expressions faB ,,(E) andGjg,(E) (Nag){(Ngg) an
+ .
GO Z—Ep—Up—Vap(1+(ng,))
GLAU(E)=1_G(O)/;(O)T As for Eq. (13), there isVga=Vag and gl (2), 1=0,1,2,
Ac“Ba | AB and 3, are obtained from Eq&l4)-(17) by replacingA (B)
(99 with B (A). A similar decoupling procedure was also em-
} GOGOT,, ployed in Ref. 1 to derive the retarded GF of a single QD
Gagol ):—1—G(°)G(°’T , structure, which is valid for temperatures higher than the
AcZBo | AB Kondo temperatur&®
where To calculate the causal GF’s, one needs to obtain the av-
erage occupation numbers in détsand B
Gi(E)= g;U ' dEf(E Limc! (E
l—gAUTL/(Z—s’;) <n|¢r> <CI0'CI0'> ) __m[ Ilo'( )i, i
(10 (18
GO(E) = 98s , Since the retarded GF'&),5,(E) and Ggg,(E) depend on
1-0s,TR/(Z—}) (nay) and(ng;) throughga,(Z) andgg,(Z), the average

occupation numbergn,,) and (ng,) are thus determined

with Z= E+ i, in Wh'Ch n—0. Here, the renormalized site ge|f-consistently. Also, it can be derived that the selfenergies
energies €5 and e are derived by the real-space S A, @nd3 g, in Eq. (6) are given by

renormalization-group methd@;® which correspond to the
fixed points of the renormalization-group equations Sac=Z—Epn—Ua(Naz) —Vas({Ngy) +{(Ngg)) — Lgas(2),
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FIG. 1. (a) Total, (b) elastic, andc) inelastic conductances, FIG. 2. Change of the conductan¢ewith interdot coupling
Gel» and Gi, as a function ofu—e, wheret=—0.1U, Tpg= Tag, Wheret=—0.1U, Va5=0, kgT=0.03U, andT,g/U= (a)
—0.2U, V,5=0, and kgT/U=0.02, 0.03, and 0.05 for solid, —0.1,(b) —0.2, and(c) —0.45.
dashed and dotted curves. In this figure and the following ares,
=&;=¢,=65=0, andt;=t,= —5U. every two split peaks in the total conductance, the higher
peak is mainly contributed by the conductance resonance
3g,=2—Eg—Ug(Ng;) —Vas({Nas) T (Nas)) —1/98,(Z),  involving elastic process, while the contribution to the lower

(19 peak by the resonance involving inelastic process is compa-
rable to the elastic one. Recently, Chemal.” and Klimeck
et al® obtained numerical results similar to Figal In their
calculations, the QD array is decoupled from the leads and
its many-body eigenstates are derived by direct diagonaliza-
tion of the Hamiltonian for the isolated QD array. As noted
In terms of the retarded GF19), the self-energie§l9), and by them! this approach is valid only when the lead coupling
the LDOS’s(20), one can numerically calculate the conduc-is small so that the modification of the QD eigenstates may
tance through the double QD structure. be ignored. However, in our approach, the lead coupling is

In the following, we present numerical calculations for taken into account and the total Hamiltonidh is treated as
the conductance. As a typical example, we study the syma whole in studying the spectral properties.
metric double QD structure with parametets,=Eg=¢, Figure 2 demonstrates the change of the conductgnce
Ua=Ug=U, T =Tg=t, g=¢g,=¢g,=¢5=0, andt;=t,  with increasing interdot couplind ,g. For weak-interdot
= —5U. Here, the nonmagnetic case is considered, in whicltoupling, the conductance consists of weakly split péaks
(na1)=(na;) and(ng;)=(ng,). First, we start with the case Fig. 2(a)]. As the interdot coupling further decreases, the two
of zero interdot repulsioV,g=0. This situation is suitable split peaks are not resolved; analogous to the single-dot
to the commonly-used lateral QD structures, since the interstructure’ the conductance exhibits peaks atand ¢+ U
dot Coulomb repulsion is greatly reduced by the gates placeithstead. On the contrary, corresponding to the situation that
close to the doté.In Fig. 1, we display the total, elastic and the artificial molecular states are well formed in the double
inelastic conductances;, Gg and Gine, as a function ofu QD, clearly split peaks are observed at larger values of the
—e&, whereu is the chemical potential. The temperatures arenterdot coupling and the peak splitting widens with increas-
kgT/U=0.02, 0.03 and 0.05 for solid, dashed, and dottedng interdot coupling. In Fig. @), the conductance becomes
curves, and other parameters are chosen to=be0.1U and  to have four peaks with nearly equal spacing, implying that
Tag=—0.2U. On increasing the temperature, every twothe interdot coupling is so strong that the two coupled dots
strongly-split peaks around and e+ U decrease in peak are combined to become a single-large dot. These observa-
heights and increase in peak widths, analogous to that of tons match the experimental measurements on the conduc-
noninteracting, single-particle resonance. Interestingly, itance of a lateral double QD structureVery recently,

and the LDOS’s,,,(E) andpg,(E) are

1 1
pl(r(E):_;lm(ﬁ), |:C¥,B. (20)
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Vg=0.1U, three resonance peaks are well resolved in the
upper group and four peaks start to be resolved in the lower
group[see Fig. &)]. Furthermore, with the interdot repul-
sion increased t&,g=0.3U, four resonance peaks start to
be resolved in the upper group of the conductance, while the
four peaks in the lower group are clearly demonstrésed
Fig. 3(d)]; when the interdot repulsion is further increased,
all of the four peaks are well resolved in both the upper and
lower groups of the conductance. In the absence of the inter-
dot repulsion, the upper and lower groups of the conductance
are symmetric aboutt—&e=0.5U, due to the electron-hole
symmetry (see also Figs. 1 and.2However, with the inter-
dot repulsion introduced, the conductance spectrum broadens
and the upper and lower groups become asymmésee
Fig. 3). As explained by Chest al.’ this is due to the break-
ing of the electron-hole symmetry by the presence of the
5 . : . . . . interdot repulsion.
uee (U) p-e (U) In conclusion, we have studied electron transport through
a double-QD structure with intradot and interdot Coulomb
FIG. 3. Change of the conductan€ewith interdot Coulomb interactions. The conductance is calculated by a Landauer-
repulsionVg, wheret=—0.1U, Tag=—0.2U, kgT=0.02, and  Bygtiker formula for the interacting systems and the causal
Vas/U= (&) 0.01,(b) 0.05,(c) 0.1, and(d) 0.3. GF's are solved by the equation-of-motion method. The

Oosterkampet all° reported a transition from ionic bonding Landauer-Bttiker formula is derived using the nonequilib-

to covalent bonding in a double QD, as probed by micro_rium Keldysh formalism, in which both the elastic and in-
wave excitations. and Blickt al** demonstrated the tunnel- €@stic contributions are included. We show the interdot-

splitting effects of the double QD by measuring the chargin cr?uplmg d_ependlencbe of thE?‘ peak sp(ljlttlnﬁql, V\éh'Ch ag(rjees with
diagrams and the differential conductance. As expecte Ie exr;])erl;menkt.a ° fsirvatllons onh lou e-dot conductance.
these experiments explicitly reveal that, in the presence 0/?\30, the breaking of the electron-hole symmetry Is numeri-

strong-interdot couplings, the artificial molecular states areca"y. demonstrated by introducing the interdot Coulomb re-

well formed in the double QD. pulsion.

In Fig. 3, we show the change of the conductance by This work was supported by the National Natural Science
varying the interdot Coulomb repulsion. With increasing in- Foundation of China, the National Climbing Program of
terdot repulsion, new resonance peaks appear.VAt China, and the Chinese Academy of Sciences. One of the
=0.08U, three resonance peaks are resolved in both the u@uthors(J.Q.Y) was also supported by the K. C. Wong Edu-
per and lower groups of the conductarisee Fig. 8)]. For  cation Foundation, Hong Kong.
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